
Enhancing IA-64 Memory Management

Alan Au and Gernot Heiser

School of Computer Science and Engineering

University of New South Wales

Sydney 2052, Australia

falanau,gernotg@cse.unsw.edu.au

December 14, 2000

Abstract

IA-64 is Intel Corporation’s recently released 64-bit architecture. It in-

cludes features such as data/control speculation, instruction predication and

a large number of parallel resources. Also included is a novel memory man-

agement unit that allows orthogonal translation and protection mechanisms to

be used. This flexibility opens up opportunities for improved memory man-

agement techniques. This paper presents our enhancements to IA-64 Linux

memory management with focus on improving effective TLB coverage.

1 Introduction

Operating systems that provide virtual memory typically implement protection by

placing each process into a seperate address space. In such systems, a process’s

context includes the set of address mappings valid for that process. Possession of

a mapping allows a process to both translate an address as well as give access to

that address with the permission rights of the mapping. The translation lookaside

buffer (TLB) is a hardware cache of these mappings.

TLBs can be either tagged or untagged. An untagged TLB, such as that found

on the Intel Pentiums, requires that the TLB be fully flushed, a potentially expen-

sive operation, on each context switch (Liedtke has demonstrated an optimisation

to this for small address spaces [8]). Tagged TLBs employ context identifiers which

can be associated with each process and are used in addition to the virtual page

number to match an entry in the TLB. This negates the need for a TLB flush per

context switch but still requires duplicate TLB entries for essentially same map-

pings in different contexts/processes.

Past studies [1,2] have shown that TLB handling costs can take up a significant

part of an application’s processing time. TLB coverage is one of the major factors

in determining the TLB miss rate and hence the impact of TLB costs on application

performance [2]. TLB miss handling overhead is turning into a bottleneck with real

1



memory sizes increasing at a rapid rate, while TLB sizes are remaining essentially

constant [11].

TLB coverage refers to how much memory the TLB can map. This in turn

is directly related to the number of TLB entries and the page size of each TLB

mapping. More indirect but equally important factors in determining effective TLB

coverage are TLB associativity, application access patterns and the degree of multi-

tasking. This paper addresses the last factor.

Because traditional memory management techniques require a seperate set of

mappings per process, there will be high contention for the limited number of TLB

slots under heavy multi-tasking conditions. Our idea is to reduce this contention

and increase effective TLB coverage by allowing processes to share a subset of

their TLB entries with some or all other processes. This approach is made possible

by IA-64’s ability to handle address translation and protection in an orthogonal

manner. This means that it is possible to define the context of a process by a set of

address mappings together with set of protection regions.

The following section looks at alternative approaches to increasing TLB cover-

age as well as other related work. Section 3 describes the IA-64 memory manage-

ment features and explains how we use them to maximise TLB sharing. Section 4

details the modifications made to original IA-64 Linux to implement our TLB shar-

ing scheme. Section 5 summarises our experiences and results.

2 Related Work

To date there are surprisingly few approaches to improving effective TLB cover-

age. We do not look at pure hardware considerations here, such as more entries in

the TLB and higher TLB associativity. It is obvious that these two methods will

improve TLB performance at the expense of silicon estate and decreased address

translation speed.1 The majority of approaches can be classified into two groups:

those that directly influence TLB management and those that try to structure kernel

and user TLB accesses for maximum performance.

In the first category are studies that have explored different page table struc-

tures, page sizes and superpages. Elphinstone [4, 5] has done extensive studies on

how different page table structures influence TLB and overall system performance.

His work was directed at 64-bit systems and sparse address spaces, concluding that

such systems will receive maximum performance with hashed or guarded page

tables and a software TLB cache.

Superpages increase TLB coverage by coalescing TLB entries mapping sev-

eral smaller pages into a single larger mapping entry. The reason that superpages

have not been used more extensively is that they have a few requirements that make

them either difficult or unattractive to use. There have been several proposals to

tackle some of the drawbacks of superpages. Online superpage promotion [10]

1Increased hardware resource benefits flatten out once typical working sets can be fully mapped

in the TLB.

2



tries to dynamically predict the likely benefits of promoting to a superpage against

the cost of doing the promotion to determine when and where to use superpages.

A technique called shadow memory [12] has been put forward to mitigate the su-

perpage requirement of large contiguous physical regions of memory which are

difficult to manage and have potential adverse swapping effects.

The last two superpage designs work on average but can encounter situations

where performance is worse than without incorporation of their superpage tech-

nique. For example, a mispredicted online page promotion can cause unnecessary

copying of multiple base pages that are never used again. In contrast, our TLB

sharing mechanism will never exhibit behaviour worse than the base case without

using it. It must also be noted that all of the above TLB optimisations will work

even if our sharing mechanism is employed though at this point it is unclear if the

benefits will be diminished in a combined scheme.

