
The SawMill Framework for Virtual Memory Diversity

Mohit Aron

Department of Computer Science

Rice University

Jochen Liedtke and Kevin Elphinstone

System Architecture Group

University of Karlsruhe

Yoonho Park and Trent Jaeger

IBM T.J. Watson Research Center

Luke Deller

School of Computer Science and Engineering

University of New South Wales, Sydney

Abstract

We present a framework that allows applications to

build and customize VM services on the L4 microkernel.

While the L4 microkernel’s abstractions are quite power-

ful, using these abstractions effectively requires higher-level

paradigms. We propose the dataspace paradigm which pro-

vides a modular VM framework. The modularity introduced

by the dataspace paradigm facilitates implementation and

permits dynamic configurability. Initial performance results

from a prototype are promising.

1 Introduction

We argue that a virtual-memory system (VM) designed

to support a wide variety of applications should have the

following features:

� VM diversity: Applications should be able to build

and customize the VM according to their needs. They

should have complete control over the VM policies.

The alternative that frequently occurs in practice is that

application programmers settle for a policy in the ker-

nel that comes closest to providing the right level of

service.

� Dynamic extensibility: Applications should be able to

dynamically extend the VM system. This calls for a

modular design that provides the following benefits:

(1) code reuse which facilitates implementation of VM

policies, (2) enables VM policies to be easily tuned to

applications needs, and (3) dynamic configurability.

� Performance: Increased functionality should not be

performance limited. Consider Mach user-level

pagers. Mach applications can use pagers to con-

trol how data is moved between physical memory and

backing store. This increased functionality is policy-

limited — i.e., pagers cannot control replacement pol-

icy — and performance-limited by the high cost of

Mach IPCs. Backing store is usually slow and hides

the high cost of Mach IPCs in page-fault handling per-

formance. If backing store is not slow, page-fault han-

dling performance will be limited by the cost of Mach

IPCs.

In this paper, we present the SawMill VM framework

in the context of the L4 microkernel [16, 17]. The SawMill

project itself aims to develop highly-configurableoperating-

system technology to address the complexity of building

and maintaining a variety of custom operating systems

[8]. The SawMill VM framework reconciles the conflicting

goals of functionality and performance in order to provide

flexibility to applications. The design provides a modular

and dynamically extensible framework that enables appli-

cations to (1) build application-specific VM services from

modular components and (2) dynamically plug these ser-

vices into the existing framework. Initial performance re-

sults with a prototype implementation are promising.

The rest of the paper is organized as follows. Section 2

describes the L4 microkernel and its abstractions for sup-

porting VM. It describes the L4 pagers that are responsi-

ble for handling page faults and describes their use in the

hierarchical management of address spaces. Section 3 in-

troduces the concept of a dataspace — an unstructured con-

tainer of data — and shows how it augments L4 abstractions

to provide a dynamically extensible VM framework. In Sec-

tion 4 we discuss the types of components that we envision

for the VM framework. In Section 5 we evaluate the per-

formance of our VM framework prototype using popular

benchmarks. Section 6 presents related work, and Section 7

summarizes.

2 L4 Microkernel

In this section, we briefly present the abstractions and

primitives provided by the L4 microkernel. By means of

an example pager, we illustrate how the primitives can be

used, and how powerful as well as flexible they are. A de-

tailed discussion of the L4 microkernel’s API can be found

elsewhere [17].

2.1 VM primitives

The L4 microkernel provides two abstractions: threads

and address spaces. The thread is a unit of execution and is

associated to a unique address space. An address space and

the threads associated with it are collectively referred to as

a L4 task. The L4 threads can communicate with each other

using the IPC operations provided by the microkernel [16,

10]. At the hardware level, an address space is a mapping

that associates each virtual page with a physical page frame

or marks it non-accessible. An address space defines the

virtual memory of the threads associated with it.

For the purpose of page-fault handling, the microkernel

supports the notion of per-thread pagers. A pager in L4 is a

thread running in the same or different address space as the

faulting thread. The page fault is reflected to a pager thread

as an IPC, the reply for which is used by the pager to map a

page into the faulting thread’s address space.

