Proof Engineering
Considered Essential

FM"14 Singapore

Gerwin Klein

NICTA Funding and Supporting Members and Partners

My, i |) e UNSW |

and the Digital Economy

Australian Research Council gﬁn"'u'ﬁ? 2., ” My Griffith

lllllllll

Hindows

An exception 06 has occured at 0028:C11B3ADC in WxD DiskTSD(03) +
00001660, This was called from 0028:C11B40C8 in WxD voltrack(04) +
00000000, It may be possible to continue normally,

* Press any key to attempt to continue,
* Press CTRLHALTHRESET to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

Isolation is the Key Qe

NICTA

Trustworthy Computing Base
, Untrusted Trusted
®* message passing

e virtual memory

* interrupt handling

® access control
Applications

e fault identification .

e fault isolation

* [P protection

e modularity

Trusted next to Untrusted

Isolation is the Key Qe

NICTA

Trustworthy Computing Base
Untrusted Trusted

Applications
e fault isolation
erver
e fault identification

* [P protection

®* message passing
e virtual memory
* interrupt handling

® access control

e modularity

Trusted next to Untrusted

.I"A,

A

oy AN

- . ﬁal//)":-"

AT
$// ”"(& <

4.0y B ‘ PN\ ¢ o ‘ \ V’:» A
aY A‘U/]A\!k . a ZaUN" ~'17Z,

< i\\: ’ »
A\ ‘,31«‘3 A\><"/

,,; A \ ‘:l& };A\"X

ESYDENNRY L
0 -

, T \w
\"4- =
N Al

~ ,'74/‘;.'-‘_'}4 X7 \V//‘.« 7,

~

. -
D

\ l 1“”:/'/\‘1\‘
TR oA
é =< |

[\Vév\
X %
v A %
\ A\\§ —<

l
[
l
|

’
\
v’

»
A
—

d

selid

Functional Correctness Possible O‘

NICTA

Proof l

Functional Correctness Possible Qe

NICTA

definition
schedule :: unit s_monad where
schedule = do
threads < allActiveTCBs;
thread <« select threads;

Wh switch_to_thread thread
a t od

OR switch_to_idle_thread

Specification

Proof

Functional Correctness Possible e

NICTA

definition
schedule :: unit s_monad where
schedule = do
threads < allActiveTCBs;
thread <« select threads;

Wh switch_to_thread thread
a t od

- . OR switch_to_idle_thread
Specification

void
schedule(void) {

Pro Of switch ((word_t)ksSchedulerAction) ({

case (word_t)SchedulerAction ResumeCurrentThread:
break;

case (word_t)SchedulerAction_ ChooseNewThread:

chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

H OW default: /* SwitchToThread */
switchToThread(ksSchedulerAction);
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;
}
}

*conditions apply O‘
NICTA

S ST E TR LR

Proof

*conditions apply -
- NICTA

O [Expectation
e

Proof

Assumptions

~conditions apply

NICTA

Assume correct:

O _
O

S ST E TR LR

'

Proof

compiler + linker (wrt. C op-sem)
assembly code (600 loc)
hardware (ARMvé6)

cache and TLB management
boot code (1,200 loc)

Assumptions

Proof Architecture [SOSP’09] Qe
NICTA

l Isabelle

l Isabelle

Haskell
Prototype

10

Proof Architecture Now O‘

NICTA

Confidentily Avalbilty

|sabelle \ ' Isabelle

1 |sabelle

1 Isabelle

1 Isabelle/SMT/HOL4

Binary Code Semantics - Binary Code

WCET Analysis

11

Proof Architecture Now Qe

Isabelle ‘

= =

High-level properties:

functional correctness
Integrity

authority confinement
non-interference
termination

worst-case execution time
(by static analysis)

Confidentilty Availabilty

NICTA
' Isabelle
belle
R o e

ibelle

- e I

wbelle/SMT/HOL4

- —

WCET Analysis

11

sel4: Unique Assurance

First and only general-purpose
OS kernel with full functional-
correctness proof — at binary level

sel4: Unique Assurance

First and only general-purpose First and only kernel with proof of
OS kernel with full functional- integrity and confidentiality
correctness proof — at binary level enforcement — at binary level

sel4: Unique Assurance

First and only general-purpose First and only kernel with proof of
OS kernel with full functional- integrity and confidentiality
correctness proof — at binary level enforcement — at binary level

