
For a Microkernel, a BIG Lock is fine !
Sean Peters, Adrian Danis, Kevin Elphinstone, 
Gernot Heiser 
 

NICTA and UNSW, Sydney, Australia 



©2015 Gernot Heiser, NICTA 2 

Approaches for Multicore Kernels 

APSys'15 

 Core 

User 
thread 

 Kernel 

User 
thread 

 Core  Core 

User 
thread 

User 
thread 

 Core 

 Kernel  Kernel 

 Core 

User 
thread 

 Kernel 

User 
thread 

 Core 

SMP 
big lock 

SMP 
fine-grained locks 

Multikernel 
no locks 

2 



©2015 Gernot Heiser, NICTA 3 

Multicore Kernel Trade-Offs 

Property Big Lock Fine-grained 
Locking 

Multikernel 

Data structures shared shared distributed 
Scalability poor good excellent 
Concurrency in 
kernel 

zero high zero 

Kernel 
complexity 

low high low 

Resource 
management 

centralised centralised distributed 

APSys'15 

 Core 

User 
threa
d 

 Kernel 

User 
threa
d 

 Core  Core 

User 
threa
d 

User 
threa
d 

 Core 

 Kernel  Kernel 

 Core 

User 
threa
d 

 Kernel 

User 
threa
d 

 Core 

3 

Really? 



©2015 Gernot Heiser, NICTA 4 

A Microkernel is NOT an Operating System! 

 Processor 

Device 
Driver Device 

Driver Device 
Driver 

NW 
Stack 

 seL4 microkernel (= context-switching engine) 

APSys'15 

Device 
Driver Device 

Driver File 
System 

Process 
Mgmt 

Memory 
Mgmt 

App App App 

VM 

Linux 

App App App 
Strong 

Isolation 

All device drivers, OS services 
are usermode processes 

IPC 

Controlled 
Communication 

4 



©2015 Gernot Heiser, NICTA 5 

Microkernel vs Linux Execution 

APSys'15 

10s of ms 10s of ms 

10s of ms 

App 

Kernel Linux 

10s of ms 10s of ms 

10s of ms 

App 

Server 

Microkernel 

Kernel 

0.1µs 
5 



©2015 Gernot Heiser, NICTA 6 

Cost of Locking: Round-Trip Intra-Core IPC 

n
o
n
e

B
K

L

fi
n
e

6
6
3

7
8
7

1
0

9
5

ARM A9 

 400

 600

 800

 1000

 1200
n
o
n
e

B
K

L

fi
n
e

R
T
M

C
y
c
le

s

6
6
1

7
2
6

8
4
6

8
3
1

x86 Haswell 

Cycles 

APSys'15 6 



©2015 Gernot Heiser, NICTA 7 

Microkernel Multicore Design 

Assertion 1: Minimise locks, not locked code 
•  Amount of locked code is small anyway, 100–200 instructions 
•  Corresponds to fine- to medium-grained locks in Linux 
•  Cost of locks is within an OoM of kernel execution time 
•  Kernel times are short ⇒ contention is low 

APSys'15 

What about 
many cores? 

7 



©2015 Gernot Heiser, NICTA 8 

Cache Line Migration Latencies 

APSys'15 

Core 
HW 
context 

HW 
context 

 L1 cache 

Core 
HW 
context 

HW 
context 

 L1 cache 

 L2/L3 cache 

 Main memory 

Core 
HW 
context 

HW 
context 

 L1 cache 

 L2/L3 cache 

Core 
HW 
context 

HW 
context 

 L1 cache 

10–20 
cycles 100–200 

cycles 

Data transfer takes 
longer than code 

execution! 

8 



©2015 Gernot Heiser, NICTA 9 

Microkernel Multicore Design 

Assertion 1: Minimise locks, not locked code 
•  Amount of locked code is small anyway, 100–200 instructions 
•  Corresponds to medium-grained locks in Linux 
•  Cost of locks is within an OoM of kernel execution time 
•  Kernel times are short ⇒ contention is low 

Assertion 2: Don’t share mirokernel data without shared cache 
•  Migrating only a few cache lines takes longer than rest of syscall 

