
Theoretical Computer Science 777 (2019) 32–54
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

An axiomatization of information flow measures

Mário S. Alvim a,∗, Konstantinos Chatzikokolakis b,c, Annabelle McIver e, 
Carroll Morgan f,g, Catuscia Palamidessi d,c, Geoffrey Smith h

a Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
b CNRS, Palaiseau, France
c LIX, École Polytechnique, Palaiseau, France
d Inria Saclay, Palaiseau, France
e Macquarie University, Sydney, Australia
f University of New South Wales, Sydney, Australia
g Data61, Sydney, Australia
h Florida International University, Miami, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 June 2018
Received in revised form 10 October 2018
Accepted 16 October 2018
Available online 19 October 2018

Keywords:
Information flow
g-Vulnerability
Information theory
Confidentiality
Axioms

Quantitative information flow aims to assess and control the leakage of sensitive informa-
tion by computer systems. A key insight in this area is that no single leakage measure is 
appropriate in all operational scenarios; as a result, many leakage measures have been pro-
posed, with many different properties. To clarify this complex situation, this paper studies 
information leakage axiomatically, showing important dependencies among different ax-
ioms. It also establishes a completeness result about the g-leakage family, showing that 
any leakage measure satisfying certain intuitively-reasonable properties can be expressed 
as a g-leakage.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The theory of quantitative information flow has seen rapid development over the past decade, motivated by the need for 
rigorous techniques to assess and control the leakage of sensitive information by computer systems. The starting point of this 
theory is the modeling of a secret as something whose value is known to the adversary only as a prior probability distribu-
tion π . This immediately suggests that the “amount” of secrecy might be quantified based on π , where intuitively a uniform 
π would mean “more” secrecy and a biased π would mean “less” secrecy. But how, precisely, should the quantification be 
done?

Early work in this area (e.g., [1]) adopted classic information-theoretic measures like Shannon-entropy [2] and guessing-
entropy [3]. But these can be quite misleading in a security context, because they can be arbitrarily high even if π assigns a 
large probability to one of the secret’s possible values, giving the adversary a large chance of guessing that secret correctly 
in just one try. This led to the introduction of Bayes vulnerability [4], which is simply the maximum probability that π
assigns to any of the possible values of the secret. Bayes vulnerability indeed measures a basic security threat, but it im-
plicitly assumes an operational scenario where the adversary must guess the secret exactly, in one try. There are of course 
many other possible scenarios, including those where the adversary benefits by guessing a part or a property of the secret 
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or by guessing the secret within three tries, or where the adversary is penalized for making an incorrect guess. This led 
to the introduction of g-vulnerability [5], which uses gain functions g to model the operational scenario, enabling specific 
g-vulnerabilities to be tailored to each of the above scenarios, and many others as well.1

This situation may however strike us as a bit of a zoo. We have a multitude of exotic vulnerability measures, but perhaps 
no clear sense of what a vulnerability measure ought to be. Are all the g-vulnerabilities “reasonable”? Are there “reasonable” 
vulnerability measures that we are missing?

The situation becomes more complex when we turn our attention to systems. We model systems as information-theoretic 
channels, and the crucial insight, reviewed in Section 2.2 below, is that each possible output of a channel allows the ad-
versary to update the prior distribution π to a posterior distribution, where the posterior distribution itself has a probability 
that depends on the probability of the output. Hence a channel is a mapping from prior distributions to distributions on 
posterior distributions, called hyper-distributions [6].

In assessing posterior vulnerabilities, by which we mean the vulnerability after the adversary sees the channel output, 
we have a number of choices. It is natural to consider the vulnerability of each of the posterior distributions, and take the 
average, weighted by the probabilities of the posterior distributions. Or (if we are pessimistic) we might take the maximum. 
Next we can define the leakage caused by the channel by comparing the posterior vulnerability and prior vulnerability, 
either multiplicatively or additively. These choices, together with the multitude of vulnerability measures, lead us to many 
different leakage measures, with many different properties. Is there a systematic way to understand them? Can we bring 
order to the zoo?

Such questions motivate the axiomatic study that we undertake in this paper. We consider a set of axioms that char-
acterize intuitively-reasonable properties that vulnerability measures might satisfy, separately considering axioms for prior 
vulnerability (Section 4) and axioms for posterior vulnerability and for the relationship between prior and posterior vulner-
ability (Section 5). Addressing this relationship is an important novelty of our axiomatization, as compared with previous 
axiomatizations of entropy (such as [2,7,8]), which considered only prior entropy, or the axiomatization of utility by Kifer 
and Lin [9], which considers posterior utility without investigating its relation to prior utility. As a result, our axiomatization 
is able to consider properties of leakage, usually defined in terms of comparison between the posterior and prior vulnera-
bilities. We should however clarify that we do not view axiomatics as a matter of identifying “self-evident” truths. A variety 
of axioms may appear intuitively reasonable, so while it is sensible to consider intuitive justifications for them, such justi-
fications should not be considered absolute. Rather we see the value of axiomatics as consisting more in understanding the 
logical dependencies among different properties, so that we might (for instance) identify a minimal set of axioms that is 
sufficient to imply all the properties that we care about.

The main contributions of this paper are of two kinds. One kind involves showing interesting dependencies among the 
various axioms. For instance, under axiom averaging for posterior vulnerability, we prove in Section 5 that three other 
axioms are equivalent: convexity, monotonicity (i.e., non-negativity of leakage), and the data-processing inequality. Convexity 
is the property that vulnerability is a convex function from distributions to reals; what is striking here is that it is a property 
that might not be intuitively considered “fundamental”, yet our equivalence (assuming averaging) shows that it is. We also 
show an equivalence under the alternative axiom maximum for posterior vulnerability, which then involves quasi-convexity.

A second kind of contribution justifies the significance of g-vulnerability. Focusing on the axioms of convexity and con-
tinuity for prior vulnerability, we consider the class of all functions from distributions to reals that satisfy them, proving in 
Section 4 that this class exactly coincides with the class of g-vulnerabilities. This soundness and completeness result shows 
that if we accept averaging, continuity, and convexity (or monotonicity or the data-processing inequality) then prior vulner-
abilities are exactly g-vulnerabilities.

Plan of the paper. The rest of the paper is structured as follows: Section 2 reviews the basic concepts of quantitative in-
formation flow, Section 3 sets up the framework of our axiomatization, and Sections 4 and 5 discuss axioms for prior 
and posterior vulnerabilities, respectively. Section 6 provides some discussion, Section 7 gives a more abstract perspective, 
Section 8 discusses related work, and Section 9 concludes.

A preliminary version of this paper appeared in [10]. Additional material presented here includes: (i) proofs; (ii) a thor-
oughly revised presentation of the soundness and completeness of g-vulnerabilities with respect to continuous, convex 
functions in Section 4.1, based on a deeper yet simplified characterization of the geometry of gain functions; and (iii) 
a more elaborate discussion of our results and their consequences.

2. Preliminaries

We now review some basic notions from quantitative information flow. A secret is something whose value is known to 
the adversary only as a prior probability distribution π : there are various ways for measuring what we will call its vulnera-
bility. A channel models systems with observable behavior that changes the adversary’s probabilistic knowledge, making the 
secret more vulnerable and hence causing information leakage.

1 Note that entropies measure secrecy from the point of view of the user (i.e., more entropy means more secrecy), while vulnerabilities measure secrecy 
from the point of view of the adversary (i.e., more vulnerability means less secrecy). The two perspectives are complementary, but to avoid confusion this 
paper focuses almost always on the vulnerability perspective.
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2.1. Secrets and vulnerability

The starting point of computer security is information that we wish to keep secret, such as a user’s password, social 
security number, or current location. An adversary typically does not know the value of the secret, but still possesses some 
probabilistic information about it, captured by a probability distribution called the prior. We denote by X the finite set 
of possible secret values and by DX the set of probability distributions over X . A prior π ∈ DX could either reflect a 
probabilistic procedure for choosing the secret—e.g., the probability of choosing a certain password—, or it could capture 
any knowledge the adversary possesses on the population the user comes from—e.g., a young person is likely to be located 
at a popular bar on Saturday night.

The prior π plays a central role at measuring how vulnerable a secret is. For instance, short passwords are not vulnerable 
because of their length (prefixing passwords with a thousand zeroes does not necessarily render them more secure), but 
because each password has a high probability of being chosen. To obtain a concrete vulnerability measure one needs to 
consider an operational scenario describing the adversary’s capabilities and goals; vulnerability then measures the adversary’s 
expected success in this scenario.

Bayes-vulnerability [4] considers an adversary trying to guess the secret in one try and measures the threat as the proba-
bility of the guess being correct. Knowing a prior π , a rational adversary will guess a secret to which it assigns the highest 
probability: hence Bayes-vulnerability is given by

V b(π) = max
x∈X πx ,

where we write πx for the probability π assigns to x. Note that Bayes-vulnerability is called simply “vulnerability” in [4], 
and is the basic notion behind min-entropy, defined as H∞(π) = − lg V b(π). It is also the converse of the adversary’s 
probability of error, also called Bayes-risk in the area of hypothesis testing [11].

Guessing-entropy [3] considers an adversary trying to guess the secret in an unlimited number of tries, and measures 
the adversary’s uncertainty as the number of guesses needed on average. The best strategy is to try secrets in non-increasing 
order of probability: if xi is an indexing of X in such an order, then guessing-entropy is given by

G(π) = ∑
i i πxi .

Shannon-entropy [2] considers an adversary who tries to infer the secret using Boolean questions (i.e., of the form “does 
x belong to a certain subset X ′ of X ?”) and measures the adversary’s uncertainty as the number of questions needed on 
average. It can be shown that the best strategy is at each step to split the secret space in sets of equal probability (as far as 
possible). Under this strategy, a secret x will be guessed in − lgπx steps, hence on average the number of questions needed 
is

H(π) = − ∑
x∈X πx lgπx .

Note that Bayes-vulnerability measures the threat to the secret (the higher the better for the adversary). On the other 
hand, guessing- and Shannon-entropy measure the adversary’s uncertainty about the secret (the lower the better for the 
adversary).

Although the operational scenarios described above capture realistic threats for the secret, one could envision a variety 
of alternative threats we might also be worried about. For instance, an adversary might be interested in guessing only part
of the secret, an approximate value of the secret, a property of the secret, or guessing the secret in a fixed number of tries. It 
is for this reason that the more general g-vulnerability framework [5] was proposed: it allows one to adapt to many different 
adversarial models.

Its operational scenario is parametrized by a set W of actions (possibly infinite) that the adversary can make about the 
secret, and a gain function g:W×X→R. The gain g(w, x) expresses the adversary’s benefit for having taken the action w
when the actual secret is x. The g-vulnerability function measures the threat as the adversary’s expected gain for an optimal 
choice of action w:

V g(π) = sup
w∈W

∑
x∈X πx g(w, x) . (1)

Regarding the set W of allowable actions, one might assume that this should just be X , the set of possible values of 
the secret. This is in fact too restrictive: the adversary’s goal might be to guess a piece of the secret, or a value close to the 
secret, or some property of the secret. As a consequence we allow an arbitrary set of actions, possibly infinite, and make 
(almost) no restrictions on the choice of g . In particular, a negative value of g(w, x) expresses situations when the adversary 
is penalized for making a particular action under a particular secret; such values are essential for obtaining the results of 
Section 4.1.3.

