Functions for types with binders

Recursive function definition for types with
binders

Michael Norrish

Michael.Norrish@nicta.com.au
National ICT Australia

17 September 2004

NATIONAL
ICT AUSTRALIA

Functions for types with binders

L Introduction

Outline

Introduction
Function definition, traditionally
Problems with binders
The Gordon-Melham type for A-terms

Function definition with binders
Motivating examples
Permutations
Proving the new recursion theorem
Additional parameters
Implementation

Conclusion

Functions for types with binders

L Introduction

Theorem-proving, redux

1. Find your type:
» When proving Fermat's Last Theorem, HOL provides the type
of natural numbers (N)
» When verifying a hardware design, the (new) type for the
system state-space needs to be specified (tuple of registers,
memory .. .)

Functions for types with binders

L Introduction

Theorem-proving, redux

1. Find your type:
» When proving Fermat's Last Theorem, HOL provides the type
of natural numbers (N)
» When verifying a hardware design, the (new) type for the
system state-space needs to be specified (tuple of registers,
memory .. .)

2. Define functions over the type:

» Define gcd over N?
» Define a transition relation over the hardware state-space

Functions for types with binders

L Introduction

Theorem-proving, redux

1. Find your type:

» When proving Fermat's Last Theorem, HOL provides the type
of natural numbers (N)

» When verifying a hardware design, the (new) type for the
system state-space needs to be specified (tuple of registers,
memory .. .)

2. Define functions over the type:

» Define gcd over N?

» Define a transition relation over the hardware state-space
3. Prove theorems!

>

» Prove safety, liveness ...

Functions for types with binders

L Introduction

Theorem-proving, redux

1. Find your type:

» When proving Fermat's Last Theorem, HOL provides the type
of natural numbers (N)

» When verifying a hardware design, the (new) type for the
system state-space needs to be specified (tuple of registers,
memory .. .)

2. Define functions over the type:

» Define gcd over N?

» Define a transition relation over the hardware state-space
3. Prove theorems!

>

» Prove safety, liveness ...

This talk is about step 2: function definition.

Functions for types with binders
L Introduction

L Function definition, traditionally

Inductive types, recursive functions

» Given the type of lists, want to define a (primitive) recursive
function such as foldl, with definition

foldl f x [] = x
foldl f x (e:xt) = foldl £ (f(e,x)) t

» How can such a definition be allowed?

Functions for types with binders
L Introduction

L Function definition, traditionally

Recursion theorems

For lists:
F Vnc. dh
h]l=n A
Vet. h(ext)=c(ht)et

» n is the value when the function (h) is applied to an empty list
» c is the value when the function is applied to a “cons”. ¢ can
compute its answer with reference to
> the head element of the list (e)
> the rest of the list (t)
» the result of the recursive call of h applied to t

Functions for types with binders
L Introduction

I—Function definition, traditionally

Demonstrating the existence of foldl

Begin with the recursion theorem

F Vnc. dh.

h]l=n A

Vet. h(ext)=c(ht)et

o>

Functions for types with binders
L Introduction

I—Function definition, traditionally

Demonstrating the existence of foldl

Begin with the recursion theorem

F Vnc. dh.

h]l=n A

Vet. h(ext)=c(ht)et

» Take n to be (A f x. x)

o>

Functions for types with binders
L Introduction

I—Function definition, traditionally

Demonstrating the existence of foldl

Begin with the recursion theorem

F Vec. 3h.
h[]=(fx x) A

Vet. h(ext)=c(ht)et

» Take n to be (Af x. x)

Functions for types with binders
L Introduction

I—Function definition, traditionally

Demonstrating the existence of foldl

Begin with the recursion theorem

F Vec. 3h.
h[]=(fx x) A

Vet. h(ext)=c(ht)et

» Take n to be (Af x. x)
» Take ctobe (Aretfx. rf (f(e x)))

Functions for types with binders
L Introduction

I—Functic:m definition, traditionally

Demonstrating the existence of foldl

Begin with the recursion theorem

F 3h.
h[]=(fx x) A

Vet. h(ext)=(Aretfx. rf (f(e,x))) (ht)et

» Take n to be (Af x. x)
» Take ctobe (Aretfx. r f (f(e x)))

Functions for types with binders
L Introduction

L Function definition, traditionally

Demonstrating the existence of foldl

Begin with the recursion theorem
= 3h.
h[]=(fx x) A
Vet. h(ext)=(Aretfx. rf (f(e,x))) (ht)et

—

» Take n to be (Af x. x)
» Take ctobe (Aretfx. r f (f(e x)))

> [-reduce

Functions for types with binders
L Introduction

L Function definition, traditionally

Demonstrating the existence of foldl

Begin with the recursion theorem
F 3h.
h[]=(fx x) A
Vet. h(ext)=(Afx. htf (f(ex)))

