Qe

NICTA ,
Mechanised

Computability Theory

Michael Norrish

NICTA Funding and Supporting Members and Partners
oSS Australian Government Austraian UNSW & Trade & N E
@ ; . Investment Victoria B

Department of Broadband, Communications I A GO S ST
and the Digital Economy
Australian Research Council $ SYDNEY &“‘ (W), Griffith W OF QUEBELAND

o Tty =00 W avrreans

Motivation

NICTA

Mechanizing the Metatheory of LF . 15:25

(x,A1):I' s y:Byand (x, Ay)::I" b5 Ay = Boly:=x] : type. Moreover, in this case
we cannot use the strong version of the inversion lemma to avoid this problem,
because x is already in use in the context.

Although their proof looks rigorous and detailed, here Harper and Pfenning
appear to employ implicit “without loss of generality” reasoning about inversion
and renaming that is not easy to formalize directly. Instead we needed to
carefully show that:

LEmmA 39. If (x, Al s Mx:Ag and x # M then I'x M : Tlx:Aq. As.

Proor. The proof proceeds by applying validity and inversion principles, as
already discussed. One subtle freshness side-condition is the fact that x is fresh
for ITy:B;. By, and this is proved by translating to the algorithmic typechecking
system and using Lemma 38. O

Strong extensionality then follows essentially as in HP05 , using Lemma 39 to
fill the gap we identified.

THEOREM 11 (STRONG EXTENSIONALITY). If (x, A1)l 5 Mx = Nx : As and x #
(M,N)then I' Vx M =N : TIx:A;. As.

3.7 Decidability

HPO05 also sketches proofs of the decidability of the algorithmic judgments (and
hence also the definitional system). Reasoning about decidability within Is-
abelle/HOL is not straightforward because Isabelle/HOL is based on classical
logic. Thus, unlike constructive logics or type theories, we cannot infer decid-
ability of P simply by proving P v — P. Furthermore, given a relation R definable
in Isabelle/HOL, it is not clear how best to formalize the informal statement
“R is decidable.”

As a sanity check, we have shown that weak head reduction is strongly nor-
malizing for well-formed terms. We write M| to indicate that M is strongly
normalizing under weak head reduction. This proof uses techniques and defi-
nitions from the example formalization of strong normalization for the simply-
typed lambda calculus in the Nominal Datatype Package.

THEOREM 12. If I'tx M : A then M.

Proor. We first show the standard property that if M N || then M ||. We then
show that if A5 M < N : 7, then M|} by induction on derivations. The main
result follows by reflexivity and Theorem 1. O

Turning now to the issue of formalizing decidability properties in Is-
abelle/HOL, we considered the following options.

Formalizing computability theory. It should be possible to define Turing
machines (or some other universal model of computation) within Isabelle/HOL
and derive enough of the theory of computation to be able to prove that the algo-
rithmic equivalence and typechecking relations are decidable. It appears to be
an open question how to formalize proofs of decidability in Isabelle/HOL, espe-
cially for algorithms over complex data structures such as nominal datatypes.

ACM Transactions on Computational Logic, Vol. 12, No. 2, Article 15, Publication date: January 2011.

M. Norrish, Mechanised Computability Theory, ITP2011

Mechanizing the Metatheory of LF.

Urban, Cheney, Berghofer. ACM Transactions
on Computational Logic, 12:2, 2011.

From imagination to impact

Mechanizing the Metatheory of LF . 15:25

(x,A1):I' s y:Byand (x, Ay)::I" b5 Ay = Boly:=x] : type. Moreover, in this case
we cannot use the strong version of the inversion lemma to avoid this problem,
because x is already in use in the context.

Although their proof looks rigorous and detailed, here Harper and Pfenning
appear to employ implicit “without loss of generality” reasoning about inversion
and renaming that is not easy to formalize directly. Instead we needed to
carefully show that:

LEmma 39. If (x,A1):I’'+s Mx:Ag and x# M then I'' 5 M : Tlx:A;. As.