However, leaving g unrestricted has two side effects that are undesirable both conceptually and technically. First, V g could 
potentially produce negative vulnerabilities. Conceptually, since we want to measure how vulnerable a secret is, it seems rea-
sonable that the minimum possible vulnerability should be 0, meaning “not vulnerable at all”. Technically, we will consider 
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multiplicative leakage, which measures leakage as the ratio of two vulnerabilities; but such a ratio seems mathematically 
meaningless if one vulnerability is positive and the other negative.

Second, V g could potentially produce infinite vulnerabilities. Consider, for instance, the case when W is the set of all 
integers, X = {x1, x2}, and g is given by g(w, x1) = w and g(w, x2) = −w . For this example we find that V g becomes 
not only infinite but also discontinuous: it is 0 on the uniform prior (for which the gain of one secret is exactly counter-
balanced by the loss of the other), and ∞ for all other priors. Again, such behavior is both conceptually and technically 
problematic. Conceptually, it is unnatural for a system to be “infinitely vulnerable”, and even more so for an adversary to 
be “infinitely risk-averse”, perceiving an infinitesimal change in the prior as an infinite change in the vulnerability of the 
system. Technically, it is clear that discontinuous, infinite-valued functions are ill-behaved.

For these reasons, we always restrict to the class of gain functions GX , defined as

GX := {g | V g : DX →R≥0} , (2)

that is, those gain functions that produce non-negative and finite-valued vulnerabilities. In Section 4.1.2 we will see that 
this restriction also implies the continuity of V g .

Note that, as its name suggests, V g is a measure of vulnerability, i.e., of the threat to the secret. An equally expressive 
alternative is to define an “uncertainty” measure similarly, but using a loss function l instead of a gain function and assuming 
that the adversary wants to minimize loss. The uncertainty measure, parametrized by l, can be then defined dually as 
Ul(π) = infw∈W

∑
x∈X πxl(w, x), and is often called Bayes-risk in the area of decision theory.

Due to the flexibility of gain functions, g-vulnerability is a very expressive framework, one that can capture a great 
variety of operational scenarios. This raises the natural question of which other vulnerability measures are expressible in 
this framework. Bayes-vulnerability is a straightforward example, captured by guessing the exact secret, i.e., taking W =X , 
and using the identity gain function defined as

gid(w, x) =
{

1, if w = x,

0, if w �= x.

Guessing-entropy can be also captured in this framework [12,13], this time using a loss function since it is an uncertainty 
measure. The adversary’s action in this case is to guess a permutation of X , i.e., the order in which secrets are chosen in the 
operational scenario of guessing-entropy. We can naturally define the loss l(w, x) as the index of x in w , i.e. the number of 
guesses to find x, and using this loss function we get Ul(π) = G(π).

Similarly, in the case of Shannon-entropy, the adversary tries to guess a strategy for constructing his questions. Strategies 
can be described as probability distributions: at each step questions split the search space into subsets of as even probability 
as possible. Hence, actions are W = DX , and the loss can be defined as l(w, x) = − lg wx (the number of steps needed to 
find x under the strategy w). Since the best strategy is to take w = π itself, it can be shown [12] that under this loss 
function Ul(π) = H(π).

In Section 4.1.3 we show that g-vulnerability exactly coincides with the generic class of continuous and convex vulnera-
bility functions.

2.2. Channels, hypers and leakage

So far we have considered secrets for which a probabilistic prior is known, and have discussed different ways for measur-
ing their vulnerability. We now turn our attention to systems, which are programs or protocols processing secret information 
and producing some observable behavior. Examples of such systems are password-checkers, implementations of cryptosys-
tems, and anonymity protocols.

A system can be modeled as an (information theoretic) channel, a triple (X , Y, C), where X , Y are finite sets of (secret) 
input values and (observable) output values respectively and C is a |X |×|Y| channel matrix in which each entry Cx,y

corresponds to the probability of the channel producing output y when the input is x. Hence each row of C is a probability 
distribution over Y (entries are non-negative and sum to 1). A channel is deterministic iff each row contains a single 1
identifying the only possible output for that input.

It is typically assumed that the adversary knows how the system works, i.e. knows the channel matrix C. Knowing 
also the prior distribution π , the adversary can compute the joint distribution p(x, y) = πxCx,y on X×Y , producing joint 
random variables X, Y with marginal probabilities p(x) = ∑

y p(x, y) and p(y) = ∑
x p(x, y), and conditional probabilities 

p(y|x) = p(x,y)/p(x) (if p(x) is non-zero) and p(x|y) = p(x,y)/p(y) (if p(y) is non-zero). Note that p XY is the unique joint 
distribution that recovers π and C, in that p(x) = πx and p(y | x) = Cx,y (if p(x) is non-zero).2

For a given y (s.t. p(y) is non-zero), the conditional probabilities p(x|y) for each x ∈ X form the posterior distribution 
p X |y , which represents the posterior knowledge the adversary has about input X after observing output y.

2 When necessary to avoid ambiguity, we write distributions with subscripts, e.g. p XY or pY .
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Example 1. Given X = {x1, x2, x3}, Y = {y1, y2, y3, y4}, and the channel matrix C below, (the uniform) prior π =
(1/3, 1/3, 1/3) combined with C leads to joint matrix J :

C y1 y2 y3 y4

x1 1 0 0 0
x2 0 1/2 1/4 1/4

x3 1/2 1/3 1/6 0

π−→
J y1 y2 y3 y4

x1 1/3 0 0 0
x2 0 1/6 1/12 1/12

x3 1/6 1/9 1/18 0

Summing columns of J gives the marginal distributions pY = (1/2, 5/18, 5/36, 1/12), and normalizing gives the posterior distri-
butions p X |y1 = (2/3, 0, 1/3), p X |y2 = (0, 3/5, 2/5), p X |y3 = (0, 3/5, 2/5), and p X |y4 = (0, 1, 0).

The effect of a channel C is to update the adversary’s knowledge from a prior π to a collection of posteriors p X |y , each 
occurring with probability p(y), called a hyper-distribution. A hyper (for short) on the input space X is of type D2X , which 
stands for D(DX ), a distribution on distributions on X . The support of a hyper is the set of possible posteriors that the 
application of channel C on prior π can produce: we call those posteriors inners. The probability assigned by the hyper 
to a particular inner is the marginal probability of the y that produced that inner. We call those probabilities the outer
probabilities. We use � to denote a hyper, 	�
 for its support (the set of posteriors with non-zero probability), [π ] to 
denote the point-hyper assigning probability 1 to π , and [π�C] to denote the hyper obtained by the application of C on π . 
We say that [π�C] is the result of pushing prior π through channel C.

In Example 1, the hyper [π�C] assigns (outer) probabilities (1/2, 15/36, 1/12) to the (inner) posteriors (2/3, 0, 1/3), 
(0, 3/5, 2/5), and (0, 1, 0), respectively.3

Following [6,14], we can abstract from a concrete channel represented by its matrix C to an abstract channel C consisting 
just in the corresponding mapping from priors to hyper-distributions. Abstract channels ignore aspects of channel matrices 
that are irrelevant to leakage (e.g., labels and order of columns, and columns that are multiples of each other), and concen-
trate only on the essential information that affects leakage: the mapping from priors to hyper-distributions. We will denote 
concrete channels and channel matrices using a sans-serif font (C) and abstract channels using a math font (C ).

Since the outcome of a channel is a hyper, it is natural to extend vulnerability measures from priors to hypers, obtaining 
a posterior vulnerability. For all measures described in Section 2.1 this has been done in a natural way by taking the 
vulnerability of each posterior and averaging them using the outer. Let

Eπ F :=
∑

x

πx F (x)

denote the expected value of some random variable F :X → R (where R is usually the reals R but more generally can be a 
vector space) over a distribution π :DX . We can then define posterior Bayes-vulnerability V̂ b : D2X → R+ as

V̂ b� = E�V b ,

and similarly for Shannon-entropy, guessing-entropy and g-vulnerability. For hypers [π�C] produced by channels, from the 
above formula we can get an expression of each posterior vulnerability as a function of π and C, for instance,

V̂ b[π�C] = ∑
y maxx πxCx,y, for Bayes vulnerability, and

V̂ g[π�C] = ∑
y supw

∑
x πxCx,y g(w, x), for g-vulnerability.

Note that, for point-hypers, we have by construction that V̂ b[π ] = V b(π) and V̂ g[π ] = V g(π), and similarly for the other 
measures.

Finally, the execution of a system is expected to disclose information about the secret to the adversary, and the infor-
mation leakage of a channel C for a prior π is defined by comparing the vulnerability of the prior π—the adversary’s prior 
knowledge—and that of [π� C]—the adversary’s posterior knowledge. The comparison is typically done either additively or 
multiplicatively, giving rise to two versions of leakage:

additive: Lb,+(π,C) = V̂ b[π�C] − V b(π) , and (3)

multiplicative: Lb,×(π,C) = V̂ b[π�C]
V b(π)

. (4)

Note that the logarithm of Lb,×(π, C) is usually called min-entropy leakage [4]. Leakage can be similarly defined for all other 
measures.

3 There might be fewer posteriors in the support of hyper [π�C] than there are columns in the joint distribution p X,Y from which it is derived, because 
if several columns of p X,Y normalize to the same posterior then the hyper will automatically coalesce them [14]. Columns y2 and y3 were coalesced in 
this case.
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Table 1
Summary of axioms and their mnemonics for pairs of prior/
posterior vulnerabilities (V, ̂V).

Axioms for prior vulnerabilities

CNTY ∀π : V is a continuous function of π

CVX ∀∑
i aiπ

i : V
(∑

i aiπ
i
) ≤ ∑

i aiV(π i)

Q-CVX ∀∑
i aiπ

i : V
(∑

i aiπ
i
) ≤ maxi V(π i)

Axioms for posterior vulnerabilities

NI ∀π : V̂[π ] = V(π)

DPI ∀π,C,R: V̂[π�C] ≥ V̂[π�CR]
MONO ∀π, C : V̂[π� C] ≥ V(π)

Possible definitions of posterior vulnerabilities

AVG ∀�: V̂� = E�V

MAX ∀�: V̂� = max	�
 V

3. An axiomatic view of vulnerabilities

In Section 2 we discussed vulnerability measures obtained by quantifying the threat to the secret in a specific opera-
tional scenario. Channels were then introduced, mapping prior distributions to hypers, and the vulnerability measures were 
naturally extended to posterior ones by averaging each posterior vulnerability over the hyper.

In this paper we shall follow a different approach: we axiomatize the study of vulnerabilities. We begin by considering 
generic vulnerability functions of type

prior vulnerability: V : DX →R≥0, and

posterior vulnerability: V̂ : D2X →R≥0,

and we consider a variety of properties that “reasonable” instantiations of these generic functions might be expected to 
have. We then formalize these properties as a set of axioms for vulnerability functions, and investigate their consequences.

We shall start, in the following section, by focusing on the prior case by giving axioms for prior vulnerabilities V alone. 
We then take convexity and continuity (made precise in Section 4 ahead) as our fundamental properties, and show that they
lead to g-vulnerability exactly. After that, we turn our attention to axioms considering either both V and V̂, or posterior V̂
alone.

