
WHICH SDCARD?

Peter Chubb

peter.chubb@nicta.com.au

These slides are licensed under CC BY-SA 4.0

This document is Copyright c©2015 Peter Chubb. It may be
used, copied and adapted under the Creative Commons Attri-
bution ShareAlike licence, version 4.0.

NICTA Copyright c© 2015 From Imagination to Impact 1-1

http://creativecommons.org/licenses/by-sa/4.0/

IT ALL STARTED WHEN...

NICTA Copyright c© 2015 From Imagination to Impact 2

This story started about 2 years ago when we acquired a couple
of Samsung TVs to display CI data and other useful things in our
kitchen area at work. The in-built browser was fairly limited in
what it could do, so, having a spare Raspberry Pi on my desk, I
pressed it into service.
Performance sucked. And I traced that to the SD card.

NICTA Copyright c© 2015 From Imagination to Impact 2-1

NICTA Copyright c© 2015 From Imagination to Impact 3

More and more embedded systems that interest me come with
only an SD card slot for their primary storage. So getting good
performance from an SD card is fairly important to me.

NICTA Copyright c© 2015 From Imagination to Impact 3-1

Buy a faster card!

NICTA Copyright c© 2015 From Imagination to Impact 4

And if you grab a Debian image from Linaro or somewhere, dd
it onto an SD card, and boot, the performance is awful.
First thought is to stop buying those cheap SD cards from the
local post office.

NICTA Copyright c© 2015 From Imagination to Impact 4-1

Go Faster

Marketing Buzzword

95MB/s!!!

(with snazzy go-faster packaging)
NICTA Copyright c© 2015 From Imagination to Impact 5

Spent lots of $$

Performance still sucks!

NICTA Copyright c© 2015 From Imagination to Impact 6

Maybe a $150 Ultra-Pro-Super card at would fix the performance
problem?
But it didn’t. Why not?
I try to be an engineer in between WHS meetings etc., so the
first thing to do is pull a card apart.

NICTA Copyright c© 2015 From Imagination to Impact 6-1

INSIDE THE CARDS

NICTA Copyright c© 2015 From Imagination to Impact 7

Here are some pictures. The one on the left is a fake Lenxs 16G
SD card; you can see the 8Gb (Samsung) NAND flash chip, and
the Chip-On-Board (COB) controller under the epoxy blob.
The one on the right is a SanDisk 1G card. Everything is en-
capsulated between the layers of the card, so there’s not a lot to
see.
I’ve been told that SanDisk design and fabricate their own flash
and controllers; some other companies use third-party controllers
and flash. This one is an AX215 from AppoTech.

NICTA Copyright c© 2015 From Imagination to Impact 7-1

INSIDE THE CARDS

Bunnie Huang reverse engineered it

http://bunniefoo.com/bunnie/sdcard-30c3-pub.pdf

https://github.com:xobs/ax2xx-code.git

NICTA Copyright c© 2015 From Imagination to Impact 8

http://bunniefoo.com/bunnie/sdcard-30c3-pub.pdf
https://github.com:xobs/ax2xx-code.git

I thought at first I was going to have to desolder the chip and read
the flash. But someone else beat me to it: http://bunniefoo.com/bunnie/sdcard-
and you can get the firmware from https://github.com:xobs/ax2xx-

NICTA Copyright c© 2015 From Imagination to Impact 8-1

FLASH MEMORY

Plane

Typical:

Page: 2k+112bytes
Block: 4M+ECC
Plane: 16G+ECC

Block

Page

NICTA Copyright c© 2015 From Imagination to Impact 9

http://bunniefoo.com/bunnie/sdcard-30c3-pub.pdf
https://github.com:xobs/ax2xx-code.git

There are basically two kinds of Flash memory: NOR flash, and
NAND flash. Check the Wikipedia article if you want a more
detailed view of how they differ; from a systems perspective,
NOR flash is byte oriented so you can treat it like (slow) RAM;
NAND flash is block oriented, so you have to read/write it a block
at a time, like a disk.
I’m not going to talk any more about NOR flash; NAND flash
memory has much higher density, and is the common cheap(ish)
flash used on-board in embedded systems, SD cards, USB sticks
and SSDs.
NAND flash comes with a variety of system interfaces. The most
common are the Memory Technology Device interface (MTD),
the MMC (Multi-Media Card) interface (a JEDEC standard, used
for eMMC on-board flash and for SD cards) and a standard disk
interface (such as used in USB sticks and in SSDs).

