
From Non-preemptive to Preemptive Scheduling
using Synchronization Synthesis

Pavol Černý1, Edmund M. Clarke2, Thomas A. Henzinger3, Arjun
Radhakrishna4, Leonid Ryzhyk2, Roopsha Samanta3, and Thorsten Tarrach3

1 University of Colorado Boulder
2 Carnegie Mellon University

3 IST Austria
4 University of Pennsylvania

Abstract. We present a computer-aided programming approach to con-
currency. The approach allows programmers to program assuming a
friendly, non-preemptive scheduler, and our synthesis procedure inserts
synchronization to ensure that the final program works even with a pre-
emptive scheduler. The correctness specification is implicit, inferred from
the non-preemptive behavior. Let us consider sequences of calls that the
program makes to an external interface. The specification requires that
any such sequence produced under a preemptive scheduler should be in-
cluded in the set of such sequences produced under a non-preemptive
scheduler. The solution is based on a finitary abstraction, an algorithm
for bounded language inclusion modulo an independence relation, and
rules for inserting synchronization. We apply the approach to device-
driver programming, where the driver threads call the software interface
of the device and the API provided by the operating system. Our exper-
iments demonstrate that our synthesis method is precise and efficient,
and, since it does not require explicit specifications, is more practical
than the conventional approach based on user-provided assertions.

1 Introduction

Concurrent shared-memory programming is notoriously difficult and error-prone.
Synthesis for concurrency aims to mitigate this complexity by synthesizing syn-
chronization code automatically [3, 4, 7, 10]. However, specifying the program-
mer’s intent may be a challenge in itself. Declarative mechanisms, such as asser-
tions, suffer from the drawback that it is difficult to ensure that the specification
is complete and fully captures the programmer’s intent.

We propose a solution where the specification is implicit. We observe that a
core difficulty in concurrent programming originates from the fact that the sched-
uler can preempt the execution of a thread at any time. We therefore give the
developer the option to program assuming a friendly, non-preemptive, scheduler.
Our tool automatically synthesizes synchronization code to ensure that the be-
havior of the program under preemptive scheduling is equivalent to its behavior
under non-preemptive scheduling. Thus, we use the non-preemptive semantics
as an implicit correctness specification.

The non-preemptive scheduling model dramatically simplifies the develop-
ment of concurrent software, including OS kernels, network servers, database
systems, etc. [12,13]. In this model, a thread can only be descheduled by volun-
tarily yielding control, e.g., by invoking a blocking operation. Synchronization
primitives may be used for communication between threads, e.g., a producer
thread may use a semaphore to notify the consumer about availability of data.
However, one does not need to worry about protecting accesses to shared state:
a series of memory accesses executes atomically as long as it does not yield.

In defining behavioral equivalence between preemptive and non-preemptive
executions, we focus on externally observable program behaviors: two program
executions are observationally equivalent if they generate the same sequences
of calls to a particular interface of interest. This approach facilitates modular
synthesis where a module’s behavior is characterized in terms of its interac-
tion with other modules. Given a multi-threaded program C developed for the
non-preemptive scheduling model and a synthesized program C′ obtained by
adding synchronization to C, C′ is preemption-safe w.r.t. C if for each execu-
tion of C′ under a preemptive scheduler, there is an observationally equivalent
non-preemptive execution of C. If C′ is preemption-safe w.r.t. C and for each
non-preemptive execution of C there is an observationally equivalent preemptive
execution of C′, then C′ is preemption-equivalent to C. Our synthesis goal is to
automatically generate a preemption-equivalent version of the input program.

We rely on abstraction to achieve efficient synthesis of multi-threaded pro-
grams. We propose a simple abstraction, which is, to the best of our knowledge,
yet to be explored in the verification and synthesis literature. The abstraction
tracks types of accesses (read or write) to each memory location while ignoring
their values. Calls to an external interface are modeled as writes to a special
memory location, with independent interfaces modeled as separate locations.
Two abstract program executions are observationally equivalent if they are equal
modulo the classical independence relation I on memory accesses: accesses to dif-
ferent locations are independent, and accesses to the same location are indepen-
dent iff they are both read accesses. Using this notion of equivalence, the notions
of preemption-safety and -equivalence are extended to abstract programs.

Under abstraction, we model each thread as a nondeterministic finite automa-
ton (NFA) over a finite alphabet, with each symbol corresponding to a read or a
write to a particular variable. This enables us to construct NFAs P and N , rep-
resenting abstractions of the original program C and the synthesized program
C′, respectively. We show that preemption-safety of C′ w.r.t. C is implied by
preemption-safety of the abstract synthesized program w.r.t. the abstract origi-
nal program (Thm. 1), which, in turn, is implied by language inclusion modulo I
of NFAs P and N (Prop. 1). While the problem of language inclusion modulo an
independence relation is undecidable [1], we show that the antichain-based algo-
rithm for standard language inclusion [8] can be adapted to decide a bounded
version of language inclusion modulo an independence relation.

Our overall synthesis procedure works as follows: we run the algorithm for
bounded language inclusion modulo I, iteratively increasing the bound, until it
reports that the inclusion holds, or finds a counterexample, or reaches a time-

out. In the first case, the synthesis procedure terminates successfully. In the
second case, the counterexample is generalized (as in [10]), to a set of coun-
terexamples represented as a Boolean combination of ordering constraints over
control-flow locations. These constraints are analyzed for patterns indicating the
type of concurrency bug (atomicity, ordering violation) and the type of appli-
cable fix (lock insertion, statement reordering). After applying the fix(es), the
procedure is restarted from scratch. We impose syntactic restrictions on program
transformations performed by our synthesis procedure, which ensure that all ex-
ecutions of the original program C are preserved under observational equivalence
(Prop. 3). Hence, the synthesized program C′ is not only preemption-safe but
also preemption-equivalent to C.

We implemented our synthesis procedure in a new prototype tool called Liss
(Language Inclusion-based Synchronization Synthesis) and evaluated it on a se-
ries of device driver benchmarks, including an Ethernet driver for Linux and
the synchronization skeleton of a USB-to-serial controller driver. The findings
of our evaluation are as follows. First Liss was able to detect and eliminate all
but one known race conditions in our examples; these included one race that
we previously missed when synthesizing from explicit specifications [4], due to
a missing assertion. Second, our abstraction proved highly efficient: Liss runs
an order of magnitude faster on the more complicated examples than our pre-
vious synthesis tool, based on the CBMC model checker. Third, our coarse ab-
straction proved surprisingly precise in practice: across all our benchmarks, we
only encountered three program locations where manual abstraction refinement
was needed to avoid the generation of unnecessary synchronization. Overall, our
evaluation strongly supports the implicit specification approach based on non-
preemptive scheduling semantics as well as the use of abstraction to achieve
practical synthesis for real-world programs.

Contributions. First, we propose a new specification-free approach to synchro-
nization synthesis. Given a program written assuming a non-preemptive sched-
uler, we automatically generate a preemption-equivalent version of the program.
Second, we introduce a novel abstraction scheme and use it to reduce preemption-
safety to language inclusion modulo an independence relation. Third, we present
the first language inclusion-based synchronization synthesis procedure and tool
for concurrent programs. Our synthesis procedure includes a new algorithm for
a bounded version of our inherently undecidable language inclusion problem.
Finally, we evaluate our synthesis procedure on several examples. To the best
of our knowledge, Liss is the first synthesis tool capable of handling realistic
(albeit simplified) device driver code, while previous tools were evaluated on
small fragments of driver code or on manually extracted synchronization skele-
tons. All four contributions are also significant improvements over our own prior
work [3, 4, 10].