Moreover, we study two ways of constructing V̂ from V: by taking the average over the hyper, as we have been doing 
so far, and by considering the maximum-vulnerability over the hyper. It turns out that, in each case, several of the axioms 
become equivalent. An important observation is that the axioms purely affect the relationship between prior and posterior 
vulnerabilities, and are orthogonal to the way V and V̂ are compared when used to measure leakage (i.e. multiplicatively or 
additively). Hence the results we obtain about the relationship among axioms are valid under both definitions of leakage.

It is important to have in mind that, although in this paper we consider axioms for generic vulnerability, dual axioms 
can be naturally stated for generic uncertainty measures.4 In Table 1 we summarize the axioms we shall consider.

4. Axiomatization of prior vulnerabilities

We begin by introducing axioms that deal solely with prior vulnerabilities V.
The first property we consider is that “small” changes on the prior π have a “small” effect on V applied to that prior. 

This intuition is formalized in the following axiom.

Definition 2 (Axiom of continuity (CNTY)). A vulnerability V is a continuous function of π (w.r.t. the standard topology5 on 
DX ).

Intuitively, the CNTY axiom captures adversaries who are not infinitely risk-averse. For instance, the non-continuous 
vulnerability function

V
λ(π) =

{
1, if maxx πx ≥ λ,

0, otherwise,
(5)

4 Recall that vulnerabilities measure secrecy from the point of view of the adversary (i.e. more vulnerability means less secrecy), whereas entropies measure 
uncertainty, that is, secrecy from the point of view of the user (i.e. more entropy means more secrecy). The two perspectives are complementary; in this 
paper we focus on the vulnerability perspective.

5 The one induced by the Euclidean metric, or equivalently the total variation or 1/2-Manhattan metric used later in this section.
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would correspond to an adversary who requires the probability of guessing correctly to be above a certain threshold λ
in order to consider an attack effective at all. But this is an arguably unnatural behavior if we assume that the risk 
of changing the probability to λ−ε , for an infinitesimal ε , should not be arbitrarily large. For instance, if λ = 2/3, dis-
tribution π1 = (2/3, 1/2) would be considered “insecure” by the function above, since V2/3(π1) = 1, whereas distribution 
π2 = (2/3−ε, 1/3+ε) would be considered “secure”, since V2/3(π2) = 0.

The second property we consider is that V g is a convex function of the prior.6 More precisely, a convex combination of 
priors π1, . . . , πn is a sum 

∑
i aiπ

i where ai ’s are non-negative reals adding up to 1. Since DX is a convex set, a convex 
combination of priors is itself a prior. The property is then formalized as the following axiom.

Definition 3 (Axiom of convexity (CVX)). A vulnerability V is a convex function of π—that is, for all convex combinations ∑
i aiπ

i we have

V
(∑

i aiπ
i
) ≤ ∑

i aiV(π i) .

The CVX axiom can be interpreted as follows. Consider a game in which a secret (say a password) is drawn from two 
possible distributions π1 or π2. The choice of distributions is itself random: we first select i ∈ {1, 2} at random, with i = 1
having probability a1 and i = 2 probability a2 = 1−a1, and then we use π i to draw the secret.

Now consider the following two scenarios for this game: in the first scenario, the value of i is conveyed to the adversary, 
so that the actual prior the secret was drawn from is known. Using information in that π i (whichever one it was) the 
adversary performs an attack, the expected success of which is measured by V(π i). In this scenario the expected measure 
of success overall will be 

∑
i aiV(π i). In the second scenario, the choice i is not disclosed to the adversary: she knows 

only that, on average, secrets are drawn from the prior 
∑

i aiπ
i . Since to perform an attack the adversary can only use the 

information in 
∑

i aiπ
i , the expected success of an attack in this case will be measured by V 

(∑
i aiπ

i
)
.

The CVX axiom corresponds to the intuition that, since in the first scenario the adversary has more information, the 
effectiveness of an attack can only be higher. Yet another way of seeing this axiom is to realize that an adversary should 
get no less information from a1, π1 and π2, than from 

∑
i aiπ

i , since the last value can be calculated if the first three are 
known.

Note that, in the definition of CVX, it is sufficient to use convex combinations of two priors, i.e., of the form aπ1 +
(1−a)π2; indeed we often use such combinations in proofs. Note also that CVX actually implies continuity everywhere 
except on the boundary of the domain, i.e., on priors having at least one element with probability exactly 0. The function 
Vλ from (5), for instance, for λ = 1 is convex but discontinuous. It captures an adversary that is only happy when knowing 
the secret with absolute certainty; such an adversary does satisfy CVX, yet continuity breaks for point priors (note that, for 
all 1/|X | < λ < 1, Vλ is neither continuous nor convex). The CNTY axiom, however, explicitly requires continuity everywhere.

Since the vulnerabilities V(π i) in the definition of CVX are weighted by the probabilities ai , we could have cases when 
the expected vulnerability 

∑
i aiV(π i) is small although some individual V(π i) is large. In such cases, one might argue 

that the bound imposed by CVX is too strict and could be loosened by requiring that V 
(∑

i aiπ
i
)

is bounded only by the 
maximum of the individual vulnerabilities. This weaker requirement is formalized as the following axiom.

Definition 4 (Axiom of quasi-convexity (Q-CVX)). A vulnerability V is a quasi-convex function of π—i.e. for all convex combi-
nations 

∑
i aiπ

i we have

V
(∑

i aiπ
i
) ≤ maxi V(π i) .

The justifications we have so far provided for the axioms of CVX and Q-CVX might not strike us as very intuitive at first, 
but it turns out that these axioms can in fact be justified as natural consequences of fundamental axioms relating prior and 
posterior vulnerabilities, and specific choices for constructing V̂. We shall address these connections in detail in Section 5
ahead.

4.1. Soundness and completeness of V g with respect to continuous, convex functions

It turns out that the vulnerability functions satisfying the axioms of CNTY and CVX are exactly those expressible as V g

for some gain function g . We will show each direction of this implication now.

4.1.1. A geometric view of gain functions
For our characterization of g-vulnerability, we exploit the geometry of gain functions together with some fundamental 

tools from convex analysis. In the following, x · x′ denotes the dot product of vectors x, x′ . A crucial observation is that an 

6 Note that, given the duality between vulnerability and uncertainty measures, for uncertainty measures a reasonable property would be concavity rather 
than convexity.
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Fig. 1. Actions w constructed from subgradients on different priors.

action w can be thought of as a vector in Rn (n = |X |), containing the gain for each secret, that is wx = g(w, x). Since a 
prior π is a vector itself, the expected gain of w can be written as

Eπ g(w, ·) = w · π .

It is then clear that w · π is a linear function, as shown in Fig. 1.
A useful tool for the analysis of convex functions is that of subgradients, which generalize gradients for non-differentiable 

functions. A vector φ is a subgradient of f : S →R at x∗ ∈ S iff

f (x) − f (x∗) ≥ φ · (x − x∗) for all x ∈ S . (6)

Note that the function x �→ φ · (x − x∗) + f (x∗) is linear, always below f and touches f at x∗ , as shown in Fig. 1. The set of 
all subgradients of f at x∗ (called the sub-differential) is denoted by ∂ f (x∗).

A norm ‖ · ‖ is the standard tool for reasoning about the length of vectors. Any norm naturally induces a metric defined 
as d‖·‖(x, x′):=‖x − x′‖. Moreover, any norm ‖ · ‖ has a dual norm ‖ · ‖∗ given by

‖x‖∗ := max
z: ‖z‖≤1

x · z .

It is well known that the Euclidean norm is its own dual, while the dual of the Manhattan norm7 ‖ · ‖1 is the max norm 
‖ · ‖∞ (in general the dual of a p-norm is the q-norm such that 1/p + 1/q = 1). Directly from the definition of ‖ · ‖∗ we get 
that

|x · y| ≤ ‖x‖ ‖y‖∗ for all x, y ∈ R
n , (7)

which can be seen as a generalization of the Cauchy–Schwarz inequality.
The interior of a set S ⊆ Rn consists of points x ∈ S such that some open ball centered at x is contained in S . It is 

common, however, that S is a lower dimensional object embedded in Rn . A triangle, for instance, could be embedded in R3

although it is 2-dimensional. Such objects are “flat”, so do not have a proper interior; however we can still talk about their 
relative interior w.r.t. the lower dimensional space they live in (i.e. their affine hull). For convex sets, the relative interior 
relint(S) can be simply defined as the points x ∈ S such that all line segments in S ending in x can be extended beyond x
without leaving S [15, Thm. 6.1]. That is

relint(S) := {x ∈ S | ∀z ∈ S.∃λ > 1 : λx + (1 − λ)z ∈ S} .

Note that the probability simplex DX ⊂ Rn (n = |X |) is an (n−1)-dimensional object that lies on the hyperplane x · 1 = 1
(probabilities sum up to 1). Hence its interior is empty, but relint(DX ) is not: it consists exactly of all full-support distribu-
tions.

4.1.2. Every V g satisfies continuity and convexity
We first show that any g-vulnerability, for g:GX , satisfies the axioms of CNTY and CVX. Let g be such a gain function 

with a possibly infinite set of actions W . Recall that V g can be expressed as the supremum of the family of functions:

V g(π) = supw w · π .

Note that w · π is linear on π , hence both (trivially) convex and continuous.
The convexity of V g then follows from the fact that the supremum of any family of convex functions is itself a convex 

function. On the other hand, showing continuity is more challenging, since the supremum of continuous functions is not 
necessarily continuous itself.8

7 The Manhattan norm of a vector (x1, x2, . . . , xn) is defined as ‖(x1, x2, . . . , xn)‖1 = ∑n
i=1 |xi |.

8 A counter-example would be f (x) = supn>0 −(x−1)n , which is discontinuous at 0.
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To show that V g is continuous, we employ the concept of semi-continuity. Informally speaking, a function is lower (resp. 
upper) semi-continuous at x0 if, for values close to x0, the function is either close to f (x0) or greater than f (x0) (resp. 
smaller than f (x0)).

Lower semi-continuity of V g is straightforward from the following proposition:

Proposition 5. If f is the supremum of a family of continuous functions then it is lower semi-continuous.

Proof. Let F be a set of continuous functions and let f (x) = sup f ′∈F f ′(x). We show that f is lower semi-continuous.
Fix some α ∈ R. We need to show that A = {x | f (x) > α} is open. Let x0 ∈ A; we are going to show that there exists 

a ball around x0 contained in A. Since α < sup f ′∈F f ′(x0), there exists some f ′ ∈ F such that f ′(x0) > α. Since f ′ is 
continuous, there exists some ball Bε(x0) such that f ′(x) > α for all x ∈ Bε(x0). Hence f (x) ≥ f ′(x) > α for all x ∈ Bε(x0)

which means that Bε(x0) ⊆ A. �
On the other hand upper semi-continuity is much less straightforward. For this we appeal to the structure of the proba-

bility simplex and the Gale–Klee–Rockafellar theorem.

Theorem 6 (Gale–Klee–Rockafellar). If f :A →R is convex and A is a polyhedron then f is upper semi-continuous.

