
From L3 to seL4:
What Have We Learnt in
20 Years of L4 Microkernels?
Kevin Elphinstone, Gernot Heiser
NICTA and University of New South Wales

SOSP'13

©2013 Gernot Heiser, NICTA 2

1993

SOSP'13

Improving IPC
by Kernel

Design [SOSP]

©2013 Gernot Heiser, NICTA 3

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mach
[µs]

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mach

L4

[µs]

1993 IPC Performance

SOSP'13

115 µs

5 µs

i486 @
50 MHz

Culprit:
Cache
footprint
[SOSP’95] raw copy

©2013 Gernot Heiser, NICTA 4

IPC Performance over 20 Years

Name Year Processor MHz Cycles µs
Original 1993 i486 50 250 5.00
Original 1997 Pentium 160 121 0.75
L4/MIPS 1997 R4700 100 86 0.86
L4/Alpha 1997 21064 433 45 0.10
Hazelnut 2002 Pentium 4 1,400 2,000 1.38
Pistachio 2005 Itanium 1,500 36 0.02
OKL4 2007 XScale 255 400 151 0.64
NOVA 2010 i7 Bloomfield (32-bit) 2,660 288 0.11
seL4 2013 i7 Haswell (32-bit) 3,400 301 0.09
seL4 2013 ARM11 532 188 0.35
seL4 2013 Cortex A9 1,000 316 0.32

SOSP'13

©2013 Gernot Heiser, NICTA 5

Core Microkernel Principle: Minimality

SOSP'13

A concept is tolerated inside the

microkernel only if moving it outside

the kernel, i.e. permitting competing

implementations, would prevent the

implementation of the system’s

required functionality. [SOSP’95]

©2013 Gernot Heiser, NICTA 6

Minimality: Source Code Size

Name Architecture C/C++ asm total kSLOC
Original i486 0 6.4 6.4
L4/Alpha Alpha 0 14.2 14.2
L4/MIPS MIPS64 6.0 4.5 10.5
Hazelnut x86 10.0 0.8 10.8
Pistachio x86 22.4 1.4 23.0
L4-embedded ARMv5 7.6 1.4 9.0
OKL4 3.0 ARMv6 15.0 0.0 15.0
Fiasco.OC x86 36.2 1.1 37.6
seL4 ARMv6 9.7 0.5 10.2

SOSP'13

©2013 Gernot Heiser, NICTA 7

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

NOVA GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

Commercial Clone

OK Labs

L4 Family Tree

SOSP'13

API Inheritance

Code Inheritance

©2013 Gernot Heiser, NICTA 8

L4 Deployments – in the Billions

SOSP'13

SiMKo 3 “Merkelphone”

©2013 Gernot Heiser, NICTA 9

seL4: Unprecedented Dependability

SOSP'13

Integrity

Abstract
Model

C Imple-
mentation

Confiden-
tiality Availability

Binary
code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional
correctness
[SOSP’09]

Integrity
[ITP’11]

Translation
correctness

[PLDI’13]

•  First & only OS kernel
 with security proofs to
 binary code
•  First & only protected-
 mode OS kernel with
 sound timeliness analysis

Timeliness
[RTSS’11,

EuroSys’12]

Non-interference
[S&P’13]

©2013 Gernot Heiser, NICTA 10

L4 Design and Implementation

Implement. Tricks [SOSP’93]

•  Process kernel
•  Virtual TCB array
•  Lazy scheduling
•  Direct process switch
•  Non-preemptible
•  Non-portable
•  Non-standard calling

convention
•  Assembler

Design Decisions [SOSP’95]

•  Synchronous IPC
•  Rich message structure,

arbitrary out-of-line messages
•  Zero-copy register messages
•  User-mode page-fault handlers
•  Threads as IPC destinations
•  IPC timeouts
•  Hierarchical IPC control
•  User-mode device drivers
•  Process hierarchy
•  Recursive address-space

construction

SOSP'13

Objective: Minimise cache footprint and TLB misses

©2013 Gernot Heiser, NICTA 11

DESIGN

SOSP'13

©2013 Gernot Heiser, NICTA 12

L4 Synchronous IPC

SOSP'13

Thread1
Running Blocked

Thread2
Blocked Running

Send (dest, msg)

 Wait (src, msg)
 ….... Kernel

copy

Rendezvous
model

Kernel executes in sender’s context
•  copies memory data directly to
 receiver (single-copy)
•  leaves message registers unchanged
 during context switch (zero copy)

©2013 Gernot Heiser, NICTA 13

“Long” IPC

•  IPC page faults are nested exceptions ⇒ In-kernel concurrency
–  L4 executes with interrupts disabled for performance, no concurrency

•  Must invoke untrusted usermode page-fault handlers
–  potential for DOSing other thread

•  Timeouts to avoid DOS attacks
–  complexity

Receiver address space

Sender address space

Kernel copy
Page fault!