Related work. Synthesis of synchronization is an active research area [2–5,9–11,
14,15]. Closest to our work is recent work by Bloem et al. [2], which pioneered the
idea of using implicit specifications for synchronization synthesis. Their specifi-
cation is given by sequential behaviors, whereas ours is given by non-preemptive
behaviors, which makes our approach suitable for cases where threads need to

void open dev() {
1: while (*) {
2: if (open==0) {
3: power up();
4: }
5: open=open+1;
6: yield;
} }

void close dev() {
7: while (*) {
8: if (open>0) {
9: open=open-1;
10: if (open==0) {
11: power down();
12: } }
13: yield;
} }

void open dev abs() {
1: while (*) {
2: (A) r open;

if (*) {
3: (B) w dev;
4: }
5: (C) r open;

(D) w open;
6: yield;
} }

void close dev abs() {
7: while (*) {
8: (E) r open;

if (*) {
9: (F) r open;

(G) w open;
10: (H) r open;

if (*) {
11: (I) w dev;
12: } }
13: yield; } }

(a) (b)

Fig. 1: Running example and its abstraction

communicate explicitly as well as systems that may loop infinitely. Further, they
focus on synthesizing synchronization for a complete program and therefore com-
pare only the values of the variables at the end of execution, whereas we consider
modular synthesis and therefore compare sequences of events, which is often a
suitable specification for systems code.

Many efforts in synthesis of synchronization focus on user-provided speci-
fications, such as assertions (our previous work [3, 4, 10]). However, it is hard
to determine if a given set of assertions represents a complete specification. In
this paper, we are solving language inclusion, a worst-case exponentially harder
problem than reachability. However, due to our abstraction, our tool performs
significantly better than tools from [3, 4], which are based on a mature model
checker (CBMC [6]). The synthesis part of our approach is based on [10].

In [15] the authors also propose specifications given by assertions, but include
abstraction refinement, which may be interesting to attempt for our abstraction.
CFix [11] can detect and fix concurrency bugs by identifying specific patterns in
the source code.

2 Illustrative Example

Fig. 1 contains our running example. The functions power up() and
power down() represent calls to a device. Consider the case where the proce-
dures open dev() and close dev() are invoked in parallel, possibly multiple
times. For the non-preemptive scheduler, the sequence of calls to the device will
always be a repeating sequence of one call to power up(), followed by one call
to power down(). Without additional synchronization, however, there could be
two calls to power up() in a row when executing it with a preemptive scheduler.
Such a sequence is not observationally equivalent to any sequence that can be
produced when executing with a non-preemptive scheduler.

Fig. 1 contains the abstracted versions of the two procedures,
open dev abs() and close dev abs(). For instance, the instruction open =

open + 1 is abstracted to the two instructions labeled (C) and (D). The ab-
straction is coarse, but still captures the problem. Consider two threads T1

and T2 running the open dev abs() procedure. The following trace is possible
under a preemptive scheduler: T1.A; T2.A; T1.B; T1.C; T1.D; T2.B; T2.C;

T2.D. This trace is not equivalent modulo the classical independence relation to

any trace that could occur under a nonpreemptive scheduler. The reason is that
instructions (A) and (D) are not independent. This captures the reason why
there could be two calls to power up() in a row when executing with a preemp-
tive scheduler.

Our synthesis procedure finds this problem, and fixes it by introducing a lock
in open dev() (see Sec. 5).

3 Preliminaries and Problem Statement

Syntax. We assume that programs are written in a concurrent while language
W. A concurrent program C in W is a finite collection of threads ⟨T1, . . . ,Tn⟩
where each thread is a statement written in the syntax from Fig. 2. All W
variables range over natural numbers and each statement labeled with a unique
location identifier l. The only non-standard syntactic constructs in W relate
to the tags t i. Intuitively, each tag t i is a communication channel between
the program and an interface to an external system, and the input(t i) and
output(t i, e) statements read from and write to the channel. We assume that
the program and the external system interface can only communicate through
the channel. In practice, we use tags to model device registers.
cond var ::= c 1 | c 2 | . . . lock var ::= l 1 | l 2 | . . .
tag ::= t 1 | t 2 | . . . std var ::= v 1 | v 2 | . . .
expr ::= std var | constant | operator(expr, expr, . . ., expr)

stmt ::= skip | stmt; stmt | std var := expr | std var := havoc()

| if (expr) stmt else stmt | while (expr) stmt | std var := input(tag)

| output(tag, expr) | lock(lock var) | unlock(lock var)

| signal(cond var) | await(cond var) | reset(cond var) | yield

Fig. 2: Syntax of W
Semantics. We begin by defining the semantics of a single thread inW, and then
extend the definition to concurrent non-preemptive and preemptive semantics.
Single-thread semantics. A program state is given by ⟨V,P⟩ where V is a valua-
tion of all program variables, and P is the statement that remains to be executed.
Let us fix a thread identifier tid .

The operational semantics of a thread executing in isolation is given in Fig. 3.

A single execution step ⟨V,P⟩ αÐ→ ⟨V ′,P ′⟩ changes the program state from ⟨V,P⟩
to ⟨V ′,P ′⟩ while optionally outputting an observable symbol α. The absence of
a symbol is denoted using ε. Most rules from Fig. 3 are standard—the special
rules are the Havoc, Input, and Output rules.
1. Havoc: Statement l ∶ x ∶= havoc assigns x a non-deterministic value (say k)

and outputs the observable (tid ,havoc, k, l).
2. Input, Output: l ∶ x ∶= input(t) and l ∶ output(t, e) read and write values to

the channel t, and output (tid , input, k, l) and (tid ,output, k, l), where k is
the value read or written, respectively.

Intuitively, the observables record the sequence of non-deterministic guesses, as
well as the input/output interaction with the tagged channels.
Non-preemptive semantics. The non-preemptive semantics of W is presented
in the appendix (Fig. 6). The non-preemptive semantics ensures that a single

e[∀v ∶ v/V[v]] = k

⟨V, l ∶ x ∶= e⟩
ε
Ð→ ⟨V[x ∶= k], skip⟩

Assign
k ∈ N α = (tid ,havoc, k, l)

⟨V, l ∶ x ∶= havoc⟩
α
Ð→ ⟨V[x ∶= k], skip⟩

Havoc

e[∀v ∶ v/V[v]] = 0

⟨V, l ∶ while(e) s⟩
ε
Ð→ ⟨V, skip⟩

While1
e[∀v ∶ v/V[v]] ≠ 0

⟨V, l ∶ while(e) s⟩
ε
Ð→ ⟨V, s;while(e) s⟩

While2

e[∀v ∶ v/V[v]] ≠ 0

⟨V, l ∶ if e then s1 else s2⟩
ε
Ð→ ⟨V, s1⟩

If1
e[∀v ∶ v/V[v]] = 0

⟨V, l ∶ if e then s1 else s2⟩
ε
Ð→ ⟨V, s2⟩

If2

⟨V, s1⟩
α
Ð→ ⟨V

′, s′1⟩

⟨V, l ∶ s1; s2⟩
α
Ð→ ⟨V

′, s′1; s2⟩
Sequence

k ∈ N α = (tid , Input, k, l)

⟨V, l ∶ x ∶= input(t)⟩
α
Ð→ ⟨V[x ∶= k], skip⟩

Input

⟨V, l ∶ skip; s2⟩
ε
Ð→ ⟨V

′, s2⟩
Skip

e[∀v ∶ v/V[v]] = k α = (t,Output, k, l)

⟨V, l ∶ output(t, e)⟩
α
Ð→ ⟨V, skip⟩

Output

Fig. 3: Single thread semantics of W
thread from the program keeps executing as detailed above until one of the
following occurs: (a) the thread finishes execution, or (b) the thread encounters
a preemption-point (yield, lock, or await statement). A context-switch is then
possible.
Preemptive semantics. The preemptive semantics of a program is obtained from
the non-preemptive semantics by relaxing the condition on context-switches, and
allowing context-switches at all program points (see Fig. 7 in the appendix).

