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Abstract

Verified microkernels such as seL4 provide trustworthy foundations for safety- and
security-critical systems. However, their full potential remains unrealized due, in part,
to lack of application development environments that help engineers integrate the mi-
crokernel’s configuration and hosting of application code with modeling, analysis, and
verification tools that address broader aspects of the development lifecycle.

This paper presents a model-driven tool chain for the seL4 microkernel based on
the open source High Assurance Modeling and Rapid engineering (HAMR) code gen-
eration framework for the Architecture and Analysis Definition Language (AADL). We
describe how the semantics of AADL communication and threading can be realized in
terms of the access primitives and strong spatial and temporal partitioning mechanisms
provided by seL4. For AADL users, seL4 provides a high-assurance platform with for-
mally verified enforcement of component boundaries and communication pathways.
For seL4 users, AADL provides high-level abstractions for developing seL4 applica-
tions, along with an ecosystem of system engineering and analysis tools. We illustrate
the framework by applying a model-based development environment for increasing
resiliency against cyber attacks to an unmanned aircraft flight control system.
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2This work was performed while Kuz and Mcleod were employed at CSIRO’s Data61.
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1. Introduction

Modern high-assurance separation kernels provide trustworthy foundations for safety-
and security-critical systems. Unlike traditional large kernels and operating systems
that perform arbitrary functions, “a separation kernel’s primary security function is
to partition (separate) the subjects and resources of a system into security policy-
equivalence classes, and to enforce the rules for authorized information flows between
and within partitions” [22].

Separation microkernels have minimal and highly optimized functionality that al-
lows fine-grained configuration of system policies. This allows these microkernels to
form a dependable base for building different types of systems. For example, sepa-
ration microkernels can provide strong time and space separation between user-level
applications, provided the system is configured appropriately. Such separation can
prevent compromises or faults in one partition from compromising or interfering with
other functionality hosted on the system. This supports non-interference, which can be
relied on as a fundamental property by upper levels of the system architecture [25].

This highly focused functionality makes separation microkernels amenable to high-
assurance design practices. Early microkernels relied heavily on process- and testing-
based approaches for assurance. The implementation of the more recent high-assurance,
high-performance seL4 separation microkernel is formally (mathematically) proven
correct against its specification, and has been shown to enforce strong security proper-
ties, including spatial separation.

Given such a high-assurance foundation, developers can build mixed criticality sys-
tems that do not require all the components to be certified to the level of the highest
criticality component. In addition, components may be updated throughout a system’s
lifecycle (e.g., to add or update functionality). Depending on the system design, a
strong separation foundation can facilitate modification and recertification of the up-
dated component, without necessarily requiring recertification of all the other compo-
nents.

However, the nature of separation microkernels, in particular the highly focused
feature set, means that they often provide only lower-level configuration mechanisms,
more oriented to memory blocks, processes, functions, etc. All other functionality must
be provided at the user-level. Therefore, even though the use of separation microker-
nels provides an extremely solid foundation for high assurance, the separation princi-
ples and guarantees provided by the kernel are not sufficient; engineers and evaluators
face significant challenges in realizing correct application logic, security policies, and
system engineering when building on top of the kernel.

For example, in 2007 the US National Information Assurance Partnership (NIAP)
published the Separation Kernel Protection Profile (SKPP). The SKPP specifies the se-
curity functional and assurance requirements for a class of separation kernels. Shortly
thereafter in 2011, the NIAP sunsetted the SKPP, stating, “...conformance to this pro-
tection profile, by itself, does not offer sufficient confidence that national security in-
formation is appropriately protected in the context of a larger system in which the
conformant product is integrated. Designers of such systems must apply appropriate
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systems security engineering principles and techniques to afford acceptable protection
for national security information. In particular, it is the responsibility of the system de-
signer and authorized administrator to define support for a coherent application-level
security policy in the separation kernel’s configuration data, as well as to ensure that
the configuration data itself is coherent and self-consistent” [22]. In addition, appli-
cation of the separation kernels had a high learning curve that was exacerbated by the
limited tool support available at the time.

To help engineers use seL4, the seL4 team introduced the Component Architecture
for microkernel-based Embedded Systems (CAmkES) – a domain-specific language
for configuring seL4 using component-oriented idioms. In CAmkES, developers can
define kernel enforced system partitions as components, controlled access to partitions
via ports with read/write access policies, and information flows between partitions as
connections between component ports. The CAmkES specification can then be trans-
lated to lower-level capability descriptions that are used to configure seL4.

Multiple United States (US) Department of Defense (DoD) research projects that
emphasize high-assurance have built tool chains that utilize seL4 and CAmkES [7]. A
principal goal of the Cyber Assured Systems Engineering (CASE) project sponsored by
the US Defense Advanced Research Projects Agency (DARPA), in which the authors
have participated, has been to develop model-driven development tools that use the
industry standard Architecture Analysis and Design Language (AADL) [10, 16, 9] to
help engineers make systems more resilient to cyber-attacks. This was accomplished
by carefully modeling desired system architectures and information flows in AADL,
analyzing the system for security vulnerabilities, and then generating system infras-
tructure code and kernel configurations (using CAmkES) for deployment on seL4. The
beneficial properties of microkernels described above were key to overall assurance
arguments and cyber-resiliency.

Implementing the tool chain to support CASE goals posed a number of engineer-
ing challenges. For example, CAmkES threading and communication primitives were
not aligned with the semantic primitives in AADL that were utilized by other CASE
tools for formal analysis and verification. The baseline CAmkES did not support true
one-way communication, which was needed to achieve precise reasoning about in-
formation flow controls for satisfying CASE cyber-assurance objectives. In addition,
there were significant gaps between the seL4 artifacts and other systems engineering
activities including hazard analysis, security analysis, schedulability analysis, trace-
ability to requirements, and formal specification of component-level and system-level
functionality.

In this paper, we describe a model-driven development tool chain for seL4 that ad-
dresses the issues described above. The tool chain is based on High-Assurance Model-
based Rapid engineering for embedded systems (HAMR). HAMR provides analysis,
verification, and code generation capabilities for system architectures defined in the
SAE standard AADL [27].

By extending HAMR to generate code that targets the seL4 CAmkES runtime
framework and build frameworks, we enable seL4 developers to leverage AADL’s
high-level modeling abstractions as well as AADL’s ecosystem of systems-engineering
timing, safety, and security analysis and verification capabilities. HAMR automatically
connects the low-level seL4 configuration to a model-driven development paradigm
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that enables engineers to work with rich architecture descriptions. Since HAMR gen-
erates analyzable artifacts for each step in the process, developers can be confident that
the architecture described in the models is correctly enforced by the generated seL4
configuration.

The specific contributions of this paper are as follows.

• We describe how the communication and threading semantics of AADL (which
is designed to facilitate analysis and verification) is mapped onto constructs pro-
vided by the CAmkES seL4 configuration language.

• We present enhancements of CAmkES and associated HAMR-generated infras-
tructure code to support high assurance communication semantics, such as one-
way communication between components. Such communication maintains sep-
aration and supports formal reasoning about information flow controls required
in many high-assurance embedded systems.

• We describe how CAmkES threading and the seL4 domain scheduler mechanism
are extended to support the periodic and sporadic real-time tasking of AADL,
including the time-partitioning of tasks in static schedules.

• We illustrate how the HAMR code generation architecture is enhanced to gener-
ate C code from AADL models that is compatible with seL4 and CAmkES build
environments. This includes code generation support for AADL Base Types and
user-defined types specified using the AADL Data Model Annex.

• We discuss HAMR and seL4 infrastructure for deploying system builds on both
the QEMU hardware emulator and development boards. This significantly eases
prototyping and debugging of seL4-based applications.

• We describe our experience with the framework on the DARPA CASE program.
This includes a detailed discussion of how HAMR and seL4 are used to gener-
ate deployable code for a mission control system for unmanned aircraft. This
assessment is supported by a performance evaluation of the tool chain and re-
sulting code.

The HAMR framework is being applied by multiple industry partners in projects
funded by the US Army, Air Force Research Laboratory (AFRL), DARPA, and the
Department of Homeland Security (DHS). The HAMR implementation and examples
described in this paper are available under an open-source license 3.

2. Model-Driven Development Approach

2.1. Overview
HAMR is a multi-platform code generation framework that supports system imple-

mentations for Javascript, Java Virtual Machine (JVM) using Slang (a safety-critical

3Source code, video tutorials, and supporting documentation for the HAMR distribution are available at
[33]. Code repositories for examples in the paper are referenced in Section 8
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subset of Scala) [24], Linux, and seL4 platforms (see [12] for an overview of HAMR’s
multi-platform capabilities). The seL4 platform has been the primary platform used on
the DARPA CASE program, although JVM and Linux were also used in a systematic
prototyping workflow.

On CASE, HAMR is an element of a broader suite of tools called BriefCASE,
developed by Collins Aerospace and its collaborators (see [6] for a detailed overview,
which we summarize here). BriefCASE is predicated on a Model-Based Systems Engi-
neering (MBSE) process, in which models are the primary vehicle for communication
and understanding among the parties tasked with designing the system. Furthermore,
BriefCASE Model-driven Developent (MDD) models are the primary design artifacts
used for analysis, verification, testing, and code generation.

Figure 1: BriefCASE tool architecture and workflow.

The BriefCASE tool workflow (see Figure 1) starts with the development of a base-
line AADL model of the system architecture focusing on the desired functionality.
BriefCASE is implemented as a collection of plugins in the Eclipse-based Open Source
AADL Tool Environment (OSATE), the flagship AADL modeling tool. In OSATE, the
AADL system model can be analyzed using any of the supported AADL tools (e.g.,
resource usage, information flow, latency, and schedulability). The Awas AADL infor-
mation flow analysis tool [29, 32] was especially important for CASE since it enabled
model-level system information flows to be interactively browsed and queried to both
discover problematic flows and (during iterative cyber-resiliency hardening of the de-
sign) confirm that appropriate information controls are in place. BriefCASE integrates
cyber-vulnerability analysis tools [18, 23] (Cyber Reqts plugins in Figure 1) that ana-
lyze the architecture model for cybersecurity vulnerabilities and generate requirements
that, when addressed, will mitigate those vulnerabilities. These requirements are im-
ported into BriefCASE, and associated claims about the system are managed by the
Resolute assurance case tool [3].

As requirements are addressed in the design, and subsequently the implementa-
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tion, an assurance case is updated with corresponding evidence, often captured directly
from the model (e.g., establishing that partitioning or information flow control proper-
ties are satisfied) or by supporting analysis and verification tools (e.g., establishing that
functional properties expressed as formal behavioral specifications on components are
satisfied). For certain classes of requirements associated with vulnerabilities uncovered
by BriefCASE analysis, BriefCASE provides automated architecture transformations
(Cyber Transform plugin) to “harden” the system design against the vulnerabilities.
Some of these transformations involve automatically inserting cyber-resiliency compo-
nents such as data filters or behavior monitors. In many cases, the behavior of the com-
ponents is formally specified in the AGREE [8] AADL contract language, and AGREE
compositional model-checking (using underlying SMT solvers) is used to establish that
the system meets certain end-to-end system-level properties. Given a sufficiently de-
tailed formal specification of cyber-resilient component behavior, the Semantic Prop-
erties of Language and Automata Theory (SPLAT) tool [11] generates code, as well as
proofs showing that the generated code is correctly compiled and meets its specifica-
tion [20]. SPLAT generates code in the CakeML [17] dialect of Standard ML [21], and
CakeML component implementations are compiled to executables using the CakeML
verified compiler [17].

