
NICTA Copyright 2013 From imagination to impact

From General Purpose
to a Proof of

Information Flow
Enforcement

Toby Murray, Daniel Matichuk, Matthew Brassil,
Peter Gammie, Timothy Bourke, Sean Seefried,

Corey Lewis, Xin Gao and Gerwin Klein

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

INTRODUCTION

2

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

A 30-Year Dream

3

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

A 30-Year Dream

3

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

A 30-Year Dream

3

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assurance

4

Common
Criteria EAL4 EAL5 EAL6 EAL7 Verified

Requirements

Functional
Spec

High-Level
Design

Low-Level
Design

Code

Informal Formal Formal Formal Formal

Informal Semiformal Semiformal Formal Formal

Informal Semiformal Semiformal Formal Formal

Informal Informal Semiformal Semiformal Formal

Informal Informal Informal Informal Formal

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assurance

4

Common
Criteria EAL4 EAL5 EAL6 EAL7 Verified

Requirements

Functional
Spec

High-Level
Design

Low-Level
Design

Code

Informal Formal Formal Formal Formal

Informal Semiformal Semiformal Formal Formal

Informal Semiformal Semiformal Formal Formal

Informal Informal Semiformal Semiformal Formal

Informal Informal Informal Informal Formal

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assurance

4

Common
Criteria EAL4 EAL5 EAL6 EAL7 Verified

Requirements

Functional
Spec

High-Level
Design

Low-Level
Design

Code

Informal Formal Formal Formal Formal

Informal Semiformal Semiformal Formal Formal

Informal Semiformal Semiformal Formal Formal

Informal Informal Semiformal Semiformal Formal

Informal Informal Informal Informal Formal

security proofs

of the kernel’s code

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Information Flow Enforcement

5

Internet

Malware Filter

Audit

Work

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Information Flow Enforcement

5

Internet

Malware Filter

Audit

Work

general computation
within partitions--»

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Information Flow Enforcement

5

Internet

Malware Filter

Audit

Work

general computation
within partitions--»

intransitive

noninterference

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Information Flow Enforcement

5

Internet

Malware Filter

Audit

Work

general computation
within partitions--»

intransitive

noninterference
SINGLE-CORESYSTEMS

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

tl;dr

6

I

Ma

A

W

Kernel’s C Code

Infoflow Security

Proof

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

tl;dr

• Intransitive noninterference
theorem for seL4’s (8,830-line)
C code implementation
– doesn’t cover timing channels

6

I

Ma

A

W

Kernel’s C Code

Infoflow Security

Proof

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

tl;dr

• Intransitive noninterference
theorem for seL4’s (8,830-line)
C code implementation
– doesn’t cover timing channels

6

I

Ma

A

W

Kernel’s C Code

Infoflow Security

Proof

first such theorem for a general-purpose kernel

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

tl;dr

• Intransitive noninterference
theorem for seL4’s (8,830-line)
C code implementation
– doesn’t cover timing channels

• Proof Assumptions:
– Formally state how to configure

kernel to enforce a policy

6

I

Ma

A

W

Kernel’s C Code

Infoflow Security

Proof

first such theorem for a general-purpose kernel

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

tl;dr

• Intransitive noninterference
theorem for seL4’s (8,830-line)
C code implementation
– doesn’t cover timing channels

• Proof Assumptions:
– Formally state how to configure

kernel to enforce a policy
• Restrictions:

– DMA disabled
– No device IRQ delivery
– Cannot reconfigure inter-

partition comms. channels

6

I

Ma

A

W

Kernel’s C Code

Infoflow Security

Proof

first such theorem for a general-purpose kernel

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

tl;dr

• Intransitive noninterference
theorem for seL4’s (8,830-line)
C code implementation
– doesn’t cover timing channels

• Proof Assumptions:
– Formally state how to configure

kernel to enforce a policy
• Restrictions:

– DMA disabled
– No device IRQ delivery
– Cannot reconfigure inter-

partition comms. channels

6

I

Ma

A

W

Kernel’s C Code

Infoflow Security

Proof

common for high-

assurance systems

first such theorem for a general-purpose kernel

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

tl;dr

• Intransitive noninterference
theorem for seL4’s (8,830-line)
C code implementation
– doesn’t cover timing channels

• Proof Assumptions:
– Formally state how to configure

kernel to enforce a policy
• Restrictions:

– DMA disabled
– No device IRQ delivery
– Cannot reconfigure inter-

partition comms. channels
• All other syscalls available inside partitions!

