I I I I
/ N O\ S AN\

IB /\/ /\/\/W/w W
|
~N 7 ~ NS SN NN

Controlled wicki-Gr\ie

oncurrency:

Reasoning about the Preemptible(eChronos
Embedded Operating System

MARS 2015 | |

June Andronick, Corey Lewis, Carroll Morgan 7~ N\
November 2015

WWW.CSiro.au

] S
Aim | DamA | ®
~N 7

/the real system
I

Formal model of the eChronos embedded RT OS

/_\\
which requires Concurrency reasoning

the challenge

for which we use Owicki-Gries method

'\
the approach

p) Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

| -
eChronos @% r | gm/ D

What: Small real-time OS library (~500 SLOC)

(Joint development with Breakaway Consulting)

Where: Embedded devices, with limited resources, no memory-protection

Job: » provides synchronisation primitives

» schedules tasks according to priorities
“the running task must be of highest-priority” eChronos

task A

can call
... >
task B
=]
C R internal functions

C=current _ | oo -
B=blocked \ : :
B : :

3 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

| -
eChronos @% r | gm/ D

What: Small real-time OS library (~500 SLOC)

(Joint development with Breakaway Consulting)

Where: Embedded devices, with limited resources, no memory-protection

Job: » provides synchronisation primitives

» schedules tasks according to priorities
eChronos

task A

can call

task B

handler 1
handler 2
handler 3

4 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

7~
eChronos Iy ®
~N 7

Characteristics: » small, fast

Aim: » verified
Challenges: » tasks can be preempted by another task
» OS can be interrupted by external event
eChronos
_______________ AP
 signal_send
task A - signal_wait
task B

Our approach applies to OS systems with these characteristics:
- tasks can be preempted by higher priority tasks
- OS code can be interrupted by external event

) Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

] S
Aim | DamA | ®
~N 7

/the real system
I

Formal model of the eChronos embedded RT OS

/_\\
which requires Concurrency reasoning

the challenge

for which we use Owicki-Gries method

'\
the approach

6 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

e /
Owicki-Gries Iy w
~N 7

What: Extension of Hoare logic to shared-variable parallel programs
(Suzanne Owicki and David Gries,1976)

cobegin S1//S2//...// Sn coend

T — S

await B then S

PEE—————————

Why: Small, fast

7 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

e /
Owicki-Gries | DaTA | m
~N 7

How:
Program P

Program P’

{is_odd x}

X:1=x+1; JN

{is_even x}g ¢@
X:=x+1; .-___—’//////’
{is_odd x} J

P is (sequentially) correct P’ does not interfere with P
L ocal correctness Interference freedom

P is globally correct

8

Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

S

[] [] o /
Owicki-Gries | DATA | ®
61
~N 7”7
From a parallel composition of fully annotated programs,
generates correctness verification conditions

{a1}
» local correctness prove each {ai} ci {ai+1} N
C1 {a1"}

» interference freedom for each assertion ain P, {az} ——— <{= }
and each command ¢’ in P’, ©2 az’
prove that {a A a’} ¢’ {a} {as} */

! quadratic explosion of proof obligations, not compositional

%P
-

For our system, interleaving is more controlled
+

Leonor
use automation power of modern theorem provers

Prensa

Nieto
2002

Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

e /
Owicki-Gries Iy w
~N 7

Aim: » use OG to model interleaving between
eChronos code, interrupt code, and tasks

Challenges: » tasks are not 15t class citizens
» concurrency is uncontrolled

10 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

. . ”~
Contributions Iy w
~N 7

Formal model of eChronos using Owicki-Gries method

Challenges: Challenges:
» tasks can be preempted » tasks are not 1st class citizens
» OS can be interrupted » concurrency is uncontrolled

TR Tasks as 1st class citizens in O-G
Contributions @ “AWAIT-painting” Formalised in
Isabelle/HOL