HAMR OSATE menu options and its code generation pipeline are wrapped in an
OSATE plugin. To support development of new components, HAMR generates code
skeletons for AADL thread components and APIs for AADL port-based communica-
tion. These artifacts are platform-independent and enable application code for threads
to be easily deployed on Linux or seL4. HAMR generates seL4 kernel configuration
information, including artifacts for the seL4 CAmkES build system. HAMR gener-
ates AADL run-time infrastructure to realize AADL semantics for threading and com-
munication in terms of lower-level CAmkES and seL4 artifacts. For AADL process
components that are specified as Virtual Machine (VM) based components, HAMR
generates code for integrating non-VM and VM components, and generates a VM con-
figuration including device table mappings to realize communication over cross-VM-
boundary pathways modeled as AADL ports. In addition, HAMR performs key steps in
the system build process by generating CMAKE configurations for generated C code,
generating wrapper code to enable the integration of CakeML-based components, and
creating the directory structure and scripts expected by CAmkES. Once all of these arti-
facts (including the implementation of all components) are in place, the CAmkES build
framework is run to generate a deployable build for seL4. The build can be deployed
in the QEMU hardware emulation environment or directly on a development/product
board.

While this paper focuses on C code generation for the seL4 platform, CASE devel-
opers have also made use of HAMR’s other backends for prototyping and simulation.
In a typical use case, engineers construct initial AADL models, and component func-
tionality is mocked up using Slang [24]. This enables design and testing of system
messages types, planning of integration, etc. Moreover, the system prototype can be
executed on the JVM or compiled to JavaScript (using the ScalaJS tool). While these
deployments do not provide precise real-time behavior, HAMR provides a number of
interesting simulation and visualization capabilities for its JVM implementations that
are useful for rapidly gaining an understanding of system execution. Once such proto-
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types are in place, the engineers often regenerate the system build for a C-based Linux
deployment. Since Slang can be compiled to efficient C code, in some cases Slang
is translated automatically to C, and in other cases, component implementations are
written from scratch in C (e.g., when interfacing with legacy C code or when bringing
in C libraries to be used in the full system). During these steps, the behavior of VM-
based components and components that interface with system hardware are mocked up.
Subsequently, the system can be regenerated for seL4 deployment running on QEMU,
with legacy code wrapped in Linux virtual machines in seL4 partitions (the seL4 in-
frastructure was extended so that QEMU can support emulation of seL4-hosted virtual
machines), and different forms of system testing can be conducted. Finally, the sys-
tem can be deployed on bench and product hardware, once remaining code used for
interfacing with external hardware is added. System integration testing can then be
performed.

The BriefCASE environment, including the HAMR tool chain and QEMU emula-
tor, is publicly available and can be installed natively on Mac OS, Linux, or Windows
platforms, or in a virtual machine running Linux using Vagrant virtual machine setup
scripts [33]. Currently, SPLAT can only be run on Linux; however we expect this lim-
itation to be removed in future versions of the tool. The Vagrant-based virtualization
capability is also used to support regression testing and continuous integration for the
HAMR pipeline, including the ability to script the build process, as well as automati-
cally deploy and test seL4-based system executions using QEMU emulation.

2.2. Key Concepts

The component-oriented emphasis of AADL modeling and the use of seL4 to pro-
vide partitioning of components is key to the Collins Aerospace CASE approach. To-
gether these technologies provide the ability to (a) design and deploy a system as a
collection of distinct strongly isolated units with controlled information flow between
them, and (b) easily rearrange the units and associated information flows to incorporate
cyber-resiliency components that fulfill overall system security requirements. In the re-
mainder of this section, we provide an overview of two of the BriefCASE technologies
that highlight the approach.

The Awas [29, 32] AADL information flow analyzer and visualizer enables devel-
opers and auditors to understand, reason about, explore, and visualize system depen-
dencies and information flows at scale across components and sub-systems. Awas pro-
cesses the AADL system architecture model, specifically its inter-component connec-
tion descriptions and intra-component flow specifications, to provide formal system-
wide impact and flow analyses. Such flows include component data/control flows,
security-oriented information flows, and fault/error propagation specified using by the
AADL Error Modeling Annex (EMv2). Awas also provides a user-friendly Domain
Specific Language (DSL) to query, check, and visualize custom safety/security system
properties.

Figure 2 illustrates example output from Awas information flow reachability analy-
sis. Working with our UAV example (presented in Section 4), the output illustrates how
Awas analysis might help an analyst with the following design concern: “How does
map information propagate from Ground Station to UAV and through UAVs Mission
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Figure 2: Awas AADL Information Flow Analysis.

Computer to produce a waypoint?” Awas can compute and visualize how the informa-
tion in Ground Station messages flows through the system as well as the components or
ports that may directly or indirectly consume data derived from that information. Awas
supports a number of forms of forward and backward interactive information queries.
Using the Awas script-based query language, one can specify and check more com-
plex properties, e.g., that information must flow through specific ports or components.
These end-to-end flow specifications are often useful for supporting verification of the
effectiveness of cyber-resiliency components. An Awas specification can state that in-
formation from untrusted components such the Ground Station always flow through
the attestation gate and filter components before reaching the Flight Control or other
components that make critical decisions about the flight or mission of the UAV.

One of HAMR’s primary contributions to the DARPA CASE program goals is
that its code generation for seL4 can ensure that the component partitioning and inter-
component information flows (as specified using one-way AADL connections) is pre-
cisely reflected in the deployed system: all such information flows present in the model
and Awas analysis are present in the deployed system, and the deployed system does
not contain any additional information flows between modeled components beyond
those present in the model.4 This strong guarantee, combined with the formal proof of

4HAMR and seL4 only provide assurance for AADL connections (inter-component information flows).
Intra-component flows, modeled as AADL flow specifications, correspond to information flows through
source code statements. AADL flow specifications are processed and visualized by Awas, but they are not
enforced at the source code level in BriefCASE. Code-level slicing and information flow tools can potentially
be used to support this. Our previous work for SPARK Ada information flow [2, 1, 28] would be an especially
appropriate foundation for information flow reasoning in Slang-implemented components.
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correctness of seL4, means that for each communication channel between components
(corresponding to the component partitioning and information flows specified in the
AADL model), no other component or actor in the system can access the channel or
modify the contents of the channel.

Another key BriefCASE technology facilitated by HAMR’s AADL code genera-
tion for seL4 is the semi-automated insertion of cyber-resiliency components into the
architecture. Currently, the following transformations and component insertions are
supported (most of these are illustrated in Section 4):

• Filter – Blocks messages that do not conform to the given specification

• Monitor – Detects violations of a given run-time condition and generates an alert

• Switch – Used with a Monitor to block messages when an alert is generated (also
referred to as a gate)

• Attestation – Performs a measurement on non-local software to assess its trust-
worthiness

• Virtualization – Isolates software component(s) in a virtual machine

• Proxy – Inserts a pair of components to allow inspection of HTTPS message
payloads

• seL4 – Transforms the model to comply with seL4 component properties by
isolating a thread in a process, with a binding to a processor (indicating isolation
within an seL4 partition).

Because AADL’s component-based modeling idioms cleanly architect the system
into distinct units with explicit information flows and because seL4 guarantees the
separation of components and the tamper-proof realization of one-way communica-
tion between components (no unanticipated backflows), these types of transformations
(in both the model level and deployed system) become easy to achieve, whereas they
would be very difficult if not impossible to achieve with the same levels of assurance
in conventional system development approaches.

3. AADL

AADL [10, 16, 9] provides the modeling framework for the MDD tool chain de-
scribed above. We present the portions of AADL treated by HAMR using a simple
example (based on the description in [12]) and then present an “at scale” example from
the CASE program in Section 4.

3.1. AADL Modeling Concepts

SAE International standard AS5506C [27] defines the AADL core language for ex-
pressing the structure of embedded, real-time systems via definitions of components,
their interfaces, and their communication. In contrast to the general-purpose model-
ing diagrams in UML, AADL provides a modeling vocabulary of common embedded
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software elements, hardware, and execution resources. The categories of software com-
ponents are data, subprogram, subprogram group, thread, thread group, and process.
Execution platform component categories that represent computing hardware are pro-
cessor, virtual processor, memory, bus, virtual bus, and device (which is used to model
sensors, actuators, or custom hardware). An AADL system component represents an
assembly of interacting application software and execution platform components. Each
category of component has a different interpretation when processed by AADL model
analyses, and each category has a distinct set of standardized properties associated with
it that can be used to configure the component’s semantics or implementation.

For HAMR code generation, thread components are the most important since they
determine the structure of code templates and APIs generated for communication. Typ-
ically, thread group, process and system components (representing both subsystems
and the “top level” system) are used to aggregate threads and specify partitioning. In
the AADL standard, thread components represent a schedulable unit of concurrent
execution, while process components represent address spaces from which threads ex-
ecute. In general, an AADL process may contain multiple threads, while a thread
instance may only reside within a single process. When HAMR is used in workflows
with seL4 as the intended target, process components are used to specify kernel spa-
tial partitioning – each process represents a protected memory region that can only be
accessed through APIs corresponding to the declared AADL ports for the component.
Currently, when generating code for seL4, HAMR only supports processes containing
a single thread. This restriction derives from the current threading approach used in the
CAmkES seL4 kernel configuration framework, which HAMR uses to generate seL4
code. The BriefCASE vulnerability analysis tools process some of the AADL execu-
tion platform components such as processor, bus, etc. when performing various forms
of security analysis for the broader system architecture. However, HAMR currently
ignores these component categories when generating code.5

A feature is a part of an AADL component type definition that specifies how that
component interfaces with other components in the system. In typical embedded sys-
tems, AADL ports are the most commonly used class of features. A port can be
classified as either an event port (typically used to model interrupt signals or other
notification-oriented messages without payloads), a data port (usually employed to
model shared memory between components or distributed memory services where an
update to a distributed memory cell is automatically propagated to other components
that declare access to the cell), or an event data port (typically used to model asyn-
chronous messages with payloads as are commonly found in publish-subscribe frame-
works). Inputs to event ports and event data ports are buffered, and the size of the
buffers as well as overflow policies can be configured using a standard set of AADL
properties. Inputs to data ports are not buffered; newly arriving data overwrites the pre-
vious value. We use the terms event-like ports to refer to both event and event data ports

5For AADL software components, HAMR also ignores subprogram and subprogram group components
because we chose to capture code structuring at the level of methods, classes, etc. in the code itself rather than
at the model level. Furthermore, data components are only used to define data types for messages exchanged
in port-based communication between components, following the approach outlined in the AADL Data
Modeling Annex [26].
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Figure 3: Temperature Control Example (excerpts) – AADL Graphical View

(which are both buffered) and data-like ports to refer to both data and event data ports
(what both transmit data values). Although AADL provides bi-directional ports, due to
its emphasis on information flow analysis and control, HAMR only supports unidirec-
tional ports. This enables a clear graphical visualization and simpler information flow
analysis.

HAMR autogenerates infrastructure code that implements the semantics of AADL
port communication. It generates platform-independent APIs that hide the details of
the underlying communication code. The APIs are then used by the thread applica-
tion code for reading and writing to ports. Section 7.3 explains how CAmkES, along
with additional auto-generated infrastructure, is used to implement AADL port com-
munication. The code generation strategy uses read/write permission specifications in
CAmKES to configure the seL4 kernel to enforce the directionality of AADL ports.

Figure 3 presents a portion of the AADL graphical view for a simple temperature
controller that maintains a temperature according to a “set point” structure containing
high and low bounds for the target temperature. As appropriate for the seL4 platform,
each thread (dashed parallelogram) is isolated within a process component (solid par-
allelogram). The periodic tempSensor thread measures the current temperature and
transmits the reading on its currentTemp data port (represented by a solid triangle
icon). It also sends a notification on its tempChanged event port (represented by
an arrow head) if it detects the temperature has changed since the last reading. When
the sporadic (event-driven) tempControl thread receives a tempChanged event,
it will fetch the value on its currentTemp data port and compare it with the most
recent set points. If the current temperature exceeds the high set point, it will send
FanCmd.On to the fan thread via its fanCmd event data port (represented by a
filled triangle within an arrow head) to cool the temperature. Similar logic will result
in FanCmd.Off being sent if the current temperature is below the low set point. In
either case, fan acknowledges whether it was able to fulfill the command by sending
FanAck.Ok or FanAck.Error on its fanAck event data port.

