(e LI
-~ /
NICTA SR

- , From General Purpose
to a Proof of
Information Flow
Enforcement

Toby Murray, Daniel Matichuk, Matthew Brassil,
Peter Gammie, Timothy Bourke, Sean Seefried,
Corey Lewis, Xin Gao and Gerwin Klein

NICTA Funding and Supporting Members and Partners
. Australian Government Australian W9:
@S>k National NSW Trade &
*" Department of Broadband, Communications u University THE CNIVERSIY OF NEW SOUTHWALES GouEnEnT Investment
and the Digital Economy
i i 2| e vversiTy o o QUT]
Australian Research Council SDNEY Queensland WyGeigth e g%ﬁ%&&z

Wednesday, 22 May 2013

INTRODUCTION

NICTA

Wednesday, 22 May 2013

A 30-Year Dream

oncan B St hnon Gy
Lo

Specnﬁcanon and
Verification of the
UCLA Unixt Security
Kernel

m.jwm, Richard A. Kemmerer, and

um?:m Los Angeles

Dhata Sevwre Lnin, o bevmel wirncturnd spersting 41y
P s connrnoned s part of an sageing +Ben 0
LOLA a0 deveieg po W which operating o
Tn e predirnd and shem s s Pragram veelest e

ds wore *‘-l dreti
-l

M«m&mhuv-.wt-n-
» woowre v The
Mwo*u—pu-«m » bnrgee

Koy ‘-.ulhu- vt ety
peveling o vems, g ok o
. Amugmm Ui, sevwrnsy
Aeewel

CR Caboporien: 425 408 208

honulwd.lhhn-n
Puimmsin o wopy willont Tow oF v purt of Bhn mrnd »
Pl reveled el B copen e sl main o Sebtnend b
Sl enmivinl alvariass, B ACM oy g metns and
B o O DA wl B Ba AT AR AR e
U A B peeieis oF e Asscabin b Lamgwing
Machnws To e Sihremt. oF % viial s o b
n"“n_‘
T e il By e u-.nd B B

L
by Sount snd Bacd fews 0 cusdeg owews Ar how
oforn fuiod & Sovame Gowt Ot svrvemesl herwiones
e wnliely ovir 0 e D00 A s et
method win roguend, sresemadh coc ther coarolind the
s Congn and wplemmaieion Thie sovete optre
on could Be Somomerenad i & MIOREET MR ThaN a8 -
prowewy chom hee ¢ Tent bug Bhad oo chomamad. Jw
Tdarly sinn grodecion wrsieen ate renly sl and ot
107% el imTodeond

O resoanch sk e doeveiop moem By sheh e
CPEIMNg I ol S hewn Gele wonie Paesny Dl
Arnct socees 10 Swm meant be posabie saly of the recendod
Poweiton piny povmis 4 The leo maor cwmguncet
of S w00 U1 Quvaloging srvem s Bl
s e amweet and corpkouty of wlwwc trod
LT an an) cmbo " ke
mnwwummqum
sorificstion wohods te et Loreel woltews @ ander e
oo Tt onw of dats vy oierim s met This peper
g o8 the boar pent. e welCus Sapemace
Those imoresiod i architoctensl o shoukd wee (24
Rted work ity D PRUIS dguvaing sorsiim vt
e SEE 250 whach snen he Normechonl dogn modvodole-
© Sevinhed By Kateasin and Levim o 100 and oforn
M PO JemeasEen wllens o e Dseversty of
Tews 131}

Fotry serfuaion wep. fom S devibopeend of o
ot e fcuriins 0 mache aed prond of e Pexcel
mode, sas oned oot ARbough B mop WO Bt
wompieiod Tt ol porsonn of 1he Sormel, mosl of the b
s Sonnt Sor et of the hoval The sommender v ens-
b mwre of (he seme. We therelore comabder (he ormoct
Pl compien B s peger, a8 ah verdicaton
wep S " of e » portoe of
el vap i phorn bgeter sdlh on dasion of he
wmoune of work roguiod for comghnion. Ove sbould
roakee Bl 4 » oy the vorlh prmrn
wigh 1 opn o mied Sedd-lvel g owds Buchus Mmint
socurty fwes i cowl sywioms we fawnd w1t Seved |00
Seowsty fass wony found & o mvim detmg
wericaton, oapon tha 1a0r 1hat ThG ERPUMERTMAOD iy
wemon oancfelly and fowod cuomiscly. Aa cusmple of
e et epteide 8 drpleaed o |2 5

Thin work o s ot sovirl sudoncos the softene
oagrecing and peagrien v idlea om et waor
TN UM A0y Somprats 000 of the Mrpaa TEAMAIC PO
oram proving offerts s dete. e operwing Irwems coe-
Pty Pwant Dot oBint Bas @asinnd e Operaiiog B
e echiocnres. sed e woury comemanty becs s
e reseanh b dwoiind o8 by ol of spowre apetiien
Wi amam B roader s soqualennd i Commoe Oporal-
e wem comorpts. wih gonersl progem veslasson
PROIROSN. 0 SN COMMTOR Posone Of MDRITCE Typen aad
wrachorod softeare Lndorwssding of Aphard prood