@ Controlled interleaving model theorem prover

e\\Q
Hardware APl model . > ag ’
— o9
@ Formal model of eChronos g

to prove that the running task is always
the highest-priority runnable task

S — R ———

11 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Tasks as 1st class citizens in O-G
‘AWAIT-painting”

@ Controlled interleaving model
Hardware APl model

Formal model of eChronos
@ to prove that the running task is always
the highest-priority runnable task

| —— —————

12 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Context switching between tasks |/E{m | ®
~N 7

task A task B

code A | || | code_B

No arbitrary concurrency between all these programs

Can only switch from A to B if B become the active task

13 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Context switching between tasks IE]ATA | ®
~N 7~

task A task B
ai; bi;
az; || | ba2;
as; bs;

= \Ve introduce: Variable AT (Active Task)
= We “AWAIT-paint” all statements:

AWAIT AT=A THEN a;; AWAIT AT=B THEN bi;
AWAIT AT=A THEN as; | | | | AWAIT AT=B THEN by;
AWAIT AT=A THEN as; AWAIT AT=B THEN bs;

= \We automate this with an “await paint task-id code” command:

await paint A code_A; | || |await_paint B code_B;

= \We model context switch: context switch task id = AT:=task_id;

14 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

.l e 7~
Tasks as 1st class citizens Iy ®
~N 7

Owicki-Gries
1975
. &
eonor Prensa Nieto @@
2002 D
+
AT

await paint

context switch

15 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

@ Tasks as 1st class citizens in O-G
‘AWAIT-painting”

| ——

Controlled interleaving model
Hardware APl model

Formal model of eChronos
@ to prove that the running task is always
the highest-priority runnable task

| —— —————

16 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Recall eChronos DATA | @

eChronos

applications

17 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

i /
Execution model | DA | w
~N 7
taskA taskB

A task runs until:

task A runs
calling a.OS 0S call*..
API function
OS code runs
that changes Ch
runnable tasks context switch - >B . e ronos AP

* Note: no mode switch between OS
and task in such constrained hardware.

18 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

i /
Execution model | DA | m
. ~N 7
_taskA taskB [scheduler

A task runs until:

task Aruns
calling a.OS 08 call s
API function
OScoderuns W& .| .
that changes I ch
runnable tasks context switch->| = deesn, e ronos AP

between OS and task in “supervisor call” (svc)
such constrained hardware. mechanism

* Note: no mode switch ** Note: using ARM _

19 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

i /
Execution model | DA | m
~N 7
taskA taskB |scheduler

A task runs until:

task Aruns
calling a.OS 08 call s
API function
OScoderuns W& .| .
that changes I
runnable tasks context switch->| = Lo

being interrupted - - _ _

by a handler
that changes
runnable tasks P

20 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

. 7~
Execution model Iy ®
task A task B _ hamﬁm/

A task runs until:

calling a OS 0S code 1
API function can be >Ié ..
that gets interrupted I
. l .. <ConteXt

interrupted by 0 B ewitch is
a handlerthat | I delayed
changes

runnable tasks

Our approach applies to OS systems with these characteristics:
- tasks can be preempted by higher priority tasks
- OS code can be interrupted by external event

21 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

. . 7~
Controlled Interleaving in OG | @
~N 7

task A task B ‘scheduler handler 1 handler 2 handler 2
+ > =
code A | || | code_B | || |code_sch ||||code_hl |||||code_h2 |||||/code_h2

Concurrency only happens here

We do not have arbitrary concurrency between all these programs

Other interleaving is controlled by hardware instructions

context-switch
return-from-interrupt
interrupt masking

22 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Modelling application tasks |/E{m | ®
~N 7

task A task B

code A | || | code_B
= \WVe add the “await-painting” 4

WHILE True DO WHILE True DO
await paint A code A || await_paint B code B |nterleaving can only
END END happen if one instruction
is a call to an OS function
calling the scheduler
WHILE True DO WHILE True DO calling context_switch
AWAIT AT=A THEN ai; AWAIT AT=B THEN bi;
AWAIT AT=A THEN az; || AWAIT AT=B THEN by; or if an interrupt happens
END oD