– memory allocation, revocation, IPC, cap xfer, shared memory ...
6

I

Ma

A

W

Kernel’s C Code

Infoflow Security

Proof

common for high-

assurance systems

first such theorem for a general-purpose kernel

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Only Kernel Change: Partition Scheduling

7

P1,2 P2,10 P1,5 P3,12 P1,5

Current Partition

2

Partition Time

Wednesday, 22 May 2013

• Static round-robin schedule between partitions

NICTA Copyright 2013 From imagination to impact

Only Kernel Change: Partition Scheduling

7

P1,2 P2,10 P1,5 P3,12 P1,5

Current Partition

2

Partition Time

Wednesday, 22 May 2013

• Static round-robin schedule between partitions

NICTA Copyright 2013 From imagination to impact

Only Kernel Change: Partition Scheduling

7

P1,2 P2,10 P1,5 P3,12 P1,5

Current Partition

2

Partition Time
decremented on each

timer-tick

--»

Wednesday, 22 May 2013

• Static round-robin schedule between partitions

NICTA Copyright 2013 From imagination to impact

Only Kernel Change: Partition Scheduling

7

P1,2 P2,10 P1,5 P3,12 P1,5

Current Partition

2

Partition Time
decremented on each

timer-tick

--»advances when
partition-time

hits 0

--»

Wednesday, 22 May 2013

• Static round-robin schedule between partitions

• Priority-based scheduling within partitions
– Choose the highest-priority

thread that is ready
– Run idle thread if none ready
– Any other intra-partition

scheduling algorithm possible

NICTA Copyright 2013 From imagination to impact

Only Kernel Change: Partition Scheduling

7

P1,2 P2,10 P1,5 P3,12 P1,5

Current Partition

2

Partition Time

255

0

T3

T7

T1

Prio Ready Queue

...

P2

decremented on each
timer-tick

--»advances when
partition-time

hits 0

--»

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

functional
correctness

proof (2009)

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

integrity
proof (2011)

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

Information Flow Security

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

Information Flow Security

Integrity / Access Control

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

Information Flow Security

Integrity / Access Control

Code

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

Information Flow Security

Kernel Specification

Integrity / Access Control

Code

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

Information Flow Security

8,830 SLOC

Kernel Specification

Integrity / Access Control

Code

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

Information Flow Security

8,830 SLOC

4,970 SLOCKernel Specification

Integrity / Access Control

Code

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

Information Flow Security

8,830 SLOC

4,970 SLOC

~150K SLOC

Kernel Specification

Integrity / Access Control

Code

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

Information Flow Security

8,830 SLOC

4,970 SLOC

~150K SLOC

Kernel Specification

Integrity / Access Control

Code

10,149 SLOC

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Structure

Integrity / Access Control

Code

Kernel Specification

Information Flow Security

8,830 SLOC

4,970 SLOC

~150K SLOC

27,756 SLOC

Kernel Specification

Integrity / Access Control

Code

10,149 SLOC

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

INFORMATION FLOW

9

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

INFORMATION FLOW

9

(confidentiality)