Proor. The proof proceeds by applying validity and inversion principles, as
already dis~ " ° “hiln frest i Ttion ja the figet #hot - in fo T

for ITy:B;. i

Mechanizing the Metatheory of LF.

Urban, Cheney, Berghofer. ACM Transactions
on Computational Logic, 12:2, 2011.

v

-emae NeNce also the definitional system). Reasoning about decidability within Is-
mne o abelle/HOL is not straightforward because Isabelle/HOL is based on classical
e Jogic. Thus, unlike constructive logics or type theories, we cannot infer decid-
s70ecca @D1lity of P simply by proving P v — P. Furthermore, given a relation R definable

HPO05 also ¢

nence o= 1 ISAbelle/HOL, it is not clear how best to formalize the informal statement

abelle/HC . . . ”
logic. Thu

ability of / R is decidable.
in Isabelle

“R is decidables
As a sanity ¢ reduction 18 strongly nor-
malizing for well-formed terms. We write M| to indicate that M is strongly

normalizing under weak head reduction. This proof uses techniques and defi-
nitions from the example formalization of strong normalization for the simply-
typed lambda calculus in the Nominal Datatype Package.

THEOREM 12. If I'tx M : A then M.

Proor. We first show the standard property that if M N || then M ||. We then
show that if A5 M < N : 7, then M|} by induction on derivations. The main
result follows by reflexivity and Theorem 1. O

Turning now to the issue of formalizing decidability properties in Is-
abelle/HOL, we considered the following options.

Formalizing computability theory. It should be possible to define Turing
machines (or some other universal model of computation) within Isabelle/HOL
and derive enough of the theory of computation to be able to prove that the algo-
rithmic equivalence and typechecking relations are decidable. It appears to be
an open question how to formalize proofs of decidability in Isabelle/HOL, espe-
cially for algorithms over complex data structures such as nominal datatypes.

ACM Transactions on Computational Logic, Vol. 12, No. 2, Article 15, Publication date: January 2011.

W

Mechanizing the Metatheory of LF . 15:25 MeChaniZing the Metatheory Of LF.

(x,A1):I' s y:Byand (x, Ay)::I" b5 Ay = Boly:=x] : type. Moreover, in this case
we cannot use the strong version of the inversion lemma to avoid this problem,

because x is already in use in the context. I
Although their proof looks rigorous and detailed, here Harper and Pfenning U rb a n 1 C h e n ey’ B e rg h Ofe r' AC M Tra n Sa Ctl O n S
appear to employ implicit “without loss of generality” reasoning about inversion 1 1 .
and renaming that is not easy to formalize directly. Instead we needed to O n CO m p u tatl O n a I Log I C, 1 2 . 2 y 2 O 1 1 .
carefully show that:
LEmma 39. If (x,A1):I’'+s Mx:Ag and x# M then I'' 5 M : Tlx:A;. As.

Proor. The proof proceeds by applying vahdlty and inversion prlnc1ples as
already dis~ T hils £ 7 inn ic the fact 1
for ITy:B;. i

wemand NENcCe also the definitional system). Reasomng about demdablllty within Ts-
ame oo abelle/HOL i1s not straightforward because Isabelle/HOL is based on classical
o 1ogic. Thus, unlike constructive logics or type theories, we cannot infer decid-
s7veasa. @D111ty of P simply by proving P v — P. Furthermore, given a relation R definable

HPO5alsoc

wence 2 11 IS@belle/HOL, it is not clear how best to formalize the informal statement

abelle/HC

bgie. T < P 1o dacidable.”

ability of £
in Isabelle

“R is decidabl@i e ‘W

As a sanity chee reduction 18 strongly nor-
malizing for v-~"¥armed terme W~ 4~ M1l tn indicate that M is stronols
normalizi

s Hormalizing computability theory. It should be possible to define Turing

typed lam

mon Aachines (or some other universal model of computation) within Isabelle/HOL

Proor.

