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(x, A1)::Γ !Σ y : B1 and (x, A1)::Γ !Σ A2 = B2[y:=x] : type. Moreover, in this case
we cannot use the strong version of the inversion lemma to avoid this problem,
because x is already in use in the context.

Although their proof looks rigorous and detailed, here Harper and Pfenning
appear to employ implicit “without loss of generality” reasoning about inversion
and renaming that is not easy to formalize directly. Instead we needed to
carefully show that:

LEMMA 39. If (x, A1)::Γ !Σ M x : A2 and x # M then Γ !Σ M : #x:A1. A2.

PROOF. The proof proceeds by applying validity and inversion principles, as
already discussed. One subtle freshness side-condition is the fact that x is fresh
for #y:B1. B2, and this is proved by translating to the algorithmic typechecking
system and using Lemma 38.

Strong extensionality then follows essentially as in HP05 , using Lemma 39 to
fill the gap we identified.

THEOREM 11 (STRONG EXTENSIONALITY). If (x, A1)::Γ !Σ Mx = Nx : A2 and x #
(M, N) then Γ !Σ M = N : #x:A1. A2.

3.7 Decidability

HP05 also sketches proofs of the decidability of the algorithmic judgments (and
hence also the definitional system). Reasoning about decidability within Is-
abelle/HOL is not straightforward because Isabelle/HOL is based on classical
logic. Thus, unlike constructive logics or type theories, we cannot infer decid-
ability of P simply by proving P ∨ ¬ P. Furthermore, given a relation R definable
in Isabelle/HOL, it is not clear how best to formalize the informal statement
“R is decidable.”

As a sanity check, we have shown that weak head reduction is strongly nor-
malizing for well-formed terms. We write M⇓ to indicate that M is strongly
normalizing under weak head reduction. This proof uses techniques and defi-
nitions from the example formalization of strong normalization for the simply-
typed lambda calculus in the Nominal Datatype Package.

THEOREM 12. If Γ !Σ M : A then M⇓.

PROOF. We first show the standard property that if M N⇓ then M⇓. We then
show that if $ !Σ M ⇔ N : τ , then M⇓ by induction on derivations. The main
result follows by reflexivity and Theorem 1.

Turning now to the issue of formalizing decidability properties in Is-
abelle/HOL, we considered the following options.

Formalizing computability theory. It should be possible to define Turing
machines (or some other universal model of computation) within Isabelle/HOL
and derive enough of the theory of computation to be able to prove that the algo-
rithmic equivalence and typechecking relations are decidable. It appears to be
an open question how to formalize proofs of decidability in Isabelle/HOL, espe-
cially for algorithms over complex data structures such as nominal datatypes.

ACM Transactions on Computational Logic, Vol. 12, No. 2, Article 15, Publication date: January 2011.
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A Top-Down Exposition

We’re not quite at the point of being able to 
do the Mechanizing LF example.

So:
-What can we do?
- And how do we get there?



From imagination to impactM. Norrish, Mechanised Computability Theory, ITP2011

Goals and Ambitions

Some basic results from standard 
computability theory:

- recursive and recursively enumerable (r.e.) sets
- undecidability results, such as Rice’s Theorem
- existence of Universal Machines
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Question 1: What Model?

Turing Machines
- yuck.  Fiddly to define, even fiddlier constructions 

required to do basic arithmetic and recursion.

Register Machines
- slightly less yuck.  
- But still fiddly.
- Some existing work: Zammit’s PhD showed that 

register machines could compute the recursive 
functions
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Question 1: What Model?

Recursive functions
- That is: zero, successor, projection, composition, 

primitive recursion, and minimisation
- Clean!
- Related work: 
‣ Harrison and O’Connor used recursive 

functions in proofs of Gödel Incompleteness
‣ Paulson and Szasz mechanised proof that 

Ackermann is not primitive recursive
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Recursive Functions

But all is not rosy.

One of our desired results is

The argument is that there is a machine that  
can dovetail the machines enumerating      
and     .