World's fastest microkernel on
ARM architecture

sel4: Unique Assurance

First and only general-purpose
OS kernel with full functional-
correctness proof — at binary level

World's fastest microkernel on
ARM architecture

First and only kernel with proof of
integrity and confidentiality
enforcement — at binary level

Predecessor deployed on
2 billion devices

sel4: Unique Assurance

First and only general-purpose
OS kernel with full functional-
correctness proof — at binary level

World's fastest microkernel on
ARM architecture

First and only kernel with proof of
integrity and confidentiality
enforcement — at binary level

Predecessor deployed on
2 billion devices

First and only protected-mode

operating-system with complete

and sound timing analysis

sel4: Unique Assurance

e .« 1

First and only gener=! =mmmns ~~!v kernel with proof of
OS kernel with ful nd confidentiality

correctness proof —. Open Source

nt — at binary level

in 2014

World’s fastest mic sor deployed on
ARM architecture 2 billion devices

First and only protected-mode
operating-system with complete
and sound timing analysis

Refinement Pays Off

* Functional correctness: 12 person years
* Integrity+Confinement: 10 person months
* Non-interference: 48 person months

e Binary Verification: automatic

NICTA

13

Cost of Assurance

NICTA

14

Cost of Assurance (] ®

NICTA
* Industry Best Practice:

* High assurance (Common Criteria EAL 6+):
$1,000/LOC, model verification + testing,

e | ow assurance (traditional embedded kernels):
$100-200/LOC, 1-5 faults/kLOC,

14

Cost of Assurance o
NICTA

* Industry Best Practice:

* High assurance (Common Criteria EAL 6+):
$1,000/LOC, model verification + testing,

e | ow assurance (traditional embedded kernels):
$100-200/LOC, 1-5 faults/kLOC,

 State of the Art - sel4:
e $400/LOC, binary-level formal proof,

* Estimate repeat would cost halt

® about as much as unverified predecessor Pistachio!
* Aggressive optimisation [APSys'12]

e much faster than traditional high-assurance kernels

* as fast as best-performing low-assurance kernels

Cost of Assurance

* Industry Best Practice:

* High assurance (Common Criteria EAL 6+):

$1,000/! t
® | ow assurar eps v
Formal verification
$100-2(. .o
getting close to traditional
e State of th kernel development.
e $400/LOC,

* Estimate repeat would cost half

® about as much as unverified predecessor Pistachio!
* Aggressive optimisation [APSys'12]

e much faster than traditional high-assurance kernels

* as fast as best-performing low-assurance kernels

NICTA

Cost of Assurance

NICTA

* Industry Best Practice:
* High assurance (Common Criteria EAL 6+):
$1,000/! i

e | ow assurar

$100-2(Formal verification

getting close to traditional
e State of th kernel development.

e CANN/I ONC

Still too expensive for large-scale user code development.

Automation, Synthesis, Proof Generation

Next Step: Full System Assurance SMZQ (Je
ACCM NICTA

DARPA HACMS Program:
* Provable vehicle safety

e Red Team must not be able to divert vehicle

Boeing Unmanned
Little Bird (AH-6)

SMACCMcopter
Research Vehicle

N | CTA OF MINNESOTA

15

Scale

NICTA

=
iF

z AArn
R.nnn

gt | e

~ 113

coca egodiean

_an—lﬁ

\,,

Scale

16

Scale e

NICTA
80000

60 000

40000

20000

verage | -~

0
Mar-2004 Feb-2012

Size distribution of AFP entries in lines of proof,
sorted by submission date

17

Scale

500 k

NICTA

400k

300k

200k

100Kk

B AFP entries by submission date
B four-color theorem, Isabelle/HOL, CompCert
B Odd Order Theorem, L4.verified, Verisoft