AADL provides a textual view to accompany the graphical view, and AADL editors
such as OSATE ensure synchronization between the two. The listing below illustrates
the component type declaration for the TempControl thread for the example above.
The textual view illustrates that data and event data ports can have types for the data
transmitted on the ports. In addition, properties such as Dispatch Protocol and
Period are used to configure the tasking semantics of the thread.
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� �
1 thread TempControl
2 features
3 currentTemp: in data port Temperature.i;
4 tempChanged: in event port;
5 fanAck: in event data port FanAck;
6 setPoint: in event data port SetPoint.i;
7 fanCmd: out event data port FanCmd;
8 properties
9 Dispatch_Protocol => Sporadic;

10 Compute_Execution_Time => 10ms .. 10ms;
11 Stack_Size=> TemperatureControl_Properties::StackSize;
12 end TempControl;
13
14 thread implementation TempControl.i
15 end TempControl.i;� �

Listing 1: AADL Textual View for TempControl Thread

The bottom of the listing declares an implementation named TempControl.i of
the TempControl component type. Typically, AADL declarations of HAMR thread
component implementations have no information in their bodies, which corresponds
to the fact that there is no further architecture model information for the component
(the thread is a leaf node in the architecture model). Using information in the asso-
ciated thread type, HAMR code generation will generate platform-independent infras-
tructure, thread code skeletons, and port APIs specific to the thread, and a developer
then implements the thread’s application logic in the target programming language.
The generated thread-specific APIs serve two purposes: (1) the APIs limit the kinds
of communications that the thread can make, thus help ensuring compliance with re-
spect to the architecture, and (2) the APIs hide the implementation details of how the
communications are realized by the underlying platform.

The AADL core language can be extended with properties and annex sublanguages.
Properties can be understood as named attributes (i.e., key/value pairs) that can be at-
tached to a model element. AADL provides many pre-declared properties, and allows
definition of new properties through user-defined property sets. In the listing above,
Dispatch Protocol is an example of a pre-declared AADL property that selects
the dispatching semantics for a thread. HAMR supports AADL’s Periodic protocol
(which causes a thread to be dispatched at a regular interval) and the Sporadic pro-
tocol (which causes a thread to be dispatched on the arrival of messages on its event
or event data ports). Compute Execution Time is a pre-declared property that al-
lows the worse case execution time of a thread activation to be specified in the model.
Scheduling tools such as the Adventium Labs FASTAR tool [30] can use this informa-
tion to automatically support schedule generation and latency analysis. Other examples
of pre-declared properties include communication properties (e.g., capturing queuing
policies on particular ports, communication latencies between components, rates on
periodic communication, etc.) and memory related properties (e.g., capturing sizes
of queues and shared memory, latencies on memory access, etc.). For example, the
Stack Size is used to configure memory allocation in seL4. User-specified property
sets enable one to define labels for various implementation choices available on un-
derlying platforms (e.g., choice of middleware realization of communication channels,
configuration of middleware policies, etc.).

The listing below shows the control subsystem specification for the TempControl
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example. The operator interface, which sends set points to the temperature controller,
is a separate component. Thus, the only feature declared on the component type (in-
terface) is a port for the set point message. The component implementation declares
named instances (e.g., tsp, tcp) of subcomponent processes. A processor instance
t processor is also declared, and the properties section includes a “binding” that as-
sociates the processes with the processor. The process subcomponents are “integrated”
by declaring named connections (e.g., ct, tc) between the subcomponent ports. In
contrast to the empty component implementations of the thread components, the sys-
tem component implementation illustrates how architectural hierarchy is reflected in
situations where a component implementation is not a “leaf” in the architecture model,
but rather is realized as an integration of subcomponents.

HAMR::Platform is a user-defined property for HAMR code generations indi-
cating which HAMR target platforms the model is suited for. In this case, in addition
to seL4, the model can be used to target a number of other HAMR backends. annex
resolute is an example of an AADL annex annotation indicating that the system im-
plementation should be checked with the Resolute tool according to the CASE Tools
rules. A successful check implies that the AADL system instance generated from the
system implementation specification is in the subset of AADL that can be processed
by the CASE tool chain.� �

1 system TempControlSystem
2 features
3 setPoint: in event data port SetPoint.i;
4 end TempControlSystem;
5
6 system implementation TempControlSystem.i
7 subcomponents
8 t_processor: processor TempControlProcessor.i;
9 tsp: process TempSensorProcess.i {CASE_Scheduling::Domain => 2;};

10 tcp: process TempControlProcess.i {CASE_Scheduling::Domain => 3;};
11 fp: process FanProcess.i {CASE_Scheduling::Domain => 4;};
12 connections
13 ct: port tsp.currentTemp -> tcp.currentTemp;
14 tc: port tsp.tempChanged -> tcp.tempChanged;
15 fc: port tcp.fanCmd -> fp.fanCmd;
16 fa: port fp.fanAck -> tcp.fanAck;
17 sp: port setPoint -> tcp.setPoint;
18 properties
19 Actual_Processor_Binding => (reference (t_processor)) applies to tsp, tcp, fp;
20 HAMR::Platform => (JVM, Linux, macOS, Cygwin, seL4);
21 annex resolute {**
22 check CASE_Tools
23 **};
24 end TempControlSystem.i;� �

Listing 2: TempControl System Illustrating Subcomponents and Connections

AADL editors check for type compatibility between connected ports. HAMR supports
data types declared using the AADL-standard Data Model Annex [26]. For example,
the data type declarations associated with the temperature data structure are illustrated
below.� �

1 data Temperature
2 properties
3 Data_Model::Data_Representation => Struct;
4 end Temperature;
5
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6 data implementation Temperature.i
7 subcomponents
8 degrees: data Base_Types::Float_32;
9 unit: data TempUnit;

10 end Temperature.i
11
12 data TempUnit
13 properties
14 Data_Model::Data_Representation => Enum;
15 Data_Model::Enumerators=>("Fahrenheit","Celsius","Kelvin");
16 end TempUnit;� �

Listing 3: Data Types Declared Using AADL Data Model Framework

A standard property indicates that the Temperature type is defined as a Struct
and the Struct fields and associated types are listed in the data implementation. The
degrees field has a type drawn from AADL’s standardized Base Types library. The
unit field has an application-defined enumerated type.

HAMR also supports “raw” byte arrays as the data type for ports. This enables ap-
plication component code to provide their own encoders and decoders of data formats,
which can be useful when integrating legacy code.

3.2. AADL Application Code Execution Concepts

To help ensure that (a) system executables conform to AADL model semantics and
(b) semantics are consistent across different AADL-aligned code generation frame-
works, AADL defines principles for structuring application code and specifies key se-
mantic steps in the form of Run-Time Services (RTS). AADL RTS are library func-
tions, some of which are called by AADL infrastructure code while others are may be
called by application code (e.g., to access values on component ports). The AADL RTS
also provide an abstraction layer: details of the underlying platform execution may be
hidden behind RTS APIs, allowing a significant portion of AADL application thread-
ing and infrastructure code to be platform independent. HAMR makes heavy use of
these concepts to achieve its support for multiple platforms. This section summarizes
these concepts, based on the presentation in [13] (see also [14]). Some of the most im-
portant tasks in the design of the HAMR seL4 code generator are to ensure that these
semantics concepts are realized appropriately using CAmkES and seL4 capabilities.

According to the AADL standard, system execution is divided into phases: an
initialization and a compute phase. During the initialization phase, platform services
are launched, thread and communication infrastructure is set up, and each thread’s
application code may initialize thread local variables and put initial values on output
ports. After all initialization activities are completed, the system moves to the “normal”
compute phase in which thread application code is executed according to the config-
ured scheduling policy. To support these distinct phases, the standard indicates that
a thread’s application code is organized into phase-related entry points (e.g., methods
that are invoked from the AADL run-time) as illustrated in Figure 4. The Initialize
entry point is called by the AADL run-time during the initialization phase, and the
Compute entry point is called during the system’s compute phase. The standard de-
fines other entry points for handling faults, performing mode changes, etc., but HAMR
only supports the Initialize and Compute entry points for seL4.
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Figure 4: AADL Application Code Execution Concepts (adapted from [13])

In AADL terminology, “dispatching” a thread refers to its activation for execu-
tion. The thread DispatchProtocol property selects among several strategies for
determining when a thread should be dispatched. In this paper, we consider only
Periodic, which dispatches a thread when a certain time interval is passed, and
Sporadic, which dispatches a thread upon arrival of messages to input ports speci-
fied as dispatch triggers.

Many of AADL’s thread dispatching and execution concepts are based on long-
established task patterns and principles for achieving analyzeable real-time systems [5].
Following these principles, with each activation of a thread, the application code of the
thread will run to completion,6 and for each activation, a thread abstractly computes
a function from its input port values and local variables to output port values while
possibly providing updated values for its local variables. To support this functional
view, AADL specifies that input port values are “frozen” during execution. The pre-
sentation in [13] introduces the terms Infrastructure Port State (IPS) and Application
Port State (APS) to distinguish between the communication infrastructure’s and appli-
cation code’s view of ports. When a thread is dispatched, the component infrastructure
uses the ReceiveInput Run Time Specification (RTS) to move one or values from
queues and data port storage in the communication infrastructure IPS into the APS of
the thread. This dequeues the values from the event-like IPS queues but leaves val-

6The AADL standard does allow preemption in entry points. However, for HAMR-based seL4 systems
considered in DARPA CASE, scheduling and application code are designed so that thread Compute entry
points always run to completion.
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ues of the data ports IPS unchanged. Then the component application code is called,
and the application’s view of the ports (in terms of the APS) remains “frozen” as the
code executes. This provides the application a consistent view of inputs even though
queuing in the IPS may be concurrently updated behind the scenes. Throughout the
Compute entry point execution, application code may read from the APS for a partic-
ular port using the GetValue RTS and write to the output APS for a particular port
using the PutValue RTS. When the application code completes, the component in-
frastructure will call the SendOutput RTS to move output values from the output
APS to the IPS, thus releasing the output values all at once to the communication in-
frastructure for propagation to consumers. This overall execution pattern means that,
at the component’s external interface, it follows the Read Inputs; Compute; Write Out-
puts structure championed by various real-time system methods (e.g., [5]) enabling
analyzeability.7 This pattern also enables the AADL Assume Guarantee Reasoning
Environment (AGREE) contracts illustrated in Section 4 which specify component be-
havior as a relationship between inputs and outputs. For the Initialize entry point, no
input ports may be read.

The representation of port states in terms of IPS and APS captures important as-
pects of the semantics of AADL port-based communication. However, the actual im-
plementation of ports and communication may be optimized on particular platforms
and under particular scheduling disciplines as long as the abstract semantics is main-
tained. For example, the presentation that we use for seL4 uses a single collection of
shared memory locations to represented a producing thread’s output IPS and connected
consumer input IPS.

4. Example and Systems Engineering Concepts

This section summarizes an autonomous UAV-based surveillence system, devel-
oped on the DARPA CASE program, that we use to illustrate the full range of HAMR
seL4 code generation capabilities. We first present an AADL model of the initial sys-
tem, then discuss how we harden the system for cyber-resiliency using BriefCASE
analysis and architecture transformations, and conclude with a walk-through of the
hardened system architecture. The full system concept includes software and hardware
for both a ground station and a UAV. For this discussion, we focus on the software
subsystem on the UAV.