The L4 microkernel permits hierarchical management of

its address spaces. In other words, a pager’s address space

might itself be managed by another address space. For such

a hierarchical scheme to work, we need one intial address

space. This address space, called �

0

, is created at system

start time and is idempotent to the physical memory of the

machine. Management of other address spaces is enabled

by means of the following microkernel operations:

Grant. A thread associated with an address space can grant

any of its pages to another space, provided the recip-

ient agrees. The granted page is removed from the

granter’s address space and included into the grantee’s

address space. The important restriction is that instead

of physical page frames, the granter can only grant

pages that are already accessible to itself.

Map. A thread in an address space can map any of its

pages into another address space, provided the recip-

ient agrees. Afterwards, the page can be accessed in

both address spaces. In contrast to granting, the page

is not removed from the mapper’s address space. Com-

parable to the granting case, the mapper can only map

pages that it itself can access.

Unmap. A thread in an address space can unmap any of

its pages. The unmapped page remains accessible in

the unmapper’s address space, but is removed from

all other address spaces that had received the page di-

rectly or indirectly from the unmapper. Although ex-

plicit consent of the affected address-space owners is

not required, the operation is safe, since it is restricted

to ones own pages. The users of these pages already

agreed to accept a potential unmapping, when they re-

ceived the pages by mapping or granting.

Page-fault handling is done outside the microkernel and

only the grant, map and unmap operations are done inside.

The microkernel only reflects the page fault to the corre-

sponding pager thread by means of an IPC. The actual page-

fault handling is left upto the pager thread.

3

Grant
Map

Map

A

A

A

A

0

1

2

Figure 1. L4 microkernel map and grant oper-

ations.

Figure 1 shows example uses of the above mentioned

microkernel operations. Address spaceA
0

maps a page into

address space A
1

which further maps it into address space

A

2

. The resulting mapping is shown as a thin line from

A

0

to A
1

and then to A
2

. If A
0

were to unmap this page in

its address space, then the mapping would disappear in A
1

as well as A
2

. However, if A
1

unmaps the mapping in his

address space, the mapping will disappear in A

2

’s address

space, but is retained in A
0

’s address space. The figure also

shows a grant operation. Address space A
0

maps a page

into address spaceA
3

which grants it into address spaceA
2

.

As a result, the mapping disappears in A

3

. The resulting

mapping is indicated as a thin line from A

0

to A
2

.

2.2 Constructing a Simple Example Pager

As an example to illustrate the mechanisms decribed

above, we describe the construction of a simple pager. It

manages only a single address space and uses a contigu-

ous partition of a disk for swapping. To make things a lit-

tle bit more complicated, the physical video frame buffer is

mapped one-to-one into the address space and is, of course,

not subject to swapping.

As shown in Section 2.1, a pager uses the pages in its

own address space and maps them into the faulting thread’s

address space. We will refer to the pages in the pager’s ad-

dress space as PagerPages. For easier understanding, the

reader might provisionally think of the PagerPages as phys-

ical pages in this context. However, it must be noted that,

in fact, they are virtual pages (of the pager’s address space).

Therefore, we do not use the term physical pages.

Figure 2 shows the pseudo-code used by our simple ex-

ample pager to implement page-fault handling for its client

address space. ClientPage refers to the faulting virtual page

in the client’s address space and SelectedPagerPage refers

to the PagerPage that the pager selects for mapping into the

ClientPage. FaultType indicates whether the page fault is

on a read or a write.

do

wait for page-fault ipc from ClientSpace ;

if FaultAddress within frame buffer

then select corresponding frame buffer PagerPage

elif a PagerPage is associated with FaultAddress

then select FaultAddress-associated PagerPage

else select a PagerPage to be replaced ;

if SelectedPagerPage in use

then unmap (SelectedPagerPage) ;

write back (SelectedPagerPage)

fi ;

load required page into SelectedPagerPage

fi ;

touch (SelectedPagerPage) ; /* see Section 2.3 */

map (SelectedPagerPage, FaultAddress, ClientSpace)

od .

Figure 2. A simple example pager.

As mentioned in Section 2.1, the microkernel notifies the

pager about the occurrence of a page fault in the client’s

address space using an IPC. This IPC also contains infor-

mation about the faulting page in the client’s address space

as well as whether the fault is upon a read or a write. If

there is currently no PagerPage associated to the faulting

client page, the pager selects an arbitrary PagerPage for re-

placement, writes it to swap if necessary, loads the required

contents into the selected PagerPage, and then maps it to

the faulting ClientPage in the client’s address space. Just

before mapping the SelectedPagerPage, the pager touches

it so as to ensure that it is mapped in its own address space

in case any underlying pager had unmapped it. Section 2.3

discusses this aspect in more detail.

