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Motivation

* The desire for a trustworthy kernel to build
reliable mixed-criticality real-time systems
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Motivation NICTA

* The desire for a frustworthy kernel to build
reliable mixed-criticality real-time systems

» Using sel4 to guarantee:

— functional correctness through formal proof
(Klein et al., SOSP 2009)

— timing constraints through sound WCET analysis
(Blackham et al., RTSS 2011)
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Motivation NICTA

* The accuracy of WCET estimates directly
affects the hardware provisioning of such
systems (e.g. CPU speed) = cost

* Inaccurate WCET estimates by static analysis
can be caused by infeasible paths

» By excluding culprit infeasible paths
-> less provisioning required
-> reduced hardware cost
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Infeasible paths

int £f(int a)

{
if ((a & 4)==0)
elsé..

if ((a & 4)==0)

else
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Background NICTA

* Chronos used to compute WCET via IPET

» Sequoll can validate manually provided infeasible

path information using a model checker
(Blackham & Heiser, RTAS 2013)

* Reduces risk of human error when specifying
infeasible path information

 Can we find infeasible paths automatically?
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Finding infeasible path constraints NICTA

All-at-once Directed lterative Refinement
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selL4 is large NICTA

» Small by microkernel standards
» Large by WCET standards

C source Binary (ARM)
~8,700 lines ~10,000 instructions
316 functions 228 functions
/6 loops 56 loops

2.384 basic blocks

~400,000 basic blocks
when inlined 0
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Trickle: Directed Iterative Refinement NICTA
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Types of infeasible path criteria NICTA

* Infeasible path criteria may arise because of:

local constraints

y = count;

if (y > 15)
y = 15;

while (y > 0)
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Types of infeasible path criteria NICTA

* Infeasible path criteria may arise because of:
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global program invariants

// count guaranteed to be <= 15
y = count;

while (y > 0)
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Types of infeasible path criteria NICTA
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* Infeasible path criteria may arise because of:

local constraints

y = count;

if (y > 15)
y = 15;

while (y > 0)
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global program invariants

// count guaranteed to be <= 15
y = count;

while (y > 0)

12
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Detecting Infeasible Paths NICTA

» Sequoll computes a branch condition for
every conditional branch or conditional
instruction, in terms of SSA variables

» Once a worst-case path is identified,
Trickle collects all branch conditions
required to execute it, as SMT expressions

 All branch conditions are given to an
SMT solver to find a satisfying assignment
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Detecting Infeasible Paths NICTA

* If SMT solver finds a satisfying assignment,
path Is declared feasible®

e If SMT solver shows that the constraints are
unsatisfiable, the path is infeasible

= An unsatisfiable subset is returned

* up to the limit of reasoning ability of the SMT solver and Trickle

15
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Detecting Infeasible Paths NICTA

>
re 2 A: a=0
O ) > B: a—b
(> C: b=1

O ) > Satisfiable!

Assignment: a=0, b=0
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Detecting Infeasible Paths NICTA
C\ >
o Sl A: a=0
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‘. C: b=t
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» A path may contain 1000s of instructions
- And 100s of branch constraints

» And may contain several MUSes

» SMT solvers typically only find one

« Can we reduce the number of refinement
iterations?
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Trickle: Enter CAMUS NICTA

Sequoll — framework for analysis
of compiled ARM binaries

CAMUS — Compute All Minimal
Unsatisfiable Subsets

Yices — SMT solver Trickle

4
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CAMUS NICTA
* Developed by Liffiton & Sakallah (JAR 2008)

* Finds all minimal unsatisfiable subsets of a
given set of constraints

=|.e. finds all infeasible path constraints along
a given path
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CAMUS NICTA

* The worst-case run time of the CAMUS
algorithm is exponential in the number of

MUSes (+ SMT solver time)

How can we prevent this?
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 Try with a smaller subset of constraints first

* Choose constraints close together on path as they are
more likely to conflict

* Increase size of window and repeat if no constraints found

22
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Results

Estimated worst-case execution time of selL4

063

0 175 350 525 700

000’s of cycles

M Baseline (no infeasible path information)
M Trickle applied to baseline
.. Trickle + human efforts
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Results

Number of iterations to find WCET

0 40 80 120 160
iterations to find WCET

B SMT unsat core only B CAMUS
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Results NICTA

Difference in runtime to compute WCET*

0 28 56 83 111

minutes
B SMT unsat core only B CAMUS

* Implementation-specific compilation overheads subtracted
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Limitations

* What about loops?

— Analysis is limited to loop-free regions of code
— Limitation of SMT solvers
— Limitations of IPET method

* Run time of analysis is long
— Full analysis takes > 2 hours
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Research directions NICTA

* Integrate Trickle with proof invariants
* Find infeasible paths across loop iterations

* Improved CAMUS algorithm to avoid
exponential behaviour (no need for sliding
window)

* Improve memory aliasing analysis

27



Summary NICTA

Trickle I1s able to:

« automatically compute infeasible path information on compiled
ARM binaries

« improve WCET estimates of an IPET analysis

* reason about more interesting constraints than integer intervals
(e.g. bit arithmetic)

= reduce scope for errors in WCET analysis!

Download it!
http://www.ssrg.nicta.com.au/software/TS/wcet-tools

Bernard.Blackham@nicta.com.au
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