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Improving IPC 
by Kernel 

Design [SOSP] 
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IPC Performance over 20 Years 

Name Year Processor MHz Cycles µs 
Original 1993 i486 50 250 5.00 
Original 1997 Pentium 160 121 0.75 
L4/MIPS 1997 R4700 100 86 0.86 
L4/Alpha 1997 21064 433 45 0.10 
Hazelnut 2002 Pentium 4 1,400 2,000 1.38 
Pistachio 2005 Itanium 1,500 36 0.02 
OKL4 2007 XScale 255 400 151 0.64 
NOVA 2010 i7 Bloomfield (32-bit) 2,660 288 0.11 
seL4 2013 i7 Haswell (32-bit) 3,400 301 0.09 
seL4 2013 ARM11 532 188 0.35 
seL4 2013 Cortex A9 1,000 316 0.32 
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Core Microkernel Principle: Minimality 

SOSP'13 

A concept is tolerated inside the 

microkernel only if moving it outside 

the kernel, i.e. permitting competing 

implementations, would prevent the 

implementation of the system’s 

required functionality. [SOSP’95] 
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Minimality: Source Code Size 

Name Architecture C/C++ asm total kSLOC 
Original i486 0 6.4 6.4 
L4/Alpha Alpha 0 14.2 14.2 
L4/MIPS MIPS64 6.0 4.5 10.5 
Hazelnut x86 10.0 0.8 10.8 
Pistachio x86 22.4 1.4 23.0 
L4-embedded ARMv5 7.6 1.4 9.0 
OKL4 3.0 ARMv6 15.0 0.0 15.0 
Fiasco.OC x86 36.2 1.1 37.6 
seL4 ARMv6 9.7 0.5 10.2 
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API Inheritance 

Code Inheritance 
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L4 Deployments – in the Billions 
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SiMKo 3 “Merkelphone” 
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seL4: Unprecedented Dependability 
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Functional 
correctness 
[SOSP’09] 

Integrity 
[ITP’11] 

Translation 
correctness 

[PLDI’13] 

•  First & only OS kernel 
  with security proofs to 
  binary code 
•  First & only protected- 
  mode OS kernel with 
  sound timeliness analysis 

Timeliness 
[RTSS’11, 

EuroSys’12] 

Non-interference 
[S&P’13] 
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L4 Design and Implementation 

Implement. Tricks [SOSP’93] 

•  Process kernel 
•  Virtual TCB array 
•  Lazy scheduling 
•  Direct process switch 
•  Non-preemptible 
•  Non-portable 
•  Non-standard calling 

convention 
•  Assembler 

Design Decisions [SOSP’95] 

•  Synchronous IPC 
•  Rich message structure, 

arbitrary out-of-line messages 
•  Zero-copy register messages 
•  User-mode page-fault handlers 
•  Threads as IPC destinations 
•  IPC timeouts 
•  Hierarchical IPC control 
•  User-mode device drivers 
•  Process hierarchy 
•  Recursive address-space 

construction 

SOSP'13 

Objective: Minimise cache footprint and TLB misses 



©2013 Gernot Heiser, NICTA 11 

DESIGN 
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L4 Synchronous IPC 
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Thread1 
Running  Blocked 

Thread2 
Blocked  Running 

Send (dest, msg) 

       Wait (src, msg) 
    …....  Kernel 

copy     

Rendezvous 
model 

Kernel executes in sender’s context 
•  copies memory data directly to 
  receiver (single-copy) 
•  leaves message registers unchanged 
  during context switch (zero copy) 
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“Long” IPC 

•  IPC page faults are nested exceptions ⇒ In-kernel concurrency 
–  L4 executes with interrupts disabled for performance, no concurrency 

•  Must invoke untrusted usermode page-fault handlers 
–  potential for DOSing other thread 

•  Timeouts to avoid DOS attacks 
–  complexity 

Receiver address space 

Sender address space 

Kernel copy 
Page fault! 

Why have long IPC? 
•  POSIX-style APIs 

write (fd, buf, nbytes) 
•  Usually prefer shared buffers 

LONG IPC 

ABANDONED 

SOSP'13 
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Timeouts 
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Thread1 
Running  Blocked 

Thread2 
Blocked  Running 

Send (dest, msg) 

       Wait (src, msg)     …....  Kernel 
copy     

Limit IPC 
blocking 

time 

Thread1 
Running  Blocked 

Rcv(NIL_THRD, delay) 

    …....  
Timed 
wait 

•  No theory/heuristics for 
  determining timeouts 
•  Typically server reply 
  with zero TO, else ∞ 
•  Can do timed wait with 
  timer syscall 

IPC Timeouts 

ABANDONED 

in seL4, OKL4 
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Synchronous IPC Issues 
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Thread1 
Running  Blocked 

Initiate_IO(…,…) 

IO_Wait(…,…) 
Not 

generally 
possible 

Worker_Th 
Running  Blocked 

IO_Th 
Blocked  Running 

Unblock (IO_Th) Call (IO,msg) …....  