NICTA Copyright c© 2015 From Imagination to Impact 9-1

NAND flash is accessed as pages, typically 520, 2160 or 4320
bytes. A page is divided into payload and out-of-band data; the
controller on the card usually uses the OOB bytes for ECC and
other management functions.
Writes write only zeroes, so data has to be erased before it is
written. The actual organisation of pages on the flash is usu-
ally proprietary, and depends on the precise detail of the flash
architecture.
Erasure happens in larger units — an erase block can be two or
four megabytes, or even more.

NICTA Copyright c© 2015 From Imagination to Impact 9-2

TYPICAL TIMINGS

• Write a page: ≈ 200 µs

• Read a 4320 byte page: ≈ 3 µs

• Transfer page to/from bus: ≈ 3nS/byte (12 µs)

• Erase a 138240 byte block: ≈ 3.5ms

NICTA Copyright c© 2015 From Imagination to Impact 10

These are typical timings for the current generation of raw flash.
It’s a bit hard to get definitive numbers, because so many flash
chip manuals are available only under NDA. What’s more, man-
ufacturers keep improving things, so what’s current may differ
from this.

NICTA Copyright c© 2015 From Imagination to Impact 10-1

INSIDE THE CHIP

MCU

Voltage Converters

F
la

sh
 In

te
rf

ac
e

RAM

buffer

B
u

s
in

te
rf

ac
e

NICTA Copyright c© 2015 From Imagination to Impact 11

Flash is really cheap in part because all flash is sold. It’s cheap
to put in a controller that maps out more than 80% of the area
as bad blocks, and sell a nominal 16G chip as a 2G chip.
So in the same package with the flash, is a small controller that
maps out bad blocks, and controls the erase/program/read state
machines. It has a small amount or RAM, typically one or two
pages, that act as a register to hold the page currently being
read or written. It also presents the illusion of a contiguous set
of erase blocks to the host.
To ease programming, when a chip has multiple planes, it is pos-
sible (especially on the higher-end chips) to read from one plane
and write to another without going through the host interface.
This eases garbage collection (see later).

NICTA Copyright c© 2015 From Imagination to Impact 11-1

FLASH CHARACTERISTICS

• Unreliable:

– single/multi bit errors

– Bad blocks

– Read disturb

– Limited life (maybe 100 000 erase cycles)

• Bit-serial access within a line

NICTA Copyright c© 2015 From Imagination to Impact 12

There are some other gotchas.
Blocks wear out. Currently available SLC NAND chips have
around 100 000 erase cycles before they wear out (MLC chips
have around half this); there is some research into adding heaters
onto the chip to anneal and restore the cells, which would give
three orders of magnitude better lifetime, but such NAND flash
is not yet commercially available.
In addition, reading can disturb adjacent cells. Read-Disturb op-
erates over a few hundred thousand read operations, and will
cause errors, not in the cells being read, but in adjacent cells.
Erasure fixes this problem.
These two characteristics together mean that flash has to be
managed, either by a filesystem that understands FLASH char-
acteristics (e.g., JFFS2, YAFFS), by an operating system com-
ponent such as the UBI layer in Linux, or by a wear-levelling

NICTA Copyright c© 2015 From Imagination to Impact 12-1

translation layer and a garbage collector running on an embed-
ded controller.
Flash technology changes fast enough, and best practice for
managing the flash changes fast enough, that using managed
flash is generally the best way to go for new designs.
What’s more, manufacturers can merge the flash controller and
management into a single MCU, not only saving costs, but also
insulating the user from change in underlying technology.
Managed flash is what you get on an SD card, a chip with eMMC
interface, or a USB stick.
Which is why so few hobbyist dev boards come with on-board
flash any more.

