Trickle: Automated Infeasible Path

Detection Using All Minimal
Unsatisfiable Subsets

Bernard BlackhamT, Mark Liffiton*, Gernot Heisert

T School of Computer Science & Engineering, UNSW
Software Systems Research Group, NICTA
Sydney, Australia

t1llinois Wesleyan University ‘

NICTA Funding and Supporting Members and Partners

X Australian Government =] Austrakian *) " :,.
“ Department of Broadband, Communications) m U..N.g..wm NSW

and the Digital Economy
Australian Research Council $ SYDNEY

E,
uuh)ll,:;.\'!

‘ Twe Usiviesiry
— WSS - BEm

——

Motivation

* The desire for a trustworthy kernel to build
reliable mixed-criticality real-time systems

_’—-

TA(OQ
Motivation NICTA

* The desire for a frustworthy kernel to build
reliable mixed-criticality real-time systems

» Using sel4 to guarantee:

— functional correctness through formal proof
(Klein et al., SOSP 2009)

— timing constraints through sound WCET analysis
(Blackham et al., RTSS 2011)

’——
\

S — e — O.

Motivation NICTA

* The accuracy of WCET estimates directly
affects the hardware provisioning of such
systems (e.g. CPU speed) = cost

* Inaccurate WCET estimates by static analysis
can be caused by infeasible paths

» By excluding culprit infeasible paths
-> less provisioning required
-> reduced hardware cost

1
;_—; —

Infeasible paths

int £f(int a)

{
if ((a & 4)==0)
elsé..

if ((a & 4)==0)

else

© NICTA 2014 © S

Infeasible paths

int £f(int a) ‘!

{

if ((a & 4)==0)

c1se o) >

£ (a8 4)=0) _ /O
else /
y (.\ >

Infeasible paths

int £f(int a) "
{ if ((a & 4)==0) /
elsé” (. -
TN
else

S o) >
¥

if ((a & 4)==0)

Infeasible paths

conflicts with
Y

> 6

Background NICTA

* Chronos used to compute WCET via IPET

» Sequoll can validate manually provided infeasible

path information using a model checker
(Blackham & Heiser, RTAS 2013)

* Reduces risk of human error when specifying
infeasible path information

 Can we find infeasible paths automatically?

\ - - - o

Finding infeasible path constraints NICTA

All-at-once Directed lterative Refinement

© NICTA 2014

selL4 is large NICTA

» Small by microkernel standards
» Large by WCET standards

C source Binary (ARM)
~8,700 lines ~10,000 instructions
316 functions 228 functions
/6 loops 56 loops

2.384 basic blocks

~400,000 basic blocks
when inlined 0

—_ S—— — — —_— —_ o

Trickle: Directed Iterative Refinement NICTA

l
)
e

11

© NICTA 2014

S — ===
}U

T ——

Oe

Types of infeasible path criteria NICTA

* Infeasible path criteria may arise because of:

local constraints

y = count;

if (y > 15)
y = 15;

while (y > 0)

© NICTA 2014 12

Types of infeasible path criteria NICTA

* Infeasible path criteria may arise because of:

© NICTA 2014

global program invariants

// count guaranteed to be <= 15
y = count;

while (y > 0)

12

—

Oe

Types of infeasible path criteria NICTA

S ——

* Infeasible path criteria may arise because of:

local constraints

y = count;

if (y > 15)
y = 15;

while (y > 0)

© NICTA 2014

global program invariants

// count guaranteed to be <= 15
y = count;

while (y > 0)

12

— O‘
Detecting Infeasible Paths NICTA

» Sequoll computes a branch condition for
every conditional branch or conditional
instruction, in terms of SSA variables

» Once a worst-case path is identified,
Trickle collects all branch conditions
required to execute it, as SMT expressions

 All branch conditions are given to an
SMT solver to find a satisfying assignment

14

Detecting Infeasible Paths NICTA

* If SMT solver finds a satisfying assignment,
path Is declared feasible®

e If SMT solver shows that the constraints are
unsatisfiable, the path is infeasible

= An unsatisfiable subset is returned

* up to the limit of reasoning ability of the SMT solver and Trickle

15

I’—?

— —

T ——

Detecting Infeasible Paths NICTA

>
re 2 A: a=0
O) > B: a—b
(> C: b=1

O) > Satisfiable!

