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Theorem-proving, redux

1. Find your type:
◮ When proving Fermat’s Last Theorem, HOL provides the type

of natural numbers (N)
◮ When verifying a hardware design, the (new) type for the

system state-space needs to be specified (tuple of registers,
memory . . . )

2. Define functions over the type:
◮ Define gcd over N2

◮ Define a transition relation over the hardware state-space

3. Prove theorems!
◮ . . .
◮ Prove safety, liveness . . .

This talk is about step 2: function definition.
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Function definition, traditionally

Inductive types, recursive functions

◮ Given the type of lists, want to define a (primitive) recursive
function such as foldl, with definition

foldl f x [ ] = x

foldl f x (e :: t) = foldl f (f (e, x)) t

◮ How can such a definition be allowed?
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Introduction

Function definition, traditionally

Recursion theorems

For lists:
⊢ ∀n c . ∃h.

h [ ] = n ∧
∀e t. h (e :: t) = c (h t) e t

◮ n is the value when the function (h) is applied to an empty list

◮ c is the value when the function is applied to a “cons”. c can
compute its answer with reference to

◮ the head element of the list (e)
◮ the rest of the list (t)
◮ the result of the recursive call of h applied to t
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Introduction

Function definition, traditionally

Demonstrating the existence of foldl

Begin with the recursion theorem

⊢ ∃h.
∀f x . h [ ] f x = x ∧

∀e t f x . h (e :: t) f x = h t f (f (e, x)))

◮ Take n to be (λf x . x)

◮ Take c to be (λr e t f x . r f (f (e, x)))

◮ β-reduce

◮ Use extensionality to handle λs on the right
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Function definition, traditionally

Types need recursion theorems

◮ It’s easy to provide recursion theorems for standard algebraic
types (lists, trees, &c)

◮ Basic desirable form is

⊢ ∀ . . . fi . . . ∃h.
· · · ∧
∀ . . . xj . . . rk .

h (Ci (. . . xj , . . . rk)) = fi (h rk) . . . xj . . . rk ∧
· · ·

Where
◮ xj is a non-recursive parameter to constructor Ci

◮ rk is a recursive parameter to the same constructor
◮ fi gets access to xj , rk , and the result of recursive call (h rk )
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Introduction

Problems with binders

α-equivalence

◮ The type representing the syntax of λ-terms will have
constructors:

VAR : string → term

APP : term → (term → term)
LAM : string → (term → term)

◮ Add α-equivalence: “the choice of variable name doesn’t
matter”:

◮ LAM x x is “the same” as LAM y y

◮ On raw syntax, α-equivalence (≡α) captures “the same”

◮ At level of interest, ≡α is just =
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Introduction

Problems with binders

Recursion theorem for types with α-equivalence

◮ The recursion theorem for the type “should” have the
LAM-clause:

h (LAM v t) = lam v t (h t)

◮ But this would allow unsound definition of

bogus (LAM v t) = v

◮ Side-conditions will be required!
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Introduction

The Gordon-Melham type for λ-terms

The Gordon-Melham type and its recursion theorem

◮ Gordon & Melham (1996) provide a type of λ-terms

◮ Represents α-equivalent terms, satisfying LAM x x = LAM y y

◮ Defines substitution, e.g., M[v 7→ N]

◮ Has recursion theorem, but LAM clause is

h (LAM v t) =
lam (λy . h (t[v 7→ VAR(y)])) (λy . t[v 7→ VAR(y)])

◮ lam gets no access to v , and access to body and recursion
result is via functions that perform substitutions
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Introduction

The Gordon-Melham type for λ-terms

Building on the Gordon-Melham type

I will transform the Bad Clause

h (LAM v t) =
lam (λy . h (t[v 7→ VAR(y)])) (λy . t[v 7→ VAR(y)])

into the Good Clause

h (LAM v t) = lam (h t) v t

while still preventing

bogus (LAM v t) = v

through appropriate side-conditions
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Function definition with binders

Motivating examples

Motivating examples

◮ Some direct references to bound variable names and
abstraction bodies are legitimate.

◮ If the range of the function is a simple type
◮ Calculating term size:

size (CON k) = 1

size (VAR s) = 1

size (APP t u) = 1 + size t + size u

size (LAM v t) = 1 + size t

◮ Is a term in β-normal form:

bnf (CON k) = T

bnf (VAR s) = T

bnf (APP t u) = ¬ is_lam t ∧ bnf t ∧ bnf u

bnf (LAM v t) = bnf t
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Motivating examples

Another motivating example

Referring to the bound variable is the easiest way to express
η-normal form:

enf (CON k) = T

enf (VAR s) = T

enf (APP t u) = enf t ∧ enf u

enf (LAM v t) = enf t ∧
(is_app t ∧ rand t = VAR v ⇒
v ∈ FV (rator t))

((λx . M x) →η M if x 6∈ FV(M))
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Permutations

Substitutions vs. permutations

◮ α-equivalence often expressed in terms of substitution:

(λx . M) ≡α (λy . M[x 7→ y ])

(where y 6∈ FV(M))

◮ But substitutions are awful to work with
◮ Theorems typically hedged by side-conditions on freshness of

variables, e.g., Barendregt’s Lemma 2.1.16:

x 6= y ∧ x 6∈ FV(L) ⇒

(M [x 7→ N ])[y 7→ L] = (M [y 7→ L])[x 7→ N [y 7→ L]]
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Permutations

◮ Pitts & Gabbay suggest permutations a better choice than
substitutions

◮ (x y) ·M represents the action of swapping names x and y

throughout M

◮ If y 6∈ FV(M), then (λx . M) ≡α (λy . ((x y) ·M))
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Permutations

