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Trustworthy Computing Base 
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• virtual memory 

• interrupt handling 

• access control 

Applications 
• fault isolation 

• fault identification 

• IP protection 

• modularity 
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Functional Correctness Possible

What

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇤ unit s_monad
switch_to_thread t � do

state ⇥ get;
assert (get_tcb t state ⌅= None);
arch_switch_to_thread t;
modify (�s. s (| cur_thread := t |))

od

constdefs
switch_to_idle_thread :: unit s_monad
switch_to_idle_thread � do

thread ⇥ gets idle_thread;
arch_switch_to_idle_thread;
modify (�s. s (| cur_thread := thread |))

od

definition
schedule :: unit s_monad where
schedule � do
threads ⇥ allActiveTCBs;
thread ⇥ select threads;
switch_to_thread thread

od
OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A
imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A
begin

constdefs
set_thread_state :: obj_ref ⇤ thread_state ⇤ unit s_monad
set_thread_state ref ts � do

tcb ⇥ assert_opt_get $ get_tcb ref;
set_object ref (TCB (tcb (| tcb_state := ts |)))

od

defs
suspend_def:
suspend lazy thread � do

ipc_cancel thread;
set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇤ unit s_monad

restart thread � do
state ⇥ get_thread_state thread;
when (¬ runnable state) $ do

ipc_cancel thread;
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*conditions apply

Proof

Expectation

Assumptions

Specification

Code

Assume correct: 

- compiler + linker (wrt. C op-sem) 

- assembly code (600 loc) 

- hardware (ARMv6) 

- cache and TLB management 

- boot code (1,200 loc)
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C Code Semantics

Design

Specification

Binary Code Semantics

Availability

Isabelle/SMT/HOL4

Isabelle

Isabelle

Isabelle

Confidentiality Integrity

WCET Analysis

High-level properties: 
- functional correctness 

- integrity 

- authority confinement 

- non-interference 

- termination 

- worst-case execution time  
(by static analysis)

Haskell Prototype

Binary Code

C Code

Isabelle
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First and only general-purpose 
OS kernel with full functional-

correctness proof – at binary level

Predecessor deployed on  
2 billion devices

First and only kernel with proof of 
integrity and confidentiality 

enforcement – at binary level

World’s fastest microkernel on  
ARM architecture

First and only protected-mode 
operating-system with complete 

and sound timing analysis

Open Source 
!

in 2014
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Refinement Pays Off

• Functional correctness: 12 person years 

• Integrity+Confinement: 10 person months 

• Non-interference: 48 person months 

• Binary Verification: automatic

13
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      $1,000/LOC, model verification + testing, unoptimised 

• Low assurance (traditional embedded kernels):  
      $100–200/LOC, 1–5 faults/kLOC, optimised
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• about as much as unverified predecessor Pistachio! 

• Aggressive optimisation [APSys’12] 

• much faster than traditional high-assurance kernels 

• as fast as best-performing low-assurance kernels

14

Formal verification  
getting close to traditional  

kernel development.

Still too expensive for large-scale user code development. 
 

Automation, Synthesis, Proof Generation 
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Boeing Unmanned 
Little Bird (AH-6)

SMACCMcopter  
Research Vehicle

Next Step: Full System Assurance

15

DARPA HACMS Program: 

• Provable vehicle safety 

• Red Team must not be able to divert vehicle
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A Sense of Scale
Size Distribution of AFP Entries

80 000

60 000

40 000

20 000

0

average

Mar-2004 Feb-2012

Size distribution of AFP entries in lines of proof,
sorted by submission date

3/22
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A Sense of Scale
Lines of Proof in Comparison

100 k

200 k

300 k

400 k

500 k

0

AFP entries by submission date
four-color theorem, Isabelle/HOL, CompCert
Odd Order Theorem, L4.verified, Verisoft
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Proof Introspection

• 500 files 

• 22,000 lemmas stated 

• 95,000 lemmas proved

19

Raf’s Observation 

The introspection of proof and theories is an essential part of 
working on a large-scale verification development.

