
NICTA Copyright 2014 From imagination to impact

Proof Engineering 
Considered Essential

FM’14 Singapore 

Gerwin Klein

NICTA Copyright 2014 From imagination to impact 2

The Goal

2

NICTA Copyright 2014 From imagination to impact 312

NICTA Copyright 2014 From imagination to impact 413

NICTA Copyright 2014 From imagination to impact 5

NICTA Copyright 2014 From imagination to impact 5

Isolation

NICTA Copyright 2014 From imagination to impact

Isolation is the Key

Trustworthy Computing Base
• message passing

• virtual memory

• interrupt handling

• access control

Applications
• fault isolation

• fault identification

• IP protection

• modularity

Trusted next to Untrusted

6

Hardware

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

NICTA Copyright 2014 From imagination to impact

Isolation is the Key

Trustworthy Computing Base
• message passing

• virtual memory

• interrupt handling

• access control

Applications
• fault isolation

• fault identification

• IP protection

• modularity

Trusted next to Untrusted

6

Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

NICTA Copyright 2014 From imagination to impact

Summary

7

NICTA Copyright 2014 From imagination to impact

Summary

7seL4

Specification

Code

NICTA Copyright 2014 From imagination to impact 8

Functional Correctness Possible

Proof

Specification

Code

NICTA Copyright 2014 From imagination to impact 8

Functional Correctness Possible

What

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇤ unit s_monad
switch_to_thread t � do

state ⇥ get;
assert (get_tcb t state ⌅= None);
arch_switch_to_thread t;
modify (�s. s (| cur_thread := t |))

od

constdefs
switch_to_idle_thread :: unit s_monad
switch_to_idle_thread � do

thread ⇥ gets idle_thread;
arch_switch_to_idle_thread;
modify (�s. s (| cur_thread := thread |))

od

definition
schedule :: unit s_monad where
schedule � do
threads ⇥ allActiveTCBs;
thread ⇥ select threads;
switch_to_thread thread

od
OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A
imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A
begin

constdefs
set_thread_state :: obj_ref ⇤ thread_state ⇤ unit s_monad
set_thread_state ref ts � do

tcb ⇥ assert_opt_get $ get_tcb ref;
set_object ref (TCB (tcb (| tcb_state := ts |)))

od

defs
suspend_def:
suspend lazy thread � do

ipc_cancel thread;
set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇤ unit s_monad

restart thread � do
state ⇥ get_thread_state thread;
when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

Specification

Code

NICTA Copyright 2014 From imagination to impact 8

Functional Correctness Possible

What

How

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇤ unit s_monad
switch_to_thread t � do

state ⇥ get;
assert (get_tcb t state ⌅= None);
arch_switch_to_thread t;
modify (�s. s (| cur_thread := t |))

od

constdefs
switch_to_idle_thread :: unit s_monad
switch_to_idle_thread � do

thread ⇥ gets idle_thread;
arch_switch_to_idle_thread;
modify (�s. s (| cur_thread := thread |))

od

definition
schedule :: unit s_monad where
schedule � do
threads ⇥ allActiveTCBs;
thread ⇥ select threads;
switch_to_thread thread

od
OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A
imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A
begin

constdefs
set_thread_state :: obj_ref ⇤ thread_state ⇤ unit s_monad
set_thread_state ref ts � do

tcb ⇥ assert_opt_get $ get_tcb ref;
set_object ref (TCB (tcb (| tcb_state := ts |)))

od

defs
suspend_def:
suspend lazy thread � do

ipc_cancel thread;
set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇤ unit s_monad

restart thread � do
state ⇥ get_thread_state thread;
when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

NICTA Copyright 2014 From imagination to impact 9

*conditions apply

Proof

Specification

Code

NICTA Copyright 2014 From imagination to impact 9

*conditions apply

Proof

Expectation

Assumptions

Specification

Code

NICTA Copyright 2014 From imagination to impact 9

*conditions apply

Proof

Expectation

Assumptions

Specification

Code

Assume correct:

- compiler + linker (wrt. C op-sem)

- assembly code (600 loc)

- hardware (ARMv6)

- cache and TLB management

- boot code (1,200 loc)

NICTA Copyright 2014 From imagination to impact

Proof Architecture [SOSP’09]