4.1. Initial UAV Software System Model

The AADL model of the initial UAV software is shown in Figure 5. The ports
on the left-hand side of the top-level SW.Impl system component reflect the fact
that (a) the UAV receives commands from a ground station to conduct surveillance
over a geographical region (radio recv); and (b) the UAV sends status messages

7The behavior described above is the canonical behavior emphasized in the AADL standard. The stan-
dard does allow for ReceiveInput and SendOutput to be called by the application code (not just the
infrastructure) throughout the entry point execution. But this moves outside of the canonical semantics and
makes analysis more difficult.
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Figure 5: Software architecture for UAV surveillance system.

back to the ground station (radio send). Based on the commands from the ground
station, the UAV’s on-board mission computer generates a flight plan. The ports on
the right-hand side of the SW.Impl interface reflect the fact that waypoints from the
generated flight plan are sent to the actual UAV flight controller through a Universal
Asynchronous Receiver-Transmitter (UART) (uart send). As the aircraft position
changes, the flight controller will send updated position information back to SW.Impl
(uart recv).

There are four key components to the SW.Impl system (some of these contain
their own hierarchy of subcomponents, but we only present the top-level interfaces
in this figure): the radio driver (Radio), the autonomous flight planner (UxAS), the
waypoint manager (WaypointManager), and the UART driver (UART).

The Radio component demultiplexes three types of messages from the ground sta-
tion: OperatingRegion, LineSearchTask, and AutomationRequest. The
OperatingRegion message defines a geographical area for UAV operation, includ-
ing both keep-in and keep-out zones. The LineSearchTask message contains a set
of waypoints corresponding to a geographical feature of interest (such as a river) over
which the UAV must conduct its surveillance mission. The AutomationRequest
message triggers the autonomous flight planner to generate a flight plan that satisfies
the operating region constraints and enables the UAV to conduct surveillance on the
feature of interest.

The UxAS component uses the Air Force Research Laboratory’s OpenUxAS soft-
ware to autonomously create flight plans for the UAV given an indicated line search
task, operating region, and current location of the UAV (AirVehicleState) [15].
The resulting plan, which includes a collection of waypoints for the mission, is com-
municated downstream in an AutomationResponse message.

The WaypointManager component meters the full set of waypoints provided
in the AutomationResponse to the resource-constrained flight controller. A small
window of waypoints corresponding to the UAV’s current location are sent to the con-
troller within a MissionCommand message via the UART serial driver. As updates
concerning the UAV’s position are received from the flight controller and UART in an
AirVehicleState message, the WaypointManager publishes the next set of
waypoints in a new MissionCommand message.

4.2. Analysis, Requirements Generation, and Transformation

The initial model above is analyzed with the GearCASE and DCRYPPS Brief-
CASE plugins to identify potential cyber-vulnerabilities. Because UxAS is open-source,
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third-party software, these tools identify it as potentially containing a supply chain vul-
nerability. Similarly, they identify a potential for the ground station being spoofed or
compromised to send malicious messages to the UAV. These threat analyses are re-
viewed by the design engineers who then create new cyber-related requirements for the
system. For example, for the supply chain vulnerability from UxAS, requirements are
added to ensure that unverified or malicious code, which could potentially be embedded
in the component, will not impact downstream components. Other cyber requirements
are automatically generated and imported into the BriefCASE Requirements Manager
after the threat analyses. These include four wellformedness requirements on message
formats, two requirements for monitoring the behavior of UxAS, and an attestation
requirement for ensuring the ground station has not been compromised. These new
requirements are also automatically added to a Resolute assurance case. As the
system is hardened and various verification tools are applied, Resolute incorporates ev-
idence that assurance claims are met into the assurance case. Resolute analysis can
be run at any time during development to determine which requirements are, and are
not, currently supported by evidence.

Wellformedness requirements prevent malformed messages from causing buffer
overrun or code injection attacks. These requirements are satisfied by augmenting the
system architecture to include high-assurance filter components along key information
pathways. Filters do not pass messages that are not wellformed. BriefCASE provides
automatic transforms to insert filters at the point of a selected connection. Once a filter
component is inserted, engineers define the meaning of wellformed for the filter
with an AGREE contract.

Monitor requirements prevent unintended component behavior from affecting over-
all system functionality. These are addressed by augmenting the system architecture
with software monitor components that observe key connections in the model, and
raise alarms and filter messages to downstream components if suspicious behavior is
detected. BriefCASE provides an automatic transform to add a monitor, and once
added, engineers define the monitor behavior with an AGREE contract.

Attestation requirements prevent identity spoofing on external connections. These
are satisfied by augmenting the system architecture with attestation components to val-
idate identity and to apply filtering to only pass messages from known, and trusted,
sources. As before, BriefCASE performs the transforms and engineers provide the
AGREE contract defining the behavior of everything but the actual attestation soft-
ware, which is a pre-packaged trusted component included with BriefCASE.

4.3. Model for the Hardened Software System
The transformed cyber-hardened model for the UAV surveillance system is shown

in Figure 6. The high-assurance components inserted by BriefCASE are shown in
green. The AttestationManager and AttestationGate ensure the UAV can-
not receive malicious commands from a ground station running compromised software.
The three filters before UxAS prevent it from receiving malformed messages. Since the
UxAS software may not be trustworthy, its output is both filtered and monitored. The
GeoFence Monitor detects when mission waypoints are outside any of the keep-in
zones or inside any of the keep-out zones, and the Response Monitor detects when
UxAS acts outside the command of the ground station.
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Figure 6: Cyber-resilient software architecture for UAV surveillance system.

A key aspect of the BriefCASE workflow is the formal specification of the high-
assurance component behaviors, such as the filter and monitor policies. As an example,
the AGREE contract specifying the behavior of the GeoFence Monitor is shown
in Listing 4. Here the Policy holds if all the mission waypoints observe the keep-in
zones, observe the keep-out zones, and do not include duplicates. The alert is raised
if the policy is ever violated and is used to trigger the WaypointManager to execute
a pre-loaded “return to base” flight plan. The output is only sent if the Policy
holds and the alert is low. The AGREE model-checking tool is used to prove that
system-level cyber-requirements hold, and the verification utilizes the component level
properties above. For the filter, monitor, and gate components, BriefCASE uses the
SPLAT tool to automatically synthesize provably correct implementations that satisfy
the given AGREE contracts. HAMR is then used to build the system, emitting proof
artifacts that the build is a faithful representation of the model. The memory protection
mechanisms of seL4 guarantee that the high-assurance code cannot be tampered with
or bypassed in the actual deployment. Assurance evidence from each step of these
evaluation, synthesis, and build activities are pulled into Resolute to support the
overall cybersecurity assurance case.

5. HAMR Code Generation Architecture

In [12], we gave a brief overview of HAMR’s code generation architecture. This
section instantiates that description for the HAMR seL4 backend. Figure 7 illustrates
the main concepts of HAMR code generation for seL4. Working off of an AADL in-
stance model as generated by OSATE, HAMR generates a CAmkES specification of
the deployment topology and other kernel configuration information (Section 7.1, List-
ings 14 and 15). For each AADL thread, HAMR generates infrastructure code that
implements the AADL thread dispatch semantics. This includes: (a) infrastructure
code for linking entry point application code to seL4 underlying scheduling framework
(Section 7.2), for implementing the storage associated with ports, and for realizing the
buffering and notification semantics associated with event and event data ports (Sec-
tion 7.3); and (b) developer-facing code including thread code skeletons in which the
developer will write application code, and port APIs that the application code uses to
send and receive messages over ports (Section 6). For communication associated with
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const is_latched : bool =
Get_Property(this, CASE_Properties::Monitor_Latched);

eq Policy : bool = event(observed) =>
(WAYPOINTS_IN_ZONE(GET_MISSION_COMMAND(observed), keep_in_zones)

and WAYPOINTS_NOT_IN_ZONE(GET_MISSION_COMMAND(observed), keep_out_zones)
and not (DUPLICATES_IN_MISSION(GET_MISSION_COMMAND(observed))));

guarantee GeofenceMonitor_alert
"Alert trace property. To be proved by SPLAT" :
event(alert) <=> (not Policy ->

(if is_latched then Once (not (Policy)) else not Policy));

guarantee GeofenceMonitor_output
"The output event fires when alert is not raised" :
if event(alert) then
not (event(output))

else if event(observed) then
(event(output) and (output = observed))

else
not (event(output));

Listing 4: The GeoFence Monitor AGREE contract.

AADL connections, memory blocks are shared between sender and receiver compo-
nents to represent the IPS port state concepts described in Section 3. seL4’s capability
mechanism (configured for port connections using CAmkES can ensure that only the
sender/receiver components can access the shared memory and that the information
flow is one-way. On other platforms, middleware or underlying OS primitives are
used (e.g., for the Linux backend, System V interprocess communication primitives
are used).

Semantic consistency across platforms is a fundamental property of HAMR that is
achieved by factoring code generation illustrated in Figure 8 through a reference imple-
mentation of the AADL RTS described in Section 3. HAMR implements the APIs and
platform-independent aspects of the AADL RTS functionality in Slang (described in
Section 2). Slang can be compiled to efficient embedded C without incurring garbage
collection runtime, as objects are statically allocated (which in turn can be compiled
using existing compilers to a wide variety of platforms). Slang’s extension facility en-
ables Slang programs to interface with full Scala and Java when compiling to the JVM,
and C when compiling to C. The ability to provide a common implementation of many
aspects of the AADL run-time and application interfaces helps ensure a consistent sys-
tem implementations across difference HAMR-supported platforms. It also enables
both Slang and C to be used to code component application code for HAMR’s C-based
Linux and seL4 platform backends.

Figure 8 illustrates that the HAMR translation architecture utilizes Slang as much
as possible to code platform-independent aspects of the AADL run-time, and then uses
Slang extensions in Scala and C to implement platform-dependent aspects. For ex-
ample, for the JVM platform, a Slang AADL RTS Reference Implementation is used
for most of infrastructure implementation, with a few customizations (denoted by the
circled “+”) written in Scala. For the C-based platforms including seL4, some of the
Slang Reference Implementation is inherited, but customizations define memory lay-
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Figure 7: HAMR to seL4 Code Generation Concepts

outs to be used in C (still written in Slang to support eventual verification). Then the
Slang-based infrastructure is compiled to C – giving a sizable code base that is shared
across Linux and seL4 with some further C customization for each platform.

6. Platform-Independent C Application Logic

As illustrated in Figure 8, code generation for developer-facing APIs for port com-
munication and thread skeletons are all derived from the Slang reference implemen-
tation. This means that regardless of platform, the C APIs and skeletons that the de-
veloper programs to will be identical; moreover, their abstract structure and typing
will be identical to the corresponding Slang. This makes it quite easy to port C-based
implementations across HAMR C-based platforms. This is also leveraged to achieve
interoperability between HAMR components implemented in different languages (e.g.,
C and Slang). This section illustrates selected developer-facing skeletons and APIs for
the Temperature Control example.

6.1. Auto-Generated Code Skeletons and APIs

For each thread component, HAMR generates skeletons for AADL entry points
(see Section 6.4), which the developer will utilize to code the application logic for the
thread.� �
// === Initialize Entry Point ===
// illustrate full generated unique name
Unit t_TemperatureControl_TempSensor_i_tsp_tempSensor_initialize_()
{
// ... fill in application code

}

// === Compute Entry Point (timeTriggered method) ===
// illustrate abbreviated name (for figure formatting)
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Figure 8: Code Generation Factored Through AADL RTS

Unit timeTriggered()
{
// ... fill in application code for Compute entry point

}� �
Listing 5: TempSensor Entry Point Skeletons

Listing 5 depicts the code skeletons auto-generated for the TempSensor thread.
The name of the Initialize entry point illustrates that name mangling is used, based on
the position of the thread instance within the AADL-specified architecture, to guarantee
that the name is unique across the generated code for the entire system. To make the
code figures easier to read and format, the names of all other similar methods have been
manually simplified.