Sync(Worker_Th) 

Sync(IO_Th) …....  

•  Sync IPC forces multi-threaded code! 
•  Also poor choice for multi-core 
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Asynchronous Notifications 
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    …....  

Thread1 
Running  Blocked 

Thread2 
Blocked  Running 

       w = Poll (…) 

    …... w = Wait (…)     

    …....  Send (Thr_2, …) 

Send (Thr_2, …) •  Delivers few bits (destructively) 
•  Kernel only buffers single word 
•  Maps well to interrupts, exceptions 

Server 
Client Driver 

Sync Async 
•  Thread can wait for 
  synchronous and 
  asynchronous messages 
  concurrently 

Sync IPC 

complemented 

with async 
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IPC Destination Naming 
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IPC 

Client Server 

Client Server 

Load 
balancer Workers 

Client Server 

All IPCs 
duplicated! 

Original L4 
addressed IPC 
to threads 

Client must do 
load balancing? 

RPC reply from 
wrong thread! 

•  Inefficient designs 
•  Poor information hiding 
•  Covert channels [Shapiro ‘02] 

Thread IDs 

replaced by  

IPC “endpoints” 

(ports) 
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Endpoints 
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IPC 

Client Server 

Send 

Client Server 

Rcv 
Sync EP 

•  Sync EP queues senders/receivers 
•  Does not buffer messages 

0x01 

0x10 

0x30 

Async EP 

0x00 0x01 0x11 0x31 •  Async EP accumulates bits 
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Other Design Issues 

IPC Control: “Clans & Chiefs” Process Hierarchy 
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IPC 

Chief 

Clan 

IPC outside clan 
re-directs to chief 

Create 

Hierarchical 
resource 
management 

Inflexible, clumsy, 
inefficient hierarchies! 

Hierarchies 

replaced by  

delegatable cap-

based access 

control 
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IMPLEMENTATION 

SOSP'13 
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Virtual TCB Array 
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TCB TCB VM 

Thread ID 

Fast TCB & 
stack lookup 

TC
B

 
pr
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Get own 
TCB base 

by masking 
stack pointer 

Trades cache for TLB footprint 
and virtual address space 

•  Not worthwhile on 
  modern processors! 
•  Stacks can dominate 
  kernel memory use! 

Trades TLB  
footprint 
for cache 
and kernel 
memory 



©2013 Gernot Heiser, NICTA 22 

“Lazy” Scheduling 
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thread_t schedule() { 
    foreach (prio in priorities) { 
        foreach (thread in runQueue[prio]) { 

 if (isRunnable(thread)) 
     return thread; 
 else 
     schedDequeue(thread); 
 } 

        } 
    return idleThread; 
} 

•  In IPC-based systems, threads 
  block and unblock frequenty 
•  Many ready queue manipulations 

Idea: leave blocked 
threads in ready 
queue, scheduler 

cleans up 

Scheduler execution 
time is unbounded! 

“Benno scheduling”: 
•  All threads on ready queue 
  are runnable 
•  All runnable threads in ready 
  queue except the running one  
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L4 Design and Implementation 

Implement. Tricks [SOSP’93] 

•  Process kernel 
•  Virtual TCB array 
•  Lazy scheduling 
•  Direct process switch 
•  Non-preemptible 
•  Non-portable 
•  Non-standard calling 

convention 
•  Assembler 

Design Decisions [SOSP’95] 

•  Synchronous IPC 
•  Rich message structure, 

arbitrary out-of-line messages 
•  Zero-copy register messages 
•  User-mode page-fault handlers 
•  Threads as IPC destinations 
•  IPC timeouts 
•  Hierarchical IPC control 
•  User-mode device drivers 
•  Process hierarchy 
•  Recursive address-space 

construction 
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What are the Principles? 

•  Minimality is excellent driver of design decisions 
–  L4 kernels have become simpler over time 
–  Policy-mechanism separation (user-mode page-fault handlers) 
–  Device drivers really belong to user level 
–  Minimality is key enabler for formal verification! 

•  IPC speed still matters 
–  But not everywhere, premature optimisation is wastive 
–  Compilers have got so much better 
–  Verification does not compromise performance 
–  Verification invariants can help improve speed! [Shi, OOPSLA’13] 

•  Also found that capabilities are the way to go 
–  Shapiro (EROS) was right 

•  However, a clean abstraction of time still elusive 
SOSP'13 
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Conclusions 

SOSP'13 

•  Details changed, but principles remained 
•  Microkernels rock! (If done right!) 

Thank you! 

We’re hiring: 
•  Chair in Software Systems 
•  Postdocs / junior faculty 