The reader should note that a PagerPage is always un-

mapped before its contents are replaced. The corresponding

microkernel primitive unmaps it from all address spaces the

pager had mapped it, i.e. in our example from the client’s

space, but leaves it mapped inside the pager’s address space.

This ensures that the client does not inadvertently access in-

correct data if the PagerPage in question had been mapped

into the client’s address space earlier. As an effect, the pager

can access the page while the client will incur a page fault

if it tries to do the same.

An advantage afforded by our example pager is that in-

formation regarding the association between a ClientPage

and the corresponding PagerPage is kept internal to the

pager in a page table data structure. The pager can then

choose any suitable page table organization.

2.3 Hierarchical Pagers

We use the example pager shown in Section 2.2 to show

how two such pagers can be stacked. This is possible be-

cause our example pager did not use physical pages. Its

PagerPages were virtual pages of the pager’s address space.

Thus stacking two such pagers is easily possible.

As shown in Figure 3, the upper pager P
1

is then the

client of the underlying pager P
0

. The PagerPages of P
1

are

the virtual ClientPages for P
0

. Stacking one example pager

on top of another one doesn’t really extend the functional-

ity of the first pager. Nevetheless, it is a simple and good

example for illustrating how hierarchical pagers work and

how they must be constructed to be independent of their po-

tentially underlying pagers. Later in this paper (Section 4),

we present really meaningful, but also more complicated,

hierarchical pagers that extend each others semantics sig-

nificantly.

App fault

App

P

P 0

1

own page and

faults

then P
1 0

1

P touches its P maps

Figure 3. Nested pagers.

As long as P
1

’s PagerPages are all mapped into P
1

’s ad-

dress space, P
0

does obviously not affect P
1

. The fact that

P

1

’s pager pages may have different physical than virtual

addresses is transparent to P
1

since it never sees the physi-

cal addresses.

The situation becomes more complicated when some of

P

1

’s pager pages are not mapped, i.e. have not been used

before or have been unmapped by P
0

for some reason. As-

sume that P
1

receives a page fault, finds an appropriate

PagerPage, and maps it into its client. What happens if that

PagerPage itself was not mapped into P
1

’s address space?

To answer the question, we must understand that L4’s

map primitive passes existing access rights from the map-

per to the mappee. The mapper can narrow the access rights

(e.g. to read-only) but he can never grant the mappee more

rights than the mapper possesses itself on the page. Con-

sequently, mapping an unmapped page (no access rights at

all) unmaps the page in the mappee’s address space as well.

To ensure that its PagerPage is mapped into its own ad-

dress space when mapping it into the client’s address space,

the example pager always touches its own PagerPage prior

to mapping it into the client; if P
1

’s PagerPage is currently

unmapped, touching raises a page fault in P

1

. The lower-

level pager P
0

will handle it transparently to P
1

, potentially

swapping in a page from the P

0

-disk. Afterwards, P
1

’s

PagerPage is mapped into P

1

so that the subsequent map

operation of P
1

into its client space will succeed with a high

probability. If the just mapped PagerPage is unmapped by

P

0

a second time between touching and mapping (unlikely

but possible), we will see another page fault at the client,

touching and mapping by P

1

, and so forth. Depending

on P

0

’s qualities, the game will terminate sooner or later.

Without touching, it would never terminate.

3 An Extensible VM Framework

Pagers as described above, are a low-level and strongly

microkernel-related concept. Using the concept effectively

requires more elaborate higher-level paradigms and con-

cepts. Any such framework should (a) pass all the flexi-

bility and power of the underlying pager concept to its ap-

plications, (b) ensure extensibility by means of different in-

stances and types of those “higher-level pagers,” (c) ensure

interoperability between them, and (d) offer customized se-

mantics for a wide range of application types.

As an instance of such a framework, we present

SawMill’s dataspace paradigm, the design and implemen-

tation of an according framework, and some examples. The

system described is a true user-level system, located out-

side the microkernel, and uses the low-level operations de-

scribed in Section 2 to provide virtual memory to applica-

tions.

3.1 The Concept of Dataspaces

The virtual-memory framework is based on dataspaces1.

