For a Microkernel, a BIG Lock isﬁne!

Sean Peters, Adrian Danis, Kevin Elphinstone,
Gernot Heiser

NICTA and UNSW, Sydney, Australia

LATROBE m‘,:v%gg}w‘)y % MONASH Universty

F €

/ ‘-': - o i o4
igsme UNSW - e

Trade &

Investment QUT . RMIT

univERsITY NI

‘GOVERNMENT

. JEN
Australian Government jxicP Queensland Dy o -
XY Government N UF JUEEN il canserA UTAS isiomSoney

Approaches for Multicore Kernels e

NICTA

SMP SMP Multikernel

big lock fine-grained locks no locks
User User CUser User CUser User
thread thread thread thread thread thread

E E E R

Core Core

Core Core

©2015 Gernot Heiser, NICTA 2 APSys'15

Multicore Kernel Trade-Offs

Oe

threa threa

3

Kernel @
® _0 o _o

threa threa

3

Kernel
G ® _0 o _o

NICTA

120 koo

Core Core

Data structures

Scalability
Concurrency in zero
kernel

Kernel low
complexity

Resource centralised
management

©2015 Gernot Heiser, NICTA 3

shared
good
high

high

centralised

distributed
excellent
Zero

low

distributed

APSys'15

A Microkernel is NOT an Operating System! O

All device drivers, OS services

VM
are usermode processes
App
Strong
Isolation
N Linux

File NW Device Process Memory App
System Stack Driver Mgmt Mgmt PP

e eaiie e ft
Processor W

Controlled
Communication

©2015 Gernot Heiser, NICTA

Microkernel vs Linux Execution 00

NICTA
- S0 FW\
Linux Kernel 10s of ms
B S 10sofms pw
Microkernel
Server 10s of ms

\ Kernel

©2015 Gernot Heiser, NICTA

\ 0.1us /

S APSys'15

Cost of Locking: Round-Trip Intra-Core IPC (1@

Cycles
1200

1000
800
600

©2015 Gernot Heiser, NICTA 6 APSys'15

Microkernel Multicore Design 00

Assertion 1: Minimise locks, not locked code NECTA

 Amount of locked code is small anyway, 100-200 instructions
« Corresponds to fine- to medium-grained locks in Linux
» Cost of locks is within an OoM of kernel execution time

« Kernel times are short = contention is low
@)

O

What about

many cores”?

©2015 Gernot Heiser, NICTA 7 APSys'15

Cache Line Migration Latencies ()@

NICTA

L1 cache

L1 cache L1 cache L1 cache

10-20
ycle

100-200

cycles®

L2/L3 cache L2/L3 cq

Data transfer takes
longer than code
execution!

Main memory

©2015 Gernot Heiser, NICTA 8 APSys'15

Microkernel Multicore Design (e

Assertion 1: Minimise locks, not locked code LA

« Amount of locked code is small anyway, 100-200 instructions
« Corresponds to medium-grained locks in Linux

* Cost of locks is within an OoM of kernel execution time

« Kernel times are short = contention is low

Assertion 2: Don’t share mirokernel data without shared cache
« Migrating only a few cache lines takes longer than rest of syscall

©2015 Gernot Heiser, NICTA 9 APSys'15

selL4 Multicore Design: Clustered Multikernel

NICTA

Virtu- Virtu- Virtu- Virtu- Virtu- Virtu- Virtu- Virtu-
al al al al al al al al
CPU CPU CPU CPU CPU CPU CPU CPU

[[

Still no

o o in the kernel!
L2/L3 cache L2/L3 cache

Main memory

concurrency

©2015 Gernot Heiser, NICTA 10 APSys'15

Microkernel Multicore Design e

Assertion 1: Minimise locks, not locked code LA

« Amount of locked code is small anyway, 100-200 instructions
« Corresponds to medium-grained locks in Linux

* Cost of locks is within an OoM of kernel execution time

« Kernel times are short = contention is low

Assertion 2: Don’t share mirokernel data without shared cache
« Migrating only a few cache lines takes longer than rest of syscall

Assertion 3: Big lock will perform for closely-coupled cores

« Shared caches presently have moderate core counts
« Big lock in a well-designed microkernel will scale there

©2015 Gernot Heiser, NICTA 11 APSys'15

Pathological Case: Intra-Core IPC Ping-Pong o

60 m—T——— T
none —%— x86
- BKL —B— | 6
0 I fine —e— T

wh -
oF B

N~ ;

Throughput (Mops/sec)

0

N T T T T B B 0 ; | I I
1 2 3 4 5 6 7 8 1 2 3 4
Cores Cores

©2015 Gernot Heiser, NICTA 12 APSys'15

Realistic Case: Syscall-Intensive Macrobenchmark o.

©2015 Gernot Heiser, NICTA

/

Load Generator

\

Yahoo! Cloud Benchmark

/

-~

_ Core O) kCore 1) Core n

selL4-based Server

N

v

13

NICTA

APSys'15

Realistic Case: Syscall-Intensive Macrobenchmark () ®

NICTA

200

150

100

50

Throughput (kops/sec)

©2015 Gernot Heiser, NICTA 14 APSys'15

Macrobenchark: Correct for Load (Jo

900
800
700
600
500
400
300
200
100

O | | | | | | | |

W 2 3 4 5 6 7 8

over Cores

o © Kput (kops/sec)

CPU utilization

15 APSys'15

Microkernel Multicore Design 00

Assertion 1: Minimise locks, not locked code NECTA

« Amount of locked code is small anyway, 100-200 instructions
« Corresponds to medium-grained locks in Linux

* Cost of locks is within an OoM of kernel execution time

« Kernel times are short = contention is low

Assertion 2: Don’t share mirokernel data without shared cache
« Migrating only a few cache lines takes longer than rest of syscall

Assertion 3: Big lock will perform for closely-couple cores
« Shared caches presently have moderate core counts

* Big lock in a well-designed microkernel will scale there

« Seems to work fine for 8 cores, should still work for 16

©2015 Gernot Heiser, NICTA 16 APSys'15

Summary ()o
NICTA

1. Big lock fine-grained enough for a well-designed microkernel

— Short system calls = low contention
— Big lock performs as well as fine-grained for closely-coupled cores

— Complexity of fine-grained locking is not worth it!

2. Should not even try to share a kernel without shared caches

http://selL4.systems

gernot@nicta.com.au

http://microkerneldude.wordpress.com

@GernotHeiser

©2015 Gernot Heiser, NICTA

