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Approaches for Multicore Kernels 
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Multicore Kernel Trade-Offs 
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A Microkernel is NOT an Operating System! 
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Microkernel vs Linux Execution 
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Cost of Locking: Round-Trip Intra-Core IPC 
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Microkernel Multicore Design 

Assertion 1: Minimise locks, not locked code 
•  Amount of locked code is small anyway, 100–200 instructions 
•  Corresponds to fine- to medium-grained locks in Linux 
•  Cost of locks is within an OoM of kernel execution time 
•  Kernel times are short ⇒ contention is low 
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Cache Line Migration Latencies 
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Microkernel Multicore Design 

Assertion 1: Minimise locks, not locked code 
•  Amount of locked code is small anyway, 100–200 instructions 
•  Corresponds to medium-grained locks in Linux 
•  Cost of locks is within an OoM of kernel execution time 
•  Kernel times are short ⇒ contention is low 

Assertion 2: Don’t share mirokernel data without shared cache 
•  Migrating only a few cache lines takes longer than rest of syscall 
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seL4 Multicore Design: Clustered Multikernel 
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Microkernel Multicore Design 

Assertion 1: Minimise locks, not locked code 
•  Amount of locked code is small anyway, 100–200 instructions 
•  Corresponds to medium-grained locks in Linux 
•  Cost of locks is within an OoM of kernel execution time 
•  Kernel times are short ⇒ contention is low 

Assertion 2: Don’t share mirokernel data without shared cache 
•  Migrating only a few cache lines takes longer than rest of syscall 

Assertion 3: Big lock will perform for closely-coupled cores 
•  Shared caches presently have moderate core counts 
•  Big lock in a well-designed microkernel will scale there 
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Pathological Case: Intra-Core IPC Ping-Pong 
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Realistic Case: Syscall-Intensive Macrobenchmark 
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Realistic Case: Syscall-Intensive Macrobenchmark 
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Macrobenchark: Correct for Load 

APSys'15 

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1  2  3  4  5  6  7  8

X
p
u
t 
(k

o
p
s/

se
c)

Cores

Linux
BKL
Fine
RTM

15 

Throughput 
over  

CPU utilization 



©2015 Gernot Heiser, NICTA 16 

Microkernel Multicore Design 

Assertion 1: Minimise locks, not locked code 
•  Amount of locked code is small anyway, 100–200 instructions 
•  Corresponds to medium-grained locks in Linux 
•  Cost of locks is within an OoM of kernel execution time 
•  Kernel times are short ⇒ contention is low 

Assertion 2: Don’t share mirokernel data without shared cache 
•  Migrating only a few cache lines takes longer than rest of syscall 

Assertion 3: Big lock will perform for closely-couple cores 
•  Shared caches presently have moderate core counts 
•  Big lock in a well-designed microkernel will scale there 
•  Seems to work fine for 8 cores, should still work for 16 
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Summary 

1.  Big lock fine-grained enough for a well-designed microkernel 
–  Short system calls ⇒ low contention 
–  Big lock performs as well as fine-grained for closely-coupled cores 
–  Complexity of fine-grained locking is not worth it! 

2.  Should not even try to share a kernel without shared caches 
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