3.1 Problem statement

A non-preemptive observation sequence of a program C is a sequence α0 . . . αk
if there exist program states Spre0 , Spost0 , . . .Sprek , Spostk such that according to

the non-preemptive semantics of W, we have: (a) for each 0 ≤ i ≤ k, ⟨Sprei ⟩ αkÐ→
⟨Sposti ⟩, (b) for each 0 ≤ i < k, ⟨Sposti ⟩ εÐ→∗⟨Sprei+1 ⟩, and (c) for the initial state Sι and

a final state (i.e., where all threads have finished execution) Sf , ⟨Sι⟩
εÐ→∗⟨Spre0 ⟩

and ⟨Spostk ⟩ εÐ→∗⟨Sf ⟩. Similarly, a preemptive observation sequence of a program C
is a sequence α0 . . . αk as above, with the non-preemptive semantics replaced with
preemptive semantics. We denote the sets of non-preemptive and preemptive
observation sequences of a program C by [[C]]NP and [[C]]P respectively.

We say that observation sequences α0 . . . αk and β0 . . . βk are equivalent if:
– The subsequences of α0 . . . αk and β0 . . . βk containing only symbols of the

form (tid , Input, k, l) and (tid ,Output, k, l) are equal, and
– For each thread identifier tid , the subsequences of α0 . . . αk and β0 . . . βk

containing only symbols of the form (tid ,Havoc, k, l) are equal.
Intuitively, observable sequences are equivalent if they have the same interaction
with the interface, and the same non-deterministic choices in each thread. For
sets of observable sequences O1 and O2, we write O1 ⊆ O2 to denote that each
sequence in O1 has an equivalent sequence in O2.

Given a concurrent program C and a synthesized program C′ obtained by
adding synchronization to C, the program C′ is preemption-safe w.r.t. C if

[[C]]NP ⊆ [[C′]]P . If C′ is preemption-safe w.r.t. C and [[C′]]P ⊆ [[C]]NP , then
C′ is preemption-equivalent to C.

We are now ready to state our synthesis problem. Given a concurrent program
C, the aim is to synthesizer program C′, by adding synchronization to C, such
that C′ is preemption-equivalent to C.

3.2 Language Inclusion Modulo an Independence Relation

We reduce the problem of checking if a synthesized solution is preemption-safe
w.r.t the original program to an automata-theoretic problem. We show later how
to achieve preemption-equivalence (Sec. 5).
Abstract semantics for W. We first define a single-thread abstract semantics
for W (Fig. 4),which tracks types of accesses (read or write) to each memory
location while abstracting away their values. Inputs/outputs to an external in-
terface are modeled as writes to a special memory location (dev). Even inputs
are modeled as writes because in our applications we cannot assume that reads
from the external interface are free of side-effects. Havocs become ordinary writes
to the variable they are assigned to. Every branch is taken non-deterministically
and tracked. The only constructs respected are the locks and condition variables.
The abstract program state consists of the valuations of the lock and condition
variables and the statement that remains to be executed. In the abstraction, ob-
servables are of the form (tid ,{read,write, exit, loop, then, else}, v, l) to observe ac-
cesses to memory locations (read/write) and to record non-deterministic branch-
ing choices (exit/loop/then/else). The latter are not associated with a variable,
denoted as .

In Fig. 4, the function Reads(tid , e, l) represents the sequence (tid , read, v1, l)⋅
. . . ⋅ (tid , read, vn, l) where v1...n ranges over all variables in e in the order they
are read if e is evaluated.

α = Reads(tid , e, l) ⋅ (tid ,write, x, l)

⟨V, l ∶ x ∶= e⟩
α
Ð→ ⟨V, skip⟩

Assign
α = (tid ,write, x, l)

⟨V, l ∶ x ∶= havoc⟩
α
Ð→ ⟨V, skip⟩

Havoc

α = Reads(tid , e, l) ⋅ (tid , exit, , l)

⟨V, l ∶ while(e) s⟩
α
Ð→ ⟨V, skip⟩

While1
α = Reads(tid , e, l) ⋅ (tid , loop, , l)

⟨V, l ∶ while(e) s⟩
α
Ð→ ⟨V, s;while(e) s⟩

While2

α = Reads(tid , e, l) ⋅ (tid , then, , l)

⟨V, l ∶ if e then s1 else s2⟩
α
Ð→ ⟨V, s1⟩

If1
α = Reads(tid , e, l) ⋅ (tid , else, , l)

⟨V, l ∶ if e then s1 else s2⟩
α
Ð→ ⟨V, s2⟩

If2

⟨V, s1⟩
α
Ð→ ⟨V

′, s′1⟩

⟨V, l ∶ s1; s2⟩
α
Ð→ ⟨V

′, s′1; s2⟩
Sequence

α = (tid ,write,dev, l) ⋅ (tid ,write, x, l)

⟨l ∶ x ∶= input(t)⟩
α
Ð→ ⟨skip⟩

Input

⟨V, l ∶ skip; s2⟩
ε
Ð→ ⟨V

′, s2⟩
Skip

α = Reads(e) ⋅ (tid ,write,dev, l)

⟨V, l ∶ output(t, e)⟩
α
Ð→ ⟨V, skip⟩

Output

Fig. 4: Single thread abstract semantics of W
As with the concrete semantics of W, we can define the non-preemptive and

preemptive observable sequences for abstract semantics. For a concurrent pro-
gram C, we denote the sets of abstract preemptive and non-preemptive observable
sequences by [[C]]Pabs and [[C]]NPabs , respectively.

Abstract observation sequences α0 . . . αk and β0 . . . βk are equivalent if:
– For each thread tid the subsequences of α0 . . . αk and β0 . . . βk containing

only symbols of the form (tid , a, v, l) are equal,
– For each variable v, the subsequences of α0 . . . αk and β0 . . . βk containing

only write symbols (of the form (tid ,write, v, l)) are equal, and
– For each variable v, the multisets of symbols of the form (tid , read, v, l) be-

tween any two write symbols, as well as before the first write symbol and
after the last write symbol are identical.

We first show that the abstract semantics is sound w.r.t. preemption-safety.

Theorem 1. Given concurrent program C and a synthesized program C′ ob-
tained by adding synchronization to C, [[C′]]Pabs ⊆ [[C]]NPabs ⇒ [[C′]]P ⊆ [[C]]NP .

Abstract semantics to automata. An NFA A is a tuple (Q,Σ,∆,Qι, F)
where Σ is a finite alphabet, Q,Qι, F are finite sets of states, initial states and
final states, respectively and ∆ is a set of transitions. A word σ0 . . . σk ∈ Σ∗ is
accepted by A if there exists a sequence of states q0 . . . qk+1 such that q0 ∈ Qι and
qk+1 ∈ F and ∀i ∶ (qi, σi, qi+1) ∈ ∆. The set of all words accepted by A is called
the language of A and is denoted L(A).

