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• hard real-time
– because application domains demand it

• mixed-criticality
– necessary to remain competitive

• trustworthy!
– bugs cost money, embarrassment and possibly life.

e.g. medical implants, industrial automation, 
some automotive systems
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Motivation

The desire to build systems which are:
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Motivation

seL4 microkernel gives trustworthiness using
– MMU-based isolation
– Small trusted computing base

! Formal specification of
functional behaviour

! Machine-checked formal proof
of compliance to specification

             [Klein et. al., SOSP’09]
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Background

• Previously shown that interrupt latency can 
be computed on a formally verified kernel.

[Blackham et. al., RTSS 2011]

• Formal verification (today) requires a
non-preemptible kernel.

• Interrupt latencies of several milliseconds!
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Verification of RT kernel design

Real-time demands often conflict with
ease of verification
– e.g. preempted operations leave interesting intermediate states

How can we improve interrupt latency
with minimum impact on:

‣ verification?
‣ overall performance?
‣ operational semantics?
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seL4: a formally verified kernel

C Code

Formal Specification

8,700 lines of C

200,000 lines of proof

25 person-years
6
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seL4 proof structure

C code
f

f’
Specification
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seL4 proof structure

S1 S2C code

S1’ S2’

f

f’
Specification
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Kernel execution models

Event-based,
single kernel stack

‣ Total kernel state is 
encapsulated within objects

‣ All preemption is explicit

‣ No locks ⇒ better average-
case performance

Process-based,
per-thread kernel stack

‣ Total kernel state includes both 
objects and stack contents

‣ Preemption occurs anywhere
that is not guarded by locks

‣ Locking degrades average-case 
performance

9

Friday, 13 April 2012



© NICTA 2012

seL4 proof structure

Proof shows that all kernel operations
maintain global invariants

80% of the properties proven show
that invariants are maintained

⇒ Don’t break them!

(Unless you absolutely have to)

{invs} op {invs}
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Common design patterns

“Incremental consistency”

‣ large composite objects are composed of individual components 
that can be added or deleted one at a time

‣ i.e. operations can be decomposed into multiple O(small) steps

‣ simple invariants at intermediate steps
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Example: aborting IPC

ThreadIPC 
endpoint Thread Thread Thread

" For each waiting thread,
       Dequeue thread from endpoint and restart it
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Example: aborting IPC

ThreadIPC 
endpoint Thread Thread Thread

" For each waiting thread,
       Dequeue thread from endpoint and restart it
       If interrupt pending, abort

12

Disable the endpoint
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Example: lazy scheduling

Frequent IPC leads to:
⇒ threads frequently blocking/unblocking 
⇒ lots of run-queue manipulation

Lazy scheduling leaves blocked threads in 
run queue
– Assume threads will unblock before scheduler walks run queue
– Used first in L3 by Liedtke, and in almost all L4 kernels since

Blocked Blocked Ready Blocked
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Example: lazy scheduling

tcb_t chooseThread(void) {
  foreach prio ! prios
    foreach thread ! runQueue[prio]
      if runnable(thread)
        return thread
      else
        schedDequeue(thread)

}
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‣Every thread on the run queue is runnable

‣Every runnable thread (except the active thread) is on 
the run queue

Context switches due to IPC involve no run-queue 
manipulation

© NICTA 2012

Replacement: “Benno scheduling”

tcb_t chooseThread(void) {
  foreach prio ! prios
    thread = runQueue[prio].head
    if thread != NULL
      return thread
}

20

Friday, 13 April 2012



‣Every thread on the run queue is runnable

‣Every runnable thread (except the active thread) is on 
the run queue

© NICTA 2012

Replacement: “Benno scheduling”

21

Invariant #1:

Invariant #2:

tcb_t chooseThread(void) {
  foreach prio ! prios
    thread = runQueue[prio].head
    if thread != NULL
      return thread
}

Friday, 13 April 2012



‣Every thread on the run queue is runnable

‣Every runnable thread (except the active thread) is on 
the run queue

© NICTA 2012

Replacement: “Benno scheduling”

21

Invariant #1:

Invariant #2:

        ... which must be proven when:
                 " a thread is put on the run queue
                 " a thread’s state is changed
                 " the active thread is changed
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“Badged” IPC endpoint deletion

IPC 
endpoint Thread ThreadThread Thread Thread

" For each waiting thread,
       Does the thread use the badge being deleted?
       If so, dequeue thread from endpoint and restart it

22

Friday, 13 April 2012



© NICTA 2012

“Badged” IPC endpoint deletion

IPC 
endpoint Thread ThreadThread Thread

Deleting
thread

Thread Thread
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“Badged” IPC endpoint deletion

• Balanced binary tree?
– Less memory efficient
– Complex invariants

• Hash table?
– Variable memory allocation is challenging
– Still susceptible to pathological worst-case

• Linked-list approach?
– Incremental modifications to code

IPC 
endpoint Thread ThreadThread Thread Thread
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Example: object creation

1. Mark free memory region as allocated
2. Divide region into 2n objects
3. For each object X:

– Initialise region for X (clear memory)
– Update bookkeeping data for X

Thread Thread

25

Creating a batch of 2n objects:
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Example: object creation

1. Mark free memory region as allocated
2. Divide region into 2n objects
3. For each object X:

– Initialise region for X (clear memory)
– Update bookkeeping data for X

Thread Thread Thread Thread

Any preemption point has complex invariants!
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Creating a batch of 2n objects:
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Example: object creation

1. Mark free memory region as allocated
2. Divide region into 2n objects
3. For each object X:

– Initialise region for X (clear memory)
– Update bookkeeping data for X

Thread Thread

Any preemption point has complex invariants!
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Free memory
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Example: object creation

For each object X:
– Allocate region for X
– Initialise region for X
– Update bookkeeping data for X
– Check for interrupts

Thread
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Free memory
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Example: object creation

Thread Page table

For each object X:
– Allocate region for X
– Initialise region for X
– Update bookkeeping data for X
– Check for interrupts

Broken invariant:
  unallocated regions of size 2n are aligned to 2n

Re-verification: ~ 9 person-months

Thread
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Common design patterns

“Incremental consistency”

‣ large composite objects are composed of individual components 
that can be added or deleted one at a time

‣ i.e. operations can be decomposed into multiple O(small) steps

‣ simple invariants at intermediate steps
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System call

Undef. instruction

Page fault

Interrupt dispatch
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End result...

Before After

3851
Worst-case execution time

!s
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Lessons learnt

• Don’t break invariants
– unless you need to

• Preemption points are often necessary,
but not always sufficient
– When redoing data structures or algorithms,

aim to minimise re-verification overhead

• Design for incremental consistency
– Simplifies the invariants
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ssrg.nicta.com.au

bernard.blackham@nicta.com.au
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