10

Design

C Code Semantics

Specification

Isabelle

Isabelle

Haskell
Prototype

C Code

NICTA Copyright 2014 From imagination to impact

Proof Architecture Now

11

C Code Semantics

Design

Specification

Binary Code Semantics

Availability

Isabelle/SMT/HOL4

Isabelle

Isabelle

Isabelle

Confidentiality Integrity

WCET Analysis

Haskell Prototype

Binary Code

C Code

Isabelle

NICTA Copyright 2014 From imagination to impact

Proof Architecture Now

11

C Code Semantics

Design

Specification

Binary Code Semantics

Availability

Isabelle/SMT/HOL4

Isabelle

Isabelle

Isabelle

Confidentiality Integrity

WCET Analysis

High-level properties:
- functional correctness

- integrity

- authority confinement

- non-interference

- termination

- worst-case execution time  
(by static analysis)

Haskell Prototype

Binary Code

C Code

Isabelle

NICTA Copyright 2014 From imagination to impact

seL4: Unique Assurance

12

First and only general-purpose
OS kernel with full functional-

correctness proof – at binary level

NICTA Copyright 2014 From imagination to impact

seL4: Unique Assurance

12

First and only general-purpose
OS kernel with full functional-

correctness proof – at binary level

First and only kernel with proof of
integrity and confidentiality

enforcement – at binary level

NICTA Copyright 2014 From imagination to impact

seL4: Unique Assurance

12

First and only general-purpose
OS kernel with full functional-

correctness proof – at binary level

First and only kernel with proof of
integrity and confidentiality

enforcement – at binary level

World’s fastest microkernel on  
ARM architecture

NICTA Copyright 2014 From imagination to impact

seL4: Unique Assurance

12

First and only general-purpose
OS kernel with full functional-

correctness proof – at binary level

Predecessor deployed on  
2 billion devices

First and only kernel with proof of
integrity and confidentiality

enforcement – at binary level

World’s fastest microkernel on  
ARM architecture

NICTA Copyright 2014 From imagination to impact

seL4: Unique Assurance

12

First and only general-purpose
OS kernel with full functional-

correctness proof – at binary level

Predecessor deployed on  
2 billion devices

First and only kernel with proof of
integrity and confidentiality

enforcement – at binary level

World’s fastest microkernel on  
ARM architecture

First and only protected-mode
operating-system with complete

and sound timing analysis

NICTA Copyright 2014 From imagination to impact

seL4: Unique Assurance

12

First and only general-purpose
OS kernel with full functional-

correctness proof – at binary level

Predecessor deployed on  
2 billion devices

First and only kernel with proof of
integrity and confidentiality

enforcement – at binary level

World’s fastest microkernel on  
ARM architecture

First and only protected-mode
operating-system with complete

and sound timing analysis

Open Source
!

in 2014

NICTA Copyright 2014 From imagination to impact

Refinement Pays Off

• Functional correctness: 12 person years

• Integrity+Confinement: 10 person months

• Non-interference: 48 person months

• Binary Verification: automatic

13

NICTA Copyright 2014 From imagination to impact

Cost of Assurance

14

NICTA Copyright 2014 From imagination to impact

Cost of Assurance

• Industry Best Practice:
• High assurance (Common Criteria EAL 6+): 

 $1,000/LOC, model verification + testing, unoptimised

• Low assurance (traditional embedded kernels):  
 $100–200/LOC, 1–5 faults/kLOC, optimised

14

NICTA Copyright 2014 From imagination to impact

Cost of Assurance

• Industry Best Practice:
• High assurance (Common Criteria EAL 6+): 

 $1,000/LOC, model verification + testing, unoptimised

• Low assurance (traditional embedded kernels):  
 $100–200/LOC, 1–5 faults/kLOC, optimised

• State of the Art – seL4:
• $400/LOC, binary-level formal proof, optimised

• Estimate repeat would cost half

• about as much as unverified predecessor Pistachio!

• Aggressive optimisation [APSys’12]

• much faster than traditional high-assurance kernels

• as fast as best-performing low-assurance kernels

14

NICTA Copyright 2014 From imagination to impact

Cost of Assurance

• Industry Best Practice:
• High assurance (Common Criteria EAL 6+): 

 $1,000/LOC, model verification + testing, unoptimised

• Low assurance (traditional embedded kernels):  
 $100–200/LOC, 1–5 faults/kLOC, optimised

• State of the Art – seL4:
• $400/LOC, binary-level formal proof, optimised

• Estimate repeat would cost half

• about as much as unverified predecessor Pistachio!