To facilitate development, HAMR tailors the structure of a thread’s Compute entry
point according to its Dispatch Protocol thread property specified in the AADL
model. Since TempSensor has a Periodic dispatch protocol, HAMR generates a
single method named timeTriggered that will be invoked at the start of the thread’s
period.� �
// === Initialize Entry Point ===
Unit initialize()
{
// ... fill in application code

}
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// === Compute Entry Point (message handlers) ===
Unit handle_fanAck(FanAck_Type value) {
// ... fill in application code

}

Unit handle_setPoint(SetPoint_i value) {
// ... fill in application code

}

Unit handle_tempChanged() {
// ... fill in application code

}� �
Listing 6: TempControl Message Handlers (excerpts, constituting Compute Entry Point)

Listing 6 shows the TempControl entry point skeletons. The structure of the
Initialize entry point is the same as that for TempSensor. TempControl has a
Sporadic dispatch protocol, and thus it will be dispatched upon the arrival of mes-
sages on its input event or event data ports. To tailor the Compute entry point structure
to the event-driven character, HAMR generates a message handler method skeleton for
each input event and event data port. The Compute entry point application logic is
programmed by implementing these handlers. For event data ports, message handlers
have a parameter corresponding to the data type declared on the port, e.g., the parame-
ter value of type SetPoint i in handle setPoint. The value supplied in the
parameter is obtained by the underlying infrastructure using the GetValue RTS. For
event ports, handlers have no parameters since there are no corresponding payloads on
arriving events (i.e., they are simply notifications). HAMR also supports a single entry
point method for sporadic components. In that case, the DispatchStatus RTS can
be called to determine the port who received a message to trigger the dispatch.

For each input port on a component, HAMR generates an API api get <port
name> to access the “frozen” content of the port. Similarly, for each output port,
an API api put <port name> is generated to place a value on the port. These
operations are, in effect, versions of the GetValue and PutValue RTS of Sec-
tion 3.2 dedicated to specific ports. In the implementations of the api methods, the
generic GetValue and PutValue behind the scenes to achieve the functionality of
the methods.� �
// auto-generated API for Put Value RTS for currentTemp port
void api_put_currentTemp(Temperature_i value);

// auto-generated API for Put Value RTS for tempChanged port
void api_put_tempChanged();� �

Listing 7: TempSensor Port Communication APIs

Listing 7 shows the TempSensor port APIs. For currentTemp data port, the
parameter value is the value (or a reference to the value, depending on the nature of
the C type generated from the AADL data model specification). For tempChanged,
there is no parameter since event port messages are simple signals with no payloads.� �
// auto-generated API for Get Value RTS for currentTemp port
bool api_get_currentTemp(Temperature_i value);

// auto-generated API for Get Value RTS for fanAck port
bool api_get_fanAck(FanAck_Type *value);
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// auto-generated API for Get Value RTS for setPoint port
bool api_get_setPoint(SetPoint_i value);

// auto-generated API for Put Value RTS for fanCmd port
void api_put_fanCmd(FanCmd_Type value);

// auto-generated API for Get Value RTS for currentTemp port
bool api_get_tempChanged();� �

Listing 8: TempControl Port Communication APIs

Listing 8 shows the TempControl port APIs. The put API for fanCmd follows
the same structure as the APIs in TempSensor component. For the get APIs for
currentTemp, fanAck, and setPoint, a reference parameter is passed to indi-
cate the storage into which the retrieved value is to be placed (Temperature i and
SetPoint i are reference types). For api get tempChanged in event port,
no parameter is passed since there is no payload in the arriving messages. For the event
and event data ports, get will dequeue the arrived message and it will be not present
on subsequent dispatches. For data port currentTemp, the arriving value is not de-
queued – it will be available to read in subsequent dispatches until overwritten by the
arrival of a new value. For the put APIs, the supplied values are held in the APS and
then released to the communication infrastructure all at once the application code com-
pletes (see the concept discussion in Section 3.2 and the example infrastructure code in
Section 6.4).

6.2. Auto-generated Data Types� �
// includes defs of AADL user-defined (non Base Type)
// used in current definition
#include <TempUnit_Type.h>

// define abbrev for reference to C struct for this type
typedef struct Temperature_i *Temperature_i;

// C struct representing AADL Data Model struct
struct Temperature_i {
TYPE type;
F32 degrees;
TempUnit_Type unit;

};

// macro for declaring struct values of this type
#define DeclNew_Temperature_i(x)
struct t_TemperatureControl_Temperature_i x =

{ .type = T_Temperature_i }� �
Listing 9: HAMR Auto-generated Temperature C Type Representation

For each AADL data component defined using the AADL Data Modeling frame-
work, HAMR generates a C type representation. Listing 9 shows the auto-generated
representation of the AADL Temperature i declaration from Listing 3. A C struct
Temperature i is defined along with a typedef with the same name for pointers
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to the struct values.8 The typedef is used for parameter type declarations like the
ones in Listings 7 and 8. The C struct includes an additional field type to hold a
run-time type tag used within the infrastructure code. A macro is defined for declaring
variables for struct values that automatically initializes the type tag. C representa-
tions for all types from the AADL Base Types package are also defined.

6.3. Application Logic� �
// === Component Local Variable
struct Temperature_i lastTemperature;

// === Initialize Entry Point ===
Unit initialize() {
// initialize component local variable
lastTemperature = createTempInFahrenheit(80.0);

// initialize outgoing data port
api_put_currentTemp(&lastTemperature);

}

// === Compute Entry Point (timeTriggered method) ===
Unit timeTriggered() {
// stack-allocate local struct value for temperature
DeclNew_Temperature_i(currTemp);

// read current temperature from hardware sensor
senseTemperature(&currTemp);

// take action if temperature has changed
if (lastTemperature.degrees != currTemp.degrees) {

lastTemperature = currTemp;
api_put_currentTemp(&lastTemperature);
api_put_tempChanged();

}
}� �

Listing 10: TempSensor Application Code

Listing 10 shows the completed application code for the TempSensor entry points.
The developer has added a component local variable lastTemperature whose
value will persist between thread dispatches. Following the objectives given in Sec-
tion 3 for the AADL Initialize entry point, the Initialize entry point allocates an initial
struct value to be held in the persistent component local variable lastTemperature,
and the put API is used to initialize the currentTemp data port.

On each periodic dispatch, the Compute entry point will stack-allocate storage to
hold the most recent temperature via the DeclNewmacro. Then senseTemperature
is called to retrieve the current temperature from the temperature sensor. If the cur-
rent temperature differs from the previous, a new temperature value is put on the
currentTemp data port and a notification is on the tempChanged event port.� �
Unit handle_tempChanged() {
DeclNew_Temperature_i(currTemp); // allocate new temperature struct

8Using the same name for the struct and for the typedef is valid because these are associated with separate
name spaces in C. The use of overlapping names simplifies our code generation strategy.
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if (api_get_currentTemp(&currTemp)) {
struct Temperature_i currTempInF =

convertTemperatureToFahrenheit(&currTemp);

if (currTempInF.degrees > setPoint.high.degrees) {
api_put_fanCmd(FanCmd_Type_On);

} else if (currTempInF.degrees < setPoint.low.degrees) {
api_put_fanCmd(FanCmd_Type_Off);

}
}

}� �
Listing 11: TempControl Application Code (tempChanged handler)

Listing 11 shows the completed tempChanged event handler for the TempControl
thread. The get port API is used to fetch the currentTemp. If the operation is suc-
cessful, the temperature is compared to the stored latest setPoint to determine the
appropriate command (if any) to sent to the fan.

6.4. Component Infrastructure
Figures 7 and 8 helped illustrate how HAMR-generated implementations use the

AADL RTS to provide a layer of code that realizes the basic steps of the AADL
run-time while abstracting away the details of the underlying platform. Furthermore,
HAMR implements significant portions of the AADL run-time in Slang, which pro-
vides easier inspection and verification and can be translated to all of HAMR’s target
platforms (insuring semantic consistency).� �
def compute(): Unit = {
// perform AADL RTS ReceiveInput
Art.receiveInput(eventInPortIds, dataInPortIds)

// call Compute entry point application code
component.timeTriggered(operational_api)

// perform AADL RTS SendOutput
Art.sendOutput(eventOutPortIds, dataOutPortIds)

}� �
Listing 12: Generated TempSensor AADL Infrastructure – Slang Reference Implementation for Compute
Entry Point wrapper (excerpts)

To illustrate these concepts with a small fragment of the run-time, Listing 12 shows
excerpts of the auto-generated Slang code for the component infrastructure of the
TempSensor thread (this is some of the code from the gray areas of Figure 7 la-
beled “Port & Thread Infrastructure Code”). In HAMR translation architecture of
Figure 8, this code is associated with area labelled “HAMR Reference Implementa-
tion (Slang)”. The Compute method is invoked by the run-time’s scheduling frame-
work.9 Following the concepts of Figure 4, the HAMR Art (AADL Run Time library)
ReceiveInput service is called to move port data from the communication infras-
tructure into view of the application, thus “freezing” the port values. The application

9There are a few subtleties regarding alignment with the AADL standard’s presentation of thread dis-
patching and running. The standard has distinct steps/states of dispatching and running. However, the
current HAMR implementation unifies these into a single step (this will be changed in the future). Due to
our static scheduling approach with seL4, the code in Listing 13 is sufficiently close to the standard’s intent.

26



code for the Compute entry point is invoked (the timeTriggered method in this
periodic thread corresponding to Listing 10). After the application code has executed,
SendOutput service is called to move any output port information set by put calls
to the communication infrastructure.� �
Unit tempSensor_Bridge_EntryPoints_compute_(
STACK_FRAME tempSensor_Bridge_EntryPoints this) {
DeclNewStackFrame(
caller,
"tempSensor_Bridge.scala",
"tsp_tempSensor_Bridge.EntryPoints", "compute", 0);

// perform AADL RTS ReceiveInput
sfUpdateLoc(93); {
art_Art_receiveInput(SF (IS_82ABD8)

tempSensor_Bridge_EntryPoints_eventInPortIds_(this),
(IS_82ABD8)
tempSensor_Bridge_EntryPoints_dataInPortIds_(this));

}

// call Compute entry point application code (timeTriggered)
sfUpdateLoc(96); {

tempSensor_timeTriggered(
SF (TempSensor_i_Operational_Api)
tempSensor_Bridge_EntryPoints_operational_api_(this));

}

// perform AADL RTS SendOutput
sfUpdateLoc(98); {

art_Art_sendOutput(
SF (IS_82ABD8)
tempSensor_Bridge_EntryPoints_eventOutPortIds_(this),
(IS_82ABD8)
tempSensor_Bridge_EntryPoints_dataOutPortIds_(this));

}
}� �
Listing 13: Generated TempSensor AADL Infrastructure – Compute Entry Point Wrapper Transpiled from
Slang (excerpts)

Listing 13 shows the results of transpiling the Slang code of Listing 12 to C. In
HAMR translation architecture of Figure 8, this code is associated with area labelled
“translate Slang to C”. This code is still platform-indendent in that it is used for both
Linux and seL4 deployments. Instantiations of the functions in the code, in particular
the ReceiveInput and SendOutput will use the seL4 representations for ports
and threads discussed in Section 7 (corresponding to the bottom right of Figure 8).
The relationship between Listings 12 and 13 is straightforward, but it is important to
note that the Slang/C transpiler inserts additional code to support traceability to the
Slang code and execution. First, the sfUpdateLoc macros (which can be selectively
enabled and disabled for debugging) provide information about the originating line
numbers (e.g., 93) in the Slang code. Second, similar macros like STACK FRAME and
SF are used to maintain stack trace information so that any execution of the C code can
be traced back to conceptual execution of the originating Slang code using the stack
trace information (which describes the execution stack in terms of Slang artifacts). The
build framework can be configured to remove this traceability code in the operational
deployment to the platform.