o w cmm mims | eh—ary -
- Vihwnn 23
A N 2

NICTA

Wednesday, 22 May 2013

A 30-Year Dream

Oyweistirg B St Gl
Srucan

Specification and
Verification of the
UCLA Unixt Security
Kernel

Brece J, Walker, Richard A K

Uerald) T&
University of Caldornia, Los A

Diate Sevner Ui, o bovael vk
o was comnreoned s pert of an o

1 Intreducrion

Farly stemgin ' ks oot slng sy sl wis i Patie
by Jount snd Bacd fuws i cusdeg swmes Ar ow
ol foiod & Sovame dowt Ot seevemesd wierwions
e enbiely o 1 et D00 A s e
methad v rogwend. svosemudh cac ther coarolind the
M s Songn ol wglemmaieivn Thir sovetr optre
Hon could e Somoavrened i & MR MR TN a8
prowewy chem thee ¢ et bug Bad docr chomaead. owr
Tdaily s grodecionm wrsierm ate teely sheis, and o
107 camly TSRl

e resoanch sovibs W doveiop moem Sy sheh a2
R Mg TR ol T Deen Cela weatr Fassny Nl
Sroct sorees 10 Sve meant Be posniie saly o the recendod
P b pdns porwmis 4 T leg magor ewmguexcety

NICTA

Qur research seeks to develop means by which an

Lot ia - operating system can be shown data secure, meaning that

methods more enscnsively spplind o i
o bms of e maabt et og werwrity el

T direct access to data must be possible only if the recorded

b rpesrah o UgaBeens wtempd
wale, prodectms Wert welieare Ly

e protection policy permits it. The two major components

wwrwied e

Koy Wonds and Fhimsen: sovilath
spevaling s Weme, prabroting . progr
0 ALFRARD, Sermal spetifiatines,
Ll

CR Cabogorien 420 40 a8

Ui o o Drmdemars of B Labwrsiores

Puimmin. o wopy wilhont Tow o v purt ol n mrnl »
el e e L
Gl wwnmirinl alvaviass B AN s g meta i
Wk o D DA wl B B AT AR A A e
A A B peeeis o e Assaiin b Lamgwing
e L e S
AN el e

The wwanh s wpouniad B e Advinnd Boweh Bo
poom Sponcy of i Daparvmens of Doless sader Conmac MDA
WOTTLA0N Awton oot sdivomes B Wk wd G
Poped Dapersmans of Componr Sonce, | swvares of Colfe
m Gen Angrtm C8 WRGE BA Kowmmere . Compoonr Soomor
Dvpanmgms, LU pvprans of Cobforna, Sonts Barturs, 4 90008
© 190 A0 G00n 47010 EIIN01 18 e T

he compbeted portce of
el Ve o prvrn gedee silh o daiin of he
wmoune of work roguiood for comgenion. Ove sbould
roshee Bl o » oomiel % ety the vorlostion prien
Dwngh 1he Wopn oF minad Sede-kvel g owds Buchow int
sooarty fwen i cowl sywioms we fowand w1 the Seved 100
Seowty fass wory found & o mvis detmg
sricaon, doapn The a0 1hat TG ERPUNRTMAOD S
wemon cancfely ad fowod evomisely. Aa cusmple of
oo S Mapteide & dupleaid o 125
Thin work o sdmad o sovar sudoncos the wftene
oogwecreng and pragram verdislen ommaniion waor
INA COM A0y Sompr At 000 of the g TEAMIC P
oram proving offerts v dete. (Be operwing trwems coe-
Potuiy Swant Dot oBinl M @sinnd e Cpeiaiing By
e wchiconres. sed e woury comemanty becsase
e reseanh o doe ol ol by rad of svwre spetiian
Vi e B roader I sogualnnd WS COMmOE OpOral-
e wvem comoepts. vk gonersl grogen vesfasson
PROTROSN. NG oD COMMTOR POmon Of MDRITICT Typen and
wrachored softeare Lodorwssting of Apherd prood

o i | h——ry o
. Vituna 23
A e]

‘

Wednesday, 22 May 2013

A 30-Year Dream

1 Iatradmorion

Farly stemgin ' ks oot slng sy sl wis i Patie

by Jount snd Bacd fuws i cusdeg swmes Ar ow

ol foiod & Sovame dowt Ot seevemesd wierwions

[e—— R Stmhnon Ganes e wnbiely over 10 ot D00 A e oraeeuis
Y ucen L meihod wen rogwend, svesemudhy coc ther coarolind the

- ~ -] smaleivm T N optTe
Specification and :“.::{2:»:'2 - S e
Verification of the iy vt i e 1 . o o

UCLA Unixt Security O reseuh sevks e deveion mowms By whech un
CPEIMENg M Cal B hwn Gula wionin. ety Dt
Kernel rect ovcess 10 dhts rmant be possibie anty f the recendod
poaibon poiny potmis 4 T leo mapor semguneaty
Brsce J, Walker, Richard A. K S e
Uerald)

Univernuity of Caldorna, Los A

Diate Sevner Ui, o bovael vk
o was comnreoned s pert of an o

NICTA

Qur research seeks to develop means by which an

Lo is gperating system can be shown data secure, meaning that

methods more enscnsively spplind o i
o bms of e maabt et og werwrity el

e (IFCCE access to data must be possible only if the recorded

perbence n pradacing » soowre speradl
b rpesrah o UgaBeens wtempd

e protection paolicy permits it. The two major components

wwwied code
Koy Wands st Fhimsen: soviluath
speesling 23 Wems, prabroting. pragr

o ALPHARD, Sermal speeifontinns, U,
:n-l i . he completed portoe of

CR Cabogurion 2% 4 a8 el Ve o prvrn gedee silh o daiin of he
wmoune. of work roguinod for comgplution. Ove should
roshee Bl o » oomiel % ety the vorlostion prien
Dwngh 1he Wopn oF minad Sede-kvel g owds Buchow int
sooarty fwen i cowl sywioms we fowand w1 the Seved 100
Seowty fass wory found & o mvis detmg
VTBCHr Avsns vha ot it e Lo, .-
- o

