
Sequoll: a framework for
model checking binaries

Bernard Blackham, Gernot Heiser

School of Computer Science & Engineering, UNSW
Software Systems Research Group, NICTA
Sydney, Australia

Wednesday, 10 April 13

© NICTA 2013

Motivation

• The desire for a trustworthy kernel to build
reliable mixed-criticality real-time systems

CRITICAL not critic
al

not critical
not critical

2

Wednesday, 10 April 13

© NICTA 2013

Motivation

• The desire for a trustworthy kernel to build
reliable multi-criticality real-time systems

• Using seL4 to guarantee:
– functional correctness through formal proof
 (Klein et al., SOSP 2009)
– timing constraints through sound WCET analysis
 (Blackham et al., RTSS 2011)

3

Wednesday, 10 April 13

© NICTA 2013

Motivation

• Current analysis uses annotations to specify:
– loop counts
– infeasible paths

• We want to reduce scope for errors in
WCET analysis.

4

Wednesday, 10 April 13

0 175 350 525 700

213

657

© NICTA 2013

Results

Without infeasible path information
With infeasible path information

Estimated worst-case execution time of seL4

5

000’s of cycles

Wednesday, 10 April 13

© NICTA 2013

seL4 is large

• Small by microkernel standards
• Large by WCET standards

6

~8,700 lines
316 functions
76 loops

~10,000 instructions
228 functions
56 loops
2,384 basic blocks
~400,000 basic blocks
when inlined

C source Binary (ARM)

Wednesday, 10 April 13

© NICTA 2013

WCET computation process

Compute WCET

Reconstruct path

Path valid?

Success!

Add infeasible
path criteria

Y

N

7

Wednesday, 10 April 13

© NICTA 2013

Infeasible paths

8

Wednesday, 10 April 13

© NICTA 2013

Infeasible paths

8

a > 3a ≤ 3

a > 3a ≤ 3

Wednesday, 10 April 13

© NICTA 2013

Infeasible paths

8

a > 3a ≤ 3

a > 3a ≤ 3

Wednesday, 10 April 13

© NICTA 2013

Infeasible paths

8

a > 3a ≤ 3

a > 3a ≤ 3

Wednesday, 10 April 13

© NICTA 2013

Infeasible paths

9

b ≠ 0b = 0

a = 0 a ≠ 0

Wednesday, 10 April 13

© NICTA 2013

Infeasible paths

9

b ≠ 0b = 0

a = 0 a ≠ 0

Wednesday, 10 April 13

© NICTA 2013

Pruning infeasible paths

Express constraints as one of:

a conflicts with b when called under f

or

a is consistent with b when called under f

10

Wednesday, 10 April 13

© NICTA 2013

Infeasible paths

a

b

conflicts with/
is consistent with

11

Wednesday, 10 April 13

© NICTA 2013

Verifying annotations

• How can we verify these manual annotations?

• For two basic blocks a, b:
– show all paths execute a and b the same number of times
– show all paths execute at most one of a or b

• For some loop l in the binary:
– How many times can l iterate?

12

Wednesday, 10 April 13

© NICTA 2013

Why model checking?

• Many infeasible paths and even some loop
bounds cannot be determined without
program invariants

• Invariants are known to the formal proof

• Formal proof statements and invariants are a
natural fit for model checkers

13

Wednesday, 10 April 13

© NICTA 2012

Why model checking?

int count_bits(uint32_t x) {
 int c = 0;
 while (x != 0) {
 x &= x - 1; /* clear lowest bit */
 c++;
 }
 return c;
}

What loop bound?

Wednesday, 10 April 13

© NICTA 2013

From binary → model checker
Program binary

True/False!

Property of interest

Semantic representation

SSA representation

Reduced CFG

Symbolic Model

Model checker

ARM formalization,
CFG extraction

Symbolic execution, SSA

Simplification, slicing

15

Wednesday, 10 April 13

© NICTA 2013

Extracting instruction semantics

• Reused existing formalization of ARM ISA
 (Fox & Myreen, ITP 2010)

r3 ← r1 + 2
r15 ← r15 + 4

machine code: E2813002
add r3, r1, #2

mem r13 ← r3<7:0>
mem (r13 + 1) ← r3<15:8>
mem (r13 + 2) ← r3<23:16>
mem (r13 + 3) ← r3<31:24>
mem (r13 + 4) ← r5<7:0>
mem (r13 + 5) ← r5<15:8>
mem (r13 + 6) ← r5<23:16>
mem (r13 + 7) ← r5<31:24>
r13 ← r13 + 8
r15 ← r15 + 4

machine code: E8AD0028
stmia sp!, {r3, r5}

16

Wednesday, 10 April 13

© NICTA 2013

Identifying properties of interest

How many times can this node execute?