Proof Introspection (Je

e 500 files -
e 22 000 lemmas stated }«}

O
—_ QA

e 95,000 lemmas provea | NIA YifAN
N
Y U

-~ a\

X

= % XN R N\ v/,

® L Lan —— “Q}f 172 AN A7 4 \‘\‘:“ /

7 - \ > “ sy .4 B L1 N A N\ >

J‘k' \. ’.’. /'A;NF@’ o N 5
T = S, e\

19

Proof Introspection

e 500 files
e 22 000 lemmas stated

e 95,000 lemmas provea

Raf’'s Observation

A
The introspection of proof and theories is an essential part of ‘g\‘;‘»‘é@\ ,
working on a large-scale verification development. ‘\\i\‘ DN ;
[TV
7 SR
/ N :
/\\.//' ~ 5 / \\ \
no

19

Proof Introspection

e 500 files

e 22 000 lemmas stated

e 95,000 lemmas provea

Raf's Observation NEA

The introspection of proof and theories is an essential part of i
working on a large-scale verification development. /-J

XY A
EYSea
TN

B AN

°

.<\‘\)k
3
\ ApN
NN

!

_earning Isabelle? Easy.

_earning microkernels? Not too bad.

Finding your way in the 400kloc proof jungle? Hard!

19

Maintenance (Je
NICTA
* Development of selL4 code + spec artefacts (sloc)

=

12000 | phose 1 : phase 2 : phase 3 : maintenance phase _ 71 cleanup

. () new features

: I :

- : | : @ bug fixes
10000 - : : l : :

- - | :

: . I -

: . |

- - I

EM) UL L™
1! : C

8000 -

haskell

SN s —

6000 - *) B M VA~
: : . . abstract
- ‘Jﬂ-’, - f I
: : — J’_'"—'L- ! .
: : : N\ - -
4000 - : /@JJ’ :

— |

— -P
2000 - "?
: |
} ﬂ
O :] T T T T T T T
30-Nov-04 30-Nov-05 30-Nov-06 30-Nov-07 30-Nov-08 30-Nov-09 30-Nov-10 30-Nov-11 30-Nov-1.

20

Maintenance (Je

* Development of selL4 proofs (sloc)
) : : : . _ 1 cleanup
160000 hase 1 : hase 2 : hase 3 : maintenance phase oot E
P - P - P . P :] new features
140000 - refinementl
120000 -
100000 -
80000 -
refinement2
40000 -
20000 -
infoflow
: access
0 . | | | | | T T T
30-Nov-04 30-Nov-05 30-Nov-06 30-Nov-07 30-Nov-08 30-Nov-09 30-Nov-10 30-Nov-11 30-Nov-12

(b) Size of proofs (X: time; Y: SLOC)

21

Proof Development i ®

NICTA
— proot development
* decomposition of proofs over people,
* custom proof calculus,
® automating mechanical tasks, custom tactics — g
e proof craft N ~
™
/
l \ Z
N —
2
S —"y / — - —
//j 1 \\'
S

22

Proof Development (J©®

NICTA
— proof development

* decomposition of proofs o\
o 1
e custom proof calculus, Tim’s Statement

 automating mechanical tasl Automating “donkey work” allows attention
and effort to be focussed where most needed

* proof craft
— but it must be done judiciously.

—
p = / | \Q\‘
/./#'//\\.—R< /\/ | /’Y[,\\\\\\ A
/\%f/// \“\\\ . | /.4\ I

22

Proof Development (J©®

NICTA
— proot development

* decomposition of proofs o\
o 1
e custom proof calculus, Tim’s Statement

 automating mechanical tasl Automating “donkey work” allows attention
and effort to be focussed where most needed

* proof craft
— but it must be done judiciously.

—challenges .g;_;;_ a1z ‘/-\k. _
* non-local change, 7 %) —
* speculative change, #.// \ /) [,% A\ <\ N
e distributed development '/'/'% //*‘\E\\ \\ //4\ \ N\
A e \\ \

22

Proof Development

— proot development
* decomposition of proofs o\
* custom proof calculus,
® automating mechanical tas}

* proof craft

— challenges
* non-local change,
* speculative change,

e distributed development

Tim's Statement

Automating “donkey work"” allows attention
and effort to be focussed where most needed
— but it must be done judiciously.

Matthias’ Conjecture

Over the years, | must have waited weeks for
Isabelle. Productivity hinges on a short edit-
check cycle; for that, | am even willing to
(temporarily) sacrifice soundness.