sovn: @Nd derive enough of the theory of computation to be able to prove that the algo-

result fo!

e Yithmic equivalence and typechecking relations are decidable. It appears to be

i an open question how to formalize proofs of decidability in Isabelle/HOL, espe-

machine

xaeri clally for algorithms over complex data structures such as nominal datatypes.

rithmice ¢

an open 4 ..cow ~
cially for algorithWes. - “W

ACM Transactions on Computational Logic, Vol. 12, No. 2, Article 15, Publication date: January 2011.

e

NICTA

A Top-Down Exposition

We're not quite at the point of being able to
do the Mechanizing LF example.

So:

- What can we do?
- And how do we get there?

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

Goals and Ambitions i

Some basic results from standard
computability theory:

- recursive and recursively enumerable (r.e.) sets
- undecidability results, such as Rice’'s Theorem
- existence of Universal Machines

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

Question 1: What Model? e

NICTA

Turing Machines

- yuck. Fiddly to define, even fiddlier constructions
required to do basic arithmetic and recursion.

Register Machines
- slightly less yuck.
- But still fiddly.

- Some existing work: Zammit's PhD showed that '
register machines could compute the recursive
functions

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

Question 1: What Model? Qe

NICTA

Recursive functions

- That Is: zero, successor, projection, composition,
primitive recursion, and minimisation

- Clean!
- Related work:

» Harrison and O’Connor used recursive
functions in proofs of Godel Incompleteness

» Paulson and Szasz mechanised proof that
Ackermann is not primitive recursive

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

Recursive Functions —

But all is not rosy.

One of our desired results Is

r.e.(Sl) A\ r.e.(SQ) —> r.e.(Sl U SQ)
The argument is that there iIs a machine that

can dovetail the machines enumerating 5,
and SQ.

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

e

NICTA

Dovetailing Rec. Functions

To dovetall functions, you have to be able to
run them for a fixed number of “steps”.

Recursive functions only work over |'[; we
would have to

- encode all functions as numbers

- write an “step-counting” interpreter for them

- and do it all as a recursive function

- I.e., a Universal Machine for recursive functions...

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

(e

NICTA

Question 1: What Model?

The A-Calculus

- Clean and expressive
- Already have extensive mechanisation in HOL4
- Know how to do recursive functions:

» Church numerals

» Y combinator for minimisation

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

Computing with A-Terms

NICTA

Basic problem is non-determinism.

Luckily, normal order reduction guarantees
finding of normal forms:

My =, My —is_abs M,
(Av. M) « N —, Mlv := N| My o N =, My o N

My —yn My
(Av. My) —4 (Av. Mp)

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

Computing with A-Terms

NICTA

Basic problem is non-determinism.

Luckily, normal order reduction guarantees
finding of normal forms:

My —, My, —is_abs M;j

(Av. M) « N —, Mlv := N| My o N —, My o N
My —, My N1 =, N bnf M —is_abs M
(Av. M1) —n (Av. Mp) Mo N =, M- Ny

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

We Can “Run” A-Terms e

Within the logic:

|
!
|

while (¢ not in beta-normal form) do |
t :=normal-order-reduct-of (t) |

Can prove that this “computes” the normal
form of a term, if it has one.

Still need to show this is really computable.

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

We Can “Run” A-Terms e

Within the logic:

|
,‘!
I

| while (¢ not in beta-normal form) do |

t = normal-order-reduct-of ()

form of a term, ifitha” ™

' DEPENDS ON PROOF OF THE

‘ QTANDARDISATION THEOREM
Still need to show this. — -emy-corAPUTEDIE.

M. Norrish, Mechanised Computability Theory, ITP2011

From imagination to impact

Running A-Terms Inside e
Themselves? N

Recall: we have to do this to be able to
build the Universal Machine....

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

Running A-Terms Inside Oe
Themselves? e

1. How do we represent A-terms inside
themselves?

- Use de Bruijn terms!