S1
S2

r.e.(S1) ^ r.e.(S2) ) r.e.(S1 [ S2)
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Dovetailing Rec. Functions 

To dovetail functions, you have to be able to 
run them for a fixed number of “steps”.

Recursive functions only work over ℕ; we 
would have to
- encode all functions as numbers
- write an “step-counting” interpreter for them 
- and do it all as a recursive function
- i.e., a Universal Machine for recursive functions...
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Question 1: What Model?

The λ-Calculus
- Clean and expressive
- Already have extensive mechanisation in HOL4
- Know how to do recursive functions:
‣ Church numerals
‣ Y combinator for minimisation
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Computing with λ-Terms

Basic problem is non-determinism.

Luckily, normal order reduction guarantees 
finding of normal forms:2.1 Normal Order Reduction

Definition 1. To guarantee that l-evaluations find normal forms, we use normal order
reduction:

(lv. M) ⇧
N !

n

M[v := N]
M1 !

n

M2 ¬is_abs M1
M1 ⇧

N !

n

M2 ⇧
N

M1 !

n

M2

(lv. M1) !

n

(lv. M2)
N1 !

n

N2 bnf M ¬is_abs M

M

⇧
N1 !

n

M

⇧
N2

where the predicate is_abs is true of a term if it is an abstraction.

We are then able to prove that if a term can b-reduce to a b-normal form, then a
(necessarily deterministic) normal reduction will eventually arrive at the same place:

` M !

⇤

b N ^ bnf N ) M !

⇤

n

N

The proof is as per Barendregt [1, §13.2]: in essence, a standard reduction (in the sense
of the standardisation theorem) that reaches a b-normal form must also be normal-
order as such a reduction can’t have ignored a potential redex in its sweep across a
term (outermost, left-to-right). By the standardisation theorem, all b-reductions can
be emulated by a standard reduction, and so all b-reductions to normal forms can be
emulated by normal order reduction.

2.2 Rewriting with b-Equivalence; Bracket Abstraction

In developing the l-calculus implementations of types such as numbers and de Bruijn
terms, it is critical to be able to prove facts of the form M ⌘b M

0, stating that M is
b-equivalent to M

0. (The b-equivalence relation is the symmetric, reflexive, transitive
closure of the relation that reduces one b-redex.)

The HOL4 simplifier supports rewriting with arbitrary pre-orders, and rewriting
with an equivalence (where we additionally have symmetry) is generally quite pleasant.
One has to provide introduction rules such as

M1 ⌘b M2 N1 ⌘b N2

M1 ⌘b N1 () M2 ⌘b N2

which switches the simplifier from rewriting an equality (boolean equivalence in this
case) to b-equivalence. In addition, one can use the following rewrites

` bnf N ) (M !

⇤

n

N () M !

⇤

b N)

` bnf N ) (M !

⇤

b N () M ⌘b N)

to move to rewriting with ⌘b from goals mentioning !

⇤

n

and !

⇤

fi

.
It’s very important to be able to rewrite with theorems already proved, results such

as (see Section 2.3 below for more on Church numerals and arithmetic)

` cplus ⇧ church m

⇧ church n !

⇤

n

church (m + n)
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We Can “Run” λ-Terms

Within the logic:

Can prove that this “computes” the normal 
form of a term, if it has one.

Still need to show this is really computable.

     while (t not in beta-normal form) do
           t  := normal-order-reduct-of ( t ) 
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Can prove that this “computes” the normal 
form of a term, if it has one.

Still need to show this is really computable.

     while (t not in beta-normal form) do
           t  := normal-order-reduct-of ( t ) 

Depends on proof of the 

Standardisation Theorem



Recall: we have to do this to be able to 
build the Universal Machine....
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Running λ-Terms Inside 
Themselves?