NICTA Copyright c© 2015 From Imagination to Impact 12-2

THE SD CONTROLLER

SD Host

Controller

NAND

Flash

Flash Interface

(Hardware ECC)

D−RAM

(64.5kb)
SD Interface

P−ROM

(32KB)
MCU

(24KB)

P−RAM

NICTA Copyright c© 2015 From Imagination to Impact 13

This picture is of a SiliconMotion SD controller. It’s fairly typi-
cal of the low-end controllers. It has a modified 8051 8-bit mi-
croprocessor, and hardware accelerated ECC generation and
checking. The ‘Program ROM’ is actually NOR flash, and used
for housekeeping information such as where in the flash are the
block maps, free maps and so on.
This particular controller has a single 64k buffer. This seems
quite common in the cheaper 3rd party controllers, and matches
quite well the 128-sector cluster size that the default FAT file sys-
tem uses.
You’ll have noticed that the available capacity on an SD card
is significantly less than the rated capacity. Although the flash
inside an SD card or USB stick is always a power-of-two size,
it’s quoted in thousands of megabytes, not 1024s of megabytes.
The ‘spare’ capacity is used for holding metadata, erased blocks

NICTA Copyright c© 2015 From Imagination to Impact 13-1

for use on writes, and (perhaps) firmware for the controller.
Large flash manufacturers such as Toshiba, SanDisk and Sam-
sung manufacture their own controllers. There are however a
surprisingly large number of other companies that offer controllers.
Third party controllers, because they are designed to interface
with arbitrary flash chips, often offer in-system programming.
This is used, on the one hand, by fraudsters wanting to sell you
a card that identifies as 32 Gb when it only contains 8gb of flash;
but also by manufacturers to allow sourcing from many different
Flash manufacturers according to what’s cheapest on the spot
market.

NICTA Copyright c© 2015 From Imagination to Impact 13-2

THE SD CONTROLLER

• Presents illusion of ‘standard’ block device

– buffering, erase, serial-to-parallel, different block

size, parallel access to different planes, etc., etc.

• Manages writes for wear levelling

• Manages reads to prevent read-disturb

• Performs garbage collection

• Performs bad-block management

Mostly documented (if at all) in Korean patents referred to

by US patents!NICTA Copyright c© 2015 From Imagination to Impact 14

The controller has to do a number of things, at speed. Total
power consumption is fairly small — up to 2.88 Watts for a UHS-
1 card; much less for standard cards. So it tends to be a fairly
limited mmu-less microcontroller, such as the MCS-51 (or more
usually, one of its variants). Higher end cards use an ARM pro-
cessor; the cards that also do Bluetooth or WiFi often run Linux
internally.
The main thing the controller has to do in its firmware is to present
the illusion of a standard block device, while managing (transpar-
ently) the fact that flash cannot be overwritten in-place.
It also has to be aware when an SD card or USB stick is wrenched
from its socket. The power pins on the card are longer than the
others; this gives a few milliseconds of power to finalise writes,
and to update the controller’s NVRAM with the block address of
any metadata in the Flash.

NICTA Copyright c© 2015 From Imagination to Impact 14-1

And finally, it does power management, to go to sleep when
nothing is happening.

NICTA Copyright c© 2015 From Imagination to Impact 14-2

WEAR MANAGEMENT

Two ways:

• Remap blocks when they begin to fail (bad block

remapping)

• Spread writes over all erase blocks (wear levelling)

In practice both are used.

Also:

• Count reads and schedule garbage collection after

some threshold

NICTA Copyright c© 2015 From Imagination to Impact 15

There are two ways to extend the limited write lifetime of a flash
block. The first is to use ECC to detect cells going bad, and
remap a block when errors start to appear. The second is to
spread out writes over all blocks. By combining with garbage
collection, such wear levelling can be achieved with low over-
head.

NICTA Copyright c© 2015 From Imagination to Impact 15-1

PREFORMAT

• Typically use FAT32 (or exFAT for sdxc cards)

• Always do cluster-size I/O (64k)

• First partition segment-aligned

Conjecture Flash controller optimises for the

preformatted FAT fs

NICTA Copyright c© 2015 From Imagination to Impact 16

Removable Flash devices almost always are preformatted with
a FAT file system. Typically, the first partition starts on an erase
boundary (thus being a good hint for the size of the erase block),
and uses a cluster size that is a good compromise for the alloca-
tion unit size used by the controller. It’s likely that the controller
will optimise for the write patterns experienced when using a FAT
fs.