• Aggressive optimisation [APSys’12]

• much faster than traditional high-assurance kernels

• as fast as best-performing low-assurance kernels

14

Formal verification
getting close to traditional  

kernel development.

NICTA Copyright 2014 From imagination to impact

Cost of Assurance

• Industry Best Practice:
• High assurance (Common Criteria EAL 6+): 

 $1,000/LOC, model verification + testing, unoptimised

• Low assurance (traditional embedded kernels):  
 $100–200/LOC, 1–5 faults/kLOC, optimised

• State of the Art – seL4:
• $400/LOC, binary-level formal proof, optimised

• Estimate repeat would cost half

• about as much as unverified predecessor Pistachio!

• Aggressive optimisation [APSys’12]

• much faster than traditional high-assurance kernels

• as fast as best-performing low-assurance kernels

14

Formal verification
getting close to traditional  

kernel development.

Still too expensive for large-scale user code development.
 

Automation, Synthesis, Proof Generation

NICTA Copyright 2014 From imagination to impact

Boeing Unmanned
Little Bird (AH-6)

SMACCMcopter
Research Vehicle

Next Step: Full System Assurance

15

DARPA HACMS Program:

• Provable vehicle safety

• Red Team must not be able to divert vehicle

NICTA Copyright 2014 From imagination to impact

Scale

16

Scale

NICTA Copyright 2014 From imagination to impact

Scale

17

A Sense of Scale
Size Distribution of AFP Entries

80 000

60 000

40 000

20 000

0

average

Mar-2004 Feb-2012

Size distribution of AFP entries in lines of proof,
sorted by submission date

3/22

NICTA Copyright 2014 From imagination to impact

Scale

18

A Sense of Scale
Lines of Proof in Comparison

100 k

200 k

300 k

400 k

500 k

0

AFP entries by submission date
four-color theorem, Isabelle/HOL, CompCert
Odd Order Theorem, L4.verified, Verisoft

NICTA Copyright 2014 From imagination to impact

Proof Introspection

• 500 files

• 22,000 lemmas stated

• 95,000 lemmas proved

19

NICTA Copyright 2014 From imagination to impact

Proof Introspection

• 500 files

• 22,000 lemmas stated

• 95,000 lemmas proved

19

Raf’s Observation

The introspection of proof and theories is an essential part of
working on a large-scale verification development.

NICTA Copyright 2014 From imagination to impact

Proof Introspection

• 500 files

• 22,000 lemmas stated

• 95,000 lemmas proved

19

Raf’s Observation

The introspection of proof and theories is an essential part of
working on a large-scale verification development.

• Learning Isabelle? Easy.

• Learning microkernels? Not too bad.

• Finding your way in the 400kloc proof jungle? Hard!

NICTA Copyright 2014 From imagination to impact

Maintenance

• Development of seL4 code + spec artefacts (sloc)

20

A:52 Klein et al.

0"

2000"

4000"

6000"

8000"

10000"

12000"

30)Nov)04" 30)Nov)05" 30)Nov)06" 30)Nov)07" 30)Nov)08" 30)Nov)09" 30)Nov)10" 30)Nov)11" 30)Nov)12"

cleanup""

new"features"

bug"fixes"

phase&1& phase&2& phase&3& maintenance&phase&

abstract'

C'

haskell'

(a) Size of code/spec artifacts (X: time; Y: SLOC)

0"

20000"

40000"

60000"

80000"

100000"

120000"

140000"

160000"

30)Nov)04" 30)Nov)05" 30)Nov)06" 30)Nov)07" 30)Nov)08" 30)Nov)09" 30)Nov)10" 30)Nov)11" 30)Nov)12"

access%
infoflow%

refinement2%

refinement1%

cleanup""

new"features"
phase&1& phase&2& phase&3& maintenance&phase&

capDL%

(b) Size of proofs (X: time; Y: SLOC)

Fig. 14. Size of code, specs and proofs

the verification team mostly worked on the verification framework and generic proof
libraries (not shown in the graphs). In a second phase, the verification team developed
the abstract spec (first steep increase in the abstract graph in Figure 14(a)) and per-
formed the first refinement, between this abstract spec and the initial kernel design
(large increase in refinement1 graph in Figure 14(b), up to end of phase 2). During
this time, the development team completed the design and Haskell prototype (second
increase in the haskell graph, again followed by a cleanup task), and then later wrote
the kernel C implementation (very steep increase in the C graph in Figure 14(a)). In
addition, as the first refinement was revealing design bugs (i.e. mismatches between
the design in the Haskell prototype and the abstract spec), those bugs were fixed in the
Haskell prototype. Such fixes are sometimes done in a separate branch in the version
control system, then merged back to the main repository when satisfactory (explaining

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

NICTA Copyright 2014 From imagination to impact

Maintenance

• Development of seL4 proofs (sloc)

21

A:52 Klein et al.