Wednesday, 22 May 2013

• Derived from access control policy

NICTA Copyright 2013 From imagination to impact

Information Flow Policy

10

S1 S2
AsyncSend

Read

Wednesday, 22 May 2013

• Derived from access control policy

NICTA Copyright 2013 From imagination to impact

Information Flow Policy

10

S1 S2
AsyncSend

Read

P1

Wednesday, 22 May 2013

• Derived from access control policy

NICTA Copyright 2013 From imagination to impact

Information Flow Policy

10

S1 S2
AsyncSend

Read

P1 P2

Wednesday, 22 May 2013

• Derived from access control policy

NICTA Copyright 2013 From imagination to impact

Information Flow Policy

10

S1 S2
AsyncSend

Read

P1 P2

PSched

Wednesday, 22 May 2013

• Derived from access control policy

NICTA Copyright 2013 From imagination to impact

Information Flow Policy

10

S1 S2
AsyncSend

Read

P1 P2

PSched

Wednesday, 22 May 2013

• Derived from access control policy

NICTA Copyright 2013 From imagination to impact

Information Flow Policy

10

S1 S2
AsyncSend

Read

P1 P2

PSched

Wednesday, 22 May 2013

• Derived from access control policy

NICTA Copyright 2013 From imagination to impact

Information Flow Policy

10

S1 S2
AsyncSend

Read

P1 P2

PSched

no-one may affect scheduling decisions

Wednesday, 22 May 2013

• Derived from access control policy

NICTA Copyright 2013 From imagination to impact

Information Flow Policy

10

S1 S2
AsyncSend

Read

P1 P2

PSched

ensures PSched is not a global transitive channel

no-one may affect scheduling decisions

Wednesday, 22 May 2013

P1 P2

PSched

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage

11

Wednesday, 22 May 2013

• Variant of intransitive noninterference
– Asserts absence of information leaks

P1 P2

PSched

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage

11

Wednesday, 22 May 2013

• Variant of intransitive noninterference
– Asserts absence of information leaks

P1 P2

PSched

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage

11

system model
(current partition)

Wednesday, 22 May 2013

• Variant of intransitive noninterference
– Asserts absence of information leaks

P1 P2

PSched

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage

11

(P2)
system model

(current partition)

Wednesday, 22 May 2013

• Variant of intransitive noninterference
– Asserts absence of information leaks

P1 P2

PSched

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage

11

(P2)
system model

(current partition) (PSched)

Wednesday, 22 May 2013

• Variant of intransitive noninterference
– Asserts absence of information leaks

P1 P2

PSched

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage

11

(P2)
system model

(current partition) (PSched) (P2)

Wednesday, 22 May 2013

• Variant of intransitive noninterference
– Asserts absence of information leaks

P1 P2

PSched

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage

11

(P2)
system model

(current partition) (PSched) (P2) (PSched)

Wednesday, 22 May 2013

• Variant of intransitive noninterference
– Asserts absence of information leaks

P1 P2

PSched

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage

11

(P2)
system model

(current partition) (PSched) (P2) (PSched) (P1)

Wednesday, 22 May 2013

• Variant of intransitive noninterference
– Asserts absence of information leaks

• Allows partitions to know of each others’ existence
– P1 allowed to observe that P2 has executed
– But not to learn anything about P2’s state

P1 P2

PSched

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage

11

(P2)
system model

(current partition) (PSched) (P2) (PSched) (P1)

Wednesday, 22 May 2013

• Variant of intransitive noninterference
– Asserts absence of information leaks

• Allows partitions to know of each others’ existence
– P1 allowed to observe that P2 has executed
– But not to learn anything about P2’s state

• Implied assumption:
static partition-schedule is
globally public knowledge
– When P1 executes, it thus

already knows that P2 must
have exhausted its timeslice

P1 P2

PSched

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage

11

(P2)
system model

(current partition) (PSched) (P2) (PSched) (P1)

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

12

P1 P2

PSched

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

12

P1 P2

PSched

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

12

(P2) (PSched) (P2) (PSched) (P1)

P1 P2

PSched

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

12

(P2) (PSched) (P2) (PSched) (P1)
s

P1 P2

PSched

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

12

(P2) (PSched) (P2) (PSched) (P1)
s t

P1 P2

PSched

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

P1 P2

PSched

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

P1 P2

PSched

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

• Equivalent to
single-step
unwinding
condition:

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

 ∀p s s’ t t’.

 (s,t) ∈ Step ∧ (s’,t’) ∈ Step ∧

 s ≈{p,PSched}≈ s‘ ∧

 (part s ↝ p ⇒ s ~part s~ s’) ⇒

 t ~p~ t’

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

• Equivalent to
single-step
unwinding
condition:

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

 ∀p s s’ t t’.

 (s,t) ∈ Step ∧ (s’,t’) ∈ Step ∧

 s ≈{p,PSched}≈ s‘ ∧

 (part s ↝ p ⇒ s ~part s~ s’) ⇒

 t ~p~ t’

informally:

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

• Equivalent to
single-step
unwinding
condition:

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

 ∀p s s’ t t’.