17

Wednesday, 10 April 13

© NICTA 2013

Computing a program slice

Find all nodes which can impact
upon execution of that block through:

• data dependencies
• control dependencies

18

Wednesday, 10 April 13

© NICTA 2013

Reducing the CFG further

19

Wednesday, 10 April 13

© NICTA 2013

Model checking the CFG

init(c) := 0
next(c) := case
 n=0: 0
 n=1: c + 1
 else: c

init(n) := 0
next(n) := case
 n=0: 1
 n=1 && cond_1: 1
 n=1 && !cond_1: 2
 n=2: 2

VAR
 n : -1..2;
 memRead : unsigned word[8];
 cond_3 : boolean;
 r3_2 : unsigned word [32];
 c : unsigned word[32];
DEFINE
 psrZ_3 := (((1) >= 32) ? 0ud32_0 : ((r3_2) >> (1))) = (0ud32_0);
 cond_1 := !(psrZ_3);
 cond_2 := psrZ_1;
 r3_1 := r0_0;
 r3_3 := ((1) >= 32) ? 0ud32_0 : ((r3_2) >> (1));
 psrZ_1 := (r0_0) = (0ud32_0);
FROZENVAR
 r0_0 : unsigned word [32];
 r14_0 : unsigned word [32];
ASSIGN
 next(cond_3) := case
 n=1: cond_5;
 n=0: cond_2;
 TRUE: cond_3;
 esac;
 next(r3_2) := case
 n=1: r3_3;
 n=0: r3_1;
 TRUE: r3_2;
 esac;

20

Wednesday, 10 April 13

© NICTA 2013

Model checking the CFG

Ask a model checker: is c < k?
(and binary search for k)

21

For loop counts:

Wednesday, 10 April 13

© NICTA 2013

Model checking the CFG

Add “visited” flag for nodes a and b

Ask a model checker to ensure that
a and b are never both true

In CTL: AG !(visitedA & visitedB)

22

For conflict constraints:

Wednesday, 10 April 13

© NICTA 2013

Model checking the CFG

Add “count” variables for nodes a and b

Ask a model checker to ensure counts
for a and b are equal (eventually)

In CTL: AF (countA = countB)

23

For consistency constraints:

Wednesday, 10 April 13

© NICTA 2013

Loop bound verification

Can compute 18/32 loop bounds in seL4:

– 1 loop depends upon invariants in the proof

– 1 loop cannot be bounded due to complex exit conditions
• model checker attempts to find the smallest loop bound
• complex state space must be explored to deduce bound

– 12 loops, all identical in structure, cannot be bounded due to poor
memory alias analysis

24

Wednesday, 10 April 13

© NICTA 2013

Loop bound verification

If n ≥ 32, i is undefined
If n ≤ 1, loop is infinite

25

void f(uint32_t n)
{
 uint32_t i = 1 << n;

 if (i > 256)
 i = 256;

 while (i > 0) {
 ...
 i -= 4;
 }
}

Wednesday, 10 April 13

© NICTA 2013

Infeasible paths

Of 35 infeasible path constraints

–4 validated

–1 shown untrue (oops!)

–11 cannot be validated without better alias analysis

–19 depend on kernel invariants

26

Wednesday, 10 April 13

0 175 350 525 700

213

481

657

© NICTA 2013

Results

Without infeasible path information
With verified infeasible path information
With all infeasible path information

Estimated worst-case execution time of seL4

27

000’s of cycles

Wednesday, 10 April 13

© NICTA 2013

Research directions

• Integrate with proof invariants

• Automate infeasible path detection (WIP)

• Use a faster ISA formalization

28

Wednesday, 10 April 13

© NICTA 2013

Summary

Sequoll is able to:
• apply model checkers to reason about compiled ARM binaries
• validate manual infeasible path annotations
• compute “interesting” loop bounds
• (eventually) integrate formal proof with infeasible path information

➡ reduce scope for errors in WCET analysis!

29

Bernard.Blackham@nicta.com.au

 Download it!
 http://www.ssrg.nicta.com.au/software/TS/wcet-tools

Wednesday, 10 April 13

http://www.ssrg.nicta.com.au/projects/TS/wcet-tools
http://www.ssrg.nicta.com.au/projects/TS/wcet-tools