Why have long IPC?
•  POSIX-style APIs

write (fd, buf, nbytes)
•  Usually prefer shared buffers

LONG IPC

ABANDONED

SOSP'13

©2013 Gernot Heiser, NICTA 14

Timeouts

SOSP'13

Thread1
Running Blocked

Thread2
Blocked Running

Send (dest, msg)

 Wait (src, msg) ….... Kernel
copy

Limit IPC
blocking

time

Thread1
Running Blocked

Rcv(NIL_THRD, delay)

 …....
Timed
wait

•  No theory/heuristics for
 determining timeouts
•  Typically server reply
 with zero TO, else ∞
•  Can do timed wait with
 timer syscall

IPC Timeouts

ABANDONED

in seL4, OKL4

©2013 Gernot Heiser, NICTA 15

Synchronous IPC Issues

SOSP'13

Thread1
Running Blocked

Initiate_IO(…,…)

IO_Wait(…,…)
Not

generally
possible

Worker_Th
Running Blocked

IO_Th
Blocked Running

Unblock (IO_Th) Call (IO,msg) …....

Sync(Worker_Th)

Sync(IO_Th) …....

•  Sync IPC forces multi-threaded code!
•  Also poor choice for multi-core

©2013 Gernot Heiser, NICTA 16

Asynchronous Notifications

SOSP'13

 …....

Thread1
Running Blocked

Thread2
Blocked Running

 w = Poll (…)

 …... w = Wait (…)

 ….... Send (Thr_2, …)

Send (Thr_2, …) •  Delivers few bits (destructively)
•  Kernel only buffers single word
•  Maps well to interrupts, exceptions

Server
Client Driver

Sync Async
•  Thread can wait for
 synchronous and
 asynchronous messages
 concurrently

Sync IPC

complemented

with async

©2013 Gernot Heiser, NICTA 17

IPC Destination Naming

SOSP'13

IPC

Client Server

Client Server

Load
balancer Workers

Client Server

All IPCs
duplicated!

Original L4
addressed IPC
to threads

Client must do
load balancing?

RPC reply from
wrong thread!

•  Inefficient designs
•  Poor information hiding
•  Covert channels [Shapiro ‘02]

Thread IDs

replaced by

IPC “endpoints”

(ports)

©2013 Gernot Heiser, NICTA 18

Endpoints

SOSP'13

IPC

Client Server

Send

Client Server

Rcv
Sync EP

•  Sync EP queues senders/receivers
•  Does not buffer messages

0x01

0x10

0x30

Async EP

0x00 0x01 0x11 0x31 •  Async EP accumulates bits

©2013 Gernot Heiser, NICTA 19

Other Design Issues

IPC Control: “Clans & Chiefs” Process Hierarchy

SOSP'13

IPC

Chief

Clan

IPC outside clan
re-directs to chief

Create

Hierarchical
resource
management

Inflexible, clumsy,
inefficient hierarchies!

Hierarchies

replaced by

delegatable cap-

based access

control

©2013 Gernot Heiser, NICTA 20

IMPLEMENTATION

SOSP'13

©2013 Gernot Heiser, NICTA 21

Virtual TCB Array

SOSP'13

TCB TCB VM

Thread ID

Fast TCB &
stack lookup

TC
B

pr

op
er

K
er

ne
l

st
ac

k

Get own
TCB base

by masking
stack pointer

Trades cache for TLB footprint
and virtual address space

•  Not worthwhile on
 modern processors!
•  Stacks can dominate
 kernel memory use!

Trades TLB
footprint
for cache
and kernel
memory

©2013 Gernot Heiser, NICTA 22

“Lazy” Scheduling

SOSP'13

thread_t schedule() {
 foreach (prio in priorities) {
 foreach (thread in runQueue[prio]) {

 if (isRunnable(thread))
 return thread;
 else
 schedDequeue(thread);
 }

 }
 return idleThread;
}

•  In IPC-based systems, threads
 block and unblock frequenty
•  Many ready queue manipulations

Idea: leave blocked
threads in ready
queue, scheduler

cleans up

Scheduler execution
time is unbounded!

“Benno scheduling”:
•  All threads on ready queue
 are runnable
•  All runnable threads in ready
 queue except the running one

©2013 Gernot Heiser, NICTA 23

L4 Design and Implementation

Implement. Tricks [SOSP’93]

•  Process kernel
•  Virtual TCB array
•  Lazy scheduling
•  Direct process switch
•  Non-preemptible
•  Non-portable
•  Non-standard calling

convention
•  Assembler

Design Decisions [SOSP’95]

•  Synchronous IPC
•  Rich message structure,

arbitrary out-of-line messages
•  Zero-copy register messages
•  User-mode page-fault handlers
•  Threads as IPC destinations
•  IPC timeouts
•  Hierarchical IPC control
•  User-mode device drivers
•  Process hierarchy
•  Recursive address-space

construction

SOSP'13

©2013 Gernot Heiser, NICTA 24

What are the Principles?

•  Minimality is excellent driver of design decisions
–  L4 kernels have become simpler over time
–  Policy-mechanism separation (user-mode page-fault handlers)
–  Device drivers really belong to user level
–  Minimality is key enabler for formal verification!

•  IPC speed still matters
–  But not everywhere, premature optimisation is wastive
–  Compilers have got so much better
–  Verification does not compromise performance
–  Verification invariants can help improve speed! [Shi, OOPSLA’13]

•  Also found that capabilities are the way to go
–  Shapiro (EROS) was right

•  However, a clean abstraction of time still elusive
SOSP'13

©2013 Gernot Heiser, NICTA 25

Conclusions

SOSP'13

•  Details changed, but principles remained
•  Microkernels rock! (If done right!)

Thank you!

We’re hiring:
•  Chair in Software Systems
•  Postdocs / junior faculty

