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Abstract

Shared memory systems, such as SMP and ccNUMA topologies, simplify
programming and administration. On the other hand, systems without hardware
support for shared memory, such as clusters of commodity workstations, are
commonly used due to cost and flexibility considerations.

In this thesis, virtualisation is proposed as a technique that can bridge the gap
between these architectures. The resulting system, vNUMA, is a hypervisor with
a unique feature: it provides the illusion of shared memory across separate nodes
on a fast network. This allows a cluster of workstations to be transformed into
a single shared memory multiprocessor, supporting existing operating systems
and applications. Such an approach could also have applications for emerging
highly-parallel architectures, allowing a shared memory programming model to
be retained while reducing hardware complexity.

To build such a system, it is necessary to meld both a high-performance hy-
pervisor and a high-performance distributed shared memory (DSM) system. This
thesis addresses the challenges inherent in both of these tasks. First, designing
an efficient hypervisor layer is considered; since vNUMA is implemented on
the Itanium processor architecture, this is with particular reference to Itanium
processor virtualisation. Then, novel DSM protocols are developed that allow
SMP consistency models to be reproduced while providing better performance
than a simple atomically-consistent DSM system. Finally, the system is evaluated,
proving that it can provide good performance and compelling advantages for a
variety of applications.
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Chapter 1

Introduction

Architectures for multiprocessor systems can be classified into two groups: those
with coherent shared memory, such as SMP and ccNUMA systems, and those
without, such as networks of commodity workstations connected by Ethernet.

Shared memory systems provide a simple programming model compatible
with a large base of existing applications and operating systems. The majority of
existing operating systems support such architectures; it is a relatively easy task to
support them, even if not with optimal performance. Further, they naturally lend
themselves to single system image (SSI) systems, where there is a single instance
of the operating system with a single resource namespace. The appearance of a
single system makes life simple for users and administrators. The single resource
namespace means that computation can transparently migrate between processors
to balance load, without fear that references to resources will become invalid.

Despite this, there has been a trend towards utilising networks of commodity
workstations. Due to economies of scale, commodity hardware is far more cost-
effective than large shared memory systems. It also provides benefits in terms
of easy extensibility and reconfigurability of a cluster. However, most existing
operating systems were not designed with such a cluster environment in mind,
and cannot provide a single system image across multiple nodes in the absence of
shared memory. Applications that were previously designed for shared memory
systems need to be redesigned to explicitly communicate via the network. Users
typically need to be aware of the nodes available and the resources available on
those nodes. Administrators need to maintain the configuration of the separate

3



4 CHAPTER 1. INTRODUCTION

nodes.

There are many previous attempts to bridge this gap by emulating certain
desirable features of a shared memory system on a cluster. For example,
distributed shared memory libraries such as Treadmarks [50] can provide a limited
illusion of shared memory to the programmer, assuming that the programmer uses
the primitives provided by the library. Other projects have attempted to retrofit
support for cluster-wide process scheduling and migration into existing operating
systems; for Linux such systems include MOSIX [6], openSSI [89] and Kerrighed
[71]. However, such efforts require extensive and intrusive operating system
changes, which are difficult to keep up to date with the fast pace of operating
system development. Of course, it is also possible to build operating systems that
are specifically designed to provide transparency in networked environments, but
unfortunately such novel operating systems rarely gain traction due to the inertia
of legacy code.

Recently virtualisation has re-emerged into the limelight, and is becoming
a standard part of the data center. Virtualisation inserts an extra layer into the
software stack, decoupling an operating system from the underlying hardware.
The most common use of virtualisation is to allow multiple operating system
instances to share a single computer. However, it has been recognised that
virtualisation also has other interesting applications, such as enabling legacy
operating systems to support new hardware architectures [8] or transparently
migrating an operating system instance from one computer to another [15].

This thesis explores using virtualisation to bridge the gap between shared
memory systems and workstation clusters. In the system described in this thesis
— dubbed vNUMA, an acronym for virtual NUMA — a virtual shared memory
multiprocessor is built from a cluster of workstations. Users gain all of the
advantages of a single-system-image multiprocessor, such as a single view of
resources and transparent process scheduling, while being able to use existing
operating systems and applications.