The only other work that has been done to allow TLB entries to be shared is

a modified TLB technique that employs common-masks [7]. Khalidi and Talluri

describe additional TLB logic that can implement a matching function applied to

context strings. Such a function would allow multiple contexts to match the same

TLB entry. Thus their goal to enable TLB sharing is identical to ours. The main

difficulty with their approach is to choose the comparator function that allows mul-

tiple contexts to be masked to a shared context. They specifically do not address

this issue in a general manner but do provide an example implementation that al-

lows a limited number of common-regions to be shared.

3 IA-64 Memory Management

This section provides an overview of the IA-64 memory management unit. For a

full description, refer to the Intel documentation [6].

The IA-64 address space is split into eight equally sized regions. The most

significant three bits of each 64-bit virtual address forms the region number and

identifies the region that the address belongs to. Figure 1 is a schematic of the

IA-64 address translation process.

IA-64 provides a region register for each region. These each contain 24-bit re-

gion identifiers that are effectively TLB tags. An address’s region number is used

to index one of the region registers to obtain a region identifier. This region iden-

tifier is used together with the virtual page number to search for a match in the

TLB. A successful match yields a physical frame number and access permissions.

So far, the translation process is not much different to other memory management

units. But the IA-64 TLB entries contain an extra protection key field. The protec-

tion key is used to match against a set of protection key registers. Each protection

key register contains a protection key and a set of access qualifiers that are applied

to each translation that matches this protection key. In this way, IA-64 memory

management allows for orthogonal address translation and protection.

We now present the basic principles of our TLB sharing scheme using the IA-

3



Region ID

0rr

24

Region ID PPNRights

Translation Lookaside Buffer (TLB)

Key VPN

RightsKey Ptotection Key Registers (PKR)

PPN Offset

OffsetVPNVRN

rr

rr

rr

2

1

7

Hash

3

063

24

Figure 1: IA-64 Address Translation

64 MMU.

1. Executables are traditionally linked to a fixed address. As not all processes

share the same executable, the protection keys are of not much help here. In-

stead we will reserve one region register to map a process’ text and read-only

data segments. The system must then allocate a unique region ID to each ex-

ecutable currently in use, which is used to tag a process’ TLB entries for text

and read-only data. On a context switch, the region register is reloaded with

the ID of the new process’ executable region.

2. Two approaches are possible for supporting dynamically linked libraries

(DLLs). Each library can be given its own region ID (the architecture sup-

ports a minimum of 218 IDs) and each program using a DLL loads one of

the region registers with the DLL’s region ID. The problem here is that there

are only 8 region registers, and at least two of them are required to access

program text and data. This would limit the number of DLLs that can be

used. Since the VRN is part of the virtual address, a particular DLL must al-

ways use the same region register for the duration of the process’ execution.

Hence sharing region registers between DLLs cannot easily be done and is

4



likely to result in significant overhead (region-register thrashing).

Alternatively, protection keys can be used. We assign a unique key to each

DLL presently in use (there are at least 218). One region ID is reserved for

use by all DLLs, and one region register is reserved to always contain that

ID. The rights field of TLB entries for DLLs are set to read-only (R/O) for

the R/O data pages and execute-only for text pages. If protection keys were

disabled this would make the library accessible to every process. The keys

are used to restrict access to those processes which have actually linked the

library: Upon linking, the DLL’s key is entered into a protection key register.

These registers are part of the process context and are saved and restored at

process switch time.

This approach requires that DLLs are allocated at non-overlapping virtual

addresses. This effectively introduces a flat, single address space for DLLs.

As each DLL is mapped at an address which does not change during its

lifetime, this approach also removes the requirement for generating position-

independent code, and we have recently shown that this in itself leads to

measurable performance gains [3].

3. Cloning of a data segments can be implemented by giving it a unique region

ID which is loaded into the region register of parent and child. (Note that

the hardware offers no improvements for copy-on-write pages, as created

by forking. Parent and child have the same access to copy-on-write pages,

hence protection keys do not help. Domain IDs do not help either, as the

virtual address must not change when the real copy operation is performed.)

4. Memory-mapped files and other shared regions created by mmap() cannot

be supported by region IDs, as access rights differ, in general, between pro-

cesses mapping the same object. Protection keys can be used as in the case

of DLLs. As with DLLs, TLB real estate can only be saved if the objects are

mapped at the same address for each participating process. This is supported

by Linux’ mmap() semantics. In fact, DLLs in Linux are implemented via

mmap(), so TLB sharing support for DLLs will automatically benefit other

uses of mmap().