Note that the above theorem crucially requires f to be finite-valued, which the reason why the class GX (2) enforces 
the finiteness of V g . Hence, for g:GX , V g is both lower semi-continuous (Proposition 5) and upper semi-continuous (The-
orem 6), and it is trivial that any function satisfying both semi-continuities is (simply) continuous.

In fact, we can also show that V g is Lipschitz-continuous, a property stronger than continuity. Given a metric d on DX , 
a function F : DX →R is k·d-Lipschitz iff

|F (π) − F (π)′| ≤ k · d(π,π ′) for all π,π ′:DX .

Intuitively, this property limits the steepness of F . Changing π by at most ε (w.r.t. d) produces a change in F (π) of at most 
k · ε .

Our metric of choice for DX is the total variation distance, given by

tv(π,π ′) := sup
X⊆X

|π(X) − π ′(X)| .

For discrete distributions, expressed as vectors, the total variation is equal to half of the Manhattan distance, that is tv =
1
2 d‖·‖1 .

Finally, the span ‖g‖ of a gain function g is defined as:

‖g‖ := sup
w,x,x′

|g(w, x) − g(w, x′)|

We are now ready to state our soundness result.

Theorem 7 (Soundness). For any g:GX , V g satisfies CNTY and CVX. Moreover it is ‖g‖·tv-Lipschitz.

Proof. Continuity is a direct corollary of Proposition 5 and Theorem 6, we here show the Lipschitz property. Viewing an 
action w as a vector, we first show that π �→ w · π is ‖g‖·tv-Lipschitz. Let ⊥ = minx wx and � = ‖g(w, ·)‖. The elements 
of w lie in [⊥, ⊥ +�]; if we shift it by c = ⊥ + �/2 then we get the vector w − c1 whose elements lie in [−�/2, �/2], hence 
‖w − c1‖∞ = �/2. We then reason

|w · π − w · π ′|
= |(w − c1) · (π − π ′)| “c1 · (π − π ′) = c − c = 0”
≤ ‖w − c1‖∞ ‖π − π ′‖1 “(7), the dual of ‖ · ‖1 is ‖ · ‖∞”
= ‖w − c1‖∞ 2 tv(π,π ′) “tv(π,π ′) = 1/2‖π − π ′‖1”
≤ ‖g‖·tv(π,π ′) . “2‖w − c1‖∞ = � = ‖g(w, ·)‖ ≤ ‖g‖”

Finally, V g(π) = supw w · π , and it remains to show that the supremum preserves the d-Lipschitz property.
So let F be a set of d-Lipschitz functions, we show that F (a) = sup f : F f (a) is also d-Lipschitz. Fixing a, a′:A, assume 

w.l.o.g. that F (a)≥F (a′); we have

|F (a) − F (a′)|
= sup f f (a) − sup f f (a′) “definition F ; F (a) ≥ F (a′)”
≤ sup f ( f (a) − f (a′)) “− sup f ′ f ′(a′) ≤ − f (a′)”
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≤ sup f | f (a) − f (a′)|
≤ sup f d(a,a′) “ f is d-Lipschitz”
= d(a,a′) . �

Note that, without the “finite-valued” restriction of GX , V g might attain +∞ and be discontinuous. As an example, take 
X = {x1, x2}, W = N, g(w, x1) = w and g(w, x2) = −w . For this g we compute that V g(π

u) = 0 for the uniform prior, and 
V g(π) = +∞ for any other π .

4.1.3. Continuity and convexity exactly characterize V g

Gain functions and g-vulnerability were introduced in order to capture a variety of operational scenarios. As discussed 
in Section 2, we can naturally retrieve a variety of well-known measures—Bayes-vulnerability, Shannon-entropy, guessing 
entropy, etc.—using properly constructed gain functions. This suggests the question of how expressive g-vulnerabilities are 
in general. Remarkably, it turns out that g-vulnerabilities are expressive enough to capture any vulnerability function V
satisfying CNTY and CVX, although in the general case a countably infinite set W of guesses might be needed.

The geometric view of g , together with the following result from convex analysis, are fundamental for establishing the 
completeness of g-vulnerability.

Theorem 8. Let f : S → R be convex and let x ∈ relint(S). Then ∂ f (x) �= ∅. Moreover, if f is k · d‖·‖-Lipschitz then ‖φ‖∗ ≤ k for all 
φ ∈ ∂ f (x).

Proof. The part ∂ f (x∗) �= ∅ comes from [15, Theorem 23.4]. The part ‖φ‖∗ ≤ k comes from [16, Lemma 2.6]. �
We are now ready to state our completeness result. The main idea is that, on each full support prior π∗ , we will use a 

subgradient φ ∈ ∂V(π∗) to form an action vector w , such that w · π is below V and touches it on π∗ . The supremum of all 
such function w · π has to coincide with V. Note that this result is a variant of the well-known fact that convex functions 
can be expressed as the sup of linear ones (which has, indeed, already been explored by Boreale and Pampaloni in the study 
of metrics for QIF [17,18]); our proof also establishes the Lipschitz property and the fact that countably many actions are 
sufficient.

Theorem 9 (Completeness). Let V :DX → R≥0 satisfy CNTY and CVX. Then V = V g for some g:GX with a countable set of actions. 
Moreover, if V is k · tv-Lipschitz then ‖g‖ ≤ k.

Proof. Let A be the elements of relint(DX ) (i.e. the full support priors) having rational coordinates. We will create one 
action vector wπ for each such π ∈ A. So fix some π∗ ∈ A, since V is convex and π∗ ∈ relint(DX ), Theorem 8 guarantees 
that ∂V(π∗) is not empty. Fixing some subgradient φ ∈ ∂V(π∗), define an action vector

wπ∗ := φ + (
V(π∗) − φ · π∗)1 ,

where 1 is the “all-ones” vector. Note that π · 1 = 1, hence we have that

wπ∗ · π = φ · (π − π∗) +V(π∗) ,

the function that (from the definition of the subgradient (6)) is always below V and touches it on π∗ . In other words, it 
holds that

wπ∗ · π∗ = V(π∗) , and

wπ∗ · π ≤ V(π) for all π :DX .

Setting W = {wπ ′ | π ′: A} (a countable set), we have that for all π ∈ A

V g(π) = sup
π ′: A

wπ ′ · π = wπ · π = V(π) ,

that is, V g and V coincide on A. Note that, although we have not yet established that V g = V everywhere, we already know 
that V g(π) ≤ V(π) for all π ∈ DX , hence V g is finite-valued, so from Proposition 5 and Theorem 6 we conclude that it is 
continuous.

As a consequence, since all irrationals are the limit of a sequence of rationals, from continuity we get that V g and 
V coincide on the whole relint(DX ). Similarly, boundary points are the limit of a sequence of interior points, hence we 
conclude that V g and V coincide everywhere. This also clearly means that the constructed gain function belongs to GX .
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Finally, assume that V is k · tv-Lipschitz. Since tv(π, π ′) = 1/2‖π − π ′‖1, V is k/2 · d‖·‖1 -Lipschitz. From Theorem 8, and 
the fact that the dual norm of ‖ · ‖1 is ‖ · ‖∞ , we get that for all subgradients φ used in the construction of the action 
vectors wπ , it holds that ‖φ‖∞ ≤ k/2. As a consequence

|g(wπ , x) − g(wπ , x′)| = |φx − φx′ | ≤ |φx| + |φx′ | ≤ 2‖φ‖∞ ≤ k ,

from which we conclude that ‖g‖ ≤ k. �
Note that a consequence of the construction in the above proof is that, for any full-support prior π with rational prob-

abilities, the supremum in V g(π) is in fact attained by the constructed action wπ . If we are not interested in W being 
countable, we can extend the construction of wπ to the whole relint(DX ), hence the supremum will be attainable for all 
full-support priors. This property fails for non-full-support priors however, since subgradients are not guaranteed there; one 
would need to use gain functions with explicit −∞ values to make the supremum attainable.

5. Axiomatization of posterior vulnerabilities

We will now consider axioms for posterior vulnerabilities, and axioms that relate posterior- and prior vulnerabilities. We 
consider three of them, and investigate how different definitions of posterior vulnerabilities shape the interrelation among 
those axioms.

The first property we consider states that an adversary who has learned with certainty, after observing the output of a 
channel, that the secret has distribution π will have the same amount of information V(π) she would have had from the 
prior distribution π itself.

This is formalized as the following axiom.

Definition 10 (Axiom of non-interference (NI)). The vulnerability of a point-hyper equals the vulnerability of the unique inner 
of this hyper:

∀π : V̂[π ] = V(π) .

As its name suggests, the NI axiom can be interpreted in terms of noninterference. A channel C is noninterfering if the 
result of pushing any prior π through C is the point-hyper [π ], meaning that the adversary’s state of knowledge is not 
changed by the observation of the output of the channel; that is, C is the channel 1 that leaks nothing. It is well known 
that a channel matrix C is noninterfering iff all its rows are the same [19,20]. The NI axiom, then, is equivalent to stating 
that an adversary observing the output of a noninterfering channel does not gain or lose any information about the secret:

∀π : V̂[π�1] = V(π) .

The second axiom we consider is an analogue of the famous data-processing inequality for mutual information,9 and is 
formalized as follows.

Definition 11 (Axiom of data-processing inequality (DPI)). Post-processing does not increase vulnerability:

∀π,C,R: V̂[π�C] ≥ V̂[π�CR] ,

where the number of columns in matrix C is the same as the number of rows in matrix R, and CR is the standard matrix 
multiplication, here called cascading of channels.

Note that, since the DPI axiom concerns the operation of cascading—which demands a matching between the outputs 
of the first channel matrix and the inputs of the second one—, it is formalized in terms of (concrete) channels. The DPI
axiom can be interpreted as follows. Consider a secret that is fed into a (concrete) channel C, and then the produced output 
is post-processed by being fed into another (concrete) channel R (whose input set must be the same as the output set 
of C). Now consider two adversaries A and A′ such that A can only observe the output of channel C, and A′ can only 
observe output of the cascading C′ = CR. For any given prior π on secret values, A’s posterior knowledge about the secret 
is given by the hyper [π�C], whereas that of A′ ’s is given by [π�C′]. Note, however, that from A’s knowledge it is always 
possible to reconstruct A′ ’s, but the converse is not necessarily true. To see that, note that A can use π and C to compute 
[π�CR′] for any R′ , including the particular R used by A′ . On the other hand, A′ knows only π and C′ and, in general, 
the decomposition of C′ into a cascade of two channels is not unique (i.e. there may be several pairs Ci , Ri of matrices 
satisfying C′ = CiRi ), so it is not always possible for A′ to uniquely recover C from C′ and compute [π�C]. Given this 
asymmetry, DPI formalizes that a vulnerability V̂ should not evaluate A’s information as any less than A′ ’s.

9 The data processing-inequality for mutual information states that if X→Y →Z forms a Markov chain, then I(X; Y ) ≥ I(X; Z).
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Fig. 2. Equivalence of axioms under AVG. The merging arrows indicate joint implication: for example, AVG∧ CVX implies DPI.

The third property we consider is that by observing the output of a channel an adversary cannot lose information about 
the secret; in the worst case, the output can be ignored if it is not useful.10 This property is formalized as the following 
axiom.