 (s,t) ∈ Step ∧ (s’,t’) ∈ Step ∧

 s ≈{p,PSched}≈ s‘ ∧

 (part s ↝ p ⇒ s ~part s~ s’) ⇒

 t ~p~ t’

informally: on a single step

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

• Equivalent to
single-step
unwinding
condition:

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

 ∀p s s’ t t’.

 (s,t) ∈ Step ∧ (s’,t’) ∈ Step ∧

 s ≈{p,PSched}≈ s‘ ∧

 (part s ↝ p ⇒ s ~part s~ s’) ⇒

 t ~p~ t’

informally: on a single step

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

• Equivalent to
single-step
unwinding
condition:

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

 ∀p s s’ t t’.

 (s,t) ∈ Step ∧ (s’,t’) ∈ Step ∧

 s ≈{p,PSched}≈ s‘ ∧

 (part s ↝ p ⇒ s ~part s~ s’) ⇒

 t ~p~ t’

informally:

an arbitrary partition p can learn information from:

on a single step

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

• Equivalent to
single-step
unwinding
condition:

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

 ∀p s s’ t t’.

 (s,t) ∈ Step ∧ (s’,t’) ∈ Step ∧

 s ≈{p,PSched}≈ s‘ ∧

 (part s ↝ p ⇒ s ~part s~ s’) ⇒

 t ~p~ t’

informally:

an arbitrary partition p can learn information from:

on a single step

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

• Equivalent to
single-step
unwinding
condition:

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

 ∀p s s’ t t’.

 (s,t) ∈ Step ∧ (s’,t’) ∈ Step ∧

 s ≈{p,PSched}≈ s‘ ∧

 (part s ↝ p ⇒ s ~part s~ s’) ⇒

 t ~p~ t’

informally:

an arbitrary partition p can learn information from:

itself and PSched,

on a single step

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

• Equivalent to
single-step
unwinding
condition:

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

 ∀p s s’ t t’.

 (s,t) ∈ Step ∧ (s’,t’) ∈ Step ∧

 s ≈{p,PSched}≈ s‘ ∧

 (part s ↝ p ⇒ s ~part s~ s’) ⇒

 t ~p~ t’

informally:

an arbitrary partition p can learn information from:

itself and PSched,

on a single step

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

• Equivalent to
single-step
unwinding
condition:

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

 ∀p s s’ t t’.

 (s,t) ∈ Step ∧ (s’,t’) ∈ Step ∧

 s ≈{p,PSched}≈ s‘ ∧

 (part s ↝ p ⇒ s ~part s~ s’) ⇒

 t ~p~ t’

informally:

an arbitrary partition p can learn information from:

itself and PSched,

as well as the currently running partition when

on a single step

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

• Equivalent to
single-step
unwinding
condition:

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

 ∀p s s’ t t’.

 (s,t) ∈ Step ∧ (s’,t’) ∈ Step ∧

 s ≈{p,PSched}≈ s‘ ∧

 (part s ↝ p ⇒ s ~part s~ s’) ⇒

 t ~p~ t’

informally:

an arbitrary partition p can learn information from:

itself and PSched,

as well as the currently running partition when

on a single step

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

• Equivalent to
single-step
unwinding
condition:

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

 ∀p s s’ t t’.

 (s,t) ∈ Step ∧ (s’,t’) ∈ Step ∧

 s ≈{p,PSched}≈ s‘ ∧

 (part s ↝ p ⇒ s ~part s~ s’) ⇒

 t ~p~ t’

informally:

an arbitrary partition p can learn information from:

itself and PSched,

as well as the currently running partition when

the policy allows permits it to interfere with p

on a single step

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Intransitive Nonleakage: Formally

• Similar to language-based noninterference

• Equivalent to
single-step
unwinding
condition:

12

(P2) (PSched) (P2) (PSched) (P1)
s t

s’

≈{P1, PSched}≈

t’

≈P1≈?

P1 P2

PSched

 ∀p s s’ t t’.