NICTA Copyright c© 2015 From Imagination to Impact 16-1

FAT FILE SYSTEMS

C
lu

st
er

In
fo

 B
lo

ck

FAT

Data Area

Root Directory

B
o

o
t

P
ar

am
R

es
er

ve
d

NICTA Copyright c© 2015 From Imagination to Impact 17

The reserved area at the start of the filesystem contains a Boot
Parameter Block (essentially the same as a superblock on a
UNIX file system). Key parameters are the location, size, and
number of FATs (file allocation tables), the location of the root
directory, and the cluster size.
All disk allocation and I/O is done in cluster-size chunks.
We looked at a lot of different preformatted cards. All used a 64k
cluster size, and had the FATs in the second erase block of the
disk. The first erase block was used only for the MBR.
The Directory entry for a file contains the index of its first cluster.
The first cluster index is then used to look up the next cluster in
the FAT, as a chain. So extending a file involves writing the data
into the data area, and cluster indices into the FAT, and finally
updating the directory entry with the file size.

NICTA Copyright c© 2015 From Imagination to Impact 17-1

INTERFACE SPEED

• SPI mode: 3 Mb/s

• Standard SDHC cards: up to 25MB/s (DDR); SD

cards 12.5MB/s

• UHS-1 up to 104MB/s (DDR)

NICTA Copyright c© 2015 From Imagination to Impact 18

When an SD card is first plugged in, it works at 3.3V, and in
SPI interfacing mode. The host has to query the card’s capabil-
ities, then switch it into a higher-speed mode if possible. Cards
have 4 data pins; higher speed cards can transfer a nibble on
both rising and falling clock edges (Double Data Rate) giving at
25MHz clock speed a 25 MB/s transfer rate. UHS=1 cards can
drop the voltage to 1.8V, and up the clock to 104MHz, giving up
to 104MB/s transfer rate.
There are also UHS-2 and UHS-3 standards, but I haven’t seen
any host adapters available for them yet.
Cards are generally downward compatible. UHS-1 cards will
work at SDHC and SD speeds. However, to gain the full advan-
tage of the extra speed, you need the appropriate host controller.

NICTA Copyright c© 2015 From Imagination to Impact 18-1

INTERFACE SPEED

Class 2, 4, 6 — write speed of ≥ 2, 4 or 6 MB/s

when fragmented

Class 10 — write speed of ≥ 10MB/s

when unfragmented

UHS-1 – cards usually have higher rated

speeds than Class 10.
For Linux — often get better long-term performance from

a class 4 or 6 card than a cheap class 10.

NICTA Copyright c© 2015 From Imagination to Impact 19

Note that a class 10 card matches pretty well its intended use in
a camera or similar — it gets written to when in the camera, read
once to upload, then reformatted to start again.

NICTA Copyright c© 2015 From Imagination to Impact 19-1

MANAGING FLASH

• Controller has RAM buffer

— Size of buffer seems to increase with price of card

• Has some number of ‘open’ blocks.

• Reading/writing to an open block cheaper than to a

non-open block.

Thanks to Arnd Bergman for flashbench

git://git.linaro.org/people/arnd/flashbench.git

NICTA Copyright c© 2015 From Imagination to Impact 20

git://git.linaro.org/people/arnd/flashbench.git

Given that the SD I/O speed is higher than the speed to write to
Flash, the controller must have RAM to buffer the writes.
Given also that these controllers are very very cheap, they have
strictly limited RAM for buffering. Given also that they want to
minimise the overhead in address translation and garbage col-
lection,
We timed writes at various offsets from each other to determine
the size of the buffer (we expect that two adjacent writes within
the same open buffer will be fast, but when the buffer finally is
committed to flash, it’ll be slower — which is what we found), and
to discover how many write loci could be handled simultaneously.
There’s a tool written by Arnd Bergman that does this for you
semi-automatically, called ‘flashbench’. It’s in the Debian repos-
itory so easy to install.