- IR L]

JANEA Gvtte ‘: e 4
o . pw

YT T —— of
- T Sewrn Fore by

o ©28 the ACM

Wi s
e e
L)

TZem=e 2 Communications

February 1980
Volume 23
Number 2

e

Wednesday, 22 May 2013

Assurance

LT, EAL4 EAL5 EAL6 EAL7 Verified
Criteria
Requirements Informal Formal Formal Formal Formal
Functional _ _
Informal Semiformal | Semiformal Formal Formal
Spec
High-Level
D .eve Informal Semiformal | Semiformal Formal Formal
Design
Low-Level _ ,
i Informal Informal Semiformal | Semiformal Formal
Design
Code Informal Informal Informal Informal Formal

Wednesday, 22 May 2013

Assurance

Common = oy \ 4 |
Criteria EAL4 EALS EALG EAL7 =) 3 c -r'
Requirements Informal Formal Formal Formal Formal
Functional _ _
Informal Semiformal | Semiformal Formal Formal
Spec
High-Level
D .eve Informal Semiformal | Semiformal Formal Formal
Design
Low-Level . :
i Informal Informal Semiformal | Semiformal Formal
Design
Code Informal Informal Informal Informal Formal

Wednesday, 22 May 2013

N
(3

Assurance

Common e o=\ I
Criteria EAL4 EALS EAL6 EAL7 > 3 ¢ A -lr'
Requirements Informal Formal Formal ~ Formal

Functional I ’ t\A ‘PYD O‘Es ~ormal

Spec

High-Le
J . v\e Re ——rOfmal Formal
Design O‘E @ /
Low-Leve n(/ . .
i wirormal Informal Semiformal | Semiformal Formal
Design 7]
Code Informal Informal Informal Informal Formal

Wednesday, 22 May 2013

Information Flow Enforcement

Malware Filter

Internet

Wednesday, 22 May 2013

Information Flow Enforcement

general computation ~
within partitions

Malware Filter

Internet

Wednesday, 22 May 2013

Information Flow Enforcement (1@
NICTA

general computation ~
within partitions

Wednesday, 22 May 2013

Information Flow Enforcement (J®

i S L T |
L J I (:(”"
C,@ _ SVSTEyg

Wednesday, 22 May 2013

t:dr e
NICTA

Infoflow Security
\'@ Proof l

-

Kernel’s C Code

Wednesday, 22 May 2013

tl:dr e

NICTA
* Intransitive noninterference
theorem for selL4’s (8,830-line)
C code implementation ,.{%@ Broof l

— doesn’t cover timing channels

Kernel’s C Code

Wednesday, 22 May 2013

tl:dr

 |ntransitive noninterference
theorem for selL4’s (8,830-line)
C code implementation

— doesn’t cover timing channels

Wednesday, 22 May 2013

tl:dr

Intransitive noninterference
theorem for selL4’s (8,830-line)
C code implementation

— doesn’t cover timing channels
* Proof Assumptions:

— Formally state how to configure
kernel to enforce a policy

Wednesday, 22 May 2013

tl:dr

 |ntransitive noninterference
theorem for selL4’s (8,830-line)
C code implementation

— doesn’t cover timing channels

* Proof Assumptions:

— Formally state how to configure
kernel to enforce a policy

 Restrictions:
— DMA disabled
— No device IRQ delivery

— Cannot reconfigure inter-
partition comms. channels

Wednesday, 22 May 2013

tl:dr (Jo

 |ntransitive noninterference
theorem for selL4’s (8,830-line)
C code implementation

— doesn’t cover timing channels

* Proof Assumptions:

— Formally state how to configure
kernel to enforce a policy

 Restrictions:
— DMA disabled
— No device IRQ delivery

— Cannot reconfigure inter-
partition comms. channels

Wednesday, 22 May 2013

tl:dr (Je

NICTA
 Intransitive noninterference Firet —
theorem for seL4’s (8,830-line) Skeeh theore,
C code implementation *P fora

— doesn’t cover timing channels

* Proof Assumptions:

— Formally state how to configure
kernel to enforce a policy

 Restrictions:
— DMA disabled
— No device IRQ delivery

— Cannot reconfigure inter-
partition comms. channels

« All other syscalls available inside partitions!
— memory allocation, revocation, IPC, cap xfer, shared memory ...