0"

2000"

4000"

6000"

8000"

10000"

12000"

30)Nov)04" 30)Nov)05" 30)Nov)06" 30)Nov)07" 30)Nov)08" 30)Nov)09" 30)Nov)10" 30)Nov)11" 30)Nov)12"

cleanup""

new"features"

bug"fixes"

phase&1& phase&2& phase&3& maintenance&phase&

abstract'

C'

haskell'

(a) Size of code/spec artifacts (X: time; Y: SLOC)

0"

20000"

40000"

60000"

80000"

100000"

120000"

140000"

160000"

30)Nov)04" 30)Nov)05" 30)Nov)06" 30)Nov)07" 30)Nov)08" 30)Nov)09" 30)Nov)10" 30)Nov)11" 30)Nov)12"

access%
infoflow%

refinement2%

refinement1%

cleanup""

new"features"
phase&1& phase&2& phase&3& maintenance&phase&

capDL%

(b) Size of proofs (X: time; Y: SLOC)

Fig. 14. Size of code, specs and proofs

the verification team mostly worked on the verification framework and generic proof
libraries (not shown in the graphs). In a second phase, the verification team developed
the abstract spec (first steep increase in the abstract graph in Figure 14(a)) and per-
formed the first refinement, between this abstract spec and the initial kernel design
(large increase in refinement1 graph in Figure 14(b), up to end of phase 2). During
this time, the development team completed the design and Haskell prototype (second
increase in the haskell graph, again followed by a cleanup task), and then later wrote
the kernel C implementation (very steep increase in the C graph in Figure 14(a)). In
addition, as the first refinement was revealing design bugs (i.e. mismatches between
the design in the Haskell prototype and the abstract spec), those bugs were fixed in the
Haskell prototype. Such fixes are sometimes done in a separate branch in the version
control system, then merged back to the main repository when satisfactory (explaining

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

NICTA Copyright 2014 From imagination to impact

Proof Development

– proof development
• decomposition of proofs over people,

• custom proof calculus,

• automating mechanical tasks, custom tactics

• proof craft

22

NICTA Copyright 2014 From imagination to impact

Proof Development

– proof development
• decomposition of proofs over people,

• custom proof calculus,

• automating mechanical tasks, custom tactics

• proof craft

22

Tim’s Statement
Automating “donkey work” allows attention
and effort to be focussed where most needed
– but it must be done judiciously.

NICTA Copyright 2014 From imagination to impact

Proof Development

– proof development
• decomposition of proofs over people,

• custom proof calculus,

• automating mechanical tasks, custom tactics

• proof craft

– challenges
• non-local change,

• speculative change,

• distributed development

22

Tim’s Statement
Automating “donkey work” allows attention
and effort to be focussed where most needed
– but it must be done judiciously.

NICTA Copyright 2014 From imagination to impact

Proof Development

– proof development
• decomposition of proofs over people,

• custom proof calculus,

• automating mechanical tasks, custom tactics

• proof craft

– challenges
• non-local change,

• speculative change,

• distributed development

22

Matthias’ Conjecture

Over the years, I must have waited weeks for
Isabelle. Productivity hinges on a short edit-
check cycle; for that, I am even willing to
(temporarily) sacrifice soundness.

Tim’s Statement
Automating “donkey work” allows attention
and effort to be focussed where most needed
– but it must be done judiciously.

NICTA Copyright 2014 From imagination to impact

Problems of Scale

– proof maintenance
• changes, updates, new proofs, new features

• automated regression, keep code in sync

• refactoring

• simplification

23

NICTA Copyright 2014 From imagination to impact

Problems of Scale

– proof maintenance
• changes, updates, new proofs, new features

• automated regression, keep code in sync

• refactoring

• simplification

23

Dan’s Conclusion

Verification is fast, maintenance is forever.