Given a program C, we can construct automata A([[C]]NPabs) and A([[C]]Pabs)
that accept exactly the observable sequences under the respective semantics.
We describe their construction informally. Each automaton state is a program
state of the abstract semantics and the alphabet is the set of abstract observable
symbols. There is a transition from one state to another on an observable symbol
iff the program can execute one step under the corresponding semantics to reach
the other state while outputting the observable symbol.
Language inclusion modulo an independence relation. Let I be a non-
reflexive, symmetric binary relation over an alphabet Σ. We refer to I as the
independence relation and to elements of I as independent symbol pairs. We
define a symmetric binary relation ≈ over words in Σ∗: for all words σ,σ′ ∈ Σ∗

and (α,β) ∈ I, (σ ⋅ αβ ⋅ σ′, σ ⋅ βα ⋅ σ′) ∈ ≈. Let ≈t denote the reflexive transitive
closure of ≈.5 Given a language L over Σ, the closure of L w.r.t. I, denoted
CloI(L), is the set {σ ∈ Σ∗∶ ∃σ′ ∈ L with (σ,σ′) ∈ ≈}. Thus, CloI(L) consists of
all words that can be obtained from some word in L by repeatedly commuting
adjacent, independent symbol pairs from I.

Definition 1 (Language inclusion modulo an independence relation).
Given NFAs A,B over a common alphabet Σ and an independence relation I
over Σ, the language inclusion problem modulo I is: L(A) ⊆ CloI(L(B))?

We reduce preemption-safety under the abstract semantics to language
inclusion modulo an independence relation. The independence relation I
we use is defined on the set of abstract observable symbols as follows:
((tid , a, v, l), (tid ′, a′, v′, l′)) ∈ I iff: (a) tid ≠ tid ′, and either (b) v ≠ v′ or
(c) a ≠ write ∧ a′ ≠ write.

5 The equivalence classes of ≈t are Mazurkiewicz traces.

Proposition 1. Given concurrent programs C and C′, [[C′]]Pabs ⊆ [[C]]NPabs iff
L(A([[C′]]Pabs)) ⊆ CloI(L(A([[C]]NPabs))).

4 Checking Language Inclusion

We first focus on the problem of language inclusion modulo an independence
relation (Definition 1). This question corresponds to preemption-safety (Thm. 1,
Prop. 1) and its solution drives our synchronization synthesis (Sec. 5).

Theorem 2. For NFAs A,B over alphabet Σ and an independence relation I ⊆
Σ ×Σ, L(A) ⊆ CloI(L(B)) is undecidable [1].

Fortunately, a bounded version of the problem is decidable. Recall the rela-
tion ≈ over Σ∗ from Sec. 3.2. We define a symmetric binary relation ≈i over Σ∗:
(σ,σ′) ∈ ≈i iff ∃(α,β) ∈ I: (σ,σ′) ∈ ≈, σ[i] = σ′[i + 1] = α and σ[i + 1] = σ′[i] = β.
We next define a symmetric binary relation ≍ over Σ∗: (σ,σ′) ∈ ≍ iff ∃σ1, . . . , σt:
(σ,σ1) ∈ ≈i1 , . . . , (σit , σ′) ∈ ≈it+1 and i1 < . . . < it+1. Let ≍k denote the k-
composition of ≍ with itself. Given a language L over Σ, we use Clok,I(L) to
denote the set {σ ∈ Σ∗ ∶ ∃σ′ ∈ L with (σ,σ′) ∈ ≍k}. In other words, Clok,I(L) con-
sists of all words which can be generated from L using a finite-state transducer
that remembers at most k symbols of its input words in its states.

Definition 2 (Bounded language inclusion modulo an independence
relation). Given NFAs A,B over Σ, I ⊆ Σ × Σ and a constant k > 0, the
k-bounded language inclusion problem modulo I is: L(A) ⊆ Clok,I(L(B))?

Theorem 3. For NFAs A,B over Σ, I ⊆ Σ ×Σ and a constant k > 0, L(A) ⊆
Clok,I(L(B)) is decidable.

We present an algorithm to check k-bounded language inclusion modulo I,
based on the antichain algorithm for standard language inclusion [8].
Antichain algorithm for language inclusion. Given a partial order (X,⊑),
an antichain over X is a set of elements of X that are incomparable w.r.t. ⊑.
In order to check L(A) ⊆ CloI(L(B)) for NFAs A = (QA,Σ,∆A,Qι,A, FA) and
B = (QB ,Σ,∆B ,Qι,B , FB), the antichain algorithm proceeds by exploring A
and B in lockstep. While A is explored nondeterministically, B is determinised
on the fly for exploration. The algorithm maintains an antichain, consisting of
tuples of the form (sA, SB), where sA ∈ QA and SB ⊆ QB . The ordering relation
⊑ is given by (sA, SB) ⊑ (s′A, S′B) iff sA = s′A and SB ⊆ S′B . The algorithm also
maintains a frontier set of tuples yet to be explored.

Given state sA ∈ QA and a symbol α ∈ Σ, let succα(sA) denote {s′A ∈ QA ∶
(sA, α, s′A) ∈ ∆A}. Given set of states SB ⊆ QB , let succα(SB) denote {s′B ∈
QB ∶ ∃sB ∈ SB ∶ (sB , α, s′B) ∈ ∆B}. Given tuple (sA, SB) in the frontier set, let
succα(sA, SB) denote {(s′A, S′B) ∶ s′A ∈ succα(sA), S′B = succα(sB)}.

In each step, the antichain algorithm explores A and B by computing α-
successors of all tuples in its current frontier set for all possible symbols α ∈ Σ.
Whenever a tuple (sA, SB) is found with sA ∈ FA and SB /⊆ FB , the algorithm

reports a counterexample to language inclusion. Otherwise, the algorithm up-
dates its frontier set and antichain to include the newly computed successors
using the two rules enumerated below. Given a newly computed successor tuple
p′:
– Rule 1: if there exists a tuple p in the antichain with p ⊑ p′, then p′ is not

added to the frontier set or antichain,
– Rule 2: else, if there exist tuples p1, . . . , pn in the antichain with p′ ⊑
p1, . . . , pn, then p1, . . . , pn are removed from the antichain.

The algorithm terminates by either reporting a counterexample, or by declaring
success when the frontier becomes empty.
Antichain algorithm for k-bounded language inclusion modulo I. This
algorithm is essentially the same as the standard antichain algorithm, with the
automaton B above replaced by an automaton Bk,I accepting Clok,I(L(B)). The
setQBk,I

of states of Bk,I consists of triples (sB , η1, η2), where sB ∈ QB and η1, η2
are k-length words over Σ. Intuitively, the words η1 and η2 store symbols that
are expected to be matched later along a run. The set of initial states of Bk,I is
{(sB ,∅,∅) ∶ sB ∈ IB}. The set of final states of Bk,I is {(sB ,∅,∅) ∶ sB ∈ FB}.
The transition relation ∆Bk,I

is constructed by repeatedly applying the following
rules, in order, for each state (sB , η1, η2) and each symbol α. In what follows,
η[∖i] denotes the word obtained from η by removing its ith symbol.
1. Pick a new s′B such that ∃β ∈ Σ: (sB , β, s′B) ∈∆B

2. (a) If ∀i: η1[i] ≠ α and α is independent of all symbols in η1,
η′2 ∶=η2 ⋅ α and η′1 ∶=η1,