A dataspace is an unstructured data container. In other

words, the term dataspace abstracts any system entity that

contains data. Examples for dataspaces are files, anony-

mous memory, frame buffers, etc.

1The term “Dataspace” was coined by L3 developers [4].

Dataspaces can be attached to regions of an address

space. Accessing the virtual memory of a region thus ef-

fectively accesses the dataspace associated with the region.

In Figure 4, address space A
1

has two regions to which the

dataspaces ds
1

and ds

2

are attached. ds

2

is additionally

attached to a region of A
2

.

2

Region

Manager’s

Address space

A A

Dataspacesds ds2 1

1

Figure 4. Relationship between address

spaces, dataspaces, and regions.

The region map is a per-address space object that keeps

track of the attached dataspaces and translates any virtual

address to a 3-tuple (dataspace manager, dataspace id,

offset). Every page fault is captured by the region map. It

translates the faulting address and then forwards the page

fault, including dataspace id and offset, by means of IPC

to the dataspace manager that corresponds to the faulting

address.

Dataspace managers implement dataspaces. Each such

manager determines the semantics of the dataspaces that

it offers. For instance, one manager might offer physical

frame buffers as dataspaces, another one anonymous paged

memory, a third one Unix files, a fourth one MSDOS files, a

fifth one distributed shared memory dataspaces. By attach-

ing those dataspaces to address space regions, the managers

also define the semantics of the address space regions to

which their dataspaces are currently attached.

In L4 microkernel terms, dataspace managers are pagers.

Typically, they cache the contents of dataspaces in their own

virtual address-spaces as shown in Figure 4 and use the mi-

crokernel’s VM operations (presented in Section 2) to sat-

isfy application page faults.

As discussed in Section 2, the L4 microkernel binds

pagers to threads. The pager is then responsible for servic-

ing page faults generated by the thread. In our framework,

the dataspace manager is the pager and is bound to a re-

gion. The region map is declared the thread’s pager, but the

dataspace manager services the page fault. Binding pagers

to regions is more conventional but less flexible than bind-

ing pagers to threads. Binding pagers to threads allows the

construction of simple pagers such as the pager presented in

Section 2.2 without any region bookkeeping overhead.

It is to be noted that the dataspace concept is a higher-

level concept in that the microkernel is unaware of dataspa-

ces. Attaching a dataspace is a logical operation that pro-

vides access to the dataspace through the virtual memory

of the application. The actual series of steps leading from

the attachment of a dataspace to the actual accessing of its

content by the application can be enumerated as follows:

1. An application attaches a dataspace to a virtual-

memory region.

2. The application accesses a page in the virtual-memory

region — this generates a page fault since the virtual

memory is as of yet unmapped.

3. The region mapping is notified of the page fault by an

IPC.

4. The region mapping translates the faulting address to

(dataspace manager,dataspace id, offset).

5. The region mapping forwards the page fault includ-

ing dataspace id and offset to the appropriate dataspace

manager by another IPC.

6. The dataspace manager caches the contents of the da-

taspace in a mapped virtual-memory page in its own

address space.

7. This VM page is mapped into the applications address

space using the microkernel’s map or grant operations.

3.2 Operations On Dataspaces

All dataspace managers must support identify, at-

tach/open, detach/ close, and interrogate described below.

Share, copy, transfer, create, and delete are optional opera-

tions.

Identify: Request for a dataspace id. The manager returns

a dataspace id. The information provided in the request

is manager-dependent. For example, the request can

contain an id such as a file descriptor or a path name.

Attach/Open: Opens a dataspace for access and attaches it

to a region. The request can also contain open meth-

ods such as read-only or read-write. The request can

either work on a dataspace id that was priorily deliv-

ered by an identify operation, or it can work on, e.g., a

file name and implicitly identify the dataspace. After

an attach, the region mapping forwards all page faults

in that region to the dataspace manager. The dataspace

manager resolves the faults with map or grant opera-

tions.

Detach/Close: Removes a region-dataspace mapping. Any

mapped pages are unmapped. The dataspace is no

longer accessible, but the dataspace id remains valid

and can be used, e.g., for another open.

Interrogate: Request to determine which operations and

flavors of operations the manager supports. For exam-

ple, it is unlikely a dataspace manager that provides a

video frame buffer will support the copy operation.