2. Huh?

- de Bruijn terms are an algebraic type; we can
“Church encode” them just like numbers, pairs
and lists

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

Oe

NICTA

“Church” de Bruijn Terms

0

(Ax. X y) (dLAM (dAPP (dV 0) (dV 1))

0

(Avca.a(c(vr0-) (vr17)))

On top of this foundation, write computable
functions to perform:

- substitution
- redex-finding
- perform n normal order reduction steps

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

Oe

NICTA

Thus, a Universal Machine

b mn In-logic calculation of bnf of
machine 77 applied to

UMeo m & n Aterm taking a Church-
encoded pair of 777 and 7

~ ® m n = NONE <= bnf_of (UM¢ m ®n') = NONE

- ® mn = S0ME(p) <—
bnf_of (UMo m ®n') = SOME(D)

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

@

NICTA

Thus, a Universal Machine

b mn In-logic calculation of bnf of
machine 77 applied to

UMeo m & n Aterm taking a Church-
encoded pair of 777 and 7

' DEPENDS ON PROOF OF THE

|
~ ® m n = NONE <— bnf._ C',', [SOMORPHISM OF DE BrunN E

—dmn= SDME(p) — + AND “NORMAL
bnf_of (UMo m @ n') = SOME(D)

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

Or at least a selection thereof:

— recursive S = re S

—re s ANret = re (s N t)

— re s Nret = re (s U t)

— re s N re (COMPL s) = recursive s

Others include:
Rice’'s Theorem, Recursion Theorem...

(e

NICTA

Enter Paranoid Doubts

Proved results suggest mechanised maths is
right.

But, we can make it yet more convincing.

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

{ o

NICTA

Recursive Functions (ll)

It is fairly straightforward to show that the A-
terms can implement the recursive functions.

= Not as easy as | expected though: the partiality
introduced by minimisation is fiddly

What about the other way ‘round?

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

A-Terms as Numbers -

Recursive functions only manipulate
numbers.

de Bruijn terms are a countable set.

Used this in Universal Machine construction
- UM took index into enumeration of all terms

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

This is the invertible map from terms to
numbers.

— dBnum (dV 1) = 3 X 1
— dBnum (dAPP M N) =3 X (dBnum M & dBnum N) + 1
— dBnum (dABS M) = 3 X dBnum M + 2

The inverse uses (natural number) division
and modulus.

Flavours of Recursion |

NICTA

Substitution is primitive recursive over the
structure of terms.

When the term has been encoded as a
number, the corresponding recursion is not
primitive
- the recursive calls are to numbers that are much
smaller (not just the predecessor).

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

Substitution on de Bruijn terms changes the
other parameters when the recursion passes
through an abstraction:

The primitive recursion allowed in Recursive
Functions keeps other parameters
unchanged...

We could use minimisation to implement
these recursions.

By avoiding it, we show that all operations
except the search for the normal form are
primitive recursive.

... effectively Kleene's Normal Form theorem

Oe

NICTA

More Desirable Results

Theorem 4. There exists a recursive function recPhi of type
num list — num option

which emulates D:

~ recfn recPhi 2
— recPhi [i; n] = ® i n

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

Recall:

Formalizing computability theory. It should be possible to define Turing
machines (or some other universal model of computation) within Isabelle/HOL
and derive enough of the theory of computation to be able to prove that the algo-
rithmic equivalence and typechecking relations are decidable. It appears to be
an open question how to formalize proofs of decidability in Isabelle/HOL, espe- .
cially for algorithms over complex data structures such as nominal datatypes.

e —— T ———————
A-terms are not as complicated as LF terms.

Nonetheless they are a nominal datatype.

Conclusions e

| have mechanised a pile of basic
computability theory.

Classical, non-constructive systems (like the
HOLs) now have a chance to reason about

computability.

See the paper for many more technical details on how
it was done.

M. Norrish, Mechanised Computability Theory, ITP2011 From imagination to impact