An example of the architecture of a vNUMA system is shown in Figure 1.1.
At a physical level, the system consists of a cluster of commodity workstations
connected by Gigabit Ethernet. An instance of the vNUMA hypervisor runs on
each workstation and is responsible for controlling physical resources such as
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Hypervisor

Node 1
(1 CPU, RAM,

disk)

Hypervisor

Node 2
(1 CPU, RAM)

Hypervisor

Node 3
(1 CPU, RAM)

Hypervisor

Node 4
(1 CPU, RAM)

Gigabit Ethernet

___________________________________

Operating system and applications

Virtual machine (4 CPUs, RAM, disk)

Figure 1.1: Example vNUMA system

processors, memory and devices (there is no host operating system). Initially,
a virtual machine is started from one of the nodes of the cluster, and boots an
operating system such as Linux. The hypervisors then co-operate to extend this
virtual machine across all of the cluster’s resources: transparently mapping virtual
processors to real processors in the cluster, and providing shared memory using
software techniques. In this way, a single operating system instance can be scaled
‘outside the box’, utilising the computing resources of more than one node. In this
thesis, feasibility of this approach is investigated for a small cluster of up to eight
workstations.

Since this thesis was commenced, two other systems have emerged which
apply similar ideas to vNUMA: Virtual Iron’s VFe hypervisor [88] and Kenji
Kaneda’s Virtual Multiprocessor from the University of Tokyo [49]. These should
be considered to have been developed independently, although the vNUMA work
described here was the first to be published. While these systems both demonstrate
combining virtualisation with distributed shared memory, both are limited in
scope and performance, and do not address many of the challenges that this thesis
addresses. In particular, both use simpler virtualisation schemes and distributed
shared memory protocols, resulting in severe performance limitations, especially
in the case of Virtual Multiprocessor. Virtual Iron attempted to address some of
these performance issues by using high-end hardware, such as InfiniBand rather
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than Gigabit Ethernet. However, this greatly increases the cost of such a system,
and limits the target market. Virtual Iron has since abandoned the product for
commercial reasons, which largely seems to stem from its dependence on such
high-end hardware1. vNUMA, in contrast, demonstrates how novel techniques
can achieve good performance on commodity hardware.

Part I of this thesis analyses the virtualisability of the Itanium processor
architecture upon which vNUMA is built, and presents an approach for efficient
virtualisation. Part II investigates the challenges involved in implementing
a distributed shared memory system within this virtualisation layer, that can
satisfy the demands of an operating system and unmodified applications while
simultaneously providing good performance. It describes a distributed shared
memory protocol that can meet these challenges. Part III evaluates the design
of the system, presenting results for a variety of benchmarks.

1According to Virtual Iron’s John Thibault, “Trying to sell InfiniBand into enterprise datacen-
ters was, to say the least, a real challenge. We were spending more time selling InfiniBand than
our own product.” [83]
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The vNUMA system is fundamentally a virtual machine which can cross the
boundaries of physical computers. The first task, then, is to build the virtual
machine infrastructure, and this will lay the groundwork for the second part of
the thesis which investigates how it can be distributed across multiple physical
computers.

While the ideas behind vNUMA can be applied to most processor architec-
tures, there are significant practical differences between architectures, and it is
necessary to choose one as a focus for this thesis and particularly the experimental
prototype. The Itanium processor architecture was chosen for a number of
reasons. Firstly, at the time this thesis was commenced, there was no other Itanium
virtualisation solution or analysis of the virtualisability of the Itanium architecture.
Intel was poising Itanium to become the next major server architecture, and so
this was an important gap that needed to be filled. As of 2008, some would
say that Intel’s vision did not succeed, and that the ‘Itanic’ has been relegated to
certain niche parts of the market. Nevertheless it is still widely used in scientific
clusters and enterprise-class database servers, which are some of the workloads
that vNUMA is designed for. The Itanium architecture also has many innovative
features, such as its register stack engine and relaxed memory consistency model.
These features provide opportunities for innovation, and are representative of a
more modern architecture design than the ubiquitous x86 architecture, which
is the result of 30 years of haphazard evolution. The virtualisation challenges
associated with x86 are complex, widely known, and littered with patents.

This chapter will provide an overview of virtualisation, the issues involved
with virtualising the Itanium architecture, and the design of the vNUMA virtuali-
sation layer.
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Chapter 2

Virtualisation

Software applications rely on an operating system to provide basic services such
as input and output. Traditionally the operating system has been part of the lowest
layer of software on a computer system, with full control of the system hardware.
In such a design it is not possible to have more than one operating system on
a single computer. However, the complexity and variety of modern operating
systems have led to them being considered almost part of the application layer;
developing a given application is intricately connected to the underlying operating
system and its configuration. An operating system, its configuration and a set of
applications that execute atop it can collectively be referred to as an operating
system instance.

Virtualisation inserts another thin layer of software, known as a virtual

machine monitor (VMM) or hypervisor, underneath the operating system. Instead
of having direct control of the real computer hardware, the operating system now
controls the resources of an imaginary computer known as a virtual machine;
the virtual machine monitor controls how those resources are mapped to real
hardware. The virtualisation layer enables a variety of scenarios for managing
operating system instances.