1. How do we represent λ-terms inside 
themselves?
- Use de Bruijn terms!

2. Huh?
- de Bruijn terms are an algebraic type; we can 

“Church encode” them just like numbers, pairs 
and lists

From imagination to impactM. Norrish, Mechanised Computability Theory, ITP2011

Running λ-Terms Inside 
Themselves?
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“Church” de Bruijn Terms

On top of this foundation, write computable 
functions to perform:
- substitution
- redex-finding
- perform n normal order reduction steps

(λx. x y) ≈ (dLAM (dAPP (dV 0) (dV 1))

≈  (λv c a. a (c (v ⌜0⌝) (v ⌜1⌝)))
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Thus, a Universal Machine

` � m n = NONE () bnf of (UM ⇧ pm⌦ nq) = NONE

` � m n = SOME(p) ()
bnf of (UM ⇧ pm⌦ nq) = SOME(ppq)

In-logic calculation of bnf of 
machine      applied to  

λ-term taking a Church-
encoded pair of       and 

� m n

UM ⇧ pm⌦ nq
m n

m n
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Thus, a Universal Machine

` � m n = NONE () bnf of (UM ⇧ pm⌦ nq) = NONE

` � m n = SOME(p) ()
bnf of (UM ⇧ pm⌦ nq) = SOME(ppq)

In-logic calculation of bnf of 
machine      applied to  

λ-term taking a Church-
encoded pair of       and 

� m n

UM ⇧ pm⌦ nq
m n

m n

Depends on proof of the 

Isomorphism of de Bruijn 

and “normal” λ-terms
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Thus, Desired Results

Or at least a selection thereof:

Others include: 
   Rice’s Theorem, Recursion Theorem...

This result requires an implementation of dove-tailing, whereby the machine M

i

is run
on arguments 0..n � 1 for n steps, and the results examined for b-normal forms. If the
argument e is not among them, then the process is repeated with parameter n + 1.

Theorem 7. All recursive sets are r.e. The r.e. sets are closed under union and inter-
section. If a set and its complement are r.e., then they are both recursive.

` recursive s ) re s

` re s ^ re t ) re (s \ t)
` re s ^ re t ) re (s [ t)
` re s ^ re (COMPL s) ) recursive s

Theorem 8. The Halting Problem. Let K be defined as follows (“the machines that
halt on their own indices”):

` K =
{

M

i

| 9 z. F M

i

M

i

= SOME z

}

Then K is r.e. but not recursive. Its complement is not even r.e.

` ¬recursive K

` re K

` ¬re (COMPL K)

Theorem 9. The “s-1-1” theorem. There exists a computable function with index s11
that, when given an encoded pair x ⌦ y, returns the index of a function that computes
the function l z. F x (y ⌦ z). In other words, x is the index of the function to be
partially evaluated with parameter y provided in advance.

` 8 x y. 9 f

i

. F s11 (x ⌦ y) = SOME f

i

^ 8 z. F f

i

z = F x (y ⌦ z)

Theorem 10. The Recursion Theorem. If f

i

is the index of a total function (under-
stood to be computing indices of other functions), then it has a fix-point e such that the
functions with indices f (e) and e are extensionally equal.

` (8 n. 9 r. F f

i

n = SOME r) ) 9 e. F (THE (F f

i

e)) = F e

(With the l-calculus to hand, directly using the Y combinator is a much more pleasant
prospect than the route via this theorem, with all its confusions of terms and indices
encoding terms.)

Theorem 11. Rice’s Theorem. Let P be a predicate on functions. The predicate P is
of type (num ! num option) ! bool and thus considers just the functions’ exten-
sional behaviour. Let indices P be the set of indices of computable functions satisfy-
ing P. Then, if indices P is recursive, that set is either the empty set, or the set of all
numbers.

` recursive (indices P) ) indices P = ∆ _ indices P = U(:num)



From imagination to impactM. Norrish, Mechanised Computability Theory, ITP2011

Enter Paranoid Doubts

Proved results suggest mechanised maths is 
right.

But, we can make it yet more convincing.
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Recursive Functions (II)

It is fairly straightforward to show that the λ-
terms can implement the recursive functions.
- Not as easy as I expected though: the partiality 

introduced by minimisation is fiddly

What about the other way ‘round?
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λ-Terms as Numbers

Recursive functions only manipulate 
numbers.

de Bruijn terms are a countable set.

