Towards a Fully Verified File System

Sidney Amani, Leonid Ryzhyk, Toby Murray NICTA
Proving the functional correctness of a
realistic file system implementation

Motivation

> File system defects can lead to disastrous data loss

> Current development techniques do not ensure the absence of implementation flaws
Goal: Formally verify the functional correctness of a file system implementation

Problem [Abstract FS] ~250 LOC

. . _ | | -
> Verifying a file system involves proving that its C I ‘nement

Implementation refines the abstract specification of
file system behaviour

[High-level spec] ~450 LOC

I,, Refinement with simplifications
" [Hessdalink 09, Arkoudas 04]

> Refinement proofs are hard for large code bases [Low-level spec } -2 000 LOC

17 Refinement too hard

> Previous attempts at file system verification could [Schierl_09, Yang_06]

not overcome the complexity of low-level [C implementation]~ ;(2)’888 tgg
specifications State-of-the-art In FS verification |
Key idea:
I > Overcoming verification complexity

. Abstract FS |

——————————

by decomposition

Refinement > Introduce iImplementation details
Ifs Idirectory —_— only when refining individual

\T components
(Fs K [;,;e'c;;{y.\/ _______ \ Approach:
Coord)X _______

> Split a specification into multiple
components

][] >
e
<+

> Specify well-defined interfaces
between them

> Specify the behaviour of each
component in the decomposition

> Refine each component individually,
by possibly repeating the
decomposition process for each of
them

File system decomposition example

Expected research contributions

> First functional correctness proof of a realistic file system implementation
> An approach to file system verification by decomposition

v THE UNIVERSITY OF NEW SOUTH WALES

WWW.SSrg.nicta.com.au

	The problem we solve (Laymen, short statement). Arial 80 pt