27



7. HAMR seL4 Backend

This section overviews the HAMR AADL code generation strategy for seL4. Sec-
tion 7.1 describes how CAmkES is used to configure the kernel and establish the par-
titioning and communication topology for the AADL system. Section 7.2 details how
the semantics of AADL threading, including scheduling, is represented using the seL4
domain scheduler and CAmkES threading. Section 7.3 describes how the semantics
of AADL port-based communication is represented using CAmkES ports and con-
nections. For both threading and communication, significant engineering has been
involved in generating adapter/infrastructure code from HAMR to bridge the gap be-
tween AADL semantics, CAmkES primitives and seL4 platform functionality.

7.1. CAmkES and Kernel Configuration
Recall from Section 3 that, whenever HAMR generates code for seL4, the input

AADL models must have each thread component as the only component within a pro-
cess component. Each AADL process component is mapped to a CAmkES compo-
nent. seL4 implements each CAmkES component instance as a non-overlapping ad-
dress space partition, with strict protections enforced by the kernel to maintain spatial
isolation between components. In the baseline CAmkES as used in the Trusted Build
tool [7], an seL4 thread was generated for each input “port” on component. Since this
did not align with AADL’s notion of threading, the CAmkES translation was modifed
to have a single seL4 thread within a CAmkES component. Thus, the final representa-
tion of an AADL process/thread combination within seL4 is aligned with structure of
HAMR seL4 AADL models: an AADL process represents a protected address space
(achieved via a CAmkES component and its translation to seL4) and there is a single
thread executing with the process.� �

1 component TempSensor_i_tsp_tempSensor {
2 ...
3 emits ReceiveEvent sb_tempChanged;
4 emits TickTock sb_self_pacer_tick;
5 consumes TickTock sb_self_pacer_tock;
6 dataport sp_union_art_DataContent_t sb_currentTemp;
7 dataport sb_event_counter_t sb_tempChanged_counter;
8 }
9

10 component TempControl_i_tcp_tempControl {
11 ...
12 emits ReceiveEvent sb_fanCmd_1_notification;
13 consumes ReceiveEvent sb_fanAck_notification;
14 consumes ReceiveEvent sb_tempChanged;
15 dataport sp_union_art_DataContent_t sb_currentTemp;
16 dataport sb_queue_union_art_DataContent_1_t sb_fanAck_queue;
17 dataport sb_queue_union_art_DataContent_1_t sb_fanCmd_queue_1;
18 dataport sb_event_counter_t sb_tempChanged_counter;
19 has semaphore sb_dispatch_sem;
20 }
21
22 component Fan_i_fp_fan {
23 ...
24 emits ReceiveEvent sb_fanAck_1_notification;
25 consumes ReceiveEvent sb_fanCmd_notification;
26 dataport sb_queue_union_art_DataContent_1_t sb_fanCmd_queue;
27 dataport sb_queue_union_art_DataContent_1_t sb_fanAck_queue_1;
28 has semaphore sb_dispatch_sem;
29 }

28



� �
Listing 14: Excerpts from the Generated CAmkES Representation of the Temperature Control Components

Listing 14 gives excerpts of the CAmkES component declaration for each of the
processes/threads in the temperature control system of Section 3 (see the correspond-
ing AADL TempControl specification in Listing 1). Each AADL port is represented
by a pair of CAmkES ports (e.g., one for notification of arrival of data, one for stor-
age of data) as described in Section 7.3. Additional CAmkES elements such as the
TickTock ports and semaphores are added as described in Section 7.2 to support
the HAMR/seL4 scheduling regime.� �

1 assembly {
2 composition {
3 component TempSensor_i_tsp_tempSensor tsp_tempSensor;
4 component TempControl_i_tcp_tempControl tcp_tempControl;
5 component Fan_i_fp_fan fp_fan;
6
7 connection seL4SharedData
8 conn1(from tsp_tempSensor.sb_currentTemp,
9 to tcp_tempControl.sb_currentTemp);

10 connection seL4Notification
11 conn2(from tsp_tempSensor.sb_tempChanged,
12 to tcp_tempControl.sb_tempChanged);
13 connection seL4SharedData
14 conn3(from tsp_tempSensor.sb_tempChanged_counter,
15 to tcp_tempControl.sb_tempChanged_counter);
16 connection seL4Notification
17 conn4(from tcp_tempControl.sb_fanCmd_1_notification,
18 to fp_fan.sb_fanCmd_notification);
19 connection seL4SharedData
20 conn5(from tcp_tempControl.sb_fanCmd_queue_1,
21 to fp_fan.sb_fanCmd_queue);
22 connection seL4Notification
23 conn6(from fp_fan.sb_fanAck_1_notification,
24 to tcp_tempControl.sb_fanAck_notification);
25 connection seL4SharedData
26 conn7(from fp_fan.sb_fanAck_queue_1,
27 to tcp_tempControl.sb_fanAck_queue);
28 connection seL4Notification
29 conn8(from tsp_tempSensor.sb_self_pacer_tick,
30 to tsp_tempSensor.sb_self_pacer_tock);
31 }
32
33 configuration {
34 tsp_tempSensor._stack_size = 110592;
35 tsp_tempSensor._domain = 2;
36 tcp_tempControl._stack_size = 110592;
37 tcp_tempControl._domain = 3;
38 fp_fan._stack_size = 110592;
39 fp_fan._domain = 4;
40 tsp_tempSensor.sb_currentTemp_access = "W";
41 tcp_tempControl.sb_currentTemp_access = "R";
42 tsp_tempSensor.sb_tempChanged_counter_access = "W";
43 tcp_tempControl.sb_tempChanged_counter_access = "R";
44 tcp_tempControl.sb_fanCmd_queue_1_access = "W";
45 fp_fan.sb_fanCmd_queue_access = "R";
46 fp_fan.sb_fanAck_queue_1_access = "W";
47 tcp_tempControl.sb_fanAck_queue_access = "R";
48 }
49 }� �

Listing 15: Excerpts from the Generated CAmkES Representation of the Temperature Control System
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Walking over the structure in the AADL instance model, HAMR generates a CAmkES
assembly as shown in Listing 15 to define the partitioning and communication topol-
ogy of the system deployment on seL4. In the configuration section, the access
properties are used to define the component read/write access to the shared-memory-
based representations of the AADL. These declarations provide part of the founda-
tional realization of information flow control within the system and they are guaranteed
to be enforced by formally verified seL4 kernel. The domain properties specify the
scheduling domain for each component/partition and are used to achieve temporal sep-
aration of the AADL processes/threads following the scheme described in Section 7.2.

Figure 9: CAmkES Topology Diagram Generated by HAMR

To support traceability and understanding of the seL4-level deployment, HAMR
generates a diagram of the CAmkES topology as shown in Figure 9.

7.2. Representing AADL Threads in seL4
To satisfy high-assurance execution requirements suitable for, e.g., mission-critical

avionics, including real-time performance and non-interference, HAMR generates con-
figurations to enforce scheduling requirements and temporal isolation between threads.
HAMR accomplishes this by extracting the thread topology and properties as specified
in the AADL model. The topology provides communications dependencies which will
drive schedule generation. Properties include real-time performance requirements, e.g.,
rates and execution durations of threads, and maximum allowed communications laten-
cies. Next, HAMR aligns the AADL thread activation and dispatching with CAmkES
notions of activation/yielding in CAmkES and seL4 threading primitives by inserting
wrapper code (organized into AADL entry points) into CAmkES components to host
the application level code, as presented in the previous section.

Temporal isolation prevents an errant or compromised thread from interfering with
processing cycles of other execution threads. Since many real-time control systems
require multiple threads to function correctly, simple priority schemes that only guar-
antee performance of the highest level threads are inadequate. Additionally, while
these simple priority schemes may satisfy basic properties, such as number-of-cycles-
per-frame, they do not necessarily satisfy sub-frame latency and jitter requirements.
Depending on the system-level requirements, this may lead to instabilities, as well as
provide undesirable signaling opportunities to exfiltrate information.

Therefore, HAMR supports a statically scheduled AADL and runtime model that
guarantees that all threads receive their required (as specified in the AADL model) ex-
ecution resources, at times that satisfy their real-time requirements (again, as specified
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in the AADL model), such as rate and required duration of processing cycles for ex-
ecution on the underlying platform. HAMR generates infrastructure code to leverage
an seL4 feature called the domain scheduler. This feature is currently available in the
formally verified version of seL4. The domain scheduler is a mechanism accessible via
CAmkES that allows the system designer to specify a static cyclic periodic schedule for
the resident components. Each CAmkES component is assigned to a non-overlapping
temporal domain (e.g., the domain property shown on lines 35 and 39 in Listing 15)
Background threads maintained by the kernel, such as threads for managing communi-
cation memory and other kernel operations, are by default assigned to Domain Zero, al-
though they can be reassigned to support mission-level requirements. The static cyclic
domain schedule is then comprised of an ordered sequence of execution intervals, each
interval assigned a single temporal domain and an internal length (defined in terms
of number of processor ticks). During runtime, the seL4 kernel strictly enforces the
domain schedule defined for the system, iterating through the intervals, giving each in-
terval its defined time, and then returning to the first interval when the end is reached.
A domain schedule may not be altered or disabled during run-time.

To provide determinism, mission systems, such as avionics, are dispatched, read
inputs, perform their processing, write outputs, and wait until the next period. The
domain scheduler by itself, however, lacks a “start of frame” signal to awaken threads.
Threads therefore have no intrinsic way to determine where they should be in their
execution sequence.10 One approach is to rely on inputs from upstream components in
order to start. This is supported by seL4 and CAmkES. However, if a compromised
or failed upstream component stops sending those signals, all downstream processing
would halt. Another approach is to have each thread continuously sample its inputs.
Such busy-wait approaches consume power and resources that could be better applied
elsewhere, including partition-specific background processing.

To address this gap, we developed a signaling approach to synchronize the com-
ponents to the periodic frame. In this context, the periodic frame (or major frame in
terminology common to real-time scheduling) is the cumulative length of time in which
each of the components executes a single iteration. The synchronization mechanism
“wakes up” the components at specific intervals. HAMR implements the synchroniza-
tion through a custom CAmkES component called the pacer, as shown at the left in
Figure 10. The pacer component emits a single event notification at the frame interval
to each of the other components in the system. Each component then waits on this
notification signal before starting its regular iterative execution.

The pacer works by leveraging several features of the underlying seL4 domain-
based approach: as mentioned above, threads for managing communication memory
and other kernel operations, are by default assigned to Domain Zero. We can schedule
when Domain Zero is active. We place the pacer in its own domain. When that pacer
domain is active, and the pacer initializes, it emits a “tick” notification to itself. The

10The Mixed Criticality System (MCS) version of seL4 provides this capability. At the time of this writing,
MCS is not yet fully verified. Due to the CASE emphasis of presenting a vision for formal-methods-based
assurance to the broader DoD community, a decision was made to stick with the verified version of the
kernel.

31



Mission System

ControllerPlannerDatalink Manager

Pacing Signals “start of period”

2020‐11‐17 © 2020 Adventium Labs 9

Pacer

Domain
2

Domain
3

Fr
am

e 
bo

un
da
ry

Do
m
ai
n 
bo

un
da
ry

Do
m
ai
n 
bo

un
da
ry

Domain
4

Do
m
ai
n 
bo

un
da
ry

Domain
5

Domain
1

Eliminates busy‐wait spin
Supports “background” processing in each domain slice

Time

HAMR generates all the infrastructure

Figure 10: The pacing component provides a start-of-frame signal to threads executing under the seL4
domain scheduler.

pacer then blocks, waiting for that notification on its “tock” input. This is shown in
Figure 11 That notification will not appear until Domain Zero next activates. When the
pacer’s domain is again active, the pacer will be released from its wait. The pacer will
then emit start-of-frame notifications to all the other threads in their domains, as well
as a tick-tock signal to re-awake itself. The sequence then repeats.