Wednesday, 22 May 2013

Only Kernel Change: Partition Scheduling

P1,2

P2,10

P1,5

P3,12

P1,5

A

Current Partition

Partition Time

Wednesday, 22 May 2013

Only Kernel Change: Partition Scheduling

« Static round-robin schedule between partitions

P1,2

P2,10

P1,5

P3,12

P1,5

A

Current Partition

Partition Time

Wednesday, 22 May 2013

Only Kernel Change: Partition Scheduling

« Static round-robin schedule between partitions

P1,2

P2,10

P1,5

P3,12

P1,5

A

Current Partition

|

/7
7 Partition Time

decremented on each

timer-tick

Wednesday, 22 May 2013

Only Kernel Change: Partition Scheduling

Static round-robin schedule between partitions

P1,2

P2,10

P1,5

P3,12

P1,5 2

__ advances when
A <

pa rtLtlon-timee
hits O

Current Partition

|

/7
7 Partition Time

decremented on each
timer-tick

Wednesday, 22 May 2013

Only Kernel Change: Partition Scheduling

« Static round-robin schedule between partitions

P1,2 P2,10 P1.,5 P3,12 P1,5 2
Pal
‘ &—— advawnces whewn 7 Partition Time
Current Partition 'Pa YtLtLDV\z—tLVM,C deOVCV\:LCV\,ted’ own eq ch
hits O timer-tick

* Priority-based scheduling within partitions

— Choose the highest-priority Prio Ready Queue
thread that is ready

— Run idle thread if none ready 295 _’-_’-

— Any other intra-partition
scheduling algorithm possible
o dseriom -

Wednesday, 22 May 2013

Proof Structure

Integrity / Access Control

Kernel Specification

NICTA

Wednesday, 22 May 2013

Proof Structure Qe
NICTA

Integrity / Access Control

Kernel Specification

functional
correctness

proof (2009)

Wednesday, 22 May 2013

Proof Structure

Integrity / Access Control

Kernel Specification

NICTA

Wednesday, 22 May 2013

Proof Structure

Lntegrity
proof (2011)

Integrity / Access Control

Kernel Specification

NICTA

Wednesday, 22 May 2013

Proof Structure

Integrity / Access Control

Kernel Specification

NICTA

Wednesday, 22 May 2013

Proof Structure e
NICTA

Information Flow Security

Integrity / Access Control

-
~

Kernel Specification

Wednesday, 22 May 2013

Proof Structure e
NICTA

Information Flow Security

Integrity / Access Control

-
.

Kernel Specification

Wednesday, 22 May 2013

Proof Structure e
NICTA

Information Flow Security

Integrity / Access Control

’
\

Kernel Specification

Wednesday, 22 May 2013

Proof Structure e
NICTA

Information Flow Security

Integrity / Access Control

-
.

Kernel Specification

Wednesday, 22 May 2013

Proof Structure e
NICTA

Information Flow Security

Integrity / Access Control

-
.

Kernel Specification

8,830 SLOC

Wednesday, 22 May 2013

Proof Structure e
NICTA

Information Flow Security

!

+970 SLoC

-
.

Integrity / Access Control

8,830 SLOC

Wednesday, 22 May 2013

Proof Structure (e
NICTA

Information Flow Security

!

#970 SLoC

~150K SLOC

8,830 SLOC

@
.

Integrity / Access Control

Wednesday, 22 May 2013

Proof Structure (e
NICTA

Information Flow Security

— 4970 SLoc

10,149 SLOC
~150K SLOC

8,830 SLOC

Wednesday, 22 May 2013

Proof Structure (Je
NICTA

2FF56 SLOC

— 4970 SLoc

10,149 SLOC
~150K SLOC

8,830 SLOC

Wednesday, 22 May 2013

INFORMATION FLOW (Je

NICTA

- e AR ARYT AN T

Wednesday, 22 May 2013

INFORMATION FLOW

(confidentia Li’cg)

- e AR ARYT AN T

i ono011101

1\00\)‘

(O
NICTA

Wednesday, 22 May 2013

Information Flow Policy

« Derived from access control policy

AsyncSend
Read

10

Wednesday, 22 May 2013

Information Flow Policy

Derived from access control policy
AsyncSend
Read

10

Wednesday, 22 May 2013

Information Flow Policy ®

« Derived from access control policy

AsyncSend
Read

10

Wednesday, 22 May 2013

Information Flow Policy ®

« Derived from access control policy
Read
{ PSched j

10

Wednesday, 22 May 2013

Information Flow Policy ®

« Derived from access control policy
Read
[P1 H P2 j
{ PSched j

10

Wednesday, 22 May 2013

Information Flow Policy ®

« Derived from access control policy
Read
[P1 :}-----i'{ P2 J

PSched

10

Wednesday, 22 May 2013

Information Flow Policy

» Derived from access control policv

(-
L

10

Wednesday, 22 May 2013

Information Flow Policy o

» Derived from access control policv

PSched

10

Wednesday, 22 May 2013

Intransitive Nonleakage

Bt

PSched

Wednesday, 22 May 2013

Intransitive Nonleakage ®

 Variant of intransitive noninterference
— Asserts absence of information leaks

e

PSched

11

Wednesday, 22 May 2013

Intransitive Nonleakage ®

 Variant of intransitive noninterference
— Asserts absence of information leaks

system model
(current partition)

e

PSched

11

Wednesday, 22 May 2013

Intransitive Nonleakage ®

 Variant of intransitive noninterference
— Asserts absence of information leaks

system model —
(current partition) (P2)

e

PSched

11

Wednesday, 22 May 2013

Intransitive Nonleakage ®

 Variant of intransitive noninterference
— Asserts absence of information leaks

system model > >
(current partition) (P2) (PSched)

e

PSched

11

Wednesday, 22 May 2013

Intransitive Nonleakage ®

 Variant of intransitive noninterference
— Asserts absence of information leaks

system model > > P>
(current partition) (P2) (PSched) (P2)

e

PSched

11

Wednesday, 22 May 2013

Intransitive Nonleakage ®

 Variant of intransitive noninterference
— Asserts absence of information leaks

system model > > > >
(current partition) (P2) (PSched) (P2) (PSched)
PSched

11

Wednesday, 22 May 2013

Intransitive Nonleakage ®

 Variant of intransitive noninterference
— Asserts absence of information leaks

system model > > > > >
(current partition) (P2) (PSched) (P2) (PSched) (P1)
P1 P2
PSched

