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Approaches for Multicore Kernels e
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Multicore Kernel Trade-Offs
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A Microkernel is NOT an Operating System! O
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Microkernel vs Linux Execution 00
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Cost of Locking: Round-Trip Intra-Core IPC (1@
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Microkernel Multicore Design 00

Assertion 1: Minimise locks, not locked code NECTA

 Amount of locked code is small anyway, 100-200 instructions
« Corresponds to fine- to medium-grained locks in Linux
» Cost of locks is within an OoM of kernel execution time

« Kernel times are short = contention is low
@)
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Cache Line Migration Latencies ( )@
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Microkernel Multicore Design (e

Assertion 1: Minimise locks, not locked code LA

« Amount of locked code is small anyway, 100-200 instructions
« Corresponds to medium-grained locks in Linux

* Cost of locks is within an OoM of kernel execution time

« Kernel times are short = contention is low

Assertion 2: Don’t share mirokernel data without shared cache
« Migrating only a few cache lines takes longer than rest of syscall
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selL4 Multicore Design: Clustered Multikernel
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Microkernel Multicore Design e

Assertion 1: Minimise locks, not locked code LA

« Amount of locked code is small anyway, 100-200 instructions
« Corresponds to medium-grained locks in Linux

* Cost of locks is within an OoM of kernel execution time

« Kernel times are short = contention is low

Assertion 2: Don’t share mirokernel data without shared cache
« Migrating only a few cache lines takes longer than rest of syscall

Assertion 3: Big lock will perform for closely-coupled cores

« Shared caches presently have moderate core counts
« Big lock in a well-designed microkernel will scale there
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Pathological Case: Intra-Core IPC Ping-Pong o
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Realistic Case: Syscall-Intensive Macrobenchmark o.
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Realistic Case: Syscall-Intensive Macrobenchmark () ®
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Macrobenchark: Correct for Load (Jo
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Microkernel Multicore Design 00

Assertion 1: Minimise locks, not locked code NECTA

« Amount of locked code is small anyway, 100-200 instructions
« Corresponds to medium-grained locks in Linux

* Cost of locks is within an OoM of kernel execution time

« Kernel times are short = contention is low

Assertion 2: Don’t share mirokernel data without shared cache
« Migrating only a few cache lines takes longer than rest of syscall

Assertion 3: Big lock will perform for closely-couple cores
« Shared caches presently have moderate core counts

* Big lock in a well-designed microkernel will scale there

« Seems to work fine for 8 cores, should still work for 16
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Summary ( )o
NICTA

1. Big lock fine-grained enough for a well-designed microkernel

— Short system calls = low contention
— Big lock performs as well as fine-grained for closely-coupled cores

— Complexity of fine-grained locking is not worth it!

2. Should not even try to share a kernel without shared caches
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