Pacer

Initialize
emit pacing_event on output “tick”, 
which is connected to input “tock”

while true {
wait for pacing_event
emit pacing_event

}
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Figure 11: Pacer component implementation signals itself with a tick-tock signal to activate once per frame.

Since the pacer is an underlying infrastructure element, the pacer component does
not need to be captured in the AADL model. Instead, HAMR auto-generates a sin-
gle pacer component in the system, including its communication channels to each of
the other components. HAMR also auto-generates a wrapper around the application
components that implements behavior code to wait on the pacer signal. This allows
the system designer to drop in their behavior code for the components into the system
build via a stable API without writing special code to handle the pacer events.

An explicit pacer is not necessary in all cases; we can also generate self-pacing
components using the same feature that the pacer component itself uses for pacing.
For example, the TempSensor component in Listing 14 uses self-pacing; the rele-
vant pacing ports are shown on lines 4 and 5. Line 28-30 of Listing 15 declares the
wrap-around connection. For sporadic components, such as the TempControl and
Fan components in Listing 14, HAMR generates semaphores ports for the thread dis-
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patches on lines 19 and 29. Pacing a virtual machine or other components that have
long durations split across multiple activations may require additional specialized pacer
components. Multi-rate schedules can be implemented using a pacer per rate.

Within the HAMR infrastructure, the domain schedule for a system is captured
in a file named domain schedule.c. A snippet of a domain schedule example is
shown below. If explicit pacers are used, it too must have time explicitly allocated in
the domain schedule.� �

1 const dschedule_t ksDomSchedule[] = {
2 { .domain = 0, .length = 100 }, // all other threads
3 { .domain = 2, .length = 5 }, // tempSensor
4 { .domain = 3, .length = 5 }, // tempControl
5 { .domain = 4, .length = 5 }, // fan
6 { .domain = 0, .length = 380 }, // pad rest of period
7 };
8 const word_t ksDomScheduleLength =
9 sizeof(ksDomSchedule) / sizeof(dschedule_t);� �

Listing 16: An Excerpt of the Generated Domain Schedule for the Temperature Control System

This schedule was generated by HAMR using AADL property annotations, such
as the one shown in the model excerpt below. This AADL example specifies that the
TempSensor should be assigned to domain 2 (CASE Scheduling Domain) and
allowed to execute at most 10 microseconds when scheduled
(Compute Execution Time). The length of time between clock ticks is specified
by the Clock Period property (which in this case targets ODROID-XU4). Thus the
length of the domain iteration for the TempSensor is set to 5 ticks.� �

1 processor implementation TempControlProcessor.i
2 properties
3 Frame_Period => 1000ms;
4 Clock_Period => 2ms;
5 ...
6
7 thread TempSensor extends BasicThread
8 ...
9 properties

10 Dispatch_Protocol => Periodic;
11 Period => 1000ms;
12 CASE_Scheduling::Domain => 2;
13 Compute_Execution_Time => 10ms .. 10ms;� �

Listing 17: Timing Property Annotations in a Sample AADL Model

The developer may customize the schedule once it has been generated, for exam-
ple to assign a different domain execution order. Furthermore, the system designer is
responsible for engineering a domain schedule that satisfies the timing requirements of
the components. If one or more of the components are not given enough time to execute
properly, then the overall system may fail or produce incorrect results. If the compo-
nents are given too much time to execute, then the system operates inefficiently. Exist-
ing AADL-based analysis tools can evaluate a model annotated with timing properties
and determine if a periodic schedule can satisfy the specified temporal requirements of
all the components, including latency, jitter, and execution durations [30].
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7.3. Representing AADL Port Communication in seL4
To satisfy high-assurance communications requirements suitable for domains such

as mission-critical avionics, including both determinism and separation, HAMR en-
forces strict one-way communication, as well as communications availability and in-
tegrity. It accomplishes this by extracting the system requirements as specified in the
AADL model, and interpreting those requirements as per the well-defined AADL run-
time semantics.

One-way communications flow helps stakeholders (e.g., developers, maintainers,
certifiers) understand how information flows through the system. Without the ability to
specify strict one-way flows, back-channels may allow components to interact in ways
not intended by the developers. For example, the baseline CAmkES did not provide
one-way communication with existing primitives; it merely supported read-write of
memory locations by the sender, and read-only by the receiver. However, since control
and data-flow concepts were mixed, the receiver could, at a minimum, signal the sender.

At the AADL level, ports have explicit directionality, and the model-level analysis
tools check that the specified connectivity is satisfied by the interconnection network.
Using underlying communications mechanisms that violate the specified connectivity
would mean that there would be no way to guarantee that the implementation matched
the requirements as specified by the model. Therefore, analysis at the model level
would have to be fully repeated at the implementation level to determine that informa-
tion flow requirements were satisfied. Earlier attempts to provide one-way communica-
tions flows (e.g. the baseline Trusted Build tool [7]) relied on intermediate components
and Remote Procedure Call (RPC) mechanisms, which required additional threads, and
suffered back channels and blocking. It enforced read-write of shared memory loca-
tions by the sender, and read-only by the receiver. However, control and data-flow
concepts were mixed, and the receiver could, at a minimum, signal the sender.

Potentially more significant, the particular RPC mechanisms used could permit a
receiver catch that does its own work and blocks the sender from getting work done.
For example, performing seL4 Call on an Endpoint requires the Sender to trust that
the receiver will reply in order to unblock it or requires the sender implement its own
timeout mechanism that would require another supervising thread reset the blocked
thread when the receiver doesn’t reply. Call blocks until the message is transferred
to the receiver and keeps blocking until the receiver replies. seL4 Send blocks until
message is transferred to receiver, and seL4 NBSend will transfer message if receiver
is waiting and not transfer message if receiver is not waiting. All these mechanisms of-
fer undesirable signalling capabilities that can violate strict partitioning requirements.
This means that the sender had to trust that the receiver RPC mechanism was imple-
mented correctly, otherwise it could lead to blocking the sender. This would violate
criticality partitioning boundaries; the receiver would have to be verified to the same
criticality as the sender. Below we describe how we solved these issues.

Our first step is to have HAMR enforce that only one-way flows may be specified in
the AADL model. If a particular communication channel requires a return acknowledg-
ment from the receiving component to the sending component, then the acknowledg-
ment notification must be explicitly modeled in AADL. This modeling exposes those
communications channels to analysis tools, so insecure channels that violate partition-
ing boundaries may be identified early in the design process.
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Communications availability and integrity is the property that a correctly config-
ured run-time satisfies the rate, jitter, and latency requirements of the communications
as specified and verified in the model. Integrity includes the property that dropouts
are detectable (e.g., if the sender drops out, the receiver should be able to perceive the
inputs are stale, or if the receiver drops, when it recovers, it should be able to perceive
that it missed inputs). In addition, the receiver must be able to detect incomplete mes-
sages (e.g., the sender was unable to finish sending the message before the receiver
read the message, or the receiver was interrupted before completing the read, and a
new message arrived in the meantime). AADL specifies buffering semantics, so mis-
sion system developers can balance communications buffering to satisfy system-level,
mission-specific requirements. HAMR extracts these channel-specific properties from
the AADL model, and generates corresponding infrastructure code.

To provide the seL4 platform-specific representations for infrastructure port state
(IPS) described in Section 3.2, HAMR generates shared memory buffers for port com-
munications, as shown in Figure 12. HAMR automatically configures the read/write
privileges on this shared memory to match the requirements as derived from each con-
nection in the AADL model. For example, again consider the prior excerpts of the
generated CAmkES in Listing 14 for the TempControl and Fan components along
with the portion of the CAmkES assembly that connects their fanCmd ports in List-
ing 15. Access restrictions are introduced on lines 40-47 in the configuration section
to ensure, for example, a producer can only write to its shared data (access type “W”)
and a consumer can only read from it (access type “R”).

BA

Communications Abstraction
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Figure 12: Shared memory with temporal and spatial controls provides non-blocking communications to
implement AADL semantics suitable for mission-critical communications

At the infrastructure level, HAMR enforces the AADL-specific semantics for AADL
event ports, data ports, and data event ports with custom writer/readers. The event data
port dequeue code is shown in Listing 18. This can be generalized to also handle pure
event ports (no data, just an event counter) and data ports (queue length 2).� �
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bool queue_dequeue(recv_queue_t *recvQueue, counter_t *numDropped, data_t *data) {
counter_t *numRecv = &recvQueue->numRecv;
queue_t *queue = recvQueue->queue;
// Get a copy of numSent so we can see if it changes during read
counter_t numSent = queue->numSent;
// Acquire memory fence - ensure read of queue->numSent BEFORE reading data
__atomic_thread_fence(__ATOMIC_ACQUIRE);
// How many new elements have been sent? Since we are using unsigned
// integers, this correctly computes the value as counters wrap.
counter_t numNew = numSent - *numRecv;
if (0 == numNew) {

// Queue is empty
return false;

}
// One element in the ring buffer is always considered dirty. It’s the next
// element sender will write. It’s not safe to read it until numSent has been
// incremented. Thus there are really only (QUEUE_SIZE - 1) elements in the
// queue.

*numDropped = (numNew <= QUEUE_SIZE - 1) ? 0 : numNew - QUEUE_SIZE + 1;
// Increment numRecv by *numDropped plus one for the element we are about to
// read.

*numRecv += *numDropped + 1;
counter_t numRemaining = numSent - *numRecv;
size_t i = (*numRecv - 1) % QUEUE_SIZE;

*data = queue->elt[i]; // Copy data
// Acquire memory fence - ensure data read BEFORE reading queue->numSent again
__atomic_thread_fence(__ATOMIC_ACQUIRE);
if (queue->numSent - *numRecv + 1 < QUEUE_SIZE) {

// Sender did not write element we were reading. Copied data is coherent.
return true;

} else {
// Sender may have written element we were reading. Copied data may be
// incoherent. We dropped the element we were trying to read, so
// increment *numDropped.
++(*numDropped);
return false;

}
}� �

Listing 18: Example seL4 event data port dequeue

This approach supports multiple readers, with no side channels between readers. It
does not work for multiple writers, due to potential side-channels between writers. We
therefore prohibit multiple writers from being specified in the AADL models.

There are potentially detectable micro-architectural interactions at the individual
memory cell level. This depends on both processor and compiler level optimizations
and is outside the scope of what can be covered at the pure software level.

HAMR automatically maps the various AADL ports to CAmkES dataport DataContent
and Counter ports, such as shown earlier in Listing 14, lines 6-7, 15-18, and 26-27.
HAMR then generates adapters to convert the CAmkES dataport APIs to AADL com-
pliant APIs, such as shown in Listing 19.� �
void TempControl_tempChanged_Rcv(Opt_DataContent result) {
if(tempChanged_dequeue()) {

DeclEmpty(payload);
DeclSome_DataContent(some);
Some_DataContent_init(&some, (DataContent) &payload);
assign(result, &some, sizeof(union Opt_DataContent));

} else {
DeclNone_DataContent(none);
assign(result, &none, sizeof(union Opt_DataContent));

}
}
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� �
Listing 19: Example seL4 glue code

8. Evaluation

This section reports on several publicly available model/code bases used to evaluate
HAMR. The HAMR distribution is available at [33]. Each example repository includes
a ReadMe file with graphical and textual summaries of the example, statistics about the
code base, and instructions on how to run the example. The purpose of the examples is
to illustrate different aspects of HAMR code generation, APIs, and system execution.