23 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Modelling application tasks DATA | w

task A1 task A,

code A1 | || .. || |code_An

= \Ne can generalise to n tasks

SCHEME [0<i<n]
WHILE True DO
awalit paint A; code A;
END

24 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Modelling interrupt handlers @m | w
~N 7

task A1 task An handler H4 handler Hm
> >
code A1 | || .. || |code_An code_h; ||| .. || || code_hn
SCHEME [0=i<n] SCHEME [0<j<m]
g WHILE True DO
task A task B scheduler handler 1 ITake(H;)

< await paint Hj c@
(await paint H; IRet()
1 ITake END

| CCTIITIT EETRTITITreg

I IRet

25 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Modelling interrupt handlers @m | w
~N 7

task A1 task An handler H1 handler Hnm
& IS
code A1 | || .. || |code_An code_h; ||| .. || || code_hn
ITake(X) = AT:= X SCHEME [0=]j<m]

WHILE True DO
awalt paint Hj code hj
await paint Hy IRet()
END

26 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Modelling interrupt handlers |§{m\ | ®
~N 7
task A1 task An handler H4 handler Hm
I I~
code A1 | || .. || |code_An code_h; ||| .. || || code_hn
ITake(X) = < AWAIT X € ET SCHEME [0<j<m]

.THEN WHILE True DO
AT:= X
awalt paint Hj code_ hj
await paint Hy IRet()
END

= \What if X is masked?

= New variable El (Enabled Interrupts)

= New hardware functions
IntDisable(X)
IntEnable(X)

EI := EI - X
EI := EI U X

27 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Modelling interrupt handlers |§{m | ®
~N 7

task A1 task An handler H1 handler Hnm
I IS

code A1 | || .. || |code_An code_h; ||| .. || || code_hn

ITake(X) = AWAIT X € EI SCHEME [0=j<m]

THEN WHILE True DO
“'push AT ATstack;
...... awalt paint Hj code hj
await paint Hy IRet()
END

= How to return to previsouly running task eventually?
= New variable ATstack

28 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Modelling interrupt handlers @m | w
~N 7

task A+ task An handler H4 handler Hn
1> >
code A1 | || .. || |code_An code_h; ||| .. || || code_hn

IRet() = SCHEME [0<j<m]
WHILE True DO

ITake(Hy)

await paint Hj code hj
await paint Hj

END

task A task B scheduler handler 1

1 ITake

o e
ICIRet>

29 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Modelling interrupt handlers |§{m | ®
~N 7

task A4 task An handler H4 handler Hn
1> >
code A1 | || .. || |code_An code_h; ||| .. || || code_hn

IRet() = SCHEME [0<j<m]

WHILE True DO
ITake(Hy)

await paint Hj code hj
await paint Hj

task A task B scheduler handler 1

END
1 .
OS code p = New hardware functions
interrub’?ed SchedDisable()= EI:=EI-sched
P context SchedEnable() = EI:=EIUsched

switch is
= New flag schedReq

30 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Modelling interrupt handlers |§{m\ | ®
~N 7”7

task A4 task An handler H4 handler Hn
1> >
code A1 | || .. || |code_An code_h; ||| .. || || code_hn

IRet() = SCHEME [0<j<m]

WHILE True DO
ITake(Hy)
task A task B scheduler handler 1 await paint Hj code hj
| await paint Hj
END

Sched
Disable .J.