11

Wednesday, 22 May 2013

Intransitive Nonleakage ®

 Variant of intransitive noninterference
— Asserts absence of information leaks

system model > > > > >
(current partition) (P2) (PSched) (P2) (PSched) (P1)

* Allows partitions to know of each others’ existence

— P1 allowed to observe that P2 has executed
— But not to learn anything about P2's state

P1 P2

PSched

11

Wednesday, 22 May 2013

Intransitive Nonleakage

 Variant of intransitive noninterference
— Asserts absence of information leaks

system model > > > >

(current partition) (P2) (PSched) (P2) (PSched) (P1)

* Allows partitions to know of each others’ existence

— P1 allowed to observe that P2 has executed
— But not to learn anything about P2's state

* Implied assumption: P1 P2
static partition-schedule is

globally public knowledge

— When P1 executes, it thus
already knows that P2 must
have exhausted its timeslice

PSched

11

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally

Bt

PSched

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally ®

« Similar to language-based noninterference

e

PSched

12

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally ®

« Similar to language-based noninterference

> > > > >
(P2) (PSched) (P2) (PSched) (P1)
[P1 H P2 j
PSched

12

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally ®

« Similar to language-based noninterference

@ > > > > >
(P2) (PSched) (P2) (PSched) (P1)

e

PSched

12

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally ®

« Similar to language-based noninterference

@ > > > > > @
(P2) (PSched) (P2) (PSched) (P1)

e

PSched

12

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally ®

« Similar to language-based noninterference

@ > > > > > @
(P2) (PSched) (P2) (PSched) (P1)

~{P1, PSched}=
PSched

12

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally ®

« Similar to language-based noninterference

@ > > > > > @
(P2) (PSched) (P2) (PSched) (P1)

~{P1, PSchedl}=

PSched

12

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally ®

« Similar to language-based noninterference

@ > > > > > @
(P2) (PSched) (P2) (PSched) (P1)

~{P1, PSched}=~ ~P1~¢

()— - ()
Bt

PSched

12

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally

« Similar to language-based noninterference

@ > > > > > @
(P2) (PSched) (P2) (PSched) (P1)

O— ———— @

Vpss'tt.
(s,t) € Step A (s7,t) € Step A

« Equivalent to

single-step s ~{p,PSched}= s’ A
unwinding ~ B -
condition: (part s >p =s ~parts~ g’) =

t ~p~t’

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally

S tnforma LLy:

Vpss'tt.
(s,t) € sStep A (s7,t) € Step A

« Equivalent to

single-step s ~{p,PSched}= s’ A
unwinding ~ B -
condition: (part s >p =s ~parts~ g’) =

t ~p~t’

@

NICTA

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally (J®

S Lw{ormaLLaz on a single step

« Equivalent to
single-step

unwindin ,
conditiong:l (P“Vt S>Pp=s ~parts—s) =

t ~p~t’

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally

S iw{ormaLLaz on a single step

Vpss'tt.
(s,t) € sStep A (s7,t) € Step A

« Equivalent to

single-step s ~{p,PSched}= s’ A
unwinding ~ B -
condition: (part s >p =s ~parts~ g’) =

t ~p~t’

(J®
NICTA

Wednesday, 22 May 2013

()@

NICTA

Intransitive Nonleakage: Formally

c .
S vaformaLLg: on a single step

Q an arbitrary partition P can learn information from: @

~P1~¢
.
Vpsstt.
- Equivalent to (s,t) € Step A (') € Step A
single-step s ~{p,PSched}=s’ A
gngcll?t?:rllg ’M p=s ~parts~g’) =

Wednesday, 22 May 2013

()@

NICTA

Intransitive Nonleakage: Formally

c .
S vaformal,l,gz on a single step

Q an arbitrary partition P can learn information from: @

Vpss'tt.
(s,t) € Step A (s7,t) € Step A

« Equivalent to

single-step s ~{p,PSched}= s’ A
unwinding B -
condition: (part s >p =s ~parts~ g’) =

t ~p~t

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally

c .
S vaformal,l,gz on a single step

an arbitrary partition P can learn information from:

Q itself and PSched,

~P1~¢
"
Vpsstt.
. (S/t) «-‘5‘ .A (S’,t,) E St 7AN
« Equivalent to Ve °p
single-step s §lp.PsSched)y= s A
unwinding
.. arts >p—=s —parts— s’) =
condition: ® P P)
t ~p~ vt

()@

NICTA

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally

c .
S vaformal,l,gz on a single step

an arbitrary partition P can learn information from:
Q itself and PSched, @
~P1~¢
¢
Vpss'tt.
_ (s,t) € Step A (s7,t)) € Step A
 Equivalent to P P
single-step s ~{p,PSched}=s’ A
unwinding
. arts >p=s —parts—~gs’) =
condition: ® P P)
S