 (s,t) ∈ Step ∧ (s’,t’) ∈ Step ∧

 s ≈{p,PSched}≈ s‘ ∧

 (part s ↝ p ⇒ s ~part s~ s’) ⇒

 t ~p~ t’

informally:

an arbitrary partition p can learn information from:

itself and PSched,

as well as the currently running partition when

the policy allows permits it to interfere with p

on a single step

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

DISCUSSION

13

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

DISCUSSION

13

(what does it mean?)

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assurance

14

Security Property

Proof

System Model (code semantics)

I
M

A
W

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assurance

• Proofs break when:

14

Security Property

Proof

System Model (code semantics)

I
M

A
W

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

14

Security Property

Proof

System Model (code semantics)

I
M

A
W

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

14

Security Property

Proof

System Model (code semantics)

I
M

A
W

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

14

Security Property

Proof

System Model (code semantics)

a non-issue in practice
I

M

A
W

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

– their assumptions are
unrealistic

14

Security Property

Proof

System Model (code semantics)

a non-issue in practice
I

M

A
W

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

– their assumptions are
unrealistic

14

Security Property

Proof

System Model (code semantics)

a non-issue in practice
I

M

A
W

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

– their assumptions are
unrealistic

– they don’t mean what
we thought they did

14

Security Property

Proof

System Model (code semantics)

a non-issue in practice
I

M

A
W

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

– their assumptions are
unrealistic

– they don’t mean what
we thought they did

14

Security Property

Proof

System Model (code semantics)

a non-issue in practice
I

M

A
W

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assumptions

15

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assumptions

• All those of functional correctness proofs

15

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assumptions

• All those of functional correctness proofs
– compiler correctness, cache and TLB management,

450 lines of hand-written assembly code

15

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assumptions

• All those of functional correctness proofs
– compiler correctness, cache and TLB management,

450 lines of hand-written assembly code
• Correct initialisation

15

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assumptions

• All those of functional correctness proofs
– compiler correctness, cache and TLB management,

450 lines of hand-written assembly code
• Correct initialisation

– state of system after configuration enforces access policy, and

15

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assumptions

• All those of functional correctness proofs
– compiler correctness, cache and TLB management,

450 lines of hand-written assembly code
• Correct initialisation

– state of system after configuration enforces access policy, and

– meets wellformedness assumptions

15

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assumptions

• All those of functional correctness proofs
– compiler correctness, cache and TLB management,

450 lines of hand-written assembly code
• Correct initialisation

– state of system after configuration enforces access policy, and

– meets wellformedness assumptions
• leaky API features disabled

15

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assumptions

• All those of functional correctness proofs
– compiler correctness, cache and TLB management,

450 lines of hand-written assembly code
• Correct initialisation

– state of system after configuration enforces access policy, and

– meets wellformedness assumptions
• leaky API features disabled

15

system init correctness
proof: in progress

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assumptions

• All those of functional correctness proofs
– compiler correctness, cache and TLB management,

450 lines of hand-written assembly code
• Correct initialisation

– state of system after configuration enforces access policy, and

– meets wellformedness assumptions
• leaky API features disabled

– DMA disabled

15

system init correctness
proof: in progress

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assumptions

• All those of functional correctness proofs
– compiler correctness, cache and TLB management,

450 lines of hand-written assembly code
• Correct initialisation

– state of system after configuration enforces access policy, and

– meets wellformedness assumptions
• leaky API features disabled

– DMA disabled

• User-space has no info sources that are not modelled

15

system init correctness
proof: in progress

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assumptions

• All those of functional correctness proofs
– compiler correctness, cache and TLB management,

450 lines of hand-written assembly code
• Correct initialisation

– state of system after configuration enforces access policy, and

– meets wellformedness assumptions
• leaky API features disabled

– DMA disabled

• User-space has no info sources that are not modelled
– contents of registers and accessible physical memory

15

system init correctness
proof: in progress

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Assumptions

• All those of functional correctness proofs
– compiler correctness, cache and TLB management,

450 lines of hand-written assembly code
• Correct initialisation

– state of system after configuration enforces access policy, and

– meets wellformedness assumptions
• leaky API features disabled

– DMA disabled

• User-space has no info sources that are not modelled
– contents of registers and accessible physical memory

15

system init correctness
proof: in progress

what about covert channels?