29

Problems of Scale Qe

— proot maintenance
e changes, updates, new proofs, new features
* automated regression, keep code in sync
* refactoring

* simplification

23

Problems of Scale e

— proot maintenance
e changes, updates, new proofs, new features
* automated regression, keep code in sync
* refactoring

* simplification

Dan’s Conclusion

Verification is fast, maintenance is forever.

23

Research Challenges

Software vs Proof Engineering

* |s Proof Engineering a thing?

e Google Scholar:

e “software engineering” 1,430,000 results

NICTA

25

Software vs Proof Engineering

* |s Proof Engineering a thing?

e Google Scholar:

e “software engineering” 1,430,000 results

* “proof engineering” 564 results

()@
NICTA

25

Software vs Proof Engineering

* |s Proof Engineering a thing?

e Google Scholar:

e “software engineering” 1,430,000 results

* “proof engineering” 564 results

Includes

"The Fireproof Building” and

“Influence of water permeation and analysis
of treatment for the Longmen Grottoes"

()@
NICTA

25

Proof Engineering is The Same (Je

NICTA
e Same kind of artefacts:
e lemmas are functions, modules are modules 60000
® code gets big too

® version control, regressions,
refactoring and IDEs apply

1200000

800000

400000

Proot e 0

Softw. Eng.

26

Proof Engineering is The Same (Je

NICTA
e Same kind of artefacts:

e lemmas are functions, modules are modules 1600000

® code gets big too

® version control, regressions,
refactoring and IDEs apply

1200000

800000

* Same kind of problems
* managing a large proof base over time
* deliver a proof on time within budget

400000
* dependencies, interfaces, abstraction, etc

Proof Eng™ 0

Softw. Eng.

26

Proof Engineering is Different e
NICTA

e But: New Properties and Problems

1600000

1200000

800000

400000

Proot e 0

Softw. Eng.

27

Proof Engineering is Different Je
NICTA

e But: New Properties and Problems

e Results are checkable 690000
* You know when you are done!
* No testing

1200000

® 95% proof: no such thing

800000

400000

Proof Eng™ 0

Softw. Eng.

27

Proof Engineering is Different (Je
NICTA

e But: New Properties and Problems
e Results are checkable 690000
* You know when you are done!
* No testing
1200000

® 95% proof: no such thing

e More dead ends and iteration

800000

400000

Proof Eng™ 0

Softw. Eng.

27

Proof Engineering is Different (Je
NICTA

e But: New Properties and Problems

e Results are checkable 1600000

* You know when you are done!

* No testing

1200000

® 95% proof: no such thing

e More dead ends and iteration

e 2nd order artefact 800000

e Performance less critical
e Quality less critical

400000

e Proof Irrelevance

Proof Eng™ 0

Softw. Eng.

27

Proof Engineering is Different (Je
NICTA

e But: New Properties and Problems
e Results are checkable 690000
* You know when you are done!
* No testing
® 95% proof: no such thing o
* More dead ends and iteration
e 2nd order artefact 800000
e Performance less critical
e Quality less critical —

e Proof Irrelevance

® More semantic context

Proof Eng™ 0

Softw. Eng.

® Much more scope for automation

27

Deliver within Time and Budget @

e Fstimation:
e time and effort

* how precisely, with which confidence?

® how early?

Deliver within Time and Budget @

e Fstimation:
e time and effort

* how precisely, with which confidence?

® how early?

e Size of artefacts

® easier to predict?

¢ related to effort?

Deliver within Time and Budget @

e Fstimation:
e time and effort

* how precisely, with which confidence?

* how early?

e Size of artefacts

® easier to predict?