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally

c .
S waormaLng on a single step

an arbitrary partition P can learn information from:
< itself and PSched, @
~{P1, as well as the currently running partition when ~P1~¢

Vpss'tt.
(s,t) € Step A (s7,t) € Step A

« Equivalent to

single-step s ={p,PSched}=s'A

unwinding ' ,

condition: iparts > p=>s 4 .)=
t ~p~ vt

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally

c .
S waormaLng on a single step

an arbitrary partition P can learn information from:
< itself and PSched, @
~{P1, as well as the currently running partition when ~P1~¢

Vpss'tt.
(s,t) € Step A (s7,t) € Step A

« Equivalent to

single-step s ~{p,PSched}= s’ A
unwinding B -
condition: (part s >p =s ~parts~ g’) =

t ~p~t

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally

S Lw{ormaLng on a single step
an arbitrary partition P can learn information from:
< itself and PSched, @
~{P1, as well as the currently running partition when ~P1~¢
the policy allows permits it to interfere with P ¢

Vpss'tt.
s,t) e Step A (s,t) € Step A
« Equivalent to = ep A {SE) P
single-step
unwinding
condition:

Wednesday, 22 May 2013

Intransitive Nonleakage: Formally

S waormaLLaz on a single step
an arbitrary partition P can learn information from:
< itself and PSched, @
~{P1, as well as the currently running partition when ~P1~¢
the policy allows permits it to interfere with P ¢

Vpss'tt.
(s,t) € Step A (s7,t) € Step A

« Equivalent to

single-step s ~{p,PSched}= s’ A

unwinding B -

condition: (part s >p =s ~parts~ g’) =
t ~p~t

Wednesday, 22 May 2013

DISCUSSION

Wednesday, 22 May 2013

DISCUSSION

(what does Lt mean?)

Wednesday, 22 May 2013

Assurance { Jeo

Security Property

Pl
System Model (code semantics)

14

Wednesday, 22 May 2013

Assurance

 Proofs break when:

g
System Model (code semantics)

Security Property

14

Wednesday, 22 May 2013

Assurance (Jeo

 Proofs break when:

— they are not logically correct
(involve incorrect reasoning)

Security Property

e\\e
%g’ Proof l

2
System Model (code semantics)

14

Wednesday, 22 May 2013

Assurance (Jeo

 Proofs break when:

— they are not logically correct
(involve incorrect reasoning)

14

Wednesday, 22 May 2013

Assurance (Jeo

 Proofs break when:

— they are not logically correct
(involve incorrect reasoning)

A WON-LSSUE LA pmc’c'we

Security Property

e\\e
%g’ Proof l

2
System Model (code semantics)

14

Wednesday, 22 May 2013

Assurance (Je

 Proofs break when:

— they are not logically correct
(involve incorrect reasoning)

A WON-LSSUE LA pmc’cioe

~ their assumptions are

unrealistic R\
v @j
L34 Proof
!

o
System Model (code semantics)

14

Wednesday, 22 May 2013

Assurance (Je

 Proofs break when:

— they are not logically correct
(involve incorrect reasoning)

A WON-LSSUE LA pmc’cioe

— their assumptions are
unrealistic

14

Wednesday, 22 May 2013

Assurance (Jeo

 Proofs break when:

— they are not logically correct
(involve incorrect reasoning)

A WON-LSSUE LA Pmc’c'we
O
— their assumptions are
unrealistic R\
Yool
&%” Proof l

-~ they dontmeanwhat e Mk e

we thought they did

14

Wednesday, 22 May 2013

Assurance

 Proofs break when:

— they are not logically correct
(involve incorrect reasoning)

a nown-issue i practice |
— their assumptions are SecUNtyPropary
unrealistic R\
A
&%” Proof l

-~ they dontmeanwhat e Mk e

we thought they did

14

Wednesday, 22 May 2013

Assumptions

NICTA

15

Wednesday, 22 May 2013

Assumptions

« All those of functional correctness proofs

NICTA

15

Wednesday, 22 May 2013

Assumptions

« All those of functional correctness proofs

— compiler correctness, cache and TLB management,
450 lines of hand-written assembly code

15

Wednesday, 22 May 2013

Assumptions

« All those of functional correctness proofs

— compiler correctness, cache and TLB management,
450 lines of hand-written assembly code

 Correct initialisation

15

Wednesday, 22 May 2013

Assumptions

« All those of functional correctness proofs

— compiler correctness, cache and TLB management,
450 lines of hand-written assembly code

» Correct initialisation
— state of system after configuration enforces access policy, and

15

Wednesday, 22 May 2013

Assumptions ®

« All those of functional correctness proofs

— compiler correctness, cache and TLB management,
450 lines of hand-written assembly code

» Correct initialisation
— state of system after configuration enforces access policy, and

— meets wellformedness assumptions

15

Wednesday, 22 May 2013

Assumptions ®

« All those of functional correctness proofs

— compiler correctness, cache and TLB management,
450 lines of hand-written assembly code

» Correct initialisation
— state of system after configuration enforces access policy, and

— meets wellformedness assumptions
* leaky API features disabled

15

Wednesday, 22 May 2013

Assumptions o

« All those of functional correctness proofs

— compiler correctness, cache and TLB management,
450 lines of hand-written assembly code

» Correct initialisation
— state of system after configuration enforces access policy, and

— meets wellformedness assumptions
 leaky API fea

system LnLt correctiness
proof: in progress

15

Wednesday, 22 May 2013

Assumptions

All those of functional correctness proofs

— compiler correctness, cache and TLB management,
450 lines of hand-written assembly code