Definition 12 (Axiom of monotonicity (MONO)). Pushing a prior through a channel does not decrease vulnerability:

∀π, C : V̂[π� C] ≥ V(π) .

The MONO axiom has two direct consequences on the additive and multiplicative notions of leakage. Since posterior 
vulnerabilities are never smaller than the corresponding prior vulnerabilities, additive leakage is always non-negative, and 
multiplicative leakage is never smaller than 1.

5.1. Definitions of posterior vulnerabilities

Having introduced the axioms of NI, DPI and MONO, we now turn our attention to how posterior vulnerabilities can 
be defined so to respect them. In contrast with the case of prior vulnerabilities, in which the axioms considered (CVX and
CNTY) were satisfied by, and only by, the family of prior g-vulnerabilities, in the case of posterior vulnerability the axioms 
considered so far are not satisfied by, and only by, the family of posterior g-vulnerabilities. For that reason, in the following 
we shall consider alternative definitions of posterior vulnerabilities, and discuss the interrelations of axioms each of them 
induces.

5.1.1. Posterior vulnerability as expectation
As we have seen, the posterior versions of Bayes vulnerability and g-vulnerability, as well as of Shannon entropy and 

guessing entropy, are all defined as the expectation of the corresponding prior measures over the (hyper-) distribution of 
posterior distribution, i.e. weighted by the probability of each posterior’s being realized. The definition of posterior vulnera-
bility as expectation is formalized as the following axiom.

Definition 13 (Axiom of averaging (AVG)). The vulnerability of a hyper is the expected value, w.r.t. the outer distribution, of 
the vulnerabilities of its inners:

∀�: V̂� = E�V ,

where the hyper �:DX typically results from � = [π� C] for some π , C .

We will now consider the consequences of taking AVG as an axiom. As it turns out, by imposing AVG on a prior/posterior 
pair (V, ̂V) of vulnerabilities, we can uncover a series of interesting relations among other axioms: if axiom of AVG holds, 
then so does the axiom of NI; and the axioms of CVX, DPI and MONO become equivalent to each other. Fig. 2 summarizes 
these relations, which we shall now demonstrate.

We begin by showing that AVG implies NI.

Proposition 14 (AVG⇒ NI). If a pair of prior/posterior vulnerabilities (V, ̂V) satisfies AVG, then it also satisfies NI.

Proof. If AVG is assumed then for any prior π we have V̂[π ] = E[π ]V =V(π), since [π ] is a point-hyper. �
Second, we show that the axioms of NI and DPI, taken together, imply MONO.

10 Note that in this paper we adopt a static perspective of leakage, which considers the entire hyper-distribution [π�C]. Since this approach lets us con-
sider all the possible posterior distributions that the adversary might learn, together with their probabilities, it is reasonable to assume that the adversary’s 
information cannot decrease by observing the system. If, instead, we were to adopt a dynamic perspective of leakage, which considers the effect of the 
adversary’s observing a particular channel output y, it might be reasonable to accept that some particular outputs can decrease the adversary’s information 
about the secret.
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Proposition 15 (NI ∧ DPI ⇒ MONO). If a pair of prior/posterior vulnerabilities (V, ̂V) satisfies NI and DPI, then it also satisfies 
MONO.

Proof. For any π , C, let 1 denote the noninterfering channel with only one column and as many rows as the columns of C. 
Then

V̂[π�C]
≥ V̂[π�C1] “by DPI”
= V̂[π�1] “C1= 1”
= V̂[π ]
= V(π) “by NI”

�
Third, we show that the axioms AVG and MONO together imply CVX.

Proposition 16 (AVG∧MONO⇒ CVX). If a pair of prior/posterior vulnerabilities (V, ̂V) satisfies AVG and MONO, then it also satisfies 
CVX.

Proof. Let X = {x1, . . . , xN } be a finite set, and let π1 and π2 be distributions over X . Let 0<a<1, so that also π3 =
aπ1 + (1−a)π2 is a distribution on X . (In case a = 0 or a = 1 we would have π3 = π1 or π3 = π2, respectively, and 
convexity would follow trivially.) Define C∗ to be the two-column channel matrix

C∗ =

⎡⎢⎢⎢⎢⎢⎢⎣

aπ1
1/π3

1
(1−a)π2

1/π3
1

...
...

aπ1
i /π3

n
(1−a)π2

i /π3
n

...
...

aπ1
n/π3

N
(1−a)π2

n/π3
N

⎤⎥⎥⎥⎥⎥⎥⎦ (8)

for every i such that π3
i �= 0. (Note that if π3

i = 0 for some i, then xi is not in the support neither of π1 nor of π2 (since 
0<a<1), and we can, without loss of generality, remove element xi from both priors and from channel matrix C∗ above.)

By pushing π3 through C∗ we obtain the hyper [π3�C∗] with outer distribution (a, 1−a), and associated inners π1

and π2. Since AVG is assumed, we have

V̂[π3�C∗] = aV(π1) + (1−a)V(π2) . (9)

But note that by MONO, we also have

V̂[π3�C∗] ≥ V(π3) = V(aπ1 + (1−a)π2) . (10)

Taking (9) and (10) together, we obtain CVX. �
Finally, we show that the axioms AVG and CVX together imply DPI. For that, we will need the following lemma.

Lemma 17. Let X→Y →Z form a Markov chain with triply joint distribution p(x, y, z) = p(x)p(y|x)p(z|y) for all (x, y, z) ∈
X×Y×Z . Then 

∑
y p(y|z)p(x|y) = p(x|z) for all x, y, z.

Proof. First we note that the probability of z depends only on the probability of y, and not x, so p(z|x, y) = p(z|y) for all 
x, y, z. Then we can use the fact that

p(y, z)p(x, y) = p(x, y, z)p(y) (11)

to reason∑
y p(y|z)p(x|y)

= ∑
y (p(y,z)/p(z)))(p(x,y)/p(y)) “by definition of conditional”

= ∑
y

p(x,y,z)p(y)/p(z)p(y) “by Equation (11)”

= ∑
y p(x, y | z) “by definition of conditional”

= p(x|z) . “by marginalization”

�
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Fig. 3. Equivalence of axioms under MAX. The merging arrows indicate joint implication: for example, MAX∧ Q-CVX implies DPI. Compare with Fig. 2.

Proposition 18 (AVG ∧ CVX ⇒ DPI). If a pair of prior/posterior vulnerabilities (V, ̂V) satisfies AVG and CVX, then it also satisfies 
DPI.

Proof. Let X , Y and Z be sets of values. Let be π be a prior on X , C be a (concrete) channel from X to Y , and R be a 
(concrete) channel from Y to Z . Note that the cascade CR of channels C and R is a channel from X to Z .

Let p(x, y, z) be the triply joint distribution defined p(x, y, z) = πxCx,yRy,z for all (x, y, z) ∈ X×Y×Z . By construction, 
this distribution has the property that the probability of z depends only on the probability of y, and not x, that is that 
p(z | x, y) = p(z|y).

Note that, by pushing prior π through channel C, we obtain hyper [π�C], in which the outer distribution on y is p(y), 
and the inners are p X |y . Thus we can reason

V̂[π�C]
= ∑

y p(y)V(p X |y) “by AVG”

= ∑
y

(∑
z p(z)p(y|z))V(p X |y) “by marginalization”

= ∑
z p(z)

∑
y p(y|z)V(p X |y) “moving constants w.r.t. the sum”

≥ ∑
z p(z)V

(∑
y p(y|z)p X |y

)
“by CVX”

= ∑
z p(z)V(p X |z) “by Lemma 17”

= V̂[π�CR] . “by AVG”

�
5.1.2. Posterior vulnerability as maximum

An important consequence of AVG is that an observable’s happening with very small probability will have a negligible 
effect on V̂, even if it completely reveals the secret. If this is not acceptable, an alternative approach is to consider the 
maximum information that can be obtained from any single output of the channel—produced with non-zero probability—no 
matter how small that probability might be. This conservative approach represents a defender who worries about the worst 
possible amount of threat to the secret. The definition of posterior vulnerability in these terms is formalized as the following 
axiom.

Definition 19 (Axiom of maximum (MAX)). The vulnerability of a hyper is the maximum value among the vulnerabilities the 
inners in the support of its outer distribution:

∀�: V̂� = max	�
 V ,

where the hyper �:DX typically results from � = [π� C] for some π , C .

Note that the definition above takes the support of the outer distribution because we ignore the vulnerability of inners 
that cannot happen (i.e. that have probability zero).

We shall now consider the consequences of taking MAX as an axiom. As it turns out, by imposing MAX on a prior/posterior 
pair (V, ̂V) of vulnerabilities, we can derive relations among other axioms, just as we did for AVG. But they are different.

More precisely, if the axiom of MAX is satisfied, then again the axiom of NI too is implied; but this time it’s the axioms 
of Q-CVX, DPI and MONO that become equivalent to each other. Fig. 3 summarizes these relations, which we shall now 
demonstrate.

We begin by showing that MAX implies NI.

Proposition 20 (MAX⇒ NI). If a pair of prior/posterior vulnerabilities (V, ̂V) satisfies MAX, then it also satisfies NI.

Proof. If the MAX axiom is assumed, for any prior π we will have V̂[π ] = max	[π ]
 V =V(π), since [π ] is a point-hyper. �
However, in contrast to the case of AVG, the symmetry among CVX, MONO and DPI is broken under MAX: although the 

axioms of MONO and DPI are still equivalent (a result that we shall soon demonstrate), they are weaker than the axiom 
of CVX. Indeed, the following example shows a pair of prior/posterior vulnerabilities (V, ̂V) satisfying the axioms of MAX,
MONO and DPI, but not the axiom of CVX.
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Example 21 (MAX∧ MONO∧ DPI� CVX). Consider the pair (V1, ̂V1) such that for every prior π and channel C :

V1(π) = 1 −
(

min
x

πx

)2
, and

V̂1[π� C] = max	[π� C]
V1.

(Note that [π� C] denotes the set of inners in the hyper resulting from the application of C to π .)
We can see that V1 does not satisfy CVX by considering distributions π1 = (0, 1) and π2 = (1/2, 1/2), and their convex 

combination π3 = 1/2 π1 + 1/2 π2 = (1/4, 3/4). We then calculate V1(π
1) = 1−02 = 1, V1(π

2) = 1−(1/2)2 = 3/4, V1(π
3) =

1−(1/4)2 = 15/16, and 1/2V1(π
1) + 1/2V(π2) = 7/8 to conclude that V1(π

3) > 1/2V1(π
1) + 1/2V1(π

2) so that indeed CVX is 
not satisfied.

The pair (V1, ̂V1) satisfies MAX by construction. To show that (V1, ̂V1) satisfies MONO and DPI, we first notice that V1
is quasi-convex. Using results from Fig. 3 (more precisely, that MAX+ Q-CVX⇒ MONO+ DPI, proved later in this section), 
we conclude that MONO and DPI are also satisfied.

The vulnerability function used in the counter-example above is quasi-convex. It turns out that this is not a coincidence: 
by replacing CVX with Q-CVX (a weaker property), the symmetry between the axioms can be restored. The remainder of 
this section establishes the equivalence of Q-CVX, MONO and DPI under MAX.

We first show that the axioms MAX and MONO together imply Q-CVX.

