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The hard real-time myth
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The hard real-time myth

Everybody does it!

‣ QNX Neutrino
‣ Wind River VxWorks
‣ Green Hills Software INTEGRITY
‣ ENEA OSE
‣ Mentor Graphics VRTXsa
‣ Symbian EKA2
‣ ...
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What does that even mean?
• Fully-preemptible kernels:

– Interrupts allowed (almost) anywhere inside the kernel
– Interrupts masked briefly during critical sections
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• Non-preemptible kernels:
– Interrupts almost always masked while kernel is executing
– Pending interrupts polled for at preemption points
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• Non-preemptible kernels:
– Interrupts almost always masked while kernel is executing
– Pending interrupts polled for at preemption points
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What really matters?

• Hard real-time systems don’t care about
average-case interrupt latency

• Hard real-time systems do care about:
‣Worst-case interrupt latency
‣ Functional correctness
‣Average-case performance (secondary concern)
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• Fully-preemptible kernels:
– cannot be formally proven correct (yet)
– have exponentially more possible states than non-preemptible kernels
– are akin to multi-threaded programming

• Non-preemptible kernels:
– can be formally proven correct (as demonstrated by seL4)
– have less concurrency, making testing and assurance easier
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On functional correctness
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On functional correctness
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“… a folk definition of insanity is to do the same thing over 
and over again and to expect the results to be different.

By this definition, we in fact require that
programmers of multithreaded systems be insane.

Were they sane, they could not understand their programs.”

- Edward A. Lee    .
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On average-case performance

• Fully-preemptible kernels must use one of:
– locks (mutexes or spinlocks)

• Cost: minimum is disable/enable interrupts, memory access per lock/unlock
– lock-free algorithms (e.g. speculative lock elision)

• Cost: generally more complex code (at least larger i-cache footprint)

• Non-preemptible kernels, using preemption points must:
– Poll regularly for interrupts

• Cost: efficient implementation: one memory access per preemption period
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What really matters?

• We only consider protected RTOSes
– Multi-criticality systems require isolation

• (assume execution of malicious code)
– Without hardware-enforced protection, all bets are off
– Interrupts are delivered to userspace handlers

• Monolithic kernels are likely fully-preemptible
– e.g. Linux, Windows, Mac OS X

• Most RTOSes build upon a {micro,nano,exo}kernel
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Our intuition

• Microkernel operations should be kept brief
– Managing address spaces, hardware access, threads and IPC
– Why should anything take a long time?

• Kernel entry/exit and context switch times on modern 
hardware are high
– x86: 100s-1000s of cycles per context switch
– ARM Cortex-A8: minimum of 150 cycles per context switch

Execution time of kernel operations
should be within an order of magnitude of
hardware-imposed context switching times.

8

Monday, 23 July 2012



© NICTA 2012

A look at interrupt latency
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Can non-preemptible kernels match worst-case
interrupt latencies of fully-preemptible kernels?
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A look at interrupt latency

• Representative of fully-preemptible: QNX
– Mature, popular commercial RTOS
– Uses QNX Neutrino microkernel

• Representative of non-preemptible: seL4
– Formally verified with machine-checked proof of correctness
– Worst-case execution time analysis previously completed (RTSS’11)
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Can non-preemptible kernels match worst-case
interrupt latencies of fully-preemptible kernels?
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The fully-preemptible: QNX

We analysed QNX to compute its worst-case interrupt latency

• Using static analysis to give a safe approximation
• Investigated all “disable-interrupt” regions
• Selected a representative subset of Neutrino microkernel

– Ignored some complex code (e.g. sporadic scheduling)

• Chosen subsets include interrupt delivery paths, plus 
anything else which could be analysed

Results give a lower-bound
on worst-case interrupt latency
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The fully-preemptible: QNX

Not without some “fun” technical challenges:

• Managing a very large control-flow graph
– Subsets chosen carefully to reduce complexity

• Some code generated at boot-time
– Executable extracted from running image

• Following function pointers
– Resolved manually by user
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The fully-preemptible: QNX

‣ Longest disable-interrupt region: 4,441 cycles

‣WCET of interrupt delivery to userspace: 17,413 cycles

* (These are lower bounds)
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The non-preemptible: seL4

• Previous analysis and improvements give interrupt latency 
of ~200,000 cycles (EuroSys’12)

• Improvements constrained by ability of formal verification

*Fallback to industry standard methods of testing: code coverage tests,
code inspection, model checking, etc.
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Ignoring formal verification*, how much better can we do?

Monday, 23 July 2012



© NICTA 2012

The non-preemptible: seL4

• What causes the worst-case?
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The non-preemptible: seL4

• What causes the worst-case?
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180,000

cycles

User-specified 32-bit object addressing scheme

➡ Up to 32 cache misses per lookup
➡ Up to 11 lookups per system call

Solution: limit object addressing to 1 level (like other RTOSes)
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The non-preemptible: seL4

• What causes the worst-case?
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180,000

cycles

Atomic send/receive

➡ Average-case optimisation
➡ Not necessary for functionality

Solution: add preemption point between send/receive in slow path
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The non-preemptible: seL4

• What causes the worst-case?
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180,000

cycles

Process creation

➡ Non-preemptible copy loop of kernel memory mappings

Solution: add preemption point, or use a separate kernel address space
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The non-preemptible: seL4

• What causes the worst-case?
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180,000

cycles

Instruction cache footprint

➡ Most loops are preemptible
➡ Worst-case execution time caused

largely by instruction cache misses

Solution: pin microkernel into faster L2 cache (only 36 KiB of kernel text!)
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The non-preemptible: seL4

• What causes the worst-case?
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180,000

cycles

22,000

More targeted reductions required

(future work)
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How do they stack up?
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How do they stack up?
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Back to the mythology...

• Our analysis suggests not – i.e., that non-preemptible 
kernels can be competitive with fully-preemptible

• Non-preemptible kernels can offer greater assurance

• Non-preemptible kernels can offer better 
average-case performance

• So why choose to go insane?

23bernard.blackham@nicta.com.au

Do protected RTOSes need a fully-preemptible kernel?
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