» Take n to be (Af x. x)
» Take ctobe (Aretfx. r f (f(e x)))

» [-reduce

Functions for types with binders
L Introduction

L Function definition, traditionally

Demonstrating the existence of foldl

Begin with the recursion theorem

F dh.
VEx. h[] f x=x A

Vetfx. h(ext)f x=htf (f(ex)))

» Take n to be (Af x. x)

» Take ctobe (Aretfx. r f (f(e x)))

» [-reduce

> Use extensionality to handle As on the right

Functions for types with binders

L Introduction
- Function

definition, traditionally

Types need recursion theorems

>

>

It's easy to provide recursion theorems for standard algebraic
types (lists, trees, &c)

Basic desirable form is

Fv...fi... 3h

h (G(...xj..n))=fi (hne) oo X oo e A

Where
> X; is a non-recursive parameter to constructor C;
> ry is a recursive parameter to the same constructor
» f; gets access to x;, rx, and the result of recursive call (h ry)

Functions for types with binders
L Introduction
LProblems with binders

a-equivalence

» The type representing the syntax of A-terms will have
constructors:

VAR : string — term
APP : term — (term — term)
LAM : string — (term — term)

» Add a-equivalence: ‘“the choice of variable name doesn't
matter”:

» LAM x x is “the same” as LAM y y
» On raw syntax, a-equivalence (=) captures “the same”

> At level of interest, = is just =

Functions for types with binders
L Introduction
LProblems with binders

Recursion theorem for types with a-equivalence

» The recursion theorem for the type “should” have the
LAM-clause:
h (LAM v t)=lam v t (h t)

» But this would allow unsound definition of
bogus (LAM v t) =v

» Side-conditions will be required!

Functions for types with binders
L Introduction
I—The Gordon-Melham type for A-terms

The Gordon-Melham type and its recursion theorem

» Gordon & Melham (1996) provide a type of A-terms

» Represents a-equivalent terms, satisfying LAM x x = LAM y y
» Defines substitution, e.g., M[v — N]

» Has recursion theorem, but LAM clause is

h (LAM v t) =
lam (Ay. h (t[v — VAR(y)])) (\y. t[v — VAR(y)])

> Jam gets no access to v, and access to body and recursion
result is via functions that perform substitutions

Functions for types with binders
L Introduction
I—The Gordon-Melham type for A-terms

Building on the Gordon-Melham type

| will transform the Bad Clause

h (LAM v t) =
lam (\y. h (t[v — VAR(y)])) (Ay. t[v — VAR(y)])

into the Good Clause
h (LAM v t)=lam (h t) v t
while still preventing
bogus (LAM v t) =v

through appropriate side-conditions

Functions for types with binders
I—Function definition with binders

L Motivating examples

Motivating examples

» Some direct references to bound variable names and
abstraction bodies are legitimate.
> If the range of the function is a simple type
» Calculating term size:
size (CON k)
size (VAR s)
size (APP t u)
size (LAM v t)

1

1

1 + size t + size u
1 + size t

» Is a term in S-normal form:

bnf (CON k) =T

bnf (VAR s) =T

bnf (APP t u) = — is_lam t A bnf t A bnf u
bnf (LAM v t) = bnf t

Functions for types with binders

I—Function definition with binders

L Motivating examples

Another motivating example

Referring to the bound variable is the easiest way to express
n-normal form:

enf
enf
enf
enf

(CON k) =
(VAR s) =
(APP t u)
(LAM v t)

T
T

enf t A enf u

enf t A

(is_app t A rand t = VAR v =
v € FV (rator t))

((Ax. M x) =, M if x € FV(M))

Functions for types with binders
I—Function definition with binders

I—Permul:en:ions

Substitutions vs. permutations

» «a-equivalence often expressed in terms of substitution:
(Ax. M) =, (Ay. M[x —y])
(where y ¢ FV(M))

» But substitutions are awful to work with

» Theorems typically hedged by side-conditions on freshness of
variables, e.g., Barendregt's Lemma 2.1.16:

x#yAx ¢FV(l) =
(M[x = N])ly = L] = (M[y = L])[x = N[y — L]]

Functions for types with binders
I—Function definition with binders

I—Permuten:ions

Permutations

> Pitts & Gabbay suggest permutations a better choice than
substitutions

» (xy)- M represents the action of swapping names x and y
throughout M

> If y € FV(M), then (Ax. M) =, (A\y. ((xy) - M))

Functions for types with binders
I—Function definition with binders

I—Permuten:ions

Permutations

> Pitts & Gabbay suggest permutations a better choice than
substitutions

» (xy)- M represents the action of swapping names x and y
throughout M

> If y € FV(M), then (Ax. M) =, (A\y. ((xy) - M))

» And permutations have great properties

Functions for types with binders
I—Function definition with binders

I—Permutations

The wonderful properties of permutations

» Permutations can cancel out

(xy)-((xy)-M)=M

> Permutations commute with just about everything
» Themselves:

(xy) - ((uv)- M) = (((xy) - u) ((xy) - v)) - ((xy) - M)

» and substitutions:
(xy) - (N[v = M]) = ((xy) - N)[((xy) - v) = ((xy) - M)]

» And these equations are side-condition free!