◮ Pitts & Gabbay suggest permutations a better choice than
substitutions

◮ (x y) ·M represents the action of swapping names x and y

throughout M

◮ If y 6∈ FV(M), then (λx . M) ≡α (λy . ((x y) ·M))

◮ And permutations have great properties
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Permutations

The wonderful properties of permutations

◮ Permutations can cancel out

(x y) · ((x y) ·M) = M

◮ Permutations commute with just about everything
◮ Themselves:

(x y) · ((u v) ·M) = (((x y) · u) ((x y) · v)) · ((x y) ·M)

◮ and substitutions:

(x y) · (N [v 7→ M ]) = ((x y) · N)[((x y) · v) 7→ ((x y) ·M)]

◮ And these equations are side-condition free!
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Permutations

Permutations—they’re great

◮ One last property of permutation:

(x y) · (λv . M) = (λ((x y) · v). ((x y) ·M))
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Permutations

Permutations—they’re great

◮ One last property of permutation:

(x y) · (λv . M) = (λ((x y) · v). ((x y) ·M))

◮ And permutation on λ-terms can be defined using the
Gordon-Melham recursion theorem.
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Proving the new recursion theorem

Getting from Bad to Good—I

Have access to two function-terms in the LAM-clause of Bad. One is

(λy . h (t[v 7→ VAR(y)]))

Can apply both functions to a “fresh” variable z . The above turns
into

◮ h (t[v 7→ VAR(z)])
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Proving the new recursion theorem

Getting from Bad to Good—I

Have access to two function-terms in the LAM-clause of Bad. One is

(λy . h (t[v 7→ VAR(y)]))

Can apply both functions to a “fresh” variable z . The above turns
into

◮ h (t[v 7→ VAR(z)]); into

◮ h ((z v) · t)

Similarly, (λy . t[v 7→ VAR(y)]) turns into (z v) · t
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Getting from Bad to Good—II
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Getting from Bad to Good—II
LAM-clause has become

h (LAM v t) =
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◮ By induction, h ((x y) · t) = (x y) · (h t)

◮ By side-condition, permutations commute with lam

◮ If z and v don’t occur in M, then (z v) ·M = M.
By side-condition, lam and h don’t produce results with extra
free names, so

◮ z is not in (lam . . . ); and
◮ v is not in FV(LAM v t), so v is not in (lam . . . ) either
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Proving the new recursion theorem

Getting from Bad to Good—II
LAM-clause has become

h (LAM v t) =

lam (h t) v t

◮ By induction, h ((x y) · t) = (x y) · (h t)

◮ By side-condition, permutations commute with lam

◮ If z and v don’t occur in M, then (z v) ·M = M.
By side-condition, lam and h don’t produce results with extra
free names, so

◮ z is not in (lam . . . ); and
◮ v is not in FV(LAM v t), so v is not in (lam . . . ) either

◮ let z = . . . in has empty scope
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Proving the new recursion theorem

From Bad to Good—summary

◮ Two additional properties of h:
◮ h ((x y) · t) = (x y) · (h t)
◮ FV(h t) ⊆ FV(t)

Both proved by induction.
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Proving the new recursion theorem

From Bad to Good—summary

◮ Two additional properties of h:
◮ h ((x y) · t) = (x y) · (h t)
◮ FV(h t) ⊆ FV(t)

Both proved by induction.

◮ Side-conditions embody these restrictions for lam, app, con
and var .

◮ Result type must support notion of permutation and FV

constant (subject to characterising constraints)
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Additional parameters

Parameters

◮ Remember the foldl example: the result was a function
(foldl [ ] = (λf x . x))

◮ The new recursion theorem places permutation and FV
constraints on each “helper” (lam, app &c.):

◮ Permutation for functions is easy (given permutation actions
for domain and range)

◮ Constrained generation of free variables is a problem.

◮ FV constraint for lam is

FV(t ′) ⊆ FV(t) ⇒ FV(lam t ′ v t) ⊆ FV(LAM v t)

What are the “free variables” of a function (of type
term → term, say)?
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Additional parameters

Parameters (continued)

◮ Rather than force functions to support notion of free
variables, make parameter explicit:

◮ When no (interesting) parameters, original recursion theorem
is derivable by setting parameter type to unit

◮ Multiple parameters can be combined into one tuple

◮ Free variable constraint for LAM-clause becomes:

FV(t ′) ⊆ FV(t) ⇒
FV(lam t ′ v t p) ⊆ FV(p) ∪ FV(LAM v t)

◮ Previously
(z v) · lam . . . = lam . . .

because v 6∈ FV(lam . . . ) and z fresh

◮ Now also need v 6∈ FV(p) and ∀p. finite(FV(p))
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Additional parameters

Parameter restrictions

◮ Parameter restrictions lead to side-conditions on equations

◮ For example, substitution’s LAM-clause might be

sub M u (LAM v t) = LAM v (sub M u t)

◮ To have this work, v must avoid the free variables of the
parameters:

v 6∈ FV(M) ∧ v 6= u ⇒
sub M u (LAM v t) = LAM v (sub M u t)
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Implementation

Notes on the implementation

On top of usual formula manipulation, need

◮ An internal database, suggesting permutation and FV

functions for range and parameter types

◮ Ability to try multiple options
◮ Always try “null” permutation-FV option

◮ Ability to discharge side-conditions
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Implementation

Extensions

◮ Handle multiple domain types

◮ Handle parameters automatically

◮ (Harder) Automatically derive recursion theorem for new types
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Conclusions

◮ It is possible to define functions in a natural style over a type
of α-equivalent terms

◮ . . . and to do this in classical HOL

◮ My recursion theorem embodies the fact of this possibility

◮ The side-conditions enforce the reasonableness of possible
definitions
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