Used this in Universal Machine construction
- UM took index into enumeration of all terms
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Encoding dB Terms

This is the invertible map from terms to 
numbers.

The inverse uses (natural number) division 
and modulus.

With termrec defined, it is straightforward to define a function to implement normal-
order reduction, and another to perform n steps of normal order reduction. With the
minimisation operator, one can then define the function which finds the least n such
that n steps of normal order reduction results in a term in b-normal form. Thus, we
have a computable (and partial!) function for computing b-normal forms, which we
call cbnf_ofk. As with cfindleast, the cbnf_ofk function takes a continuation pa-
rameter to help with strictness. We derive the following characterising theorems:

` bnf_of M = NONE )

bnf_of (cbnf_ofk ⇧
k

⇧ cDB (fromTerm M)) = NONE
` bnf_of M = SOME N )

cbnf_ofk ⇧
k

⇧ cDB (fromTerm M) ⌘b k

⇧ cDB (fromTerm N)

` cbnf_ofk ⇧
k

⇧ cDB M !

⇤

n

t

0

^ bnf t

0

)

9M

0.
bnf_of (toTerm M) = SOME (toTerm M

0) ^ k

⇧ cDB M

0

!

⇤

n

t

0

The bnf_of function is the (uncomputable) function in the logic which, using an option
type to encode partiality, returns a term’s b-normal form if it has one. The fromTerm
and toTerm functions are mutual inverses mapping from the l-terms to the de Bruijn
terms and vice versa.

3.2 The Universal Machine

In order to compare the l-calculus’s capabilities to what is done in other computational
models, we restrict our attention to functions on natural numbers only. We also index
the computable functions with natural numbers, so that we can define

F : num ! num ! num option

taking parameters specifying the computable function to run, and the argument to run it
on. The restriction to a single parameter for the given function is not significant because
of the existence of standard encodings for lists and pairs of numbers.

The first parameter to F requires a bijection between the natural numbers and the
de Bruijn terms. The HOL function dBnum is defined:

` dBnum (dV i) = 3 ⇥ i

` dBnum (dAPP M N) = 3 ⇥ (dBnum M ⌦ dBnum N) + 1
` dBnum (dABS M) = 3 ⇥ dBnum M + 2

(where x ⌦ y is a bijective pairing function on natural numbers). Its inverse, numdB,
is defined by recursion on N.

Definition 4. The F function is defined:

` F m n =
OPTION_MAP force_num

(bnf_of (toTerm (numdB m) ⇧ church n))
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Flavours of Recursion I

Substitution is primitive recursive over the 
structure of terms. 

When the term has been encoded as a 
number, the corresponding recursion is not 
primitive
- the recursive calls are to numbers that are much 

smaller (not just the predecessor).
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Flavours of Recursion II

Substitution on de Bruijn terms changes the 
other parameters when the recursion passes 
through an abstraction:

The primitive recursion allowed in Recursive 
Functions keeps other parameters 
unchanged...

nsub M i (dLAM N) =

nsub (lift M 0) (i+ 1) N
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Avoid Minimisation 

We could use minimisation to implement 
these recursions.

By avoiding it, we show that all operations 
except the search for the normal form are 
primitive recursive.

... effectively Kleene’s Normal Form theorem
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More Desirable Results` recfn recbnf_of 1
` recbnf_of [t] =

OPTION_MAP (dBnum � fromTerm) (bnf_of (toTerm (numdB t)))

This leads to

Theorem 4. There exists a recursive function recPhi of type

num list ! num option

which emulates F:

` recfn recPhi 2
` recPhi [i; n] = F i n

6 Computability Theorems

Here we list a number of standard results that can be derived on top of the framework
that has been established. The most complicated proofs are those to do with the recur-
sively enumerable sets, where care is often required to handle computations that may
not terminate.