Functions for types with binders

I—Functiv:m definition with binders
L Permutations

Permutations—they're great

» One last property of permutation:

(xy) - (Av. M) = (A((xy) - v)- ((xy) - M))

Dac

Functions for types with binders
I—Function definition with binders

I—Permutations

Permutations—they're great

» One last property of permutation:

(xy) - (Av. M) = (M(xy) - v). ((xy) - M))

» And permutation on A-terms can be defined using the
Gordon-Melham recursion theorem.

Functions for types with binders
I—Function definition with binders

I—Proving the new recursion theorem

Getting from Bad to Good—|

Have access to two function-terms in the LAM-clause of Bad. One is

(Ay. h (t[v — VAR(y)]))

Can apply both functions to a “fresh” variable z. The above turns
into

> h (t[v s VAR(z)))

Functions for types with binders
I—Function definition with binders

I—Proving the new recursion theorem

Getting from Bad to Good—|

Have access to two function-terms in the LAM-clause of Bad. One is

(Ay. h (t[v — VAR(y)]))

Can apply both functions to a “fresh” variable z. The above turns
into

» h (t[v — VAR(z)]); into

> h((zv)-1)

Functions for types with binders
I—Function definition with binders

I—Proving the new recursion theorem

Getting from Bad to Good—|

Have access to two function-terms in the LAM-clause of Bad. One is

(Ay. h (t[v — VAR(y)]))

Can apply both functions to a “fresh” variable z. The above turns
into

» h (t[v — VAR(z)]); into

> h((zv)-1)

Similarly, (Ay. t[v — VAR(y)]) turns into (zv) - t

Functions for types with binders

I—Functiun definition with binders

I—Proving the new recursion theorem

Getting from Bad to Good—II

LAM-clause has become

h (LAM v t) =

let z= (a “fresh” name) in

lam (h ((zv)- 1)) ((zv)-v) ((zv)- 1)

Functions for types with binders
I—Functiun definition with binders

I—vaing the new recursion theorem

Getting from Bad to Good—II
LAM-clause has become
h (LAM v t) =

let z= (a “fresh” name) in

lam (h ((zv)- 1)) ((zv)-v) ((zv)- 1)

» By induction, h ((xy)-t)=(xy)-(h t)

Functions for types with binders
I—Functiun definition with binders

I—vaing the new recursion theorem

Getting from Bad to Good—II
LAM-clause has become
h (LAM v t) =

let z= (a “fresh” name) in

lam ((zv) - (h 1)) ((zv)-v) ((zv)- 1)

» By induction, h ((xy)-t)=(xy)-(h t)

Functions for types with binders
I—Function definition with binders

I—Proving the new recursion theorem

Getting from Bad to Good—II
LAM-clause has become
h (LAM v t) =

let z= (a “fresh” name) in

lam ((zv)-(h 1)) ((zv)-v) ((zv)-t)

» By induction, h ((xy)-t)=(xy)-(h t)

» By side-condition, permutations commute with /lam

Functions for types with binders
I—Function definition with binders

I—Proving the new recursion theorem

Getting from Bad to Good—II

LAM-clause has become

h (LAM v t) =
let z= (a “fresh” name) in

» By induction, h ((xy)-t)=(xy)-(h t)

» By side-condition, permutations commute with /lam

Functions for types with binders
I—Function definition with binders

I—Proving the new recursion theorem

Getting from Bad to Good—II

LAM-clause has become

h (LAM v t) =
let z= (a “fresh” name) in
(zv)-(lam (h t) v t)

» By induction, h ((xy)-t)=(xy)-(h t)
» By side-condition, permutations commute with /lam
» If z and v don't occur in M, then (zv)- M = M.

By side-condition, /am and h don't produce results with extra
free names, so

» zisnotin (flam ...); and
» v is not in FV(LAM v t), so v is not in (lam ...) either

Functions for types with binders
I—Function definition with binders

I—Proving the new recursion theorem

Getting from Bad to Good—II

LAM-clause has become

h (LAM v t) =
let z= (a “fresh” name) in
lam (h t) v t

» By induction, h ((xy)-t)=(xy)-(h t)
» By side-condition, permutations commute with /lam
» If z and v don't occur in M, then (zv)- M = M.