Share: Request to allow a dataspace to be shared with an-

other task. After the share operation, the other task is

allowed to open the dataspace. The sharing semantics

are manager-dependent. For example, the manager can

offer read-only sharing requests.

Copy: Request to create a copy of an existing dataspace in

the same or different manager. The manager returns

the dataspace id of the copy. Managers are free to de-

fine the semantics of the copy. For example, copying

can be performed lazily.

Transfer: Request to transfer ownership of a dataspace to

another task. The dataspace is detached and closed in

the transferring task, and can then be opened and at-

tached in the target task.

Create: Request to create a dataspace. The request con-

tains an id such as a file descriptor or path name. There

is no effect on the requestor’s address space.

Delete: Request to delete a dataspace specified by a data-

space id. All attachments are invalidated.

3.3 Extensibility of Dataspace Semantics

Existing dataspace semantics can be modified in two

ways. The transfer operation allows applications to dynam-

ically move dataspaces. This allows applications to layer

additional semantics on existing dataspaces by stacking da-

taspace managers. Applications can also replace semantics

of existing dataspaces.

Figure 5 shows the dynamic stacking of dataspace man-

agers. Before the managers are stacked, the application

uses a dataspace from dataspace manager 1. To stack the

managers, the dataspace is transferred from the application

to dataspace manager 2 (not shown). The application then

re-fattaches/opensg the dataspace from dataspace manager

2. Dataspace manager 2 is now free to extend the seman-

tics of the dataspace. For example, the manager can in-

crease/decrease accessibility, add lazy copying, or add per-

sistence.

Figure 6 shows how an application can replace the se-

mantics of existing dataspaces. Suppose dataspace manager

1 provides swappable, anonymous memory and dataspace

Manager 1

Before transfer After transfer, re−{attach/open}

Application

Dataspace

Manager 2

Dataspace

Figure 5. Extending the semantics of a data-

space by dynamically stacking managers.

After transferBefore transfer

Application

Dataspace

Manager 2

Dataspace

Manager 1

Figure 6. Modifying the semantics of a da-

taspace by moving the dataspace between

managers.

manager 2 provides non-swappable, anonymous memory.

Moving a dataspace from 1 to 2 is a pinning operation.

Moving a dataspace from 2 to 1 is an unpinning operation.

L4Linux [10], a port of Linux to the L4 microkernel,

provides an interesting opportunity to experiment with a

large system. L4Linux acts as a pager for L4Linux appli-

cations. Placing L4Linux within our framework would al-

low L4Linux applications to arbitrarily extend L4Linux VM

semantics. This has several interesting possibilities. One

possibility is that existing semantics could be preserved and

additional semantics such as persistence could then be lay-

ered. Another possibility is that existing semantics could

be stripped to a minimum and applications could then layer

only the semantics it deems necessary.

4 VM Diversity

Different instances and types of dataspace managers will

ensure the extensibility of the VM framework. At this time,

we envision three types of memories provided by dataspace

managers — basic memories, paged memories, and special-

ized memories.

Basic memories represent physical memories and in-

clude main memory, colored memory, and device memory.

A main memory manager can be thought of as a �
0

data-

space manager. It controls the allocation of main memory

by exporting dataspaces that map directly to main mem-

ory. A dataspace provided by a colored memory man-

ager represents physical page-frames which select the same

cache bank. Such dataspaces provide a user-level cache-

partitioning mechanism. Cache-partitioning is useful in

real-time systems where task switches disrupt cache work-

ing sets, making execution times unpredictable [18]. A

video frame buffer is an example of device memory. The

primary responsibility of a device memory manager is ac-

cess mediation.

Paged memories include anonymous memory, file sys-

tems, and compressed memory. Anonymous memory is

zero-filled memory backed by secondary storage, usually

disk. Compressed memory is useful in memory-constrained

devices and can be used with a wide variety of other mem-

ories including anonymous memory and file systems.

Specialized memories include pinned memory and per-

sistent memory. Traditional pinning is static. Pages are

pinned forever or until the user unpins the pages. Quotas are

used to control static pinning. In [19] we propose dynamic

pinning. In this scheme, pages are pinned for short periods

of time. When and how many pages are pinned is deter-

mined dynamically. Both static and dynamic pinning can

be implemented by a dataspace manager. Within our frame-

work, adding persistence to a dataspace is just a matter of

inserting a persistent dataspace below the dataspace as in

Figure 5. The manager can periodically write the dataspace

to secondary storage or employ an incremental strategy.