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Storage Channels

Code

Kernel Specification

Information Flow Security

Wednesday, 22 May 2013

• Proof covers all storage channels present in kernel spec
– abstract kernel heap, CPU registers, physical memory,

IRQ masks, ...

NICTA Copyright 2013 From imagination to impact

Storage Channels

Code

Kernel Specification

Information Flow Security

Wednesday, 22 May 2013

• Proof covers all storage channels present in kernel spec
– abstract kernel heap, CPU registers, physical memory,

IRQ masks, ...
• Also all user-visible channels

read by the kernel
– those below the level of the spec

appear as user-visible nondeterminism
– not tolerated by nonleakage

under refinement
–

NICTA Copyright 2013 From imagination to impact

Storage Channels

Code

Kernel Specification

Information Flow Security

Wednesday, 22 May 2013

• Proof covers all storage channels present in kernel spec
– abstract kernel heap, CPU registers, physical memory,

IRQ masks, ...
• Also all user-visible channels

read by the kernel
– those below the level of the spec

appear as user-visible nondeterminism
– not tolerated by nonleakage

under refinement
–

NICTA Copyright 2013 From imagination to impact

Storage Channels

Code

Kernel Specification

Information Flow Security

bool l, h;
l := 0 ⨅ 1;

Wednesday, 22 May 2013

• Proof covers all storage channels present in kernel spec
– abstract kernel heap, CPU registers, physical memory,

IRQ masks, ...
• Also all user-visible channels

read by the kernel
– those below the level of the spec

appear as user-visible nondeterminism
– not tolerated by nonleakage

under refinement
–

NICTA Copyright 2013 From imagination to impact

Storage Channels

Code

Kernel Specification

Information Flow Security

bool l, h;
l := 0 ⨅ 1;

is refined by

Wednesday, 22 May 2013

• Proof covers all storage channels present in kernel spec
– abstract kernel heap, CPU registers, physical memory,

IRQ masks, ...
• Also all user-visible channels

read by the kernel
– those below the level of the spec

appear as user-visible nondeterminism
– not tolerated by nonleakage

under refinement
–

NICTA Copyright 2013 From imagination to impact

Storage Channels

Code

Kernel Specification

Information Flow Security

bool l, h;
l := 0 ⨅ 1;

bool l, h;
l := h;is refined by

Wednesday, 22 May 2013

• Proof covers all storage channels present in kernel spec
– abstract kernel heap, CPU registers, physical memory,

IRQ masks, ...
• Also all user-visible channels

read by the kernel
– those below the level of the spec

appear as user-visible nondeterminism
– not tolerated by nonleakage

under refinement
–

NICTA Copyright 2013 From imagination to impact

Storage Channels

Code

Kernel Specification

Information Flow Security

bool l, h;
l := 0 ⨅ 1;

bool l, h;
l := h;is refined by

is the value of
refinement-preserved

noninterference

Wednesday, 22 May 2013

• Proof covers all storage channels present in kernel spec
– abstract kernel heap, CPU registers, physical memory,

IRQ masks, ...
• Also all user-visible channels

read by the kernel
– those below the level of the spec

appear as user-visible nondeterminism
– not tolerated by nonleakage

under refinement
–

NICTA Copyright 2013 From imagination to impact

Storage Channels

Code

Kernel Specification

Information Flow Security

bool l, h;
l := 0 ⨅ 1;

bool l, h;
l := h;is refined by

is the value of
refinement-preserved

noninterference

not covered: channels

absent from spec that

kernel never rea
ds

Wednesday, 22 May 2013

• Proof covers all storage channels present in kernel spec
– abstract kernel heap, CPU registers, physical memory,

IRQ masks, ...
• Also all user-visible channels

read by the kernel
– those below the level of the spec

appear as user-visible nondeterminism
– not tolerated by nonleakage

under refinement
–

NICTA Copyright 2013 From imagination to impact

Storage Channels

Code

Kernel Specification

Information Flow Security

bool l, h;
l := 0 ⨅ 1;

bool l, h;
l := h;is refined by

is the value of
refinement-preserved

noninterference

not covered: channels

absent from spec that

kernel never rea
ds

e.g. undocumented
hardware APIs

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

Wednesday, 22 May 2013

• The proof says nothing about timing channels

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

kernel mode
(irqs disabled)

user mode

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

uop

kernel mode
(irqs disabled)

user mode

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

uop uop

kernel mode
(irqs disabled)

user mode

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

uop uop

syscall

kernel mode
(irqs disabled)

user mode

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

uop uop

syscall

kernel mode
(irqs disabled)

user mode

switch partition

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

uop uop

syscall

kernel mode
(irqs disabled)

user mode

timer
tick

switch partition

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

uop uop

syscall

kernel mode
(irqs disabled)

user mode

timer
tick

switch partition

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

• Others: caches, CPU temp. etc.

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

uop uop

syscall

kernel mode
(irqs disabled)

user mode

timer
tick

switch partition

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

• Others: caches, CPU temp. etc.

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

uop uop

syscall

kernel mode
(irqs disabled)

user mode

timer
tick

switch partition

must be mitigated by

complementary

techniques

Wednesday, 22 May 2013

• The proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

• Others: caches, CPU temp. etc.

NICTA Copyright 2013 From imagination to impact

Timing Channels

17

uop uop

syscall

kernel mode
(irqs disabled)

user mode

timer
tick

switch partition

must be mitigated by

complementary

techniques
mitigation strategy depends on risk profile of deployment

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Lesson

• Functional correctness enables cheap security proofs

18

!"

#"

$!"

$#"

%!"

%#"

&'()*+(,-".+//0)1(022" 3(104/516" 3(7+8+9"

!"#$%&'()*&

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Lesson

• Functional correctness enables cheap security proofs

18

!"

#"

$!"

$#"

%!"

%#"

&'()*+(,-".+//0)1(022" 3(104/516" 3(7+8+9"

!"#$%&'()*&

~6 people,

over ~4 years

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Lesson

• Functional correctness enables cheap security proofs

18

!"

#"

$!"

$#"

%!"

%#"

&'()*+(,-".+//0)1(022" 3(104/516" 3(7+8+9"

!"#$%&'()*&

~6 people,

over ~4 years

~2.5 FTE,

over ~4 months

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Lesson

• Functional correctness enables cheap security proofs

18

!"

#"

$!"

$#"

%!"

%#"

&'()*+(,-".+//0)1(022" 3(104/516" 3(7+8+9"

!"#$%&'()*&

~6 people,

over ~4 years

~2.5 FTE,

over ~4 months

~2.5 FTE,

over ~21 months

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

BREAKING NEWS

19

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Security Theorems for the Kernel Binary

20

Specification

C Code Semantics C Code

Security

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Security Theorems for the Kernel Binary

20

Specification

C Code Semantics C Code

Security

Binary Semantics (Cambridge ARM ISA) Binary Code

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Security Theorems for the Kernel Binary

20

Specification

C Code Semantics C Code

Security

Binary Semantics (Cambridge ARM ISA) Binary Code

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Security Theorems for the Kernel Binary

20

Specification

C Code Semantics C Code

Security

Binary Semantics (Cambridge ARM ISA) Binary Code

Thomas Sewell →

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Security Theorems for the Kernel Binary

20

Specification

C Code Semantics C Code

Security

Binary Semantics (Cambridge ARM ISA) Binary Code

will appear at PLDI 2013

Thomas Sewell →

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

CONCLUSION

21

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Take-Home Message

22

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Take-Home Message

22

information flow

theorem for the

C code binary

implementation of a

general purpose kernel

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Take-Home Message

22

information flow

theorem for the

C code binary

implementation of a

general purpose kernel security proofs of small
operating system kernel

implementations are
practical

Wednesday, 22 May 2013

NICTA Copyright 2013 From imagination to impact

Take-Home Message

22

information flow

theorem for the

C code binary

implementation of a

general purpose kernel security proofs of small
operating system kernel

implementations are
practical

demand nothing less.

Wednesday, 22 May 2013

Thank You

Wednesday, 22 May 2013

Thank You

seL4 infoflow

Wednesday, 22 May 2013