Correct initialisation
— state of system after configuration enforces access policy, and

— meets wellformedness assumptions

* leaky API fea o
S 3stem LniLt correctness

— DMA disabled proof: tn progress

15

Wednesday, 22 May 2013

Assumptions

All those of functional correctness proofs

— compiler correctness, cache and TLB management,
450 lines of hand-written assembly code

Correct initialisation
— state of system after configuration enforces access policy, and

— meets wellformedness assumptions

* leaky API fea o
S 5stem LniLt correctness

— DMA disabled proof: tn progress

User-space has no info sources that are not modelled

15

Wednesday, 22 May 2013

Assumptions

« All those of functional correctness proofs

— compiler correctness, cache and TLB management,
450 lines of hand-written assembly code

» Correct initialisation
— state of system after configuration enforces access policy, and

— meets wellformedness assumptions

* leaky API fea o
S 5stem LniLt correctness

— DMA disabled proof: tn progress

« User-space has no info sources that are not modelled
— contents of registers and accessible physical memory

15

Wednesday, 22 May 2013

Assumptions

AN o
:\.‘I I\ !/"\

All those of functional correctness proofs

— compiler correctness, cache and TLB management,
450 lines of hand-written assembly code

Correct initialisation
— state of system after configuration enforces access policy, and

— meets wellformedness assumptions

* leaky API fea o
S 5stem LniLt correctness

— DMA disabled proof: tn progress

User-space has no info sources that are not modelled
— contents ol what about covert channels? gmory

15

Wednesday, 22 May 2013

Storage Channels Qe
NICTA

Information Flow Security

Code

Kernel Specification

Wednesday, 22 May 2013

Storage Channels

* Proof covers all storage channels present in kernel spec

— abstract kernel heap, CPU registers, physical memory,
IRQ masks, ...

Information Flow Security

Code

Kernel Specification

Oe

NICTA

Wednesday, 22 May 2013

Storage Channels Je

NICTA
Proof covers all storage channels present in kernel spec

— abstract kernel heap, CPU registers, physical memory,
IRQ masks, ...

 Also all user-visible channels

read by the kernel

— those below the level of the spec l

appear as user-visible nondeterminism

— not tolerated by nonleakage
under refinement

Kernel Specification

|

Wednesday, 22 May 2013

Storage Channels

IRQ masks, ...

 Also all user-visible channels
read by the kernel

— those below the level of the spec

— not tolerated by nonleakage
under refinement

bool 1, h;
1 :=0n 1;

Proof covers all storage channels present in kernel spec
— abstract kernel heap, CPU registers, physical memory,

Information Flow Security

appear as user-visible nondeterminism l

Kernel Specification

|

Oe

NICTA

Wednesday, 22 May 2013

Storage Channels Je

NICTA
Proof covers all storage channels present in kernel spec

— abstract kernel heap, CPU registers, physical memory,
IRQ masks, ...

 Also all user-visible channels

read by the kernel

— those below the level of the spec l

appear as user-visible nondeterminism

— not tolerated by nonleakage
under refinement

Kernel Specification

bool 1, h;
1 :=0n 1;

s refined by

Wednesday, 22 May 2013

Storage Channels Je

NICTA
Proof covers all storage channels present in kernel spec

— abstract kernel heap, CPU registers, physical memory,
IRQ masks, ...

 Also all user-visible channels

read by the kernel

— those below the level of the spec l

appear as user-visible nondeterminism

— not tolerated by nonleakage
under refinement

Kernel Specification

bool 1, h;
1 :=0n 1;

is refined by 1 .= h: >+

Wednesday, 22 May 2013

Storage Channels (Je

NICTA
Proof covers all storage channels present in kernel spec

— abstract kernel heap, CPU registers, physical memory,
IRQ masks, ...

 Also all user-visible channels

read by the kernel

— those below the level of the spec l

appear as user-visible nondeterminism

— not tole-~*~+ hv nonleakage
under ri

LS the
bool 1, 1 \/al,ue 0.‘6
1 :=0nm reﬁ""eVWBVLt—‘PVBSCVVCd

nw
is refined b V‘f t ce

Wednesday, 22 May 2013

Storage Channels (Je

NICTA
2t in kernel spec

* Proof covers all storage channels pre-

— abstract kernel heap, CP"’
IRQ masks. -

LS the
bool 1, 1 \/al,ue O'f
1 :=0nm VCﬁWBMCVLt—‘PVBSCWCd

“onilnterferemce

is refined b

Wednesday, 22 May 2013

Storage Channels (Je

NICTA
« Proof covers all storage channels pre~ gt in kernel spec

— abstract kernel heap, CP'’
IRQ masks.