Similar mechanisms can be used to speed up other communication mecha-

nisms, such as pipes. This can be efficiently implemented via a shared buffer to

which one process has write permission and the other does not. Protection keys are

designed to support access to shared data (mapped to the same address) where the

participants have differing access rights. The sequential nature of pipes provides

scope for optimising TLB use further, e.g., by explicitly discarding TLB entries no

longer needed, or wrapping the buffer as soon as a page has been read.

5



4 Linux

This section describes the state of our Linux modifications.

4.1 Process Contexts

Each Linux process is assigned a context number of the format shown in figure 2.

063 14

generation number context

Figure 2: Linux Context Number Format

The generation is to ensure that old contexts are not used in the event of context

wraps. Reloading a process’ context is a simple matter of using the context number

to form the region identifiers needed for each region register. To support TLB

sharing of text, an extra text context of the same format as the general context

number is added to process contexts. Reloading a process’ context uses the general

context number as previously but reloads the text region register using the text

context.

4.2 Page Table Structure

IA-64 provides an optional hardware page table walker. The page table entries can

be in one of two formats. Figure 3 shows the short format and Figure 4 the long

format.

ar a ma ppl d rv

4 0

ppn

258 7 6911124950515253 163

ig ed rv

Figure 3: PTE - Short Format

The short format is used in IA-64 Linux as it is well suited to the Linux 3-level

page table structure. The L3 page table pages are mapped into a virtual inner array

to form the hardware page table. Thus, the hardware and software page tables are

always automatically in sync.

On a TLB refill, the physical frame number is obtained directly from the short

format page table entry but other values, in particular the page size and the protec-

tion key value (if used), are taken from the region register of the faulting address.

Our scheme requires finer control over protection key values than this allows so we

adopt the long format approach.

With the long format, the hardware walker treats the page table as a hash table.

So to use the long format, there are two options:

6



ar a ma ppl d rv

4 0258

+24

7 6911124950515253 163

ig ed rv ppn

rv rv

3132

key ps

ti tag

ig

+8

+0

+16

Figure 4: PTE - Long Format

1. Keep Linux’s underlying 3-level page table and maintain the hardware page

table separately.

2. Modify the software page table to better fit the long format.

We intend to adopt the first approach as this initially requires substantially less

code change. But at this stage, the hardware page table has been effectively dis-

abled by never inserting a page table page mapping into the TLB.2

4.3 Address Space

The following table (taken from [9]) shows how the process address space is allo-

cated.

Region Current Usage Page size Scope Mapping

7 cached large (256MB) global identity

6 uncached large (256MB) global identity

5 vmalloc kconfig (8KB) global page table

4 stack kconfig (8KB) process page table

3 data kconfig (8KB) process page table

2 text kconfig (8KB) process page table

1 shared memory kconfig (8KB) process page table

0 IA-32 emulation kconfig (8KB) process page table

When a process is executed, the following are some of the tasks which must

be performed by the kernel and the runtime loader to map the new process and its

DLLs into the address space.

The kernel’s tasks include:

� Parse the executable program headers and map in the load sections.

� Map in the runtime loader.

2The hardware page table is not actually disabled because that would cause a different set of

exceptions to be raised, requiring more of the interrupt vector code to be modified.

7



The runtime loader’s tasks include:

� Relocate itself.

� Map in shared libraries into the address space.

� Read the relocation information and apply the relocations.

As the table above shows, executable text and data are mapped into separate

regions. What may be less obvious is that shared library text and data are all

mapped into the shared region by the runtime loader. Recall from section 3 that

our TLB sharing scheme involves reserving an entire region for shared libraries

with the same region identifier for all processes. The obvious thing to do would be

to use the existing Linux shared region (region one) for this purpose. To do this,

one of two options can be used:

1. Allow shared library code and data to remain in the shared region. The

implications of this for our scheme would be the need for two protection

keys per shared library; one for data and one for code.

2. Purify the shared region so that only truly sharable address regions are found

there. That is, remove the shared library data from the region.

The later has been chosen. This involved modifying the runtime loader so that

shared library data is loaded into the data region while shared library code is re-

tained in the shared region. The relocation code was also modified to accommodate

this new address space arrangement.

Also recall that it is necessary in our design to ensure that shared libraries do

not overlap. We have modified the mmap() code to return unique addresses for file

mappings. The first time a file is mapped, it is allocated a new unique address in the

shared region. Subsequent mappings of the same file, even by different processes,

will use the previously allocated address.

