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Motivation

• The desire for a trustworthy kernel to build 
reliable mixed-criticality real-time systems
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Motivation

• The desire for a trustworthy kernel to build 
reliable multi-criticality real-time systems

• Using seL4 to guarantee:
– functional correctness through formal proof
 (Klein et al., SOSP 2009)
– timing constraints through sound WCET analysis
 (Blackham et al., RTSS 2011)
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Motivation

• Current analysis uses annotations to specify:
– loop counts
– infeasible paths 

• We want to reduce scope for errors in 
WCET analysis.
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Results

Without infeasible path information
With infeasible path information

Estimated worst-case execution time of seL4
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000’s of cycles
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seL4 is large

• Small by microkernel standards
• Large by WCET standards
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~8,700 lines
316 functions
76 loops

~10,000 instructions
228 functions
56 loops
2,384 basic blocks
~400,000 basic blocks 
when inlined

C source Binary (ARM)

Wednesday, 10 April 13



© NICTA 2013

WCET computation process

Compute WCET

Reconstruct path

Path valid?

Success!

Add infeasible 
path criteria

Y

N

7

Wednesday, 10 April 13



© NICTA 2013

Infeasible paths
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Infeasible paths
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a > 3a ≤ 3

a > 3a ≤ 3
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Infeasible paths
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Infeasible paths
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a > 3a ≤ 3

a > 3a ≤ 3
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Infeasible paths
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b ≠ 0b = 0

a = 0 a ≠ 0
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Infeasible paths
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b ≠ 0b = 0

a = 0 a ≠ 0
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Pruning infeasible paths

Express constraints as one of:

a conflicts with b when called under f

or

a is consistent with b when called under f
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Infeasible paths

a

b

conflicts with/
is consistent with
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Verifying annotations

• How can we verify these manual annotations?

• For two basic blocks a, b:
– show all paths execute a and b the same number of times
– show all paths execute at most one of a or b

• For some loop l  in the binary:
– How many times can l  iterate?

12

Wednesday, 10 April 13



© NICTA 2013

Why model checking?

• Many infeasible paths and even some loop 
bounds cannot be determined without 
program invariants

• Invariants are known to the formal proof

• Formal proof statements and invariants are a 
natural fit for model checkers
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Why model checking?

int count_bits(uint32_t x) {
    int c = 0;
    while (x != 0) {
        x &= x - 1; /* clear lowest bit */
        c++;
    }
    return c;
}

What loop bound?
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From binary → model checker
Program binary

True/False!

Property of interest

Semantic representation

SSA representation

Reduced CFG

Symbolic Model

Model checker

ARM formalization,
CFG extraction

Symbolic execution, SSA

Simplification, slicing
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Extracting instruction semantics

• Reused existing formalization of ARM ISA
 (Fox & Myreen, ITP 2010)

r3 ← r1 + 2
r15 ← r15 + 4

machine code: E2813002
add r3, r1, #2

mem r13 ← r3<7:0>
mem (r13 + 1) ← r3<15:8>
mem (r13 + 2) ← r3<23:16>
mem (r13 + 3) ← r3<31:24>
mem (r13 + 4) ← r5<7:0>
mem (r13 + 5) ← r5<15:8>
mem (r13 + 6) ← r5<23:16>
mem (r13 + 7) ← r5<31:24>
r13 ← r13 + 8
r15 ← r15 + 4

machine code: E8AD0028
stmia sp!, {r3, r5}
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Identifying properties of interest

How many times can this node execute?
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Computing a program slice

Find all nodes which can impact
upon execution of that block through:

• data dependencies
• control dependencies
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Reducing the CFG further
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Model checking the CFG

init(c) := 0
next(c) := case
  n=0: 0
  n=1: c + 1
  else: c

init(n) := 0
next(n) := case
  n=0: 1
  n=1 && cond_1: 1
  n=1 && !cond_1: 2
  n=2: 2

VAR
    n : -1..2;
    memRead : unsigned word[8];
    cond_3 : boolean;
    r3_2 : unsigned word [32];
    c : unsigned word[32];
DEFINE
    psrZ_3 := (((1) >= 32) ? 0ud32_0 : ((r3_2) >> (1))) = (0ud32_0);
    cond_1 := !(psrZ_3);
    cond_2 := psrZ_1;
    r3_1 := r0_0;
    r3_3 := ((1) >= 32) ? 0ud32_0 : ((r3_2) >> (1));
    psrZ_1 := (r0_0) = (0ud32_0);
FROZENVAR
    r0_0 : unsigned word [32];
    r14_0 : unsigned word [32];
ASSIGN
    next(cond_3) := case
        n=1: cond_5;
        n=0: cond_2;
        TRUE: cond_3;
    esac;
    next(r3_2) := case
        n=1: r3_3;
        n=0: r3_1;
        TRUE: r3_2;
    esac;
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Model checking the CFG

Ask a model checker: is c < k?
(and binary search for k)
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For loop counts:
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Model checking the CFG

Add “visited” flag for nodes a and b

Ask a model checker to ensure that
a and b are never both true

In CTL:  AG !(visitedA & visitedB)
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For conflict constraints:
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Model checking the CFG

Add “count” variables for nodes a and b

Ask a model checker to ensure counts 
for a and b are equal (eventually)

In CTL:  AF (countA = countB)
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For consistency constraints:
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Loop bound verification

Can compute 18/32 loop bounds in seL4:

– 1 loop depends upon invariants in the proof

– 1 loop cannot be bounded due to complex exit conditions
• model checker attempts to find the smallest loop bound
• complex state space must be explored to deduce bound

– 12 loops, all identical in structure, cannot be bounded due to poor 
memory alias analysis
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Loop bound verification

If n ≥ 32, i is undefined
If n ≤ 1, loop is infinite
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void f(uint32_t n)
{
  uint32_t i = 1 << n;

  if (i > 256)
    i = 256;

  while (i > 0) {
    ...
    i -= 4;
  }
}
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Infeasible paths

Of 35 infeasible path constraints

–4 validated

–1 shown untrue (oops!)

–11 cannot be validated without better alias analysis

–19 depend on kernel invariants
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Results

Without infeasible path information
With verified infeasible path information
With all infeasible path information

Estimated worst-case execution time of seL4
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000’s of cycles
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Research directions

• Integrate with proof invariants

• Automate infeasible path detection (WIP)

• Use a faster ISA formalization
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Summary

Sequoll is able to:
• apply model checkers to reason about compiled ARM binaries
• validate manual infeasible path annotations
• compute “interesting” loop bounds
• (eventually) integrate formal proof with infeasible path information

➡ reduce scope for errors in WCET analysis!
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 Download it!
 http://www.ssrg.nicta.com.au/software/TS/wcet-tools
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