. W
] AIQI\ - O\/C‘(ed' O .
re V\’Ot (‘/ OVW S on Flow Security
A Wt {\(eﬂd‘
ﬂ\ose’ oev Y
f
_ LYW

€.9. undocumented

\
u
/ hardware APls

Wednesday, 22 May 2013

Timing Channels

(O
NICTA

17

Wednesday, 22 May 2013

Timing Channels

« The proof says nothing about timing channels

NICTA

17

Wednesday, 22 May 2013

Timing Channels

The proof says nothing about timing channels
e.g. jitter in scheduler

NICTA

17

Wednesday, 22 May 2013

Timing Channels

The proof says nothing about timing channels

e.g. jitter in scheduler
— sel4 syscalls are generally non-preemptible

(O
NICTA

17

Wednesday, 22 May 2013

Timing Channels ()@

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

17

Wednesday, 22 May 2013

Timing Channels

The proof says nothing about timing channels

e.g. jitter in scheduler
— sel4 syscalls are generally non-preemptible

» except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

17

Wednesday, 22 May 2013

Timing Channels 4@

« The proof says nothing about timing channels

* e.g. jitter in scheduler
— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()
— partition switch can be delayed by syscall

user mode

kernel mode
(irgs disabled)

17

Wednesday, 22 May 2013

Timing Channels 4@

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

uop

user mode

kernel mode
(irgs disabled)

17

Wednesday, 22 May 2013

Timing Channels 4@

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

uop uop

user mode

kernel mode
(irgs disabled)

17

Wednesday, 22 May 2013

Timing Channels 4@

« The proof says nothing about timing channels

* e.g. jitter in scheduler
— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()
— partition switch can be delayed by syscall

uop uop

user mode

kernel mode
(irgs disabled)

syscall

17

Wednesday, 22 May 2013

Timing Channels 4@

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

uop uop

user mode

kernel mode
(irgs disabled)

syscall switch partition

17

Wednesday, 22 May 2013

Timing Channels “

« The proof says nothing about timing channels

* e.g. jitter in scheduler
— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()
— partition switch can be delayed by syscall

user mode

kernel mode
(irgs disabled)

syscall switch partition

17

Wednesday, 22 May 2013

Timing Channels 4@

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

timer
tick

uop uop

user mode

kernel mode
(irgs disabled)

syscall switch partition

17

Wednesday, 22 May 2013

Timing Channels o

« The proof says nothing about timing channels

* e.g. jitter in scheduler

— sel4 syscalls are generally non-preemptible
» except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

timer
tick

uop uop

user mode

kernel mode
(irgs disabled)

syscall switch partition

* Others: caches, CPU temp. etc.

17

Wednesday, 22 May 2013

Timing Channels ()@
NICTA

e The nronf ~- , L@ﬂted ba nels

ning calls e.g. Revoke()

user mode

kernel mode
(irgs disabled)

syscall switch partition

» Others: caches, CPU temp. etc.

17

Wednesday, 22 May 2013

Timing Channels (Je

NICTA
* The nront~- b nels
ted
- el ymust be V‘M’tbga 4
oovaLevwﬁWt“‘% e
——) \A,LO\VLCS ning calls e.g. Revoke()

» Others: caches, CPU temp. etc.

Wednesday, 22 May 2013

Lesson O‘

NICTA

« Functional correctness enables cheap security proofs

Effort (py)
25
20 -
15 -
10 -
5 -
Functional Correctness Integrity Infoflow

18

Wednesday, 22 May 2013

Lesson

* Function=! ~-

nables cheap security proofs

¥YS
oVeY ~ 4 Mea
ffort (py)

25

20 -

15 -

10 -

5 -

. — B

Functional Correctness Integrity Infoflow

Oe

NICTA

18

Wednesday, 22 May 2013

Lesson

* Function=! ~-

25

20 -

15 -

10 -

vs
over —4 Yeh

nables cheap security proofs

ffort (py)

Functional Correctness

Integrity

Infoflow

Oe

NICTA

18

Wednesday, 22 May 2013

Lesson Oe
NICTA

* Function=! ~-

nables cheap security proofs

YS
over —4 Yeh
ffort (py)\ ~2.5 FTE,
20 -
15 -
10 -
5 -
0 -
Functional Correctness Integrity Infoflow

18

Wednesday, 22 May 2013

BREAKING NEWS

NICTA

Wednesday, 22 May 2013

Security Theorems for the Kernel Binary

Specification

e

NICTA

20

Wednesday, 22 May 2013

Security Theorems for the Kernel Binary e
NICTA

Specification

Binary Semantics (Cambridge ARM ISA) - Binary Code

20

Wednesday, 22 May 2013

Security Theorems for the Kernel Binary e
NICTA

Specification

!

Binary Semantics (Cambridge ARM ISA) nary Code
-
\
20

Wednesday, 22 May 2013

Security Theorems for the Kernel Binary e
NICTA

Specification

!

Binary Semantics (Cambridge ARM ISA) nary Code
-
\
Thomas Sewell —
20

Wednesday, 22 May 2013

Security Theorems for the Kernel Binary Je
NICTA

S
~
~
Q
o
o
'
D
‘Y
AN)
o

Binary Semantics (Cambridge ARM ISA)

Thomas Sewell —

20

Wednesday, 22 May 2013

CONCLUSION

Wednesday, 22 May 2013

Take-Home Message

22

Wednesday, 22 May 2013

Take-Home Message

NICTA

22

Wednesday, 22 May 2013

Take-Home Message (e

el security proofs of small

Www 05 ,
@ pwrp op,eratuwg sgs’cf’zm Rernel
ot meLemeWcatwws are
pra ctieal

22

Wednesday, 22 May 2013

Take-Home Message (Je

e\ security proofs of small
W S ,
e A PUIPP operating system kernel
Qb Lmplementations are
practical

demand nothing less.

22

Wednesday, 22 May 2013

Thank You

GOOS[C selL4 infoflow [I'm Feoling&ikz |

Wednesday, 22 May 2013