One of the most common applications of virtualisation is server consolidation.
The pace of progress in computer hardware is such that many servers are
increasingly underutilised. Server consolidation allows multiple operating system
instances, that might previously have been housed on separate servers, to be
consolidated onto a single server. This improves resource utilisation and reduces

11
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the number of physical computers required, resulting in cost, power and man-
ageability advantages. Compared to simply combining applications onto a single
operating system instance, virtualisation can provide stronger isolation between
the applications, improving security. Virtualisation also allows consolidating
workloads which require different operating systems, different versions of an
operating system, or incompatible operating system configurations.

Furthermore, virtualisation enables easy migration of operating system in-
stances between physical servers. In fact, a number of modern virtual machine
monitors support live migration, where virtual machines can be migrated while
still running, with minimal downtime [15]. This is useful for load balancing;
entire virtual machines can be moved around to optimise resource utilisation.

Virtualisation permits the complete state of a virtual machine to be captured
at any point in time. This allows simple cloning of servers, restoring servers
to a known-good state, capturing snapshots for post-mortem analysis, making
consistent backups of a live system with no downtime, and many other possible
scenarios. One particularly novel application is the time-travelling virtual machine
[53], which can be rewound to any point in time to aid in debugging. The virtual
machine is first rewound to the last snapshot before the desired point, and then run
forwards while deterministically replaying external events.

The encapsulation of operating system instances provided by virtualisation
has also led to the emergence of virtual appliances as a mechanism for software
deployment. Virtual appliances are packaged snapshots of virtual machines that
have been pre-configured for a particular task. For example, a user may be able
to download a web server appliance which contains not only the web server
application, but an entire virtual machine which has been appropriately configured
for that purpose. This is analogous to purchasing a ‘turnkey’ web server appliance,
but in this case the hardware is virtual and consolidation is possible.

Finally, virtualisation can allow legacy software systems to execute on
radically new hardware architectures, without imposing this compatibility burden
on the hardware; the transformation between the two architectures is left to the
virtual machine monitor. For example, MagiXen [11] allows operating systems
designed for the ubiquitous x86 architecture to execute on the newer Itanium
architecture. Disco [8] carves a NUMA system into multiple virtual SMP nodes
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for the benefit of existing operating systems that may not support a NUMA
architecture. vNUMA — the subject of this thesis — combines multiple separate
nodes into a single virtual NUMA system, allowing a single operating system
instance to span multiple physical servers.

2.1 Full virtualisation

Virtual machine monitors can be described in terms of two basic design philoso-
phies: full virtualisation and para-virtualisation. In a VMM which implements
full virtualisation, the interposition between the operating system and hardware is
done transparently, such that the operating system does not need to be modified.
In other words, the interface between the operating system and virtual machine
monitor is the same as the original interface between the operating system and
hardware.

This is made possible by the concept of privilege levels, which exist in
practically all general-purpose processor architectures. At the least, processors
have a privileged mode and an unprivileged mode. The privileged mode confers
unfettered control of all aspects of processor operation, while the unprivileged
mode is a carefully controlled sandbox; whenever an unprivileged program needs
to reach beyond its sandbox, it must invoke the privileged layer. Traditionally the
entity that runs at the privileged layer is the operating system. In a virtualised
system, the operating system is relegated to the unprivileged mode together with
other applications. When the operating system attempts to perform a privileged
function, it is at first disallowed; the processor instead notifies the virtual machine
monitor running in the privileged layer. The VMM performs any necessary
effects, depending on the virtualisation scenario that is desired, and then makes
it seem to the operating system that the operation succeeded normally. This
interposition can often be made transparent to the operating system.

One of the earliest applications of this concept was IBM’s CP/CMS system
[17]. CP/CMS was developed in the 1960s as IBM’s answer to the Multics time-
sharing system. Instead of designing a completely new multi-user operating sys-
tem, CP (Control Program) was a thin virtual machine monitor which multiplexed
the resources of the physical machine. This allowed each user to start their own
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instance of the CMS (Conversational Monitor System) operating system. The
successors of CP/CMS, VM/370 and z/VM, are still in use today.

The same ideas were leveraged in the 1990s for a somewhat different purpose,
in the form of the Disco system [8]. Disco was a virtual machine monitor for
the MIPS processor architecture, specifically designed for the Stanford FLASH
multiprocessor, a large experimental shared memory system. Upon the FLASH
machine, Disco provided the abstraction of a cluster of SMP machines; each of
these virtual SMP machines could execute a commodity MIPS operating system
such as SGI IRIX. This circumvented the engineering effort that would be required
to enhance such an operating system to run efficiently on the large multiprocessor.
The subsequent Cellular Disco system [38] extended Disco to provide improved
support for partitioning and resource management.