= New hardware functions

I SchedDisable()= EI:=EI-sched
A S “(schedres) schedmnable() = ET:=EIUsched

......................... = New flag schedReq

31 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Modelling interrupt handlers |/E{m | ®
~N 7

task A1 task An handler H4 handler Hm
1> N

code A1 | || .. || |code_An code_h; ||| .. || || code_hn

IRet() = SCHEME [0<j<m]

<TF_schedReq A sched € EI > WHILE True DO

THEN AT := sched; ITake(H;)

await paint Hj code hj
ELSE AT:= pop ATstack; axa;t_ga;nt HJ J
. J

END

32 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Modelling interrupt handlers |§{m | ®
~N 7

task A1 task A, handler H4 handler Hm

code A1 | || .. || |code_An| ||| |code_sch| | code_hi ||| .. || |code_hn

AN /

WHILE True DO *
ITakeSched()
await paint sched code sch
await paint sched IRet()

END
ITakeSched() =

AWAIT schedReq A sched € EI

THEN
schedReq:=False;
push AT ATStack;
AT:=shed;

*simplified version, full details in paper END

33 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Our model of interleaving and HW API o | €y

b1
\ /
task A1 ... taskA, ‘scheduler handler Hy --- handler Hn
SCHEME [0<i<n] WHILE True DO SCHEME [0=j<m]
WHILE True DO ITakeSched() WHILE True DO
await-paint A: codea. | | await paint sched code sch | | ITake(H;)
END P : * await paint sched IRet() await paint Hj code h;
END await paint Hy IRet()

END

Variables AT, ATStack, EI, schedReq

+

IntEnable(X)
IntDisable(X)
SchedEnable()

SchedDisable()

ITake (X)
IRet ()
ITakeSched()

34 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

-
| & |
& @

@ Tasks as 1st class citizens in O-G
‘AWAIT-painting”

@ Controlled interleaving model
Hardware APl model

S

Formal model of eChronos
to prove that the running task is always
the highest-priority runnable task

35 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

« . ”~
Instantiation to eChronos | AT | ®
~N 7

task A1 ... taskA, ‘scheduler handler Hy --- handler Hn
SCHEME [0<i<n] WHILE True DO SCHEME [0=j<m]

WHILE True DO ITakeSched() WHILE True DO

await-paint As (Coden) | | await-paint sched{code-shed | | ITake(H;)
END P * / await-paint sched IRe await-paint Hj(code h;

END await-paint Hy I
END
code-sch =

code A; =
SchedDisable();
R := changeRunnable(R);
SchedEnable();

nextT:=None;
WHILE nextT=None

DO

Etmp := E;
R := handleEvents Etmp R;
E := E - Etmp;
nextT:= schedPolicy(R);
OD;
context switch(nextT);

code h; =
E := changeEvents();
schedReq:=True;

36 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

s
Summary | DA | w
/ NS

o ©.

awalt paint task_id code

@ Tasks as 1st class citizens in O-G

‘AWAIT-painting”
——
AT, ATStack, EI, schedReq
IntEnable(X)
. . IntDisable(X)
@ Controlled interleaving model SchedEnable ()
Hardware API model Schedbisable()
N —

ITake(X) vﬁﬁ
IRet () “
ITakeSched()

Formal model of eChronos &
@ code A; = ... @@

to prove that the running task is always code h;

the highest-priority runnable task code_sch = ...

37 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Future work DATA | ®

Tasks as 1st class citizens in O-G
‘AWAIT-painting”

Controlled interleaving model
Hardware APl model

Prove the model correctly
abstracts eChronos code

Formal model of eChronos
to prove that the running task is always

the highest-priority runnable task Prove this property holds

on our eChronos model

38 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

T pd
Informal arguments of validity w6
~N 7~

AWAIT statements do not exist in the implementation!
= only use them to represent atomicity enforced by hardware

Introduced variables do no exist in the implementation!
= only modified by hardware API functions

39 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

« e . . 7~
Preliminary arguments of practicality % @
~N 7~

We have started proving the correctness of the scheduling behaviour

= proof done* for an initial version of the model

= ~10,000 verification conditions generated

= down to ~500 by removing redundant conditions automatically
= down to ~10 after automatic discharge by Isabelle/HOL

*almost ;-)

40 Controlled OG Concurrency: Reasoning about the Preemptible eChronos Embedded OS | June Andronick, Corey Lewis, Carroll Morgan

Thank you