(b) else, if ∃i: η1[i] = α and α is independent of all symbols in η1 prior to i,
η′1 ∶=η1[∖i] and η′2 ∶=η2

(c) else, go to 1
3. (a) If ∀i: η′2[i] ≠ β and β is independent of all symbols in η′2,

η′1 ∶=η′1 ⋅ β,
(b) else, if ∃i: η′2[i] = β and β is independent of all symbols in η′2 prior to i,

η′2 ∶=η′2[∖i]
(c) else, go to 1

4. Add ((sB , η1, η2), α, (s′B , η′1, η′2)) to ∆Bk,I
and go to 1.

Example 1. In Fig. 5, we have an NFA B with L(B) = {αβ,β}, I = {(α,β)} and
k = 1. The states of Bk,I are triples (q, η1, η2), where q ∈ QB and η1, η2 ∈ {∅, α, β}.
We explain the derivation of a couple of transitions of Bk,I . The transition shown
in bold from (q0,∅,∅) on symbol β is obtained by applying the following rules
once: 1. Pick q1 since (q0, α, q1) ∈∆B . 2(a). η′2 ∶= β, η′1 ∶= ∅. 3(a). η′1 ∶= α. 4. Add
((q0,∅,∅), β, (q1, α, β)) to ∆Bk,I

. The transition shown in bold from (q1, α, β)
on symbol α is obtained as follows: 1. Pick q2 since (q1, β, q2) ∈∆B . 2(b). η′1 ∶= ∅,
η′2 ∶= β. 3(b). η′2 ∶= ∅. 4. Add ((q1, α, β), β, (q2,∅,∅)) to ∆Bk,I

. It can be seen
that Bk,I accepts the language {αβ,βα,β} = Clok,I(B).

Proposition 2. Given k > 0, NFA Bk,I described above accepts Clok,I(L(B)).

We develop a procedure to check language inclusion modulo I by iteratively
increasing the bound k (see Algo. 1 in the appendix). The procedure is incre-

qostart

q1

q2

B:

α

β

β

qo,∅,∅start

q1,∅,∅ q2, β, α q2,∅,∅ q1, α, β

q2, β, α q2,∅,∅ q2,∅,∅ q2, α, β

B1,{(α,β)}:

α
α β

β

α β α β

Fig. 5: Example for illustrating construction of Bk,I for k = 1 and I = {(α,β)}.

mental: the check for k + 1-bounded language inclusion modulo I only explores
paths along which the bound k was exceeded in the previous iteration.

5 Synchronization Synthesis

We now present our iterative synchronization synthesis procedure, which is
loosely based on the synchronization synthesis procedure in [10]. The synthe-
sis procedure starts with the original program C and in each iteration generates
a candidate synthesized program C′. The candidate C′ is checked for preemption-
safety w.r.t. C under the abstract semantics, using our procedure for bounded
language inclusion modulo I. If C′ is found preemption-safe w.r.t. C under the
abstract semantics, the synthesis procedure outputs C′. Otherwise, an abstract
counterexample cex is obtained. The counterexample is analyzed to infer ad-
ditional synchronization to be added to C′ for generating a new synthesized
candidate.

The counterexample trace cex is a sequence of event identifiers:
tid0.l0; . . . ; tidn.ln, where each li is a location identifier. We first analyze the
neighborhood of cex, denoted nhood(cex), consisting of traces that are permu-
tations of the events in cex. Note that each trace corresponds to an abstract
observation sequence. Further note that preemption-safety requires the abstract
observation sequence of any trace in nhood(cex) to be equivalent to that of
some trace in nhood(cex) feasible under non-preemptive semantics. Let us de-
note traces in nhood(cex) that are feasible under preemptive semantics and do
not meet the preemption-safety requirement as bad. The goal of our counterex-
ample analysis is to characterize all bad traces in order to enable inference of
synchronization fixes.
Non-preemptive neighborhood. First, we generate all traces in nhood(cex)
that are feasible under non-preemptive semantics. We represent a single trace
π using an expression Φπ that capturing the ordering between non-independent
accesses to the same variable in π. Thus, Φπ is a Boolean combination of ordering
constraints between the events in cex. We represent all traces in nhood(cex) that
are feasible under non-preemptive semantics using the expression Φ = ⋁π Φπ. The
expression Φ acts as the correctness specification for traces in nhood(cex).

Example. Recall the counterexample trace from the running ex-
ample in Sec. 2: cex = T1.A;T2.A;T1.B;T1.C;T1.D;T2.B;T2.C;T2.D.
There are two trace in nhood(cex) that are feasible under non-
preemptive semantics: π1 = T1.A;T1.B;T1.C;T1.D;T2.A;T2.B;T2.C;T2.D
and π2 = T2.A;T2.B;T2.C;T2.D;T1.A;T1.B;T1.C;T1.D. We represent π1 as
Φ(π1) = {T1.A,T1.C,T1.D} < T2.D ∧ T1.D < {T2.A,T2.C,T2.D} ∧ T1.B < T2.B and
π2 as Φ(π2) = T2.D < {T1.A,T1.C,T1.D} ∧ {T2.A,T2.C,T2.D} < T1.D ∧ T2.B < T1.B.
The correctness specification is Φ = Φ(π1) ∨Φ(π2).
Counterexample generalization. We next build a quantifier-free first order
formula Ψ over the event identifiers in cex such that any model of Ψ corresponds
to a bad trace in nhood(cex). We iteratively enumerate models π of Ψ , building a
constraint ρ = Φ(π) for each model π, and generalizing each ρ into ρg to represent
a larger set of bad traces (for more details see [10]).
Example. Our trace cex from Sec. 2 would be generalized to T2.A < T1.D∧ T1.D <
T2.D. Any trace that fulfills this constraint is bad.
Inferring fixes. From each generalized formula ρg described above, we infer
possible synchronization fixes to eliminate all bad traces satisfying ρg. The key
observation we exploit is that common concurrency bugs often show up in our
formulas as simple patterns of ordering constraints between events. For example,
the pattern tid1.l1 < tid2.l2 ∧ tid2.l

′

2 < tid1.l
′

1 indicates an atomicity violation
and can be rewritten into lock(tid1.[l1 ∶ l′1], tid2.[l2 ∶ l′2]). The patterns we
exploit are similar to those in [10] and additional rewrite rules based on such
patterns are presented in Appendix D. This list includes inference of locks and
reordering of notify statements.
Example. The generalized constraint T2.A < T1.D ∧ T1.D < T2.D matches the lock
rule and yields lock(T2.[A ∶ D],T1.[D ∶ D]). Since the lock involves events in the
same function, the lock is merged into a single lock around instructions A and D in
open dev abs. This lock is not sufficient to make the program preemption-safe.
Another iteration of the synthesis procedure generates another counterexample
for analysis and synchronization inference.
Preserving traces. Our synthesis procedure will yield a program C′ that is
preemption-safe w.r.t. C. To ensure C′ and C are also preemption-equivalent, we
restrict the placement of synthesized locks and reordering of notify statements
syntactically — we do not permit the placement of locks and reordering across
preemption points (yield, lock, await). If such a lock is synthesized, then it is
unlocked before the preemption point and locked again afterwards.

Proposition 3. If our synthesis procedure generates a program C′, then C′ is
preemption-equivalent to C.