NICTA Copyright c© 2015 From Imagination to Impact 20-1

MANAGING FLASH

$ flashbench -a /dev/mmcblk1p1

align 67108864 pre 1.9ms on 2.73ms post 1.85ms diff 858µs

align 33554432 pre 1.9ms on 2.73ms post 1.84ms diff 858µs

align 16777216 pre 1.9ms on 2.73ms post 1.84ms diff 861µs

align 8388608 pre 1.9ms on 2.73ms post 1.85ms diff 855µs

align 4194304 pre 1.87ms on 2.7ms post 1.85ms diff 840µs

align 2097152 pre 1.81ms on 2.21ms post 1.84ms diff 381µs

align 1048576 pre 1.81ms on 2.21ms post 1.85ms diff 377µs

align 524288 pre 1.81ms on 2.2ms post 1.84ms diff 375µs

align 262144 pre 1.81ms on 2.2ms post 1.85ms diff 376µs

align 131072 pre 1.81ms on 2.21ms post 1.85ms diff 380µs

align 65536 pre 1.81ms on 2.21ms post 1.84ms diff 379µs

align 32768 pre 1.82ms on 2.18ms post 1.82ms diff 358µs

NICTA Copyright c© 2015 From Imagination to Impact 21

With -a, flashbench reads 3 1k blocks around a number of power-
of-two boundaries, first ending at the boundary, then across the
boundary, then just after the boundary. Crossing an erase block
boundary should be slightly more expensive than if all blocks are
in the same page. In this case that happens at the 4M boundary.
Not shown on the figure is you can also discover, or at least intuit,
the page size, and often the number of planes. And the tool has
other functions to work out the number of open allocation units.

NICTA Copyright c© 2015 From Imagination to Impact 21-1

NORMAL FILE SYSTEMS

• Optimised for use on spinning disk

• RAID optimised (especially XFS)

• Journals, snapshots, transactions...

NICTA Copyright c© 2015 From Imagination to Impact 22

Most ‘traditional’ file systems optimise for spinning disk. They
arrange the disk into regions, and try to put directory entries,
inodes and disk blocks into the same region.
Some also take RAID into account, and try to localise files so
that a reasonably-sized single read can be satisfied from one
spindle; and writes affect only two spindles (data plus parity).
Many use a journal for filesystem consistency. The journal is ei-
ther in a fixed part of the disk (ext[34], XFS, etc) or can wander
over the disk (reiserFS); in most cases only metadata is jour-
nalled.
And more advanced file systems (XFS, VxFS, etc) arrange re-
lated I/O operations into transactions and use a three-phase
commit internally to provide improved throughput in a multipro-
cessor system.

NICTA Copyright c© 2015 From Imagination to Impact 22-1

TESTING SDHC CARDS

NICTA Copyright c© 2015 From Imagination to Impact 23

We ran fairly extensive benchmarks on four full-sized cards using
a SabreLite: a Kingston 32Gb class 10, a Toshiba 16Gb class
10, and two different SanDisk UHS-1 cards: an Extreme, and an
Extreme Pro.
The SabreLite does NOT have a UHS-1 controller, so transfer
times are limited to SDHC rates.

NICTA Copyright c© 2015 From Imagination to Impact 23-1

SD CARD CHARACTERISTICS

Card Price/G #AU Page size Erase

$ Size

Kingston Class

10

$0.80 2 128k 4M

Toshiba Class 10 $1.20 2 64k 8M

SanDisk

Extreme UHS-1

$5.00 9 64k 8M

SanDisk

Extreme Pro

UHS-1

$6.50 9 16k 4M

NICTA Copyright c© 2015 From Imagination to Impact 24

The Toshiba card we measured had two open allocation units,
but didn’t seem to treat the FAT area specially.
SanDisk and Samsung cards had between six and nine alloca-
tion areas, and didn’t seem to treat the FAT area specially.
For the Kingston cards, which have only two open allocation
units, one of them appears to be pinned to the FAT area. So
you can do fast writes to a single open file, extending it in the
FAT area, and in the data area. But multiple files are slow, and
any filesystem that doesn’t use the FAT area in the same way
will be slow.