Proposition 22 (MAX ∧ MONO ⇒ Q-CVX). If a pair of prior/posterior vulnerabilities (V, ̂V) satisfies MAX and MONO, then it also 
satisfies Q-CVX.

Proof. Assume for a contradiction that (V, ̂V) satisfy MAX and MONO, but do not satisfy Q-CVX.
Since Q-CVX is not satisfied, there must exist a value 0≤a≤1 and three distributions π1, π2, π3, such that π3 =

aπ1 + (1−a)π2 and

V(π3) > max (V(π1),V(π2)) . (12)

Now consider the (concrete) channel C∗ defined as in (8). Then the hyper-distribution [π3�C∗] has outer distribution 
(a, 1 − a), and corresponding inner distributions π1 and π2. Since MAX is assumed, we have that

V̂[π3�C∗] = max (V(π1),V(π2)) , (13)

and because we assumed MONO, we also have that

V̂[π3�C∗] ≥ V(π3) . (14)

By replacing (13) in (14), we derive that V(π3) ≤ max (V(π1),V(π2)), which contradicts our assumption in (12). �
We now show that the axioms MAX and Q-CVX together imply DPI.

Proposition 23 (MAX ∧ Q-CVX ⇒ DPI). If a pair of prior/posterior vulnerabilities (V, ̂V) satisfies MAX and Q-CVX, then it also 
satisfies DPI.

Proof. Let π be a prior on X , and C, R be channels from X to Y and from Y to Z , respectively, with joint distribution 
p(x, y, z) defined in the same way as in the proof of Proposition 18.

Note that, by pushing prior π through channel CR, we obtain hyper [π�CR] in which the outer distribution on z is 
p(z), and the inners are p X |z . Thus we can derive:

V̂[π�CR]
= maxz V(p X |z) “by MAX”

= maxz V

(∑
y p(y|z)p X |y

)
“by Lemma 17”

≤ maxz
(
maxy V(p X |y)

)
“by Q-CVX”

= maxy V(p X |y) “z not free”
= V̂[π�C] . “by MAX”

�
Finally, note that, although Q-CVX is needed to recover the full equivalence of the axioms, CVX is strictly stronger than 

Q-CVX; hence, using a convex vulnerability measure (such as any V g ), MONO and DPI are still guaranteed under MAX.
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Corollary 24 (MAX∧ CVX⇒ MONO∧ DPI). If a pair (V, ̂V) satisfies MAX and CVX, then it also satisfies MONO and DPI.

Proof. Follows from the results of Fig. 3 and the fact that CVX⇒ Q-CVX. �
5.1.3. Other definitions of posterior vulnerabilities

Defining posterior vulnerabilities using the axioms of AVG or MAX is certainly reasonable in many scenarios, but we may 
wonder whether other definitions might also be meaningful in some context. In this section we discuss the consequences of 
defining posterior vulnerabilities with something more relaxed than AVG or MAX. We shall, however, consider that V̂ should 
be related to V by the following condition: the vulnerability of a hyper-distribution should be bounded by the vulnerabilities 
of the inner distributions in its support. The next axiom formalizes this restriction.

Definition 25 (Axiom of bounds (BNDS)). The vulnerability of a hyper lies non-strictly between the vulnerabilities of the 
inners in its support:

∀�: min	�
 V ≤ V̂� ≤ max	�
 V ,

where the hyper �:DX might result from � = [π� C] for some π , C .

Intuitively, the BNDS axiom states that the vulnerability of a hyper resulting from pushing a prior through a channel can 
only be as high as the vulnerability induced by the “most leaky” observable, and it can only be as low as the vulnerability 
induced by the “least leaky” observable.

We shall now consider the consequences of taking BNDS as an axiom. Whereas BNDS turns out to be strong enough to 
ensure NI, by replacing MAX with BNDS, the equivalence among Q-CVX, DPI and MONO no longer holds.

We begin by showing that the axiom of BNDS is sufficient to guarantee NI.

Proposition 26 (BNDS⇒ NI). If a pair of prior/posterior vulnerabilities (V, ̂V) satisfies BNDS, then it also satisfies NI.

Proof. If (V, ̂V) satisfies BNDS, then min	�
 V ≤ V̂� ≤ max	�
 V for every hyper �. Consider, then, the particular case when 
� = [π ]. Since [π ] is a point-hyper with inner π , we have that min	[π ]
 V = max	[π ]
 V = V(π). This in turn implies that 
V(π) ≤ V̂[π ] ≤ V(π), which is NI. �

The next example shows that under BNDS, not even CVX—which is stronger than Q-CVX—is sufficient to ensure MONO
or DPI.

Example 27 (BNDS ∧ CVX� MONO and BNDS ∧ CVX� DPI). Consider the pair (V2, ̂V2) such that for every prior π and 
hyper �:

V2(π) = max
x

πx, and

V̂2� = (max	�
 V2 + min	�
 V2)

2
.

The pair (V2, ̂V2) satisfies the axiom of BNDS, since V̂2 is the simple arithmetic average of maximum and minimum 
vulnerabilities of the inners. The pair (V2, ̂V2) also satisfies the axiom of CVX, since V2(π) is just the Bayes vulnerability 
of π .

To see that the pair (V2, ̂V2) does not satisfy the axiom of MONO, consider the prior π2 = (9/10, 1/10) and the (concrete) 
channel

C2 = 8/9 1/9

0 1
.

We can calculate that V2(π
2) = 9/10, and that [π2�C2] has outer distribution (4/5, 1/5), and inner distributions (1, 0) and 

(1/2, 1/2). Hence

V̂2[π2�C2] = (1+1/2)/2 = 3/4 ,

which violates MONO because V̂2[π2�C2] < V2(π
2).

Now to see that the pair (V2, ̂V2) does not satisfy DPI, consider the prior π3 = (3/7, 4/7) and the (concrete) channels

C3 = 1/3 2/3

1/4 3/4
, and R3 = 1/4 3/4

3/4 1/4
.
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Fig. 4. A picture showing how posterior min-entropy can be greater than prior min-entropy. Pushing prior π = (1/3, 2/3) through channel C gives hyper 
[π� C] with outer (1/3, 2/3) and inners p X |y1 = (0, 1) and p X |y2 = (1/2, 1/2). So H∞(π) = − log2 2/3 ≈ 0.58 and Ĥ∞[π� C] = 1/3 · 0 + 2/3 · 1 ≈ 0.67.

We can calculate that [π3�C3] has outer distribution (2/7, 5/7), and inners (1/2, 1/2) and (2/5, 3/5). Hence

V̂2[π3�C3] = (1/2+3/5)/2 = 11/20 = 0.55 .

On the other hand, the cascade C3R3 yields the channel

C3R3 = 7/12 5/12

5/8 3/8
,

and we can calculate [π3�C3R3] to have outer distribution (17/28, 11/28), and inners (7/17, 10/17) and (5/11, 6/11). Hence

V̂[π3�C3R3] = (10/17+6/11)/2 = 106/187 ≈ 0.567 ,

which makes V̂[π3�C3R3] > V̂[π3�C3] and violates the axiom of DPI.

6. Applications of axiomatization to understanding leakage measures

The relationships we have uncovered among axioms help us better understand the multitude of possible leakage mea-
sures one can adopt (e.g. what V g to use, and what version of leakage—additive or multiplicative—to employ).

A first instance of an insight concerns the robustness of the refinement relation � discussed studied in [5,6,14]. Given 
channels C and D , both taking input X , C is refined by D , written C � D , if D = C R for some “refining” channel R . As 
proved in [5,14], refinement is sound and complete for the strong g-leakage ordering: we have C � D iff the g-leakage of 
D never exceeds that of C , regardless of the prior π or gain function g . Still, we might worry that refinement implies a 
leakage ordering only with respect to g-leakage, leaving open the possibility that the leakage ordering might conceivably fail 
for some yet-to-be-defined leakage measure. But Propositions 16 (AVG ∧ MONO⇒ CVX) and 18 (AVG ∧ CVX⇒ DPI) show 
that if the hypothetical new leakage measure is defined using AVG, and never gives negative leakage, then it also satisfies 
the data-processing inequality DPI. And hence refinement is also sound for the new leakage measure.

Another application concerns the possibility of negative leakage for some information measures. As an example, consider 
Rényi entropy, a family of entropy measures that has been used in the context of quantitative information flow. The family 
is defined by

Hα(π) = 1

1 − α
log2

(∑
x∈X πα

x

)
for 0≤α≤∞ (taking limits in the cases of α = 1, which gives Shannon entropy, and α = ∞, which gives min-entropy). It 
would be natural to use Rényi entropy to define a family of leakage measures by defining posterior Rényi entropy Ĥα using
AVG and defining Rényi leakage by

Lα(π, C) = Hα(π) − Ĥα[π� C] .

However, it turns out that Hα is not concave for α > 2. Therefore, by the dual version of Proposition 16 (AVG + MONO
⇒ CVX), we find that Rényi leakage Lα for α > 2 would sometimes be negative. As an illustration, Fig. 4 shows how 
the nonconcavity of min-entropy H∞ can cause posterior min-entropy to be greater than prior min-entropy, giving negative 
min-entropy leakage. This problem is avoided, however, if we do not define posterior min-entropy by using AVG, but instead 
by Ĥ∞[π� C] = − log2 V̂b[π� C].
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7. A more abstract perspective

The axioms relating to Averaging are in fact instances of the general monad laws proved by Giry for probabilistic com-
putation [21], and in this section we give details. The benefit of this generality is that it provides immediate access to well 
developed mathematical theories extending these results to infinite states and proper measures [22]. And its broader per-
spective gives a direct connection to higher-order reasoning tools that dramatically simplify proofs, thereby leading directly 
to practical frameworks for calculating leakage [23]. We now give details.

The operator D that takes a sample space X to (discrete) distributions DX on that space is widely recognized as the 
“probability monad”, that is in effect a type constructor that obeys a small collection of laws shared by other, similar con-
structors like the powerset operator P [21]. Each monad has two polymorphic functions η, for “unit”, and μ, for “multiply”, 
that interact with each other in elegant ways. For example in (the) P (monad), unit has type X→PX and ηx is {x}, the 
singleton set containing just x (we sometimes omit function brackets to reduce clutter); correspondingly in D we have type 
X→DX and ηx is [x], the point-distribution on x. In P, multiply μ is distributed union that takes a set of sets to the one 
set that is the union of them all, having thus the type P2X→PX ; and in D we have (μ�)x = ∑

δ: 	�
 �δδx , with μ thus of 
type D2X→DX and taking the outer-weighted average of all the inner distributions δ in the support of hyper �: it is the 
“weighted average” of the hyper, which we sometimes call “squash”. That means, for example, that μ[π� C]=π , i.e. that if 
you squash the hyper produced by prior π and channel C you get the prior back again.

Furthermore the monadic type-constructors are functors, whose significance for us is that they can be applied to functions 
as well as to objects: thus for f in X→Y the function P f of type PX→PY is such that for X in PX we have f (X) =
{ f (x) | x∈X} in PY . In D instead we get the push forward of f , so that for π in DX we have (D f )(π)y = ∑

f (x)=y πx .
With these tools, some of our axioms can be expressed in a very general way, for example

(1) AVG becomes V̂=μ◦DV, the Kleisli lifting or indeed the bind of monadic functional programming.
(2) NI becomes V̂◦η=V. Assuming (1), that follows from the general monad laws μ◦η=1 and DV ◦η=η◦V .
(3) CVX becomes V◦μ ≤ μ◦DV.