6 Implementation and Evaluation

We implemented our synthesis procedure in Liss. Liss is comprised of 5000
lines of C++ code and uses Clang/LLVM and Z3 as libraries. Liss implements
the synthesis method presented in this paper with several optimizations. First,
we take advantage of the fact that language inclusion violations can often be

detected by exploring only a small fraction of the input automata by constructing
A([[C]]NPabs) and A([[C]]Pabs) on the fly. Second, we only treat locks and awaits as
preemption points if they cannot proceed (i.e., the lock is held by another thread
or the wait condition does not hold). This optimization reduces the number
of preemption points in the non-preemptive automaton and thus significantly
speeds up the antichain algorithm. The trade-off is that some of the synthesized
program might only be preemption-safe, not preemption-equivalent.

Our prototype implementation has several limitations. First, Liss uses func-
tion inlining and therefore cannot handle recursive programs. Second, we do not
implement any form of alias analysis, which can lead to unsound abstractions.
For example, we abstract statements of the form “*x = 0” as writes to variable
x, while in reality other variables can be affected due to pointer aliasing. We
sidestep this issue by manually massaging input programs to eliminate aliasing.

Finally, Liss implements a simplistic lock insertion strategy. Inference rules
in Figure 8 produce locks expressed as sets of instructions that should be inside a
lock. Placing the actual lock and unlock instructions in the C code is challenging
because the instructions in the trace may span several basic blocks or even
functions. We follow a structural approach where we find the innermost common
parent block for the first and last instructions of the lock and place the lock and
unlock instruction there. This does not work if the code has gotos or returns
that could cause control to jump over the unlock statement. At the moment we
simply report such situations to the user. Furthermore, Liss currently does not
implement the technique to ensure that all non-preemptive traces are preserved,
and therefore Prop. 3 does not hold.

We evaluate our synthesis method against the following criteria: (1) Effec-
tiveness of synthesis from implicit specifications; (2) Efficiency of the proposed
synthesis procedure; (3) Precision of the proposed coarse abstraction scheme on
real-world programs.
Implicit vs explicit synthesis In order to evaluate the effectiveness of
synthesis from implicit specifications, we apply Liss to the set of benchmarks
from our earlier work on the ConRepair tool for synthesis using assertions [4]
(Table 1). The set includes microbenchmarks modeling typical concurrency bug
patterns in Linux drivers and the usb-serial macrobenchmark, which mod-
els a complete synchronization skeleton of the USB-to-serial adapter driver. We
preprocess these benchmarks by eliminating assertions used as explicit specifi-
cations for synthesis. In addition, we replace statements of the form assume(v)

with await(v), redeclaring all variables v used in such statements as condition
variables. This is necessary as our program semantics only allows waiting on
condition variables.

We use Liss to synthesize a preemption-equivalent version of each bench-
mark. This method is based on the assumption that the benchmark is correct
under non-preemptive scheduling and bugs can only arise due to preemptive
scheduling. We discovered a single benchmark that violated this assumption,
i.e., contained a race that manifested itself under cooperative scheduling, and
hence Liss did not detect this race. Liss was able to detect and fix all other
known races without relying on assertions. Furthermore, Liss detected a new

race in the usb-serial family of benchmarks, which was not detected by Con-
Repair due to a missing assertion.

Performance and precision. ConRepair uses CBMC for verification and
counterexample generation. Due to the coarse abstraction we use, both steps are
much cheaper with Liss. For example, verification of usb-serial.c, which was
the most complex in our set of benchmarks, took Liss 82 seconds, whereas it
took ConRepair 20 minutes [4].

The loss of precision due to abstraction may cause the inclusion check to
return a counterexample that is spurious in the concrete program, leading to
unnecessary synchronizations being synthesized. On our existing benchmarks
this only occurred once in the usb-serial driver, where abstracting away the
return value of a function led to an infeasible trace. We refined the abstraction
manually by introducing a condition variable to model the return value.

While this result is encouraging, synthetic benchmarks are not necessarily
representative of real-world performance. We therefore implemented another set
of benchmarks based on a complete Linux driver for the TI AR7 CPMAC Ether-
net controller. The benchmark was constructed as follows. We manually prepro-
cessed driver source code to eliminate pointer aliasing. We combined the driver
with a model of the OS API and the software interface of the device written in
C. We modeled most OS API functions as writes to a special memory location,
which ensures that the synthesized program will respect the ordering of API in-
vocations. Groups of unrelated functions are modeled using separate locations.
Slightly more complex models were required for API functions that affect thread
synchronization. For example, the free irq function, which disables the driver’s
interrupt handler, blocks waiting for any outstanding interrupts to finish. Drivers
can rely on this behavior to avoid races. We introduce a condition variable to
model this synchronization. Similarly, most device accesses are modeled as writes
to a special ioval variable. The only part of the device that required a more
accurate model is its interrupt enabling logic, which affects the behavior of the
driver’s interrupt handler thread.

Our original model consisted of eight threads. Liss ran out of memory on
this model, so we simplified it to five threads by eliminating parts of driver
functionality. Nevertheless, we believe that the resulting model represents the
most complex synchronization synthesis case study, based on real-world code,
reported in the literature.

The CPMAC driver used in this case study did not contain any known con-
currency bugs, so we artificially simulated five typical race conditions that com-
monly occur in drivers of this type [3]. Liss was able to detect and automatically
fix each of these defects (bottom part of Table 1). We only encountered two pro-
gram locations where manual abstraction refinement was necessary.

We conclude that (1) our coarse abstraction is highly precise in practice;
(2) manual effort involved in synchronization synthesis can be further reduced
via automatic abstraction refinement; (3) additional work is required to improve
the performance of our method to be able to handle real-world systems without
simplification. In particular, our analysis indicates that significant speed-up can

Name LOC #Threads Iterations max. Time
Bound Bug Finding Synthesis Verification

ConRepair benchmarks [4]

ex1.c 18 2 1 1a <1s <1s <1s
ex2.c 23 2 1 1a <1s <1s <1s
ex3.c 37 2 1 1a <1s <1s <1s
ex5.c 42 2 3 1a <1s <1s 2s
dv1394.c 37 2 1 1a <1s <1s <1s
em28xx.c 20 2 1 1a <1s <1s <1s
f acm.c 80 3 1 1a <1s <1s <1s
i915 irq.c 17 2 1 1a <1s <1s <1s
ipath.c 23 2 1 1a <1s <1s <1s
iwl3945.c 26 3 1 1a <1s <1s <1s
md.c 35 2 1 1a <1s <1s <1s
myri10ge.c 60 2 2 1a <1s <1s <1s
usb-serial.bug1.c 357 7 2 1a 4.2s 5.1s 11.5s
usb-serial.bug2.c 355 7 1 3 5.0s 7.4s 3.1s
usb-serial.bug3.c 352 7 1 4 36.2s 117.8s 1.3s
usb-serial.bug4.c 351 7 1 4 88.9s 116.1s 3.0s

usb-serial.cb 357 7 1 4 - - 82.1s

CPMAC driver benchmark

cpmac.bug1.c 544c 5 1 1a 7.2s 41.6s 188.9s
cpmac.bug2.c 544c 5 1 1a 9.7s 45.7s 79.5s
cpmac.bug3.c 539c 5 1 1a 13.8s 21.4s 55.8s
cpmac.bug4.c 545c 5 2 1a 17.6s 119.8s 878.0s
cpmac.bug5.c 544c 5 1 1a 1.6s 89.1s 111.2s

cpmac.cb 545c 5 1 1a 1.7s 124.9s 55.4s
a initial bound b bug-free example

c additionally, the OS and device models contain 731 lines of code

Table 1: Experiments

be obtained by incorporating a partial order reduction scheme into the language
inclusion algorithm.