Definition 5. A recursive set (of natural numbers) is one that a computable function
decides:

` recursive s ()

9m. 8 e. F m e = SOME (if e 2 s then 1 else 0)

Theorem 5. The empty, finite and universal sets are recursive; recursive sets are closed
under union, intersection and complement.

` recursive ∆
` recursive U(:num)
` FINITE s ) recursive s

` recursive s

1

^ recursive s

2

) recursive (s

1

[ s

2

)
` recursive s

1

^ recursive s

2

) recursive (s

1

\ s

2

)
` recursive (COMPL s) () recursive s

where U(:num) denotes the universal set of natural numbers, and where COMPL s is
the complement of set s.

Definition 6. A recursively enumerable (r.e.) set is one that is the range of a computable
function

` re s () 9M

i

. 8 e. e 2 s () 9 j. F M

i

j = SOME e

Theorem 6. Alternatively, the r.e. sets are those that are the domains of computable
functions:

` re s () 9N. 8 e. e 2 s () 9m. F N e = SOME m
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(x, A1)::Γ !Σ y : B1 and (x, A1)::Γ !Σ A2 = B2[y:=x] : type. Moreover, in this case
we cannot use the strong version of the inversion lemma to avoid this problem,
because x is already in use in the context.

Although their proof looks rigorous and detailed, here Harper and Pfenning
appear to employ implicit “without loss of generality” reasoning about inversion
and renaming that is not easy to formalize directly. Instead we needed to
carefully show that:

LEMMA 39. If (x, A1)::Γ !Σ M x : A2 and x # M then Γ !Σ M : #x:A1. A2.

PROOF. The proof proceeds by applying validity and inversion principles, as
already discussed. One subtle freshness side-condition is the fact that x is fresh
for #y:B1. B2, and this is proved by translating to the algorithmic typechecking
system and using Lemma 38.

Strong extensionality then follows essentially as in HP05 , using Lemma 39 to
fill the gap we identified.

THEOREM 11 (STRONG EXTENSIONALITY). If (x, A1)::Γ !Σ Mx = Nx : A2 and x #
(M, N) then Γ !Σ M = N : #x:A1. A2.

3.7 Decidability

HP05 also sketches proofs of the decidability of the algorithmic judgments (and
hence also the definitional system). Reasoning about decidability within Is-
abelle/HOL is not straightforward because Isabelle/HOL is based on classical
logic. Thus, unlike constructive logics or type theories, we cannot infer decid-
ability of P simply by proving P ∨ ¬ P. Furthermore, given a relation R definable
in Isabelle/HOL, it is not clear how best to formalize the informal statement
“R is decidable.”

As a sanity check, we have shown that weak head reduction is strongly nor-
malizing for well-formed terms. We write M⇓ to indicate that M is strongly
normalizing under weak head reduction. This proof uses techniques and defi-
nitions from the example formalization of strong normalization for the simply-
typed lambda calculus in the Nominal Datatype Package.

THEOREM 12. If Γ !Σ M : A then M⇓.

PROOF. We first show the standard property that if M N⇓ then M⇓. We then
show that if $ !Σ M ⇔ N : τ , then M⇓ by induction on derivations. The main
result follows by reflexivity and Theorem 1.

Turning now to the issue of formalizing decidability properties in Is-
abelle/HOL, we considered the following options.

Formalizing computability theory. It should be possible to define Turing
machines (or some other universal model of computation) within Isabelle/HOL
and derive enough of the theory of computation to be able to prove that the algo-
rithmic equivalence and typechecking relations are decidable. It appears to be
an open question how to formalize proofs of decidability in Isabelle/HOL, espe-
cially for algorithms over complex data structures such as nominal datatypes.
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What of Mechanizing LF ?

Recall:

λ-terms are not as complicated as LF terms. 

Nonetheless they are a nominal datatype.
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Conclusions

I have mechanised a pile of basic 
computability theory.

Classical, non-constructive systems (like the 
HOLs) now have a chance to reason about 
computability.

See the paper for many more technical details on how  
it was done.