A consequence of accepting averaging (1) is that V̂(�1
p+�2) = V̂(�1) p+ V̂(�2), i.e. we have linearity of V̂, where p+

takes the p-weighted sum of its operands: on the left we sum over hypers; on the right we sum over scalars. This is more 
generally V̂(μ�) = μ((DV̂)�) where � is in D3X , a distribution of hypers, another monad law when V̂=μ◦DV.

The space D3X also gives a hyper-formulated definition of the refinement order � over hypers, i.e., that �1��2

just when V̂�1≥V̂�2 for all V̂ satisfying the axioms: it is that �1��2 just when there is a � such that �1=μ� and 
�2=(Dμ)� [22,24]. This formulation allows soundness of �, i.e. that it can only decrease g-vulnerability, to be shown even 
for infinite state-spaces X and general measures. (See Appendix A.)

Finally, the monadic structure coupled with the Kantorovich metric gives us continuity criteria not only for V but also 
for V̂ [21,25]. If we give the underlying X the discrete metric, that dist(x1, x2) = (0 if x1=x2 else 1), then the Kantorovich-
induced distance on DX is equivalent to the total variation or 1/2-Manhattan metric used in Section 4. But the great 
generality of these monads gives us more, for example that AVG, i.e., the axiom V̂ = μ◦DV, makes V̂ continuous as well, 
this time with respect to the Kantorovich metric on hypers. That in turn allows higher-order calculations that limit infor-
mation flow in a very robust way [12].

In Appendix A we give examples of these general constructions in action: how they enable more succinct definitions, 
shorter, more algebraic proofs (if somewhat denser), and how they improve our chances of further discoveries because of 
the wealth of similar constructions that already exist in this mathematical style.

8. Related work

Our axioms for posterior vulnerabilities can be seen generalizations of key properties of Shannon entropy [26]. As we 
mentioned, our axiom of data-processing inequality (DPI) is a straightforward generalization of the data-processing in-
equality for mutual information, which states that if X→Y →Z forms a Markov chain, then I(X; Y ) ≥ I(X; Z). Our axiom of 
monotonicity (MONO) is a generalization of Shannon entropy’s “information can’t hurt” property, which states that for every 
pair X , Y of random variables, H(X |Y ) ≤ H(X). Finally, our axiom of monotonicity (NI) can be seen as a generalization of 
the property that, for every pair of independent random variables X and Y , H(X | Y ) = H(X).

The conservative approach represented by the use of the axiom of maximum (MAX) is employed, for instance, in the 
original definition of differential privacy [27].

8.1. Relation with other axiomatizations of entropy measures

Csiszár has surveyed [28] the most commonly used postulates for a function f of the uncertainty contained in 
a finite probability distribution (p1, . . . , pN) for N>0. They are: (P1) positivity: f (p1, . . . , pN) ≥ 0; (P2) expansibility: 
f (p1, . . . , pN , 0) = f (p1, . . . , pN); (P3) symmetry: f (p1, . . . , pN) is invariant under permutations of (p1, p2, . . . , pN); (P4) 
continuity: f (p1, . . . , pN ) is a continuous function of (p1, . . . , pN), for fixed n; (P5) additivity: f (P×Q ) = f (P ) + f (Q ), 
where P×Q is the product-distribution of P and Q (i.e. the distribution in which events have probability piq j for 
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each pi ∈ P and q j ∈ Q ); (P6) subadditivity: f (A, B) ≤ f (A) + f (B), where A and B are discrete random variables; (P7) 
strong additivity: f (A, B) = f (A) + f (B|A); (P8) recursivity: f (p1, p2, . . . , pN) = f (p1+p2, p3, . . . , pN)+(p1+p2) f (p1/(p1+p2),
p2/(p1+p2)); and (P9) sum-property: f (p1, . . . , pN ) = ∑N

n=1 g(pn) for some function g .
Shannon entropy is the only uncertainty measure to satisfy all axioms (P1–9) listed by Csiszár; but in fact various proper 

subsets of these axioms are sufficient to characterize Shannon entropy fully. In particular, Shannon himself showed that 
continuity, strong additivity, and the property that the uncertainty of a uniform distribution should not decrease as the 
number of elements in the distribution increases, are sufficient to determine entropy up to a constant factor [2]. Khinchin 
proved a similar result using strong additivity, expansibility, and the property that the maximum uncertainty should be 
realized in a uniform distribution [7].

Rényi explored ways to relax the axiomatization of Shannon entropy to derive more general uncertainty measures [8]. He 
showed that Shannon entropy could be characterized by five postulates: (R1) symmetry; (R2) continuity; (R3) f (1/2, 1/2) = 1; 
(R4) additivity; and (R5) the entropy of the union of two subdistributions is the arithmetic weighted average of each 
individual subdistribution. By replacing the weighted average in postulate (R5) with the (more relaxed) exponential 
mean, Rényi uniquely determined the family of Rényi entropies for full probability distributions Hα(p1, p2, . . . , pn) =
1/(1−α) log2(

∑n
k=1 pα

k ), where 0<α<∞, with α �=1, is a parameter. In the limit of α tending to 1, Hα coincides with Shannon 
entropy, and in the limit of α tending to infinity, Hα is min-entropy (i.e. the negated log of Bayes vulnerability).

Following Denning’s seminal work [29], Shannon entropy has been widely used in the field of quantitative information 
flow for the leakage of confidential information [1] [30] [31] [32] [33] [34] [35]. But as the field of quantitative information 
flow continued to evolve, new measures of uncertainty and of information were proposed. Contrary to Rényi’s motivation, 
however, most measures were not derived from mathematical principles, but instead were motivated by specific operational 
scenarios. That was the case for guessing entropy, Bayes vulnerability, and g-vulnerability, for instance. Although many 
“healthiness properties” have been proved after the fact for these measures (e.g. non-negativity, non-decrease of uncertainty 
by post-processing, etc.), there has not always been a derivation of such measures from basic principles, or attempts to 
verify whether they can be unified in a more general framework.

Naturally, since measures other than Shannon entropy cannot satisfy all postulates (P1–9), the axioms for vulnerability 
considered in this paper differ from those listed by Csiszár. Some differences are unimportant: they are just adaptations of 
axioms of uncertainty to axioms of vulnerability (e.g. conditioning of random variables reduces uncertainty, but increases 
vulnerability, so some inequalities must be reversed).

Other differences are more fundamental, however, as they reflect our departure from Shannon’s indifference to the 
meaning of different secret values. The axiom of symmetry (P3), for instance, assumes that all secret values are equally 
informative—and in many scenarios that is false. For instance, not everyone’s bank account is as worth breaking in to as 
everyone else’s, and so evidently a permutation on the probabilities of every particular account being broken into does not 
amount to the same vulnerability. The axioms of additivity (P5), subadditivity (P6) and strong additivity (P7) assume that 
the uncertainty of a pair of joint random variables is a function only of the correlation of the random variables, which 
is also not a valid assumption in many security scenarios: the information of the combination of two secrets may exceed 
the information content of each secret separately: for instance, the benefit of knowing someone’s PIN and bank-account 
number at the same time greatly surpasses the sum of the benefits of knowing each one on its own. Recursivity (P8) 
and the sum-property (P9) assume that the probability of each secret value contributes on equal terms to the overall 
uncertainty of the probability distribution, which also is a false assumption for many relevant measures. Bayes vulnerability, 
for instance, satisfies neither recursivity nor the sum-property, as the information of a probability distribution is a function 
of the maximum probability only.

8.2. Relation with Kifer and Lin’s work

Kifer and Lin’s work is the one most closely related to ours. In a series of papers [36–38,9], these authors proposed 
an axiomatic characterization of “good” properties that sanitization mechanisms should provide, focusing in particular on 
privacy and utility measures. They considered utility as information preservation, which captures how “faithful” the output of 
the mechanism is to its input,11 and as such is closely related to our notion of vulnerability. This notion derives from the 
more general concept of utility used in decision theory. Kifer and Lin argued that utility has not been studied systematically 
in the context of privacy, and that some proposals have led to inconsistencies and paradoxes.

In the following we summarize the connection between our paper and their work. We start by briefly recalling their 
basic concepts and notation. A sanitization mechanism M is a randomized algorithm from inputs to outputs,12 whose 
behavior is described by conditional probabilities PM(o|i) of observing output o when input is i. Such privacy mechanisms 
correspond exactly to our channels. Given two mechanisms M1 and M2 and p ∈ [0, 1], M1⊕pM2 denotes the mechanism 
that, on input D , returns M1(D) with probability p and M2(D) with probability 1−p, and also reveals whether the output 
was created using M1 or M2.

11 This is in contrast with utility as usability, which expresses how easily the output can be used. An example of the difference is provided by an 
encryption mechanism, which perfectly preserves information, but whose output is not usable except by users who know the decryption key.
12 In Kifer and Lin’s work, the inputs of a mechanism are assumed to be datasets, and denoted by D . However, the discussion of this section applies to 

inputs and outputs of any kind.
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A measure of information preservation is a function μ mapping a mechanism M to a real value. Lin and Kifer [9]
describe five axioms that such measures should satisfy:

(1) Sufficiency: μ(M) ≥ μ(A◦M) for any randomized algorithm A. Here ◦ represents functional composition.
(2) Continuity: μ is continuous in the components of M (viewed as a matrix).
(3) Branching: Given a mechanism M with output space {o1, . . .on} there is a function G such that μ(M) = G(PM(o1|·),

PM(o2|·))+μ(M′), where M′ is obtained from M by adding together the columns PM(o1|·), PM(o2|·) and leaving 
the others unchanged.

(4) Quasi-convexity: μ(M1⊕pM2)≤ max(μ(M1), μ(M2)).
(5) Quasi-concavity: μ(M1⊕pM2)≥ min(μ(M1), μ(M2)).

Lin and Kifer analyzed in [9] many popular measures of utility from the literature of privacy, and showed that almost all of 
them fail to satisfy the above axioms. One exception is the notion of g-vulnerability, as we will see in a moment.

By observing that our notion of vulnerability is essentially the utility of the adversary, we can make several connections 
between Kifer and Lin’s principles and our own. First, their sufficiency axiom is clearly related to our data-processing 
inequality (DPI), since A◦M represents the post-processing of M by A. Furthermore, they showed in [9] that Axioms 
(1)–(3) characterize a measure based on posterior g-vulnerability. More formally13:

Theorem 28 (Lin and Kifer [9], Theorem 6.2). It is the case that:

(a) ∀g ∀π ∃μ satisfying (1)–(5): ∀M V̂ g[π�M] = μ(M), and
(b) ∀μ satisfying (1)–(3) ∃π ∃g: ∀M V̂ g[π�M] = μ(M).

From previous sections, we know that any function satisfying continuity (CNTY),14 convexity (CVX), and averaging (AVG) 
corresponds to a posterior g-vulnerability for some g . Together with the above result, this suggests a strong relation between 
information preservation and the notion of average-based posterior vulnerability explored in this paper.