7 Conclusion

We believe our approach and the encouraging experimental results open sev-
eral directions for future research. We plan to investigate abstraction-refinement
techniques for the abstraction that we presented that tracks only memory ac-
cesses. Combining the abstraction refinement, verification (checking language
inclusion modulo an independence relation), and synthesis (inserting synchro-
nization) more tightly could bring improvements in efficiency. Finally, we plan
to further develop our prototype tool and apply it to other domains of concurrent
systems code.

References

1. Bertoni, A., Mauri, G., Sabadini, N.: Equivalence and membership problems for
regular trace languages. In: Automata, Languages and Programming, pp. 61–71.
Springer (1982)

2. Bloem, R., Hofferek, G., Könighofer, B., Könighofer, R., Außerlechner, S., Spörk,
R.: Synthesis of synchronization using uninterpreted functions. In: FMCAD. pp.
35–42 (2014)

3. Černý, P., Henzinger, T., Radhakrishna, A., Ryzhyk, L., Tarrach, T.: Efficient
synthesis for concurrency by semantics-preserving transformations. In: CAV. pp.
951–967 (2013)

4. Černý, P., Henzinger, T., Radhakrishna, A., Ryzhyk, L., Tarrach, T.: Regression-
free synthesis for concurrency. In: CAV, pp. 568–584 (2014), https://github.com/
thorstent/ConRepair

5. Cherem, S., Chilimbi, T., Gulwani, S.: Inferring locks for atomic sections. In: PLDI.
pp. 304–315 (2008)

6. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS. pp. 168–176 (2004), http://www.cprover.org/cbmc/

7. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. Springer (1982)

8. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: A new algo-
rithm for checking universality of finite automata. In: CAV. pp. 17–30. Springer
(2006)

9. Deshmukh, J., Ramalingam, G., Ranganath, V., Vaswani, K.: Logical Concurrency
Control from Sequential Proofs. In: Programming Languages and Systems, pp.
226–245 (2010)

10. Gupta, A., Henzinger, T., Radhakrishna, A., Samanta, R., Tarrach, T.: Succinct
representation of concurrent trace sets. In: POPL15. pp. 433–444 (2015)

11. Jin, G., Zhang, W., Deng, D., Liblit, B., Lu, S.: Automated Concurrency-Bug
Fixing. In: OSDI, pp. 221–236 (2012)

12. Ryzhyk, L., Chubb, P., Kuz, I., Heiser, G.: Dingo: Taming device drivers. In: Eu-
rosys (Apr 2009)

13. Sadowski, C., Yi, J.: User evaluation of correctness conditions: A case study of
cooperability. In: PLATEAU. pp. 2:1–2:6 (2010)

14. Solar-Lezama, A., Jones, C., Bod́ık, R.: Sketching concurrent data structures. In:
PLDI. pp. 136–148 (2008)

15. Vechev, M., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchronization.
In: POPL. pp. 327–338 (2010)

https://github.com/thorstent/ConRepair
https://github.com/thorstent/ConRepair
http://www.cprover.org/cbmc/

A Semantics of preemptive and non-preemptive
execution

In Fig. 6 we present the non-preemtive semantics. The preemtive semantics con-
sist of the rules of the non-preemtive semantics and the single rule in Fig. 7.

We denote the state of a program as ⟨V, ctid, (P1, . . . ,Pn)⟩ where (a) Valu-
ation V is a valuation of all program variables. Further, for each lock l, we have
that V[l] holds the identifier of the thread that currently holds the lock, or 0
if no thread holds the lock. Similarly, for a condition variable c, we have that
V[c] = 0 if the variable is reset and V[c] = 1 otherwise. (b) The value ctid is the
thread identifier of the current executing thread or 0 in the initial state, and
(c) Program fragments P1 to Pn are the parts of the program to be executed by
T1 to Tn, respectively.

The premise in rule Seq refers to the single-threaded semantics in Fig. 3.

⟨V,Pi⟩
α
Ð→ ⟨V

′,P ′i⟩ ctid = i

⟨V, ctid, (. . . ,Pi, . . .)⟩
α
Ð→ ⟨V, ctid, (. . . ,P ′i , . . .)⟩

Seq

ctid = i Pi = lock(l) P ′i = yield; Pi

⟨V, ctid, (. . . ,Pi, . . .)⟩
ε
Ð→ ⟨V, ctid, (. . . ,P ′i , . . .)⟩

YieldLock

V(l) ∈ {0, i} ctid = i

⟨V, ctid, (P1, . . . , lock(l), . . . ,Pn)⟩
ε
Ð→ ⟨V[l ∶= i], ctid, (P1, . . . , skip, . . . ,Pn)⟩

Lock

V(l) = ctid ctid = i

⟨V, ctid, (P1, . . . ,unlock(l), . . . ,Pn)⟩
ε
Ð→ ⟨V[l ∶= 0], ctid, (P1, . . . , skip, . . . ,Pn)⟩

Unlock

ctid = i Pi = await(c) P ′i = yield; Pi

⟨V, ctid, (. . . ,Pi, . . .)⟩
ε
Ð→ ⟨V, ctid, (. . . ,P ′i , . . .)⟩

YieldAwait

V(c) = 1 ctid = i

⟨V, ctid, (P1, . . . , await(c), . . . ,Pn)⟩
ε
Ð→ ⟨V, ctid, (P1, . . . , skip, . . . ,Pn)⟩

Await

ctid = i

⟨V, ctid, (P1, . . . , signal(c), . . . ,Pn)⟩
ε
Ð→ ⟨V[c ∶= 1], ctid, (P1, . . . , skip, . . . ,Pn)⟩

Signal

ctid = i

⟨V, ctid, (P1, . . . , signal(c), . . . ,Pn)⟩
ε
Ð→ ⟨V[c ∶= 0], ctid, (P1, . . . , skip, . . . ,Pn)⟩

Reset

1 ≤ ctid′ ≤ n ctid = i Pi = skip

⟨V, ctid, (P1, . . . ,Pi, . . . ,Pn)⟩
ε
Ð→ ⟨V, ctid′, (P1, . . . ,Pi, . . . ,Pn)⟩

DescheduleSkip

1 ≤ ctid′ ≤ n ctid = i Pi = skip

⟨V, ctid, (P1, . . . , yield, . . . ,Pn)⟩
ε
Ð→ ⟨V, ctid′, (P1, . . . , skip, . . . ,Pn)⟩

Yield

Fig. 6: Operational non-preemptive semantics

1 ≤ ctid′ ≤ n

⟨V, ctid, (P1, . . . ,Pn)⟩
ε
Ð→ ⟨V, ctid′, (P1, . . . ,Pn)⟩

DeschedulePreempt

Fig. 7: From non-preemptive semantics to preemptive semantics

B Proof of Thm. 1

Theorem 1. Given concurrent program C and a synthesized program C′ ob-
tained by adding synchronization to C, [[C′]]Pabs ⊆ [[C]]NPabs ⇒ [[C′]]P ⊆ [[C]]NP .

Proof. Let us assume [[C′]]Pabs ⊆ [[C]]NPabs .
Let σ′ be a concrete observation sequence in [[C′]]P . Let σ′abs be the abstract

observation sequence in [[C′]]Pabs corresponding to σ′. Then, there exists σabs ∈
[[C]]NPabs such that σabs is equivalent to σ′abs.