NICTA Copyright c© 2015 From Imagination to Impact 24-1

SD CARD CHARACTERISTICS

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 0 1 2 3 4 5 6 7

"~/iozone.dat" using 1:2

NICTA Copyright c© 2015 From Imagination to Impact 25

WRITE PATTERNS: FILE CREATE

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
lo

ck
N

um
be

r

Time

Write 40M File

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 2 4 6 8 10 12
B

lo
ck

N
um

be
r

Time

Write 40M File

(On Toshiba Exceria card)

NICTA Copyright c© 2015 From Imagination to Impact 26

You can see from the blktrace plots that creating a file on a FAT32
file system is almost ideal for a two open-allocation-unit system
with a 64k buffer. All writes are in 64k chunks; the FAT remains
open for extensions; and the buffer becomes available for the
directory entry after closing off the last write to the file’s data.
However, ext4 doesn’t behave like this at all. Ext4 on an unaged
filesystem is pretty good at maintaining locality, but has some
writes a while after the file is closed: one to update the free-
block bitmap, one for the inode, and one for the journal — and
these are non-local with respect to the last write.

NICTA Copyright c© 2015 From Imagination to Impact 26-1

F2FS

• By Samsung

• ‘Use on-card FTL, rather than work against it’

• Cooperate with garbage collection

• Use FAT32 optimisations

NICTA Copyright c© 2015 From Imagination to Impact 27

The question is, can better be done taking into account what the
flash controller does?
F2FS was designed by Samsung for SD cards and other higher-
level Flash devices. It works reasonably well on the cheaper
USB sticks and SD cards.

NICTA Copyright c© 2015 From Imagination to Impact 27-1

F2FS

• 2M Segments written as whole chunks — always

writes at log head

— aligned with FLASH allocation units

• Log is the only data structure on-disk

• Metadata (e.g., head of log) written to FAT area in

single-block writes

• Splits Hot and Cold data and Inodes.

NICTA Copyright c© 2015 From Imagination to Impact 28

It is designed to work with the flash translation layer. It under-
stands the way that garbage collection might happen, and that
full-segment writes are the most efficient. It uses log-based allo-
cation to make the most of the FLASH characteristics.
It also divides files up based on their type. Files that are likely to
be long lived, and written only once (e.g., photos, movies), are
marked as ‘cold’ and stored in a different area of the file system
from other files. This helps the garbage collector.
F2FS works best on cards that can write to at least 6 places at
once.

NICTA Copyright c© 2015 From Imagination to Impact 28-1

NILFS2

• Log structured

• Defers garbage collection to user process: lower

latency than F2FS

• All data is in the log; only one write locus.

NICTA Copyright c© 2015 From Imagination to Impact 29

NILFS2 is another file system that is meant to be flash-friendly.
It has been in the mainstream kernel for longer than F2FS, and
so ought to be more mature; but I don’t know how much use it
has had.
It also is a log structured file system, but is only written to at one
point, rather than splitting a write stream into up to 6 places. All
data goes into the log; the log is written in segments. The size
of a segment is controlled at mkfs time; typically 8M (but you
can gain performance by making it the same as the erase block
size). Each segment has a summary at its start, that says what
each block in the segment is.
The filesystem does continuous snapshotting; a user-mode dae-
mon deletes old snapshots according to the preservation-time
set at mount time, typically 120s.

NICTA Copyright c© 2015 From Imagination to Impact 29-1

BENCHMARKS: POSTMARK 32K READ

Kingston
 Toshiba

 Sandisk Extreme
 SanDisk Extreme Pro

Filesystem

E
X

T
4

F
A

T
32

 1

 0

 2

 3

 5

 4

F
2F

S

M
B

/s

NICTA Copyright c© 2015 From Imagination to Impact 30

Postmark, which writes lots of small files, showed massive differ-
ences between the cards. As its read and write sizes are much
less than the page size, it forces a program/erase or a garbage
collection on every write — making it worse case for the cards.
The file systems that hide this (F2FS) do much better, even on
the cheapest card.

NICTA Copyright c© 2015 From Imagination to Impact 30-1

FS SUMMARY

File System Min Writes per file Allocation unit

ext4 4 4k

nilfs2 1 8M

f2fs 1 2M

FAT32 2 64k

NICTA Copyright c© 2015 From Imagination to Impact 31

To compare FS then, ext4 writes at at least four places on the
flash for every file creation: in the journal, the file data, the direc-
tory entry and the inode.
The other two Linux FS write only to their logs.
And FAT32 writes to the FAT and to the data area.