NICTA Copyright 2014 From imagination to impact 24

NICTA Copyright 2014 From imagination to impact 24

Research Challenges

NICTA Copyright 2014 From imagination to impact

Software vs Proof Engineering

!

• Is Proof Engineering a thing?
• Google Scholar:

• “software engineering” 1,430,000 results

25

NICTA Copyright 2014 From imagination to impact

Software vs Proof Engineering

!

• Is Proof Engineering a thing?
• Google Scholar:

• “software engineering” 1,430,000 results

25

• “proof engineering” 564 results

NICTA Copyright 2014 From imagination to impact

Software vs Proof Engineering

!

• Is Proof Engineering a thing?
• Google Scholar:

• “software engineering” 1,430,000 results

25

Includes

”The Fireproof Building” and

“Influence of water permeation and analysis
of treatment for the Longmen Grottoes"

• “proof engineering” 564 results

NICTA Copyright 2014 From imagination to impact

Proof Engineering is The Same

• Same kind of artefacts:
• lemmas are functions, modules are modules

• code gets big too

• version control, regressions,  
refactoring and IDEs apply

26

NICTA Copyright 2014 From imagination to impact

Proof Engineering is The Same

• Same kind of artefacts:
• lemmas are functions, modules are modules

• code gets big too

• version control, regressions,  
refactoring and IDEs apply

• Same kind of problems
• managing a large proof base over time

• deliver a proof on time within budget

• dependencies, interfaces, abstraction, etc

26

NICTA Copyright 2014 From imagination to impact

Proof Engineering is Different

27

• But: New Properties and Problems

NICTA Copyright 2014 From imagination to impact

Proof Engineering is Different

• Results are checkable

• You know when you are done!

• No testing

• 95% proof: no such thing

27

• But: New Properties and Problems

NICTA Copyright 2014 From imagination to impact

Proof Engineering is Different

• Results are checkable

• You know when you are done!

• No testing

• 95% proof: no such thing

• More dead ends and iteration

27

• But: New Properties and Problems

NICTA Copyright 2014 From imagination to impact

Proof Engineering is Different

• Results are checkable

• You know when you are done!

• No testing

• 95% proof: no such thing

• More dead ends and iteration

• 2nd order artefact

• Performance less critical

• Quality less critical

• Proof Irrelevance

27

• But: New Properties and Problems

NICTA Copyright 2014 From imagination to impact

Proof Engineering is Different

• Results are checkable

• You know when you are done!

• No testing

• 95% proof: no such thing

• More dead ends and iteration

• 2nd order artefact

• Performance less critical

• Quality less critical

• Proof Irrelevance

• More semantic context

• Much more scope for automation

27

• But: New Properties and Problems

NICTA Copyright 2014 From imagination to impact

Deliver within Time and Budget

• Estimation:
• time and effort

• how precisely, with which confidence?

• how early?

28

NICTA Copyright 2014 From imagination to impact

Deliver within Time and Budget

• Estimation:
• time and effort

• how precisely, with which confidence?

• how early?

• Size of artefacts
• easier to predict?

• related to effort?

28

NICTA Copyright 2014 From imagination to impact

Deliver within Time and Budget

• Estimation:
• time and effort

• how precisely, with which confidence?

• how early?

• Size of artefacts
• easier to predict?

• related to effort?

• Complexity
• from initial artefacts?

• which influence?

28

NICTA Copyright 2014 From imagination to impact

Proof Engineering Tools

• User Interface
• could proof IDEs be more  

powerful than code IDEs?

• more semantic information

• proof completion and suggestion?

29

NICTA Copyright 2014 From imagination to impact

Proof Engineering Tools

• User Interface
• could proof IDEs be more  

powerful than code IDEs?

• more semantic information

• proof completion and suggestion?

• Refactoring
• less constrained,  

new kinds of refactoring possible, e.g.
• move to best position in library

• generalise lemma

• recognise proof patterns

29

NICTA Copyright 2014 From imagination to impact

Proof Patterns

• Large-scale Libraries
• architecture:

• layers, modules, components,  
abstractions, genericity

• proof interfaces

• proof patterns

30

NICTA Copyright 2014 From imagination to impact

Proof Patterns

• Large-scale Libraries
• architecture:

• layers, modules, components,  
abstractions, genericity

• proof interfaces

• proof patterns

• Technical Debt
• what does a clean, maintainable proof look like?

• which techniques will make future change easier?