Assignment: a=0, b=0

¥V D .

e

T —

Detecting Infeasible Paths NICTA
C\ >
o Sl A: a=0
o) N
‘. C: b=t
thl N Unsatisfiable ¢
nsatisriapie
o)
(> Minimal Unsatisfiable Subset:
1 N {A,B,C}
O C) >

Ea+Es+Ec<3

C ¥V > .

nAS(0xf0002588)

2ionAs(0x000258¢)

sameRegion As(0x0002640)

ameRegionAs(0xf0002644)

sameRegionAs(0xf0002620)

sameRegionAs(0xf00026bd-c8)

sameRegionAs(0xf0002738)

sameRegionAs(0xf000273¢)
sameRegionAs(0x[0002740-50) sameRegionAs(0xf0002774-88)
sameRegionAs(0xf0002754)

sameRegionAs(0x1000271¢-20)

sameRegionAs(0xf00026d4-¢8)

sameRegionAs(0xf0002698-24)
sameRegionAs(0xf000250) sameRegionAs(0xf00026a8)
sameRegionAs(0xf00026b0)

sameRegionAs(0xf00025¢4-¢)

© NICTA 2014

sameRegion As(0xf0002690-4)

ST T
’ e

sameRegionAs(0xf0002704)

sameRegionAs(0xf0002668-78)

‘ sameRegionAs(0x00028b4-¢)

sameRegionAs(Oxf00027d8-c)

sameRegionAs(0xf0002680-4)

sameRegionAs(0xf0002688-c)

sameRegionAs(0xf00027¢8-18)
sameRegionAs(0xf00027fc-808)

sameRegionAs(0xf0002884)
sameRegionAs_3815_0xf0002898

Arch_sameRegionAs(0xf0002374-80) Arch_sameRegion As(Oxf00023: I i
Arch_sameRegionAs(0xf0002384-c) Arch_sameRegionAs(0xf0002360-8) Arch_sameRegionAs(0xf0002344)

.Amh,snmekcgionAs(OmeDZABDVA)

Arch_sameRegion As(0xf0002370)

Arch_sameRegionAs(0xf0002348-5

18

NICTA

» A path may contain 1000s of instructions
- And 100s of branch constraints

» And may contain several MUSes

» SMT solvers typically only find one

« Can we reduce the number of refinement
iterations?

18

e
\

————
———— T —

T ——

Oe
Trickle: Enter CAMUS NICTA

Sequoll — framework for analysis
of compiled ARM binaries

CAMUS — Compute All Minimal
Unsatisfiable Subsets

Yices — SMT solver Trickle

4

19

. = — Oe

CAMUS NICTA
* Developed by Liffiton & Sakallah (JAR 2008)

* Finds all minimal unsatisfiable subsets of a
given set of constraints

=|.e. finds all infeasible path constraints along
a given path

20

CAMUS NICTA

* The worst-case run time of the CAMUS
algorithm is exponential in the number of

MUSes (+ SMT solver time)

How can we prevent this?

21

4—/4!\--—

ABCD

EFGHIJKLMNO

 Try with a smaller subset of constraints first

* Choose constraints close together on path as they are
more likely to conflict

* Increase size of window and repeat if no constraints found

22

R ———

Results

Estimated worst-case execution time of selL4

063

0 175 350 525 700

000’s of cycles

M Baseline (no infeasible path information)
M Trickle applied to baseline
.. Trickle + human efforts

© NICTA 2014 23

Results

Number of iterations to find WCET

0 40 80 120 160
iterations to find WCET

B SMT unsat core only B CAMUS

© NICTA 2014 24

Results NICTA

Difference in runtime to compute WCET*

0 28 56 83 111

minutes
B SMT unsat core only B CAMUS

* Implementation-specific compilation overheads subtracted

© NICTA 2014 25

Limitations

* What about loops?

— Analysis is limited to loop-free regions of code
— Limitation of SMT solvers
— Limitations of IPET method

* Run time of analysis is long
— Full analysis takes > 2 hours

26

e

- = S

Qe

Research directions NICTA

* Integrate Trickle with proof invariants
* Find infeasible paths across loop iterations

* Improved CAMUS algorithm to avoid
exponential behaviour (no need for sliding
window)

* Improve memory aliasing analysis

27

Summary NICTA

Trickle I1s able to:

« automatically compute infeasible path information on compiled
ARM binaries

« improve WCET estimates of an IPET analysis

* reason about more interesting constraints than integer intervals
(e.g. bit arithmetic)

= reduce scope for errors in WCET analysis!

Download it!
http://www.ssrg.nicta.com.au/software/TS/wcet-tools

Bernard.Blackham@nicta.com.au

28