Observe that if two abstract observation sequences — σ′abs from [[C′]]Pabs and
σabs from [[C]]NPabs — are equivalent, then they correspond to executions over
the same observable control-flow paths with the same data-flow into havoc and
input/output statements. Hence, σ′abs and σabs either both map back to infeasible
concrete observation sequences, or both map back to feasible, equivalent concrete
observation sequences.

Since σ′abs maps back to a feasible concrete observation sequence σ′ by def-
inition, σabs also maps back to a feasible concrete observation sequence, say σ,
such that σ is equivalent to σ′. Hence, we have [[C′]]P ⊆ [[C]]NP . ⊓⊔

C Language Inclusion Procedure

The algorithm for k-bounded language inclusion modulo I is presented as func-
tion Inclusion in Algo. 1 (ignore Lines 22-25 for now) . The function proceeds
exactly as the standard antichain algorithm outlined earlier. It explores A non-
deterministically as before, and Bk,I is determinised on the fly for exploration.
The antichain and frontier sets consist of tuples of the form (sA, SBk,I

), where

sA ∈ QA and SBk,I
⊆ QB ×Σk ×Σk. Each tuple in the frontier set is first checked

for equivalence w.r.t. acceptance (Line 18). If this check fails, the function re-
ports language inclusion failure (Line 18). If this check succeeds, the successors
are computed (Line 20). If a successor satisfies Rule 1, it is ignored (Line 21),
otherwise it is added to the frontier (Line 26) and the antichain (Line 27). During
the update of the antichain the algorithm ensures that its invariant is preserved
according to rule 2. The frontier also stores a sequence of symbols that lead to a
particular tuple of states in order to return a counter-example trace if language
inclusion fails.

We develop a procedure to check language inclusion modulo I by iteratively
increasing the bound k (see Algo. 1 in the appendix). The procedure is incremen-
tal: the check for k+1-bounded language inclusion modulo I only explores paths
along which the bound k was exceeded in the previous iteration. Given a newly
computed successor (s′A, S′Bk,I

) for an iteration with bound k, if there exists

some (sB , η1, η2) in S′Bk,I
such that the length of η1 or η2 exceeds k (Line 22),

we remember the tuple (s′A, S′Bk,I
) in the set overflow (Line 23). We continue

exploration of Bk,I from all states (sB , η1, η2) with ∣η1∣ ≤ k ∧ ∣η2∣ ≤ k, but mark
them dirty. If we find a counter-example to language inclusion we return it and
test if it is spurious (Line 8). It may be a spurious counter-example caused be-
cause we removed states exceeding k. In that case we increase the bound to k+1,
remove all dirty items from the antichain and frontier (lines 10-11), and add the
items from the overflow (Line 12). Intuitively this will undo all exploration from
the point(s) the bound was exceeded and restarts from that/those point(s).

To test if a particular counterexample is spurious, we invoke the language
inclusion procedure, replacing the preemptive automaton with the exact trace
(trace automaton) and allowing an infinite bound. This is fast and guaranteed
to terminate as the trace automaton does not have loops. We found that this
optimization helps find a valid counterexample faster.

Algorithm 1 Checking language inclusion modulo I

Require: Automata A = (QA,ΣA,∆A, IA, FA) and B = (QB ,ΣB ,∆B , IB , FB)

Ensure: true only if L(A) ⊆ CloI(L(B)), false only if L(A) /⊆ CloI(L(B))

1: frontier ← {(sA,{(IB ,∅,∅)},∅) ∶ sA ∈ IA}
2: All tuples in frontier are not dirty
3: antichain ← frontier
4: overflow ← ∅

5: k ← 2
6: while true do
7: cex← inclusion(k)
8: if cex ≠ true ∧ cex is spurious then
9: k ← k + 1

10: frontier ← {(sA, SBk,I) ∈ frontier ∶ SBk,I not dirty} ∪ overflow
11: antichain ← {(sA, SBk,I) ∈ antichain ∶ SBk,I not dirty} ∪ overflow
12: overflow ← ∅

13: else
14: return cex

15: function inclusion(k)
16: while frontier ≠ ∅ do
17: remove a tuple (sA, SBk,I , cex) from frontier
18: if sA ∈ FA ∧ (SBk,I ∩ FB) = ∅ then return cex

19: for all α ∈ Σ do
20: (s′A, S

′
Bk,I

) ← succα(sA, SBk,I)

21: if ∄p ∈ antichain ∶ p ⊑ (s′A, S
′
Bk,I

) then ▷ Rule 1

22: if ∃(sB , η1, η2) ∈ S
′
Bk,I

∶ ∣η1∣ > k ∨ ∣η2∣ > k then

23: if S′Bk,I
not dirty then overflow ← overflow ∪ {(s′A, S

′
Bk,I

)}

24: S′Bk,I
← {(sB , η1, η2) ∈ S

′
Bk,I

∶ ∣η1∣ ≤ k ∧ ∣η2∣ ≤ k}

25: Mark S′Bk,I
dirty

26: frontier ← frontier ∪ {(s′A, S
′
Bk,I

, cex ⋅ α)}

27: antichain ← antichain/{p ∶ S′Bk,I
⊑ p} ∪ {(s′A, S

′
Bk,I

)} ▷ Rule 2

28: return true

D Synchronization inference rules

The inference rules are applied as rewrite rules to the formula ρg obtained in
Sec. 5. Each rule requires a certain subexpression in ρg and rewrites it to a
synchronisation primitive. That means that a single ρg could possibly be solved
by one of several synchronization primitives.

The two lock rules fix atomicity violations and the reorder rule fixes ordering
violations. The Add.Lock rule captures a set of threads where thread 1 is
descheduled at or after location l1 and thread 2 is scheduled at or before l2.
Another context switch deschedules thread 2 at or after l′2 and schedules again
thread 1 at or before l′1. As this pattern is present in the generalized ρg this
context switch is necessary to make the trace bad. We can avoid this context
switch by adding the lock from the conclusion. The Add.Lock2 rules captures
the more general case where both, thread 2 interrupting thread 1 and thread 1
interrupting thread 2, are bad traces.

The Add.Reorder rule captures an ordering violation that can be fixed
by moving a signal() statement. Intuitively the await() statement is signaled too
early and thread 1 can start running in the preemtive semantics. In the non-
preemtive semantics thread 2 keeps running after a signal() statement until a
preemption point is reached.

ρg = tid1.l1 < tid2.l
′
2 ∧ tid2.l2 < tid1.l

′
1 ∧ ψ

lock(tid1.[l1 ∶ l
′
1], tid2.[l2 ∶ l

′
2]) ∨ ψ

Add.Lock

ρg = tid1.l1 < tid2.l2 ∧ tid2.l
′
2 < tid1.l

′
1 ∧ ψ

lock(tid1.[l1 ∶ l
′
1], tid2.[l2 ∶ l

′
2]) ∨ ψ

Add.Lock2

ρg = tid1.l
′
1 < tid2.l

′
2 ∧ ψ ∃tid1.l1, tid2.l2 ∶ tid1.l1 < tid1.l

′
1

tid2.l2 < tid2.l
′
2 tid1.l1 = await(c) tid2.l2 = signal(c)

reorder(tid2.l2, tid2.l
′
2) ∨ ψ

Add.Reorder

Fig. 8: Synchronization inference rules

	From Non-preemptive to Preemptive Scheduling using Synchronization Synthesis