5 Performance Analysis

We have implemented a prototype that consists of a

main memory manager and an anonymous memory man-

ager. The managers implement identify, attach/open, de-

tach/close, and interrogate.

Table 1 compares the time to execute the Appel-Li VM

primitives [2]. The times for OSF/1, Mach and SPIN taken

from [3] were measured on a 133MHz DEC Alpha. The

numbers for SawMill were measured on a 100MHz Pen-

tium which is roughly comparable to a 133MHz DEC Al-

pha. The times for SPIN correspond to kernel extensions in-

voking the virtual-memory system and would be 4�s more

expensive had they been invoked from user-level. The times

for SawMill on the other hand correspond to VM usage by

user-level applications.

The Prot primitive measures the time to increase the pro-

tection of a single page. The Prot100 and Unprot100 mea-

Table 1. VM primitive performance. Times

shown are in �s.
OSF/1 Mach SPIN SawMill

Prot 45 106 16 22

Trap 260 185 7 22

Fault 329 415 29 22

Prot100 1041 1792 213 51

Unprot100 1016 302 214 25

Appel1 382 819 39 22

Appel2 351 608 29 25

sure the time to increase and decrease the protection respec-

tively over a range of 100 pages. Trap measures the latency

between a page fault and the time when a user-specified

handler executes. Fault measures the total latency perceived

by the application in receiving a page fault, enabling access

to the page within the handler and resuming the faulting

thread. The Appel1 and Appel2 primitives measure a com-

bination of trap and protection changes. Appel1 measures

the time to fault on a protected page, enable access to the

page within a handler and protect another page within the

handler. Appel2 measures the time to protect 100 pages and

faulting on each one, unprotecting the page in the handler.

Table 1 shows the average cost per page for Appel2.

The results in Table 1 indicate the SawMill VM frame-

work is capable of achieving virtual memory performance

at user-level that is comparable to SPIN’s performance

with kernel extensions. The significantly lower cost of the

SawMill Prot100 and Unprot100 is attributed to the L4 mi-

crokernel’s capability of being able to change protection at

the granularity of superpages. The protection of 100 con-

tiguous virtual pages is accomplished by changing the pro-

tection of just three superpages of 64, 32, and 4 machine-

size pages.

6 Related Work

Numerous efforts have been made to provide

application-specific VM. Mach [25] user-level pagers

allow applications to control how data is transferred

between physical memory and backing store. User-level

pagers were later incoporated by Chorus [1] and Spring

[13]. Premo pagers [20] and extensible object-oriented

virtual-memory [14] extended Mach pagers by allowing

pagers to implement replacement policies. HiPEC [15]

allows applications to control replacement policies by

downloading policies written in a restricted language to

the kernel. Sechrest [24] and V++ page-cache managers

[11] extended pagers even further by allowing pagers to

implement replacement and placement policies. Sechrest

and V++ page-cache managers also moved allocation

policies out of the kernel.

SPIN [3] attempts to provide application-specific VM

through kernel extensions. However, downloading un-

trusted user code into the kernel safely remains a difficult

and unavoidable problem [5]. Exokernel [7, 12] takes a

radically different approach in that its kernel exports the un-

derlying hardware safely to applications that can implement

VM in user-level libraries. AVM [6] shares some of the

same goals as our work. However, AVM does not provide

any framework to facilitate the construction and extension

of VM services.

Grasshopper [22] is the only other operating system we

know that permits hierarchical address space mappings.

Grasshopper provides containers which are similar to da-

taspaces, however, container managers do not have con-

trol over all VM policies and lack well-defined interfaces.

While our work focuses on VM, it is very similar in phi-

losophy to the extensible network protocol framework pro-

posed by O’Malley [21] and file system stacking research

[9, 23]. Both bodies of research demonstrated that a modu-

lar framework promotes code reuse and allows the applica-

tion programmers to successfully configure services to their

needs. We are hoping to demonstrate similar points within

the context of VM.

7 Summary

We have presented a virtual-memory framework that is

capable of providing application specific policies that can

be dynamically extended to suit application needs. Bench-

mark results from a prototype implementation indicate that

our that the proposed framework is capable of affording per-

formance that contemporary research implementations have

only been able to achieve through kernel extensions.