A number of the Disco researchers also went on to found VMware, Inc., which
brought virtualisation into the limelight by applying it to the ubiquitous IA-32
processor architecture. IA-32 does not fulfil the necessary requirements for it to
be directly virtualised via the trap-and-emulate mechanism described above (also
known as native or classic virtualisation). As elucidated by Popek and Goldberg
[79], the key requirement is all sensitive instructions — those that affect or depend
on the current privilege level or the state of privileged resources in the system —
are privileged. This is not the case for IA-32, which contains some unprivileged
sensitive instructions; these can behave in subtly different ways in a lower
privilege level without raising an exception [57]. VMware’s breakthrough was
to develop a relatively efficient method to translate privileged operating system
code, at runtime, into code that has similar semantics but executes correctly in
the lower privilege mode [1]. Microsoft Virtual PC and Microsoft Virtual Server,
originally acquired from Connectix, also utilise comparable dynamic translation
techniques. Making this dynamic translation fast and transparent to the operating
system is no easy task, however, and this technology is closely guarded.

Since these products have taken hold in the market, processor designers have
taken note. The largest manufacturers of IA-32 processors, Intel and AMD, have
recently introduced virtualisation extensions to the IA-32 architecture, adding
a new mode in which all of the problematic instructions can be intercepted
[48, 2]. These extensions have since been leveraged by both the VMware and
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Microsoft solutions, as well as those from other industry players. Intel has
also added similar extensions to the Itanium processor architecture, which has
similar problems to IA-32, as will be described in this thesis. On the other hand,
these virtualisation extensions do not solve all of the challenges associated with
virtualisation, particularly when good performance is required [1].

2.2 Para-virtualisation

Full virtualisation imposes significant limitations on a virtual machine monitor
design, since it must accurately reproduce a hardware interface. If the architecture
is not natively virtualisable and dynamic translation is needed, this introduces
considerable complexity and runtime overhead. Even if the architecture lends
itself to native virtualisation, the nature of such virtualisation is such that each
privileged instruction causes an exception to the virtual machine monitor. On
modern pipelined processors, these frequent exceptions result in a high overhead
(as will be seen in Chapter 12).

For these reasons there has been a trend towards para-virtualisation, which
adapts the interface to the virtual machine monitor for greater simplicity, perfor-
mance and functionality. For instance, a para-virtualised version of an architecture
might define that the operating system must not rely on the behaviour of certain
instructions. Direct hypervisor calls may be introduced to streamline certain
operations such as context switching or access to devices, rather than relying on
emulation of privileged instructions. The downside of para-virtualisation is that
an operating system must be explicitly modified to use the new interface, with the
associated engineering overhead of maintaining a separate body of code that is not
used on real hardware platforms.

The para-virtualisation technique is not new, in fact it was already applied
ante litteram in the CP/CMS system. While CMS was originally designed so that
it could execute on real hardware, very soon new functionality was introduced
that specifically relied on CP features; for instance, efficiency gains were made by
replacing the device accesses in CMS with direct calls to CP. This involved using
the DIAGNOSE instruction, normally a reserved instruction that operating systems
should not use, as a mechanism for invoking hypervisor calls [87].
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More recently, this idea was taken further by the Denali project [90]. Denali
sought to build a type of hypervisor (they called it an isolation kernel) that
could multiplex thousands of lightweight virtual machines. In order to provide
such scalability, far beyond the capabilities of conventional hypervisors, the
overheads involved in virtualisation had to be reduced. Para-virtualisation was the
answer. Rather than attempting to faithfully emulate the complicated privileged
architecture of IA-32 processors, Denali exported a simpler set of abstractions. In
this way it is also similar to a microkernel; in fact there is little practical difference
between a hypervisor and a microkernel, except that the choice of basic primitives
for a hypervisor tends to be biased towards the requirements of existing operating
systems, whereas the design of microkernels is primarily guided by the desire
for a minimal elegant interface. Indeed para-virtualisation methods can also be
applied to allow existing operating systems to run on top of a microkernel, where
the microkernel acts as a hypervisor. For example, the Wombat system [59] allows
Linux to run atop the L4 microkernel.

Para-virtualisation has gained greatest traction in the form of Xen, which has
risen to become one of the leading enterprise virtualisation platforms (alongside
VMware’s and Microsoft’s offerings). Xen was originally developed in the
context of Linux on the IA-32 architecture; it relies on major operating system
changes on that platform, with most privileged functionality being achieved via
hypervisor calls rather than privileged instructions. However, the extent of these
changes has hampered the adoption of these modifications into the mainstream
Linux source code, and a great deal of engineering effort is required to keep them
up-to-date in the face of a fast-changing operating system.

The Itanium port of Xen, however, does not require such significant operating
system changes. The code is originally derived from the vBlades hypervisor [63]
and uses a technique that has been dubbed optimised para-virtualisation. The
idea behind optimised para-virtualisