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— doesn’t cover timing channels

* Proof Assumptions:

— Formally state how to configure
kernel to enforce a policy

 Restrictions:
— DMA disabled
— No device IRQ delivery

— Cannot reconfigure inter-
partition comms. channels

« All other syscalls available inside partitions!
— memory allocation, revocation, IPC, cap xfer, shared memory ...
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Only Kernel Change: Partition Scheduling

« Static round-robin schedule between partitions

P1,2 P2,10 P1.,5 P3,12 P1,5 2
Pal
‘ &—— advawnces whewn 7 Partition Time
Current Partition 'Pa YtLtLDV\z—tLVM,C deOVCV\:LCV\,ted’ own eq ch
hits O timer-tick

* Priority-based scheduling within partitions

— Choose the highest-priority Prio Ready Queue
thread that is ready

— Run idle thread if none ready 295 _’-_’-

— Any other intra-partition
scheduling algorithm possible
o dseriom -
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* Allows partitions to know of each others’ existence

— P1 allowed to observe that P2 has executed
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 Variant of intransitive noninterference
— Asserts absence of information leaks

system model > > > >

(current partition) (P2) (PSched) (P2) (PSched) (P1)

* Allows partitions to know of each others’ existence

— P1 allowed to observe that P2 has executed
— But not to learn anything about P2's state

* Implied assumption: P1 P2
static partition-schedule is

globally public knowledge

— When P1 executes, it thus
already knows that P2 must
have exhausted its timeslice
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