• Learning Isabelle? Easy. 

• Learning microkernels? Not too bad. 

• Finding your way in the 400kloc proof jungle? Hard!
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Maintenance

• Development of seL4 code + spec artefacts (sloc)

20

A:52 Klein et al.
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Fig. 14. Size of code, specs and proofs

the verification team mostly worked on the verification framework and generic proof
libraries (not shown in the graphs). In a second phase, the verification team developed
the abstract spec (first steep increase in the abstract graph in Figure 14(a)) and per-
formed the first refinement, between this abstract spec and the initial kernel design
(large increase in refinement1 graph in Figure 14(b), up to end of phase 2). During
this time, the development team completed the design and Haskell prototype (second
increase in the haskell graph, again followed by a cleanup task), and then later wrote
the kernel C implementation (very steep increase in the C graph in Figure 14(a)). In
addition, as the first refinement was revealing design bugs (i.e. mismatches between
the design in the Haskell prototype and the abstract spec), those bugs were fixed in the
Haskell prototype. Such fixes are sometimes done in a separate branch in the version
control system, then merged back to the main repository when satisfactory (explaining

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.
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Matthias’ Conjecture 

Over the years, I must have waited weeks for 
Isabelle. Productivity hinges on a short edit-
check cycle; for that, I am even willing to 
(temporarily) sacrifice soundness.

Tim’s Statement 
Automating “donkey work” allows attention 
and effort to be focussed where most needed 
– but it must be done judiciously.
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Dan’s Conclusion 

Verification is fast, maintenance is forever.
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Research Challenges
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• Is Proof Engineering a thing? 
• Google Scholar: 

• “software engineering”    1,430,000 results

25

Includes 

”The Fireproof Building” and  

“Influence of water permeation and analysis 
of treatment for the Longmen Grottoes"

• “proof engineering”                   564 results
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Proof Engineering is The Same

• Same kind of artefacts: 
• lemmas are functions, modules are modules 

• code gets big too 

• version control, regressions,  
refactoring and IDEs apply

• Same kind of problems 
• managing a large proof base over time 

• deliver a proof on time within budget 

• dependencies, interfaces, abstraction, etc

26
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Proof Engineering is Different

• Results are checkable 

• You know when you are done! 

• No testing 

• 95% proof: no such thing

• More dead ends and iteration

• 2nd order artefact 

• Performance less critical 

• Quality less critical 

• Proof Irrelevance 

• More semantic context 

• Much more scope for automation

27

• But: New Properties and Problems
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Deliver within Time and Budget

• Estimation: 
• time and effort 

• how precisely, with which confidence? 

• how early?

• Size of artefacts 
• easier to predict? 

• related to effort?

• Complexity 
• from initial artefacts? 

• which influence?

28
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Proof Engineering Tools

• User Interface 
• could proof IDEs be more  

powerful than code IDEs? 

• more semantic information 

• proof completion and suggestion? 

• Refactoring 
• less constrained,  

new kinds of refactoring possible, e.g. 
• move to best position in library 

• generalise lemma 

• recognise proof patterns

29
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Proof Patterns

• Large-scale Libraries 
• architecture: 

• layers, modules, components,  
abstractions, genericity 

• proof interfaces 

• proof patterns 

• Technical Debt 
• what does a clean, maintainable proof look like? 

• which techniques will make future change easier? 

• readability important? is documentation?

30
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Proof Engineering “Laws”

• Are there Proof Engineering Laws?
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• Proofs always become larger and more complex over time.  

(from Cope’s rule)

• Adding manpower to a late proof project makes it later.  
(from Brooks’ law)
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• Are they true?
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seL4 

• Full verification. Full performance. 

• Already cost effective for high assurance. 

• Going open source and open proof in 2014.
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Proof Engineering 

• Should become a research discipline. 

• Work has started. A lot more to be done.

seL4 

• Full verification. Full performance. 

• Already cost effective for high assurance. 

• Going open source and open proof in 2014.
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http://sel4.systems