References

[1] V. Abrossimov, M. Rozier, and M. Gien. Virtual mem-

ory management in Chorus. In Workshop on Progress

in Distributed Systems and Distributed Systems Man-

agement. Springer-Verlag, April 1989.

[2] A. Appel and K. Li. Virtual memory primitives for

user programs. In ASPLOS. ACM, April 1991.

[3] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fi-

uczynski, D. Becker, S. Eggers, and C. Chambers. Ex-

tensibility, safety and performance in the SPIN oper-

ating system. In SOSP. ACM, December 1995.

[4] U. Beyer, D. Heinrichs, and J. Liedtke. Dataspaces in

L3. In Mini and Microcomputers and Their Applica-

tions. The International Society for Mini and Micro-

computers, 1988.

[5] P. Druschel, V. Pai, and W. Zwaenepoel. Extensible

kernels are leading OS research astray. In HotOS-VI.

IEEE, May 1997.

[6] D. Engler, S. Gupta, and M. Kaashoek. AVM:

Application-level virtual memory. In HotOS-V. IEEE,

May 1995.

[7] D. Engler, M. Kaashoek, and J. O’Toole Jr. Exoker-

nel: An operating system architecture for application-

level resource management. In SOSP. ACM, Decem-

ber 1995.

[8] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen

Liedtke, Kevin Elphinstone, Volkmar Uhlig, Jonathon

Tidswell, Luke Deller, and Lars Reuther. The sawmill

multiserver approach. In SIGOPS European Work-

shop. ACM, September 2000.

[9] R. Guy, J. Heidemann, W. Mak, T. Page Jr., and

G. Popek. Implementation of the Ficus replicated file

system. In USENIX. USENIX, June 1990.

[10] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and

J. Wolter. The performance of �-kernel-based sys-

tems. In SOSP. ACM, October 1997.

[11] K. Harty and D. Cheriton. Application-controlled

physical memory using external page-cache manage-

ment. In ASPLOS. ACM, October 1992.

[12] M. Kaashoek, D. Engler, G. Ganger, H. Briceño,

R. Hunt, D. Maziéres, T. Pinckney, R. Grimm, J. Jan-

notti, and K. Mackenzie. Application performance and

flexibility on Exokernel systems. In SOSP. ACM, Oc-

tober 1997.

[13] Y. Khalidi and M. Nelson. The Spring virtual memory

system. Technical Report SMLI TR-93-09, Sun Labs,

February 1993.

[14] K. Krueger, D. Loftesness, A. Vahdat, and D. Ander-

son. Tool for the developement of application-specific

virtual memory. In OOPSLA. ACM, October 1993.

[15] C. Lee, M. Chen, and R. Chang. HiPEC: High per-

formance external virtual memory caching. In OSDI.

USENIX, November 1994.

[16] J. Liedtke. Improving IPC by kernel design. In SOSP.

ACM, December 1993.

[17] J. Liedtke. On �-kernel construction. In SOSP. ACM,

December 1995.

[18] J. Liedtke, H. Härtig, and M. Hohmuth. OS-controlled

cache predictability for real-time systems. In Real-

time Technology and Applications Symposium. IEEE,

May 1997.

[19] J. Liedtke, V. Uhlig, and O. Hers. How to schedule

unlimited memory pinning of untrusted processes or

provisional ideas about service neutrality, December

1998. Submitted to HotOS-VII.

[20] D. McNamee and K. Armstrong. Extending the Mach

external pager interface to accomodate user-level page

replacement policies. In Mach Workshop. USENIX,

October 1990.

[21] S. O’Malley and L. Peterson. A dynamic network ar-

chitecture. TOCS, 10(2), May 1992.

[22] J. Rosenberg, A. Dearle, D. Hulse, A. Lindström, and

S. Norris. Operating system support for persistent and

recoverable computations. CACM, 39(9), September

1981.

[23] D. Rosenthal. Evolving the vnode interface. In

USENIX. USENIX, June 1985.

[24] S. Sechrest and Y. Park. User-level physical mem-

ory management for Mach. In Mach Symposium.

USENIX, November 1991.

[25] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Ep-

pinger, J. Chew, W. Bolosky, D. Black, and R. Baron.

The duality of memory and communication in the im-

plementation of a multiprocessor operating system. In

SOSP. ACM, November 1987.