By side-condition, /am and h don't produce results with extra
free names, so

» zisnotin (flam ...); and
» v is not in FV(LAM v t), so v is not in (lam ...) either

Functions for types with binders
I—Function definition with binders

I—Proving the new recursion theorem

Getting from Bad to Good—II

LAM-clause has become

h (LAM v t) =

lam (h t) v t

» By induction, h ((xy)-t)=(xy)-(h t)
» By side-condition, permutations commute with /lam
» If z and v don't occur in M, then (zv)- M = M.

By side-condition, /am and h don't produce results with extra
free names, so

» zisnotin (flam ...); and
» v is not in FV(LAM v t), so v is not in (lam ...) either

» let z=... in has empty scope

Functions for types with binders

I—Functiun definition with binders

I—Proving the new recursion theorem

From Bad to Good—summary

» Two additional properties of h:

> h ((xy)-t) = (xy)-(ht)

» FV(h t) CFV(t)
Both proved by induction.

Functions for types with binders
I—Function definition with binders

I—Proving the new recursion theorem

From Bad to Good—summary

» Two additional properties of h:

> h((xy)-t) = (xy)-(ht)
» FV(h t) C FV(t)

Both proved by induction.

» Side-conditions embody these restrictions for lam, app, con
and var.

Functions for types with binders
I—Function definition with binders

I—Proving the new recursion theorem

From Bad to Good—summary

» Two additional properties of h:

> h((xy)-t) = (xy)-(ht)
» FV(h t) C FV(t)

Both proved by induction.

» Side-conditions embody these restrictions for lam, app, con
and var.

» Result type must support notion of permutation and FV
constant (subject to characterising constraints)

Functions for types with binders
I—Function definition with binders

I—Additional parameters

Parameters

» Remember the foldl example: the result was a function
(foldl [] = (Af x. x))

» The new recursion theorem places permutation and FV
constraints on each “helper” (lam, app &c.):
» Permutation for functions is easy (given permutation actions
for domain and range)
» Constrained generation of free variables is a problem.

» FV constraint for lam is
FV(t') CFV(t) = FV(lam t' v t) CFV(LAM v t)

What are the “free variables” of a function (of type
term — term, say)?

Functions for types with binders
I—Function definition with binders

I—Additional parameters

Parameters (continued)

» Rather than force functions to support notion of free
variables, make parameter explicit:

» When no (interesting) parameters, original recursion theorem
is derivable by setting parameter type to unit
» Multiple parameters can be combined into one tuple

» Free variable constraint for LAM-clause becomes:

FV(t') CFV(t) =
FV(lam t' v t p) C FV(p) UFV(LAM v t)

» Previously
(zv)-lam...=lam...

because v € FV(lam...) and z fresh
» Now also need v ¢ FV(p) and Vp. finite(FV(p))

Functions for types with binders
I—Function definition with binders

I—Additional parameters

Parameter restrictions

» Parameter restrictions lead to side-conditions on equations

» For example, substitution's LAM-clause might be
sub M u (LAM v t) =LAM v (sub M u t)

» To have this work, v must avoid the free variables of the
parameters:

vEFV(M)Av #u =
sub M u (LAM v t) =LAM v (sub M u t)

Functions for types with binders
I—Function definition with binders

I—Implementation

Notes on the implementation

On top of usual formula manipulation, need
» An internal database, suggesting permutation and FV
functions for range and parameter types
» Ability to try multiple options
> Always try “null” permutation-FV option

» Ability to discharge side-conditions

Functions for types with binders
I—Function definition with binders

I—Implementation

Extensions

» Handle multiple domain types

» Handle parameters automatically

» (Harder) Automatically derive recursion theorem for new types

Functions for types with binders
L Conclusion

Conclusions

» It is possible to define functions in a natural style over a type
of a-equivalent terms

DA

Functions for types with binders
L Conclusion

Conclusions

» It is possible to define functions in a natural style over a type
of a-equivalent terms

» ...and to do this in classical HOL

Functions for types with binders

L Conclusion

Conclusions

> It js possible to define functions in a natural style over a type
of a-equivalent terms

» ...and to do this in classical HOL

» My recursion theorem embodies the fact of this possibility

Functions for types with binders

L Conclusion

Conclusions

> It js possible to define functions in a natural style over a type
of a-equivalent terms
» ...and to do this in classical HOL
» My recursion theorem embodies the fact of this possibility
» The side-conditions enforce the reasonableness of possible
definitions

	Introduction
	Function definition, traditionally
	Problems with binders
	The Gordon-Melham type for -terms

	Function definition with binders
	Motivating examples
	Permutations
	Proving the new recursion theorem
	Additional parameters
	Implementation

	Conclusion