¢ related to effort?

e Complexity

e from initial artefacts?

e which influence? ” ~

Proof Engineering Tools ®

NICTA
e User Interface

| 0 Example.thy (~/) *) [P [[isabele
v |theory Example Filter
imports Base Example.thy

e could proof IDEs be more

inductive path for R :: "a = 'a =

v |inductive path for R :: "'a = 'a = bool" where » theorem example
"path R x x" end

powerful than code IDEs? ey —

v |theorem example:
. M ° _F ° fixes x z :: 'a assumes "path R x z" shows "P x 2"
more semantic Intformation
proof induct
case (base x)
. . ? show "P x x" by auto
e proof completion and suggestion? |
note 'R x y' and “path Ry z°
moreover note ‘P y z° =
ultimately show "P x z" by auto
qed

o |
¢

PPRPPIS 4 B

end

B ¥ OQutput Prover Session Raw Output e

5,1(35/405) (isabelle,sidekick,UTF-8-Isabelle) UGEIFI120Mb 3:38 PM]

29

Proof Engineering Tools

e User Interface

»»»»»»»»»»»»»»»»

e could proof IDEs be more

v |inductive path for R :: "'a =

powerful than code IDEs? o —

v |theorem example:

®* more semantic information
(base x)
e proof completion and suggestion? e
© Refactoﬂng P pe——

e |ess constrained,
new kinds of refactoring possible, e.g.

* move to best position in library
® generalise lemma

* recognise proof patterns

shows

'a = bool" where

Filter:

"pox z"

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

llllllll

Proof Patterns

* arge-scale Libraries

e architecture:

* layers, modules, components,
abstractions, genericity

* proof intertaces

* proof patterns

30

Proof Patterns (e

* Large-scale Libraries W
e architecture: WA\, %

* layers, modules, components,

\
. o . - \:ﬁ:“i
abstractions, genericity =F Sy
. = S \ k";‘;\\&
. : i] ! AN L
* proof intertaces NG SN
AN INS N\ o \
e proof patterns /TR ¢
i I \ M%;;«,‘ N
—7 { N
i /\ VA AN

e Technical Debt

e what does a clean, maintainable proof look like?
e which techniques will make future change easier?

* readability important? is documentation?

30

Proof Engineering “Laws” (Je

NICTA
* Are there Proof Engineering Laws?

160000 -

T
>
Q
©n
~

Jul-05

140000 -|

120000 |

100000 -

80000 -

60000 -

40000 |

20000 -

0 T T ; ; " ¥ T T
Nov-04 Nov-05 Nov-06 Nov-07 Nov-08 Nov-09 Nov-10 Nov-11 Nov-12

31

Proof Engineering “Laws” (Je®

NICTA
* Are there Proof Engineering Laws?

* Proots always become larger and more complex over time.
(from Cope’s rule)

0000000
0000000
0000000
000000
000000
000000

000000

NNNNNNNNNNNN

31

Proof Engineering “Laws” @

NICTA
* Are there Proof Engineering Laws?

* Proots always become larger and more complex over time.
(from Cope’s rule)

e Adding manpower to a late proof project makes it later.
(from Brooks' law)

000000
000000
000000
00000
00000
00000

00000

NNNNNNNNNNNN

31

Proof Engineering “Laws”

* Are there Proof Engineering Laws?

* Proots always become larger and more complex over time.
(from Cope’s rule)

e Adding manpower to a late proof project makes it later.
(from Brooks' law)

* You cannot reduce the complexity of a given proof beyond a
certain point. Once you've reached that point, you can only shift
the burden around. o
(from Tesler's law) o

000000
000000
00000
00000
00000

00000

NNNNNN

Proof Engineering “Laws”

* Are there Proof Engineering Laws?

* Proots always become larger and more complex over time.
(from Cope’s rule)

e Adding manpower to a late proof project makes it later.
(from Brooks' law)

* You cannot reduce the complexity of a given proof beyond a
certain point. Once you've reached that point, you can only shift
the burden around. o
(from Tesler's law) o

* Are they true? ™

00000

NNNNNN

Summary (e

NICTA

selL4
e Full verification. Full performance.
e Already cost effective for high assurance.

* Going open source and open proof in 2014.

32

Summary

selL4
e Full verification. Full performance.

e Already cost effective for high assurance.

* Going open source and open proof in 2014.

Proof Engineering
* Should become a research discipline.

e \Work has started. A lot more to be done.

Variation in Productivity Across
Individuals in Two Proofs

12

+ 10

£
S
=8 :
g
2 6
5 . .
4, . .
2 "
0

0 5000 10000 15000
Work (Lines of Proof)

Effort (P

http://sel4.systems

® GENERAVL
DYNAMICS

