
Towards a Fully Verified File System

Proving the functional correctness of a
realistic file system implementation

Sidney Amani, Leonid Ryzhyk, Toby Murray

Motivation
➢ File system defects can lead to disastrous data loss
➢ Current development techniques do not ensure the absence of implementation flaws

Goal: Formally verify the functional correctness of a file system implementation

Problem

➢ Verifying a file system involves proving that its C
 implementation refines the abstract specification of
 file system behaviour

➢ Refinement proofs are hard for large code bases

➢ Previous attempts at file system verification could
 not overcome the complexity of low-level
 specifications

 www.ssrg.nicta.com.au

Expected research contributions
➢ First functional correctness proof of a realistic file system implementation
➢ An approach to file system verification by decomposition

Abstract FS

High-level spec

Low-level spec

C implementation

?

?

Approach:
➢ Split a specification into multiple

 components
➢ Specify well-defined interfaces

 between them
➢ Specify the behaviour of each

 component in the decomposition
➢ Refine each component individually,

 by possibly repeating the
 decomposition process for each of
 them

Refinement

Refinement with simplifications
[Hesselink_09, Arkoudas_04]

Refinement too hard
[Schierl_09, Yang_06]

State-of-the-art in FS verification

Key idea:
➢ Overcoming verification complexity
 by decomposition

➢ Introduce implementation details
 only when refining individual

 components

File system decomposition example

~250 LOC

~450 LOC

~2,000 LOC

~2,000 LOC
~ 20,000 LOC

	The problem we solve (Laymen, short statement). Arial 80 pt