However, there are important differences. First of all, the type of μ and that of posterior vulnerability are different: 
posterior vulnerability applies to a hyper-distribution, typically derived from a channel M and a prior π . On the other 
hand, μ applies only to a channel M. This means that the prior π is implicitly encoded into μ, and that the utility μ(M) is 
the utility of M under the fixed prior π . A second (related) difference is that, while we can express the prior vulnerability 
as a particular case of posterior vulnerability, this is not the case for μ. In fact, we can express the utility of the distribution 
π associated to μ as μ(0̄), but we cannot express the utility of a generic distribution via the same μ. Indeed, because of 
Axiom (1), for any M, μ(M) has an utility greater than or equal to that of μ(0̄), thus it cannot represent the utility of 
any π ′ that has less utility than π . As a consequence, it seems that the relation between prior and posterior measures, 
which is a major contribution of our paper, cannot be expressed in Kifer and Lin’s framework. At least, not by using μ
alone: one would need to introduce and axiomatize a new function. In particular, the averaging axiom (AVG) cannot be 
formulated by using μ alone. Similarly, the maximum (MAX) and the bounds (BNDS) axioms cannot be formulated, despite 
the resemblance of the latter with the axioms (4) and (5) above.

In summary, a main novelty with respect to the work of Kifer and Lin is that we investigate the relation between 
prior and posterior vulnerabilities. Another novel contribution is the study of the relationships between alternative sets of 
axioms. In general, indeed, our focus is different from that of Kifer and Lin: they focused on finding a collection of axioms 
for analyzing utility specifically, and used them to review the current practices in the field of privacy. In contrast, our 
main motivation is to establish the scientific principles which can help in the development or adaptation of new measures 
in response to novel situations. Thus, we explored different sets of possible axioms, thereby clarifying the implications 
between the principles themselves.

8.3. Relation with Boreale and Pampaloni’s work

In [17,18], Boreale and Pampaloni have conducted one of the first studies of adaptive adversaries in the context of 
quantitative information flow. They did not consider explicitly an axiomatic framework, but, in order for their results to be 
as general as possible, they adopted a generic notion of entropy, specified by a few properties which turn out to be our 
axioms of concavity, continuity, and averaging. Furthermore, in [18] they pointed out a known theorem in decision theory, 
which states that a function H : DX → R+ , satisfies concavity and continuity iff it is of the form H(π) = ∑

x πx S(x, π), 
where S : X × DX → R+ , is any function which satisfies the condition that 

∑
x πx S(x, π ′) is minimal when π ′ = π . Such 

function S , called Proper Scoring Rule in decision theory, is similar to the (converse of) gain functions used in g-vulnerability, 

13 Theorem 28 was actually formulated for the converse functions: the information loss and the expected error of a Bayesian decision maker, which are 
converse of the information preservation and of the posterior g-vulnerability, respectively.
14 Note that (CNTY) and (2) refer to different type of arguments.
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and therefore the above definition is related to that of prior g-entropy. Thus this result is similar to that of the completeness 
of g-vulnerability with respect to our axiomatization of the prior vulnerability (Theorem 9).

9. Conclusion

We have presented axioms that might be satisfied by intuitively reasonable measures of the prior- and posterior vul-
nerability of a secret as it is being processed by a system; this allowed us to derive properties of leakage. Our first main 
contribution was (1) the equivalence of the axioms of convexity, monotonicity (i.e. non-negativity of leakage), and data-
processing inequality (DPI) when posterior vulnerability is defined as the average vulnerability of the posteriors, and (2) the 
equivalence of quasi-convexity, monotonicity and DPI when posterior vulnerability is defined as the worst-case vulnerability 
of posterior distributions. A deep implication of these results is that convexity (and quasi-convexity) of information mea-
sures do not need to be taken as fundamental properties, but are derivable from more intuitive principles, such as averaging 
(or worst-case analysis) and DPI.

The second main contribution was the demonstration of the soundness and completeness of g-vulnerabilities with re-
spect to the axioms of convexity and continuity. Moreover, because of the equivalences we established, it follows that 
g-vulnerability exactly captures all average-based information measures that respect DPI or monotonicity.

We now want to further investigate the full family of vulnerabilities under quasi-convexity and continuity, characterizing 
all worst-case based vulnerabilities that respect DPI or monotonicity.
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Appendix A. Elementary examples supporting Section 7

Recall that we take our base space to be X , distributions on that to be DX , and hypers to be D2X . Typical elements of 
DX are lower-case Greek letters, possibly superscripted. Thus πx is the probability π assigns to x and π1

x is the probability 
π1 assigns to x and �2

δ3 is the probability that hyper �2:D2X assigns to distribution δ3:DX . In �δ usually δ will be in the 
support 	�
 of �; if not, then of course the assigned probability is zero.

We (continue to) write the point, or “singleton” distribution on x as [x], so that [x]x′ = 1 IF x = x′ ELSE 0—it is the same 
as ηx if we are using a monad. A “doubleton” distribution say δ=x1 p⊕x2 is such that δx1=p and δx2=1−p. The p-weighted 
sum of two values is defined x1 p+ x2 = px1+(1−p)x2, thus not the same thing as x1 p⊕ x2: for example if X were the 
reals R, then x1 p+ x2 would also be a real, but x1 p⊕ x2 would be a (doubleton) distribution in DR. Indeed we have 
x1 p⊕ x2 = [x1] p+ [x2]. In both cases the p-factor applies on the left.

In this section we use μ more generally than multiply of a monad, as introduced in Section 7 above: here μ will as 
well simply average any distribution taken over a vector space. Thus in particular we have μ(δ1

p⊕δ2) = δ1
p+ δ2 because 

δ1
p⊕ δ2, a hyper with just two inners, is in D2X = D(DX ) and DX is a vector space.
We return first return to the higher-order formulation V̂=μ◦DV of AVG. With a doubleton hyper for illustration, say 

� = π1
p⊕π2, that gives

V̂� = (μ◦DV)� “apply AVG to �”
⇒ V̂(π1

p⊕π2) = (μ◦DV)(π1
p⊕π2) “� = π1

p⊕π2”
iff V̂(π1

p⊕π2) = μ(DV(π1
p⊕π2)) “composition”

iff V̂(π1
p⊕π2) = μ(Vπ1

p⊕Vπ2) “definition functor D”
iff V̂(π1

p⊕π2) =Vπ1
p+Vπ2 , “property of μ”

showing that V̂ indeed takes the weighted sum of V applied to the (two, in this case) posteriors in �. As an illustration of 
more general reasoning, we give the proof promised in Section 7, i.e., that applies even when the weighted average is not 
necessarily over just two hypers. Note that the resulting proof is less cluttered than the one immediately above, and also 
less so than a conventional presentation would be with summations and subscripts. We have

V̂ ◦ μ
= μ ◦DV ◦ μ “assumption AVG”
= μ ◦ μ ◦D2V “μ is natural transformation D

2→D”
= μ ◦Dμ ◦D2V “monad coherence condition on μ”
= μ ◦D(μ ◦DV) “D functor”
= μ ◦DV̂ , “assumption AVG”
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which overall equality says intuitively that applying V̂ to the weighted sum of some hypers, i.e., V̂(μ�), is the same as 
applying V̂ to the hypers separately and then taking the weighted sum of the results, i.e., μ(DV̂�). (†)

The higher-order NI captures its traditional definition via V̂[π ]=V̂(ηπ)=(V̂◦η)π=Vπ . Here is how the higher-order 
version of NI follows from AVG and the monad laws, as we claimed in Section 7:

V̂◦η
= μ ◦DV ◦ η “assumption AVG”
= μ ◦ η ◦V “η is natural transformation 1→D”
= V . “monad coherence condition μ◦η = 1”

Applying that to arbitrary π gives V̂(ηπ) = Vπ .
For CVX again we use a doubleton hyper � = π1

p⊕π2 as an example, so that the traditional formulation of CVX is 
found in the middle of the following string of equalities:

(V◦μ)�

= (V◦μ)(π1
p⊕π2) “definition �”

= V(μ(π1
p⊕π2)) “composition”

= V(π1
p+π2) “property of μ”

≤ Vπ1
p+Vπ2 “traditional formulation of CVX”

= μ(Vπ1
p⊕Vπ2) “property of μ”

= μ(DV(π1
p⊕ π2)) “definition functor D”

= (μ◦DV)(π1
p⊕ π2) “composition”

= (μ◦DV)� , “definition � again”

showing how CVX for this particular � agrees with the higher-order formulation V◦μ ≤ μ◦DV at (3) in Section 7.
Now we return to the formulation of the partial order � on hypers in terms of the surprising “hyper–hyper” � in D3X . 

As we did above (at †), we will assist the intuition by taking a simple case � = �1
p⊕�2, thus a doubleton hyper-hyper over 

two hypers �1 with probability p and �2 with probability 1−p. We show that the higher-order definition of � implies 
the V-based definition, in this case, provided we assume CVX. (The reverse direction is harder, related to the Coriaceous 
Conjecture described in [5] and proved in [6,12].)

We start by setting �+=μ� and �−=(Dμ)�, as in the higher-order formulation of � from which we would expect to 
be able to prove that V̂�+ ≥ V̂�− . Then we have

V̂�+
= V̂(μ�) “definition �+”
= V̂(μ(�1

p⊕�2)) “definition �”
= V̂(�1

p+�2) “property of μ”
= V̂�1

p+ V̂�2 “linearity of V̂, implied by AVG”
= (μ◦DV)�1

p+ (μ◦DV)�2 “assume AVG”
≥ (V◦μ)�1

p+ (V◦μ)�2 “assume CVX”
= μ((V◦μ)�1

p⊕ (V◦μ)�2) “property μ”
= μ(D(V◦μ)(�1

p⊕ �2)) “functor D”
= (μ◦DV◦Dμ)� “composition; functor D; definition �”
= V̂(Dμ�) “assume AVG; composition”
= V̂�− . “definition �−”

As in the earlier examples, once one is familiar with the general monadic operators, one gains access to a presentation 
of essentially the same proof but in a shorter, less cluttered (with no super- or subscripts), more algebraic style. More 
significantly, however, is that these operators have general monadic formulations that accommodate infinite state-spaces 
and proper measures. The algebraic proof applies as-is, unchanged. Thus for general �, is in effect a soundness proof for �, 
that it can only decrease vulnerability (given CVX and AVG); and because of the great generality of the monad framework 
[21] it applies even for infinite state spaces X and measures. It is

V̂ ◦ μ

= μ ◦DV̂ “linearity of V̂, proved earlier at †”
≥ μ ◦D(V ◦ μ) “AVG and CVX; see ‡ below”
= μ ◦DV ◦Dμ “D functor”
= V̂ ◦Dμ . “AVG with “the other μ””

The longer proof just above is recovered by applying each line to � = �1
p⊕�2.
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The “see below” appeals to the elementary general fact that if two functions f , f ′:S→R satisfy f (s)≥ f ′(s) for all s:S , 
then also (μ◦D f )(δ) ≥ (μ◦D f ′)(δ) for all δ in DS , in words that if two random variables over the same distribution satisfy 
≥ everywhere, then so do their expected values. Above we used f =V̂ and f ′=V◦μ and S=D2X , appealing to AVG and
CVX for the inequality. (‡)
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