8.1. Temperature Control – JVM, Javascript, Linux, and seL4 Platforms
The Temperature Control example is the basic “Hello World” example used to il-

lustrate HAMR workflows for Slang/JVM, Javascript, Linux, and seL4 deployments,
HAMR application code APIs, and a variety of other HAMR support including a unit
testing framework, guided simulation, and system visualizations. The full set of ar-
tifacts for the Temperature Control example presented in this paper are available in a
public GitHub repository [36]. The AADL model includes 3 thread components (1
periodic, 2 sporadic), 9 thread component ports, and 4 connections between thread
ports. The size of the component application code (code associated with thread entry
points) is 74 NSLOC. The size of the HAMR-generated code together with the appli-
cation code is 17402 NSLOC. This represents the size of the system before CAmkES
is run, which generates a substantial amount of kernel-level code for the executable
deployment image.

The repository also includes a HAMR-generated Linux deployment. A Slang-based
version is available at [34]. The seL4 code base is the subject of a two-hour video
tutorial (slides and videos available on the HAMR website [33] by Feb 1, 2022).

8.2. Isolette: Infant Incubator Controller – JVM, Javascript, Linux, and seL4 Plat-
forms

The Isolette example illustrates HAMR’s ability to take a single Slang-based im-
plemention of application logic of a system and deploy the system on four different
platforms (Slang/JVM, Javascript, Linux, and seL4). In contrast to the Temperature
Control example described in this paper, the application code for the Isolette example is
written in Slang and is then transpiled to C. The full set of artifacts is available in a pub-
lic GitHub repository [34]. The Isolette example is taken from the US Federal Aviation
Administration (FAA) Requirements Engineering Management Handbook (REMH),
where it is used to illustrate best practices in requirements engineering for critical em-
bedded systems. An Isolette is an infant incubator (medical device), and the REMH
presentation focuses on the heat (infant warming) control subsystem and the safety
monitoring subsystem. The REMH includes detailed requirements at multiple levels of
abstraction and some design aspects.

An AADL model was constructed from this information, and HAMR was used
to develop an implementation of the two subsystems in Slang. The architecture (di-
rected by the REMH description) emphasizes periodic threads and data ports. The
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control system and the safety monitoring system include three periodic threads each.
An additional periodic thread is used to implement/simulate the operator interface.
Slang extensions were used to simulate the temperature sensor and heater components.
HAMR generates the JVM deployment of the system. Scala and Java are used to de-
velop the simulated hardware elements and the GUI for the operator interface. In the
JVM deployment, there are 9 thread components, 47 thread component ports, and 25
connections between thread ports, with 6349 NCSLOC in the infrastructure code and
507 NCSLOC in the application logic. For the Linux and seL4 deployments, the Slang
to C transpiler is used to compile Slang component implementations and Slang-based
platform-independent aspects of the AADL run-time. The resulting C code is com-
posed with the platform-specific aspects coded in C as well as C-based simulations of
the hardware elements. For Linux, the combined translated C has 37938 NCSLOC.
For seL4, the resulting HAMR-generated C is of similar size, and to that is added the
C code generated from CAmkES.

8.3. UAV System – seL4 Platform
This example from the DARPA CASE program summarized in Section 4 demon-

strates HAMR’s ability to handle system elements representative of those found in a
complex high-assurance aerospace system with cyber-resiliency requirements. In ad-
dition to the features exercised in the examples above, this example includes virtual
machine components, integration with application code written in CakeML, as well
as significantly larger application data structures passed via port-based communication
between components. The full set of artifacts is available in a public GitHub reposi-
tory [35]. The AADL model includes 9 thread components (including one component
representing a virtual machine). The size of the component application code (code
associated with thread entry points) is 806 NSLOC (this excludes the metrics for the
attestation gate, geofence monitor, and the line search task filter as their behavior is
supplied by CakeML code). The size of the HAMR-generated code together with the
application code (both C code and CakeML code) is 42235 NSLOC. This represents
the size of the system before CAmkES is run, which generates a substantial amount of
kernel-level code for the executable deployment image.

This is example is used in CASE-related training material for Collins Aerospace
and Lockheed Martin CASE teams.

9. Related Work

Trusted Build: HAMR can be seen as a successor to the Trusted Build (TB) tool [7]
developed in the DARPA High Assurance Cyber Military Systems (HACMS) Program
by Collins Aerospace, University of Minnesota, and the seL4 team. Like HAMR, TB
generated component skeletons for seL4 from AADL using the CAmkES seL4 com-
ponent modeling language. TB was the first AADL translation framework to seL4, and
it was used in DARPA HACMS to construct several systems at roughly the same com-
plexity as the UAV system described in Section 8.3. TB was instrumental in demon-
strating the vision for model-based development for seL4, and many of the team mem-
bers that provided support and guidance for TB on DARPA HACMS have continued to
play similar roles with HAMR on DARPA CASE.
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An earlier version of HAMR seL4 backend used the same CAmkES and C code
structure as TB, but evolved to provide a number of additional capabilities beyond TB.
At the CAmkES level, the port-based inter-component communication strategy was
upgraded to provide true one-way communication from the sender to the receiver on
an AADL connection as described in Section 7. In the TB strategy, it was possible to
have some backflow of information, which is undesirable from an information assur-
ance perspective. The CAmkES patterns employed in TB had unnecessary complexity
that made it harder in general to support information assurance arguments. In addition,
the TB port-based communication structure introduced an extra monitoring component
for each AADL connection – dramatically increasing the number of CAmkES compo-
nents and associated support threads of the generated system and making it much more
difficult to realize the more capable scheduling approach now used in HAMR/seL4.
The TB generated structures also did not support AADL semantics for ports employ-
ing AADL’s richer dispatching strategies (e.g., port urgency, explicit indication of ports
that trigger dispatch) and port value freezing (as described in Section 3). TB provided
no support for automated VM creation (engineers needed to manually configure VMs
in an empty generated CAmkES component shell), whereas the HAMR VM support
significantly reduces engineer effort as well as the potential for defects. HAMR also
adds enhanced support for QEMU-based emulation and dramatically reduces the ef-
fort needed to create a working development environment by using a Vagrant setup
framework.
Ocarina: Ocarina, led by Hugues [19], is the longest running AADL code generation
project. Written in Ada and supported by a plug-in to OSATE, Ocarina provides back-
ends for Ada and C code generation primarily using PolyORB-HI [31]. PolyORB-HI
is a lightweight middleware designed for high-integrity systems. Ocarina generates
real-time tasking and communication infrastructure for C-based RT-POSIX threading,
the Xenomai framework that provides real-time support on top of Linux, and the open
source RTOS RTEMS. The PolyORB-HI Ada implementation is used with the GNAT
compiler to support full Ada on native platforms (e.g., Linux, Windows) and the Raven-
scar Ada subset profile to guarantee schedulability and safety properties. Ocarina also
has a backend for POK, a partitioned operating system compliant with the ARINC 653
standard, along with configuration file generation for ARINC 653-compliant DeOS and
VxWorks653 real-time operating systems (RTOS).

Ocarina has been used in several European defense industry projects over the last
12-15 years. Whereas the industry focus for Ocarina has primarily been for RTOSs,
we have focused HAMR on the seL4 microkernel for cyber-resiliency and informa-
tion assurance. While Ocarina and HAMR both support multiple backends, Ocarina
emphasizes targeting the common structure of the C and Ada PolyORB-HI implemen-
tations, while HAMR emphasizes factoring backends through language-independent
standardized run-time services. AADL RTS is currently supported, but the system is
modular so others can be supported.

Ocarina currently focuses on integrating code generation for RTOSs with integrated
schedulability analysis. HAMR currently has an industrial research focus to move from
the JVM-based framework for prototyping, visualization, and coding in a clean modern
language subset (Slang) that can be compiled to C and from there to industry platform
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deployments. HAMR’s current industrial research projects (e.g., DARPA CASE) have
prioritized the use of the machine verified seL4 microkernel. HAMR is being used in
conjunction with Adventium Labs FASTAR AADL temporal analysis and schedule-
generation tools.
RAMSES: The code generation approach of the Refinement of AADL Models for
Synthesis of Embedded Systems (RAMSES) tool [4] emphasizes successive automated
AADL model refinement. The refinement steps are driven by developer-specified fea-
tures for the target system, by capabilities and resources of the target platform, and
by model-level analyses that assess system properties against requirements and plat-
form capabilities. Such analyses include schedulability, timing properties, and re-
source analysis. By gradually exposing more implementation details in the model,
those details can be considered in the analysis. The incremental transformations also
form the basis of a correctness methodology in which the correctness of each trans-
formation is considered. Once model transformations yield a sufficiently detailed im-
plementation model, RAMSES generates C component infrastructure, that when com-
bined with developer-written component application C code, can be deployed on Linux
(with POSIX-compliant threading), nxtOSEK (open-source platform for LEGO Mind-
storms), and POK. RAMSES has been used to develop systems for the avionics, rail-
way, and robotics domains.

The differences in emphasis between HAMR’s target application areas and RAM-
SES roughly correspond to the HAMR/Ocarina differences detailed above. In addi-
tion, HAMR supports multiple languages and distinct platforms. RAMSES empha-
sizes model transformations as a basis for correctness arguments whereas Ocarina
and HAMR emphasize factoring through abstract architecture layers. Like Ocarina,
RAMSES focuses more on RTOS applications compared to HAMR’s current focus
on microkernel-based information assurance and multi-platform support. Compared
to HAMR, one challenge of the RAMSES approach is that the refinement steps pro-
duce multiple versions of AADL models. Multiple versions require additional work to
maintain traceability and correspondence between the model-level contracts and infor-
mation flow requirements and the source-code level contracts.

10. Conclusion

Industry experience across a number of domains is increasingly demonstrating the
effectiveness of formally verified microkernels as a foundation for high-assurance sys-
tems. We believe that the overall effectiveness of verified microkernels such as seL4
can be improved, and adoption can be accelerated, by providing modeling and devel-
opment environments with abstractions that are aligned with kernel configurations and
with system engineering needs of the domain. AADL is a strong candidate for explor-
ing model-driven development for microkernels. The HAMR framework described in
this paper demonstrates that the component-oriented idioms of AADL can provide ef-
fective abstractions for developers to configure the partitioning and information control
mechanisms provided by seL4. AADL semantics for threading and port-based com-
munication are based on decades of experience in the embedded domain; experience
using AADL to develop the mission control software systems in the DARPA CASE
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effort confirms the appropriateness of AADL semantics. Combining the capabilities
of AADL modeling with seL4 kernel controls via HAMR code generation yields a
powerful synergy that enables the forward-looking forms of model-based development
exemplified by the BriefCASE tool set. In particular, when using a platform-based ap-
proach and modeling environment that is designed from “top to bottom” to emphasize
component-wise development with strong semantics for both components and infras-
tructure, engineers can more easily specify, analyze, transform, assure, and evolve their
systems.

The approach that we have illustrated is not limited to AADL or seL4. Since
HAMR is designed to facilitate the integration of new translation backends, and as
other AADL code generation tools have demonstrated support for other real-time op-
erating systems, we are confident that additional HAMR backends can be added that
will enable the entire BriefCASE vision to be realized more broadly. On the modeling
language front, the important aspect of our approach is adherence to AADL’s run-time
semantics for threading, communication, and infrastructure services. Other modeling
languages, including SysML variants that have a notion of component or blocks and
connections, could potentially be used as modeling front ends.

Looking ahead, providing support for seL4 Mixed-Criticality Scheduling is a high
priority. For this, we are prototyping a new scheduling framework that is aligned with
the AADL approach to scheduling that can be “dropped into” the seL4 MCS infras-
tructure. We are also investigating HAMR extensions to support distributed systems
based on middleware frameworks like OMG’s Data Distribution Service (DDS) used
in US military systems and other domains. On the assurance front, we are continu-
ing to enhance HAMR’s support for evidence generation to feed into assurance case
construction. We are documenting assurance case templates and illustrating these with
assurance arguments for the BriefCASE tool chain. Within the HAMR code base itself,
we are applying the Logika Slang verification framework to verify key functionality.
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