4.4 Protection Keys

At this stage, protection keys have been enabled but proper key management has

not been implemented. The first thing we wanted to establish was that the IA-64

protection key mechanisms do indeed function correctly (at least in the simulator

but later for real hardware as well). As described in section 4.2, original Linux

uses the short format page table and only needs 8 bytes per entry. To use protection

keys, an extra 8 bytes is needed to store the second long word of the long format

entry. So instead of allocating one page per L3 node, two pages are used. The

first page is just the original L3 node (ie. contains physical frame number). The

second page contains the protection key. Entries with the same offset in the first

and second pages correspond to the same mapping.

8



5 Conclusion

This paper has presented the design and initial implementation of a scheme to

increase effective TLB coverage by maximising the sharing of TLB entries. This

has been made possible by IA-64’s MMU features which allow address translation

and protection to be decoupled.

There is still much work to done. Some of the things that may be looked at as

future work include:

� Protection key management to minimize context switch and reload times.

There are a minimum of 16 protection key registers which should be enough

to hold the protection domain of most processes without replacement but

this should be analysed more formally. Appropriate replacement algorithms

should be developed if necessary.

� Per region page tables can be considered for the different levels of sharing.

Figure 5 shows an example of this.

shared mem

stack

text

data

per process

page

tables

per exec

page

table

global

page

table

1

3

4

5

0

2

VHPT

Hardware

Figure 5: Per Region Page Tables

� Benchmarking the system to quantify the performance benefits. The TLB

sharing scheme outlined should have maximum benefits under high multi-

tasking loads, high context switch rates and heavy TLB usage. This needs to

be confirmed.

9



References

[1] Kavita Bala, M. Frans Kaashoek, and William E. Weihl. Software prefetch-

ing and caching for translation lookaside buffers. In Proceedings of the

1st USENIX Symposium on Operating Systems Design and Implementation

(OSDI), pages 243–253, Monterey, CA, USA, 1994. USENIX/ACM/IEEE.

[2] J. Bradley Chen, Anita Borg, and Norman P. Jouppi. A simulation based study

of TLB performance. In Proceedings of the 19th International Symposium on

Computer Architecture (ISCA). ACM, 1992.

[3] Luke Deller and Gernot Heiser. Linking programs in a single address space.

In Proceedings of the 1999 USENIX Technical Conference, pages 283–294,

Monterey, Ca, USA, June 1999.

[4] Kevin Elphinstone. Virtual Memory in a 64-bit Microkernel. PhD

thesis, School of Computer Science and Engineering, University

of NSW, Sydney 2052, Australia, March 1999. Available from

http://www.cse.unsw.edu.au/�disy/papers/.

[5] Kevin Elphinstone, Gernot Heiser, and Jochen Liedtke. Page tables

for 64-bit computer systems. In Proceedings of the 4th Australasian

Computer Architecture Conference (ACAC), pages 211–226, Auckland,

New Zealand, January 1999. Springer Verlag. Available from URL

http://www.cse.unsw.edu.au/�disy/papers/.

[6] Intel Corp. IA-64 Architecture Software Developer’s Manual

Volume 2: IA-64 System Architecture, January 2000. URL

http://developer.intel.com/design/ia-64/index.htm, order no 245318-001.

[7] Yousef A. Khalidi and Madhusudhan Talluri. Improving the address transla-

tion performance of widely shared pages. Technical Report TR-95-38, Sun

Microsystems Laboratories, Mountain View CA, February 1995.

[8] Jochen Liedtke. Improved address-space switching on Pentium processors by

transparently multiplexing user address spaces. Technical Report 933, GMD

SET-RS, Schloß Birlinghoven, 53754 Sankt Augustin, Germany, November

1995.

[9] David Mosberger and Don Dugger. IA-64 Linux kernel internals. URL

http://www.linuxia64.org/, February 2000.

[10] Theodore H. Romer, Wayne H. Ohllrich, Anna R. Karlin, and Brian N. Ber-

shad. Reducing TLB and memory overhead using online superpage promo-

tion. In Proceedings of the 22nd International Symposium on Computer Ar-

chitecture (ISCA), pages 176–87, Santa Margherita Ligure, Itay, June 1995.

ACM.

10



[11] Ashley Saulsbury, Fredrik Dahlgren, and Per Stenström. Recency-based TLB

preloading. In Proceedings of the 27th International Symposium on Computer

Architecture (ISCA), pages 117–127, Vancouver, Canada, June 2000. ACM.

[12] Mark Swanson, Leigh Stoller, and John Carter. Increasing TLB reach using

superpages backed by shadow memory. In Proceedings of the 25th Interna-

tional Symposium on Computer Architecture (ISCA), pages 204–213. ACM,

1998.

11