APSys'15 9 



©2015 Gernot Heiser, NICTA 10 

seL4 Multicore Design: Clustered Multikernel 

APSys'15 

Core 
HW 
context 

HW 
context 

 L1 cache 

Core 
HW 
context 

HW 
context 

 L1 cache 

 L2/L3 cache 

 Main memory 

Core 
HW 
context 

HW 
context 

 L1 cache 

 L2/L3 cache 

Core 
HW 
context 

HW 
context 

 L1 cache 

 Kernel 

User 
thread 

User 
thread 

User 
thread 

User 
thread 

 Kernel 

User 
thread 

User 
thread 

User 
thread 

User 
thread 

Virtu-
al 
CPU 

Virtu-
al 
CPU 

Virtu-
al 
CPU 

Virtu-
al 
CPU 

Virtu-
al 
CPU 

Virtu-
al 
CPU 

Virtu-
al 
CPU 

Virtu-
al 
CPU 

 SMP Linux 

Still no 
concurrency 
in the kernel! 

10 



©2015 Gernot Heiser, NICTA 11 

Microkernel Multicore Design 

Assertion 1: Minimise locks, not locked code 
•  Amount of locked code is small anyway, 100–200 instructions 
•  Corresponds to medium-grained locks in Linux 
•  Cost of locks is within an OoM of kernel execution time 
•  Kernel times are short ⇒ contention is low 

Assertion 2: Don’t share mirokernel data without shared cache 
•  Migrating only a few cache lines takes longer than rest of syscall 

Assertion 3: Big lock will perform for closely-coupled cores 
•  Shared caches presently have moderate core counts 
•  Big lock in a well-designed microkernel will scale there 

APSys'15 11 



©2015 Gernot Heiser, NICTA 12 

Pathological Case: Intra-Core IPC Ping-Pong 

APSys'15 

 0

 10

 20

 30

 40

 50

 60

 1  2  3  4  5  6  7  8

T
h

ro
u

g
h

p
u

t 
(M

o
p

s
/s

e
c

)

Cores

x86none
BKL
fine

RTM

 0

 2

 4

 6

 1  2  3  4

Cores

ARM

12 



©2015 Gernot Heiser, NICTA 13 

Realistic Case: Syscall-Intensive Macrobenchmark 

seL4-based Server 

Core 0 

LWiP 

Redis D
riv

er
 

Core 1 

LWiP 

Redis 
Core n 

LWiP 

Redis … 

Load Generator 

Twemproxy 

Yahoo! Cloud Benchmark 

APSys'15 13 



©2015 Gernot Heiser, NICTA 14 

Realistic Case: Syscall-Intensive Macrobenchmark 

 0

 50

 100

 150

 200

 1  2  3  4  5  6  7  8

T
h
ro

u
g
h
p
u
t 
(k

o
p
s/

se
c)

Cores

Linux
BKL
Fine
RTM

APSys'15 14 

Network 
limited 



©2015 Gernot Heiser, NICTA 15 

Macrobenchark: Correct for Load 

APSys'15 

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1  2  3  4  5  6  7  8

X
p
u
t 
(k

o
p
s/

se
c)

Cores

Linux
BKL
Fine
RTM

15 

Throughput 
over  

CPU utilization 



©2015 Gernot Heiser, NICTA 16 

Microkernel Multicore Design 

Assertion 1: Minimise locks, not locked code 
•  Amount of locked code is small anyway, 100–200 instructions 
•  Corresponds to medium-grained locks in Linux 
•  Cost of locks is within an OoM of kernel execution time 
•  Kernel times are short ⇒ contention is low 

Assertion 2: Don’t share mirokernel data without shared cache 
•  Migrating only a few cache lines takes longer than rest of syscall 

Assertion 3: Big lock will perform for closely-couple cores 
•  Shared caches presently have moderate core counts 
•  Big lock in a well-designed microkernel will scale there 
•  Seems to work fine for 8 cores, should still work for 16 

APSys'15 16 



©2015 Gernot Heiser, NICTA 17 

Summary 

1.  Big lock fine-grained enough for a well-designed microkernel 
–  Short system calls ⇒ low contention 
–  Big lock performs as well as fine-grained for closely-coupled cores 
–  Complexity of fine-grained locking is not worth it! 

2.  Should not even try to share a kernel without shared caches 

http://seL4.systems 
 

gernot@nicta.com.au 

http://microkerneldude.wordpress.com 

@GernotHeiser 

 