NICTA Copyright c© 2015 From Imagination to Impact 31-1

MORE CARDS

NICTA Copyright c© 2015 From Imagination to Impact 32

The next set of hardware we bought used micro-SD cards, but
had a UHS-1 controller.

NICTA Copyright c© 2015 From Imagination to Impact 32-1

CHARACTERISTICS

Card Price, RRP Erase Size Open

$/Gb Mb AU

Samsung EVO class

6 16G

0.62, 1.87 4 7

Sandisk Ultra 16G 0.87, 3.12 2 4

Kingston 8G 0.93, 8.74 4 6

Toshiba Exceria 32G 1.23, 2.49 128 8

Samsung Pro 32G 1.34, 3.12 4 24

NICTA Copyright c© 2015 From Imagination to Impact 33

I bought a handful of different micro-SD cards in September last
year. Prices per gigabyte reflect what I paid for them — but
prices are really volatile, and street prices do not reflect Rec-
ommended Retail Prices (RRP). I put in the RRP as well, for
information only.
The two cards that cost more than $1 per gigabyte are the most
interesting. The Toshiba one has a huge erase block size — it’s
possibly using TLC with 8-bits per cell, and probably has more
than two planes. The Samsung Pro was hard to pin down as to
its characteristics. It gave a slight timing glitch around the 4M
mark, and so I’m assuming a 4M erase block size. But testing
for the number of open blocks using that size gives around 24.
So I’m thinking the controller may be doing something clever;
the measurement may be reflecting running out of buffer space
rather than running out of open AUs.

NICTA Copyright c© 2015 From Imagination to Impact 33-1

The Sandisk Ultra is also interesting. Although it has a smaller
erase size, and fewer open allocation units, it outperforms some
of the other cards.

NICTA Copyright c© 2015 From Imagination to Impact 33-2

BENCHMARKS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

SamsungClass6SandiskUltraKingston8GExceria32GSamsungPro

M
B

/s

Card

Dbench Throughput

EXT4
NILFS2

F2FS

 0

 10

 20

 30

 40

 50

 60

SamsungClass6SandiskUltraKingston8GExceria32GSamsungPro

s

Card

Dbench Maximum Latency

EXT4
NILFS2

F2FS

NICTA Copyright c© 2015 From Imagination to Impact 34

I ran dbench on all the cards using all the filesystems we used
before.
On the graphs, the cards are ordered by increasing price per
gigabyte across the bottom. What’s clear is that different file
systems behave differently on different cards; and that NILFS-2
trades latency for throughput.
Also clear is that the Kingston card is overpriced for its perfor-
mance.

NICTA Copyright c© 2015 From Imagination to Impact 34-1

BENCHMARKS

 0

 1000

 2000

 3000

 4000

 5000

SamsungClass6SanDiskUltraKingston8GExceria32GSamsungPro

kB
/s

Card

Postmark Write Throughput

EXT4
NILFS2

F2FS

 0

 50

 100

 150

 200

 250

SamsungClass6SanDiskUltraKingston8GExceria32GSamsungPro

kB
/s

Card

Postmark Read Throughput

EXT4
NILFS2

F2FS

NICTA Copyright c© 2015 From Imagination to Impact 35

Postmark shows the reverse. NILFS2 works much better for the
lots of small files case than F2FS or EXT4.

NICTA Copyright c© 2015 From Imagination to Impact 35-1

KERNEL ALLNOCONFIG BUILD TIMES

 0

 20

 40

 60

 80

 100

 120

 140

 160

SamsungClass6SandiskUltraKingston8GExceria32GSamsungPro

T
im

e
(s

)

Card

time make -j8 (elapsed time, lower better)

EXT4
NILFS2

F2FS

NICTA Copyright c© 2015 From Imagination to Impact 36

But what of something I actually care about? The kernel build
times (each average of three runs; variances are too low to show
on the graph) show that the filesystems don’t make as much
difference on the more expensive cards (as expected), but also
that ext4 isn’t a bad choice.
The faster cards are fast enough that the kernel compile moves
from being I/O to CPU bound. So you can’t say much from this.
F2FS performs badly on the slower cards primarily because it
has not been tuned for multi-threaded operation. Using lock_stat
shows excessive hold times on some of its semaphores leading
to a maximum wait time, in some cases, of over 6 seconds during
a dbench run, with a maximum hold time of over 23 seconds.
Also

NICTA Copyright c© 2015 From Imagination to Impact 36-1

OTHER GOTCHAS

• Some card/FS have very high latencies.