• readability important? is documentation?

30

NICTA Copyright 2014 From imagination to impact

Proof Engineering “Laws”

• Are there Proof Engineering Laws?

31

0"

20000"

40000"

60000"

80000"

100000"

120000"

140000"

160000"

Nov+04" Nov+05" Nov+06" Nov+07" Nov+08" Nov+09" Nov+10" Nov+11" Nov+12"

access%
infoflow%

refinement2%

refinement1%

phase&1& phase&2& phase&3&

capDL5to5abstract%

Ju
l+0

5"

N
ov
+0
7"

Ju
l+0

9"

NICTA Copyright 2014 From imagination to impact

Proof Engineering “Laws”

• Are there Proof Engineering Laws?
• Proofs always become larger and more complex over time.  

(from Cope’s rule)

31

0"

20000"

40000"

60000"

80000"

100000"

120000"

140000"

160000"

Nov+04" Nov+05" Nov+06" Nov+07" Nov+08" Nov+09" Nov+10" Nov+11" Nov+12"

access%
infoflow%

refinement2%

refinement1%

phase&1& phase&2& phase&3&

capDL5to5abstract%

Ju
l+0

5"

N
ov
+0
7"

Ju
l+0

9"

NICTA Copyright 2014 From imagination to impact

Proof Engineering “Laws”

• Are there Proof Engineering Laws?
• Proofs always become larger and more complex over time.  

(from Cope’s rule)

• Adding manpower to a late proof project makes it later.  
(from Brooks’ law)

31

0"

20000"

40000"

60000"

80000"

100000"

120000"

140000"

160000"

Nov+04" Nov+05" Nov+06" Nov+07" Nov+08" Nov+09" Nov+10" Nov+11" Nov+12"

access%
infoflow%

refinement2%

refinement1%

phase&1& phase&2& phase&3&

capDL5to5abstract%

Ju
l+0

5"

N
ov
+0
7"

Ju
l+0

9"

NICTA Copyright 2014 From imagination to impact

Proof Engineering “Laws”

• Are there Proof Engineering Laws?
• Proofs always become larger and more complex over time.  

(from Cope’s rule)

• Adding manpower to a late proof project makes it later.  
(from Brooks’ law)

• You cannot reduce the complexity of a given proof beyond a
certain point. Once you’ve reached that point, you can only shift
the burden around.  
(from Tesler’s law)

31

0"

20000"

40000"

60000"

80000"

100000"

120000"

140000"

160000"

Nov+04" Nov+05" Nov+06" Nov+07" Nov+08" Nov+09" Nov+10" Nov+11" Nov+12"

access%
infoflow%

refinement2%

refinement1%

phase&1& phase&2& phase&3&

capDL5to5abstract%

Ju
l+0

5"

N
ov
+0
7"

Ju
l+0

9"

NICTA Copyright 2014 From imagination to impact

Proof Engineering “Laws”

• Are there Proof Engineering Laws?
• Proofs always become larger and more complex over time.  

(from Cope’s rule)

• Adding manpower to a late proof project makes it later.  
(from Brooks’ law)

• You cannot reduce the complexity of a given proof beyond a
certain point. Once you’ve reached that point, you can only shift
the burden around.  
(from Tesler’s law)

• Are they true?

31

0"

20000"

40000"

60000"

80000"

100000"

120000"

140000"

160000"

Nov+04" Nov+05" Nov+06" Nov+07" Nov+08" Nov+09" Nov+10" Nov+11" Nov+12"

access%
infoflow%

refinement2%

refinement1%

phase&1& phase&2& phase&3&

capDL5to5abstract%

Ju
l+0

5"

N
ov
+0
7"

Ju
l+0

9"

NICTA Copyright 2014 From imagination to impact

Summary

32

seL4

• Full verification. Full performance.

• Already cost effective for high assurance.

• Going open source and open proof in 2014.

NICTA Copyright 2014 From imagination to impact

Summary

32

Proof Engineering

• Should become a research discipline.

• Work has started. A lot more to be done.

seL4

• Full verification. Full performance.

• Already cost effective for high assurance.

• Going open source and open proof in 2014.

0

2

4

6

8

10

12

0 5000 10000 15000

E
ff

or
t (

P
er

so
n-

W
ee

ks
)

Work (Lines of Proof)

Variation in Productivity Across
Individuals in Two Proofs

From imagination to impact

http://sel4.systems

