

Mobile Multicores Use Them or

Waste Them

Aaron Carroll Gernot Heiser

NICTA Funding and Supporting Members and Partners

Introduction

- power control knobs:
 - DVFS

#online cores

Problem

trade-off between the two mechanisms?

- optimal operating point
 - frequency and #online cores
- idle energy management
 - under-utilised CPU
 - reduce energy
 - performance unaffected (ideally...)

loadcpu

loadcpu

loadcpu

Devices

loadcpu S3 25%

loadcpu MDP 50%

video S3

spin MDP

Observations

- Periodic
 - P independent of n at fixed f
 - decrease f => lower P

- Compute-bound
 - P is a complex function of f
 - increase n => lower P

Compute-bound:

Compute-bound:

Compute-bound:

$$P = P_{\text{uncore}} + nP_{\text{core}}$$
$$E = P_{\text{uncore}}t + nP_{\text{core}}t$$

Assume scalability:
$$t \propto \frac{1}{n}$$

$$E \propto \frac{P_{\mathrm{uncore}}}{n} + P_{\mathrm{core}}$$

Periodic:

$$P = P_{\text{uncore}} + n(P_{\text{active}} + P_{\text{idle}})$$

T = period of workload

t = execution time

Assume scalability

$$E = (P_{\text{uncore}} + nP_{\text{idle}})T + k$$

lf

$$P_{\rm idle} \ll P_{\rm uncore}$$

then *P* is independent of *n*.

S3 idle power

loadcpu S3 25%

Conclusions

- Online cores to:
 - unlock lower frequencies
 - race to idle

- Policy design:
 - scale out before scaling up
 - offline cores conservatively
 - reduce frequency aggressively

medusa

- medusa: an offline-aware governor
- like ondemand: keep utilisation <100%
- try to achieve
 - minimum frequency
 - maximum #cores
- constrained by #threads

medusa

22

Summary

- onlining cores reduces energy consumption in most cases
 - access to lower frequencies
 - race to idle
- due to high uncore and low per-core static power
- medusa: up to 20% energy reduction

Mobile Multicores Use Them or

Waste Them

Aaron Carroll Gernot Heiser

NICTA Funding and Supporting Members and Partners