• NILFS2 cleaner can die; flash fills up

• No FS works well when flash is full

• F2FS still fairly immature

NICTA Copyright c© 2015 From Imagination to Impact 37

I’d also bought a Samsung EVO UHS-1 µSD card. It showed
massive (more than 30s) latencies when attempting to run the
various benchmarks, which caused the kernel to drop the trans-
actions. It looked like the controller/garbage collector just wasn’t
coping with the load, under F2FS. Other filesystems were OK.
On measuring it turned out this card draws too much current for
the onboard v1.8V regulator on the Odroid XU3 — the card is
however still within spec (a UHS-1 card is allowed to draw up to
2.88W, or 1.6A).
We’ve been running NILFS as the root FS for a Raspberry PI for
the last eighteen months or so. Every now and then, either the
nilfs-clean daemon doesn’t start on mount, or it dies (not sure
which); then the flash card fills up with snapshots and eventually
the system grinds to a halt.
All the FSs tested degrade when the flash gets full, as they can

NICTA Copyright c© 2015 From Imagination to Impact 37-1

no longer use their optimised allocation algorithms. Instead they
write to wherever there’s room.
And as seen, F2FS has some issues with multithreaded work-
loads. I expect this will improve over time.

NICTA Copyright c© 2015 From Imagination to Impact 37-2

SECURITY CONSIDERATIONS

• MITM attacks possible

• Bunnie Huang,

http://www.bunniestudios.com/blog/?p=3554

• Don’t trust random cards you find in the street!

NICTA Copyright c© 2015 From Imagination to Impact 38

Finally, the controllers in many cards offer in-system reprogram-
ming. This is so that the manufacturer can program the con-
troller to match the flash that was actually installed in the card
(and to allow fraudsters to adjust the capacity up before selling
as a fake). However, because the manufacturers often do not
turn off the facility, anyone can install new firmware.
This offers the possibility of man-in-the-middle attacks, where
the file you get is not the one you think you’re getting (allowing
virus and Trojan injection).
Moreover, it may be possible to get an SD card to identify as
an SDIO device, and fool the host in a similar way to the USB
hacks we know about. This would be a little harder as fewer
systems allow SDIO by default; but the same basic attack issues
are present. An SDIO device allows configuration of up to eight
virtual devices, allowing the expected memory card to be visible

NICTA Copyright c© 2015 From Imagination to Impact 38-1

http://www.bunniestudios.com/blog/?p=3554

at the same time as a network device, say.

NICTA Copyright c© 2015 From Imagination to Impact 38-2

SECURITY CONSIDERATIONS

The hack code for AppoTech is at:

https://github.com/wom-bat/ax2xx-code.

Runs on Novena, Odroid XU3 and SabreLite.

NICTA Copyright c© 2015 From Imagination to Impact 39

https://github.com/wom-bat/ax2xx-code

I ported Bunnie and Xobs’s code to run on the Odroid XU3 (for
UHS-1 µSDcards) and on the Sabre Lite (for standard SD cards).
To run them, you need to disable the appropriate SD card host
in the flattened device tree before booting the board.
So far I haven’t found any cards that use this controller.

NICTA Copyright c© 2015 From Imagination to Impact 39-1

CONCLUSIONS

• Buy a suitable card – look for bargains

• Align partitions to erase blocks — Linaro images

align too small

• Use a suitable filesystem — NILFS2 or EXT4 or

F2FS depending on card

• Have fun attempting to hack cards

• But beware fakes.

Questions?
NICTA Copyright c© 2015 From Imagination to Impact 40

So in conclusion: try to get a real high-quality card, work out
what its erase size and number of open allocation units is, and
tune your FS to match.
And have fun attempting to hack the cards!

NICTA Copyright c© 2015 From Imagination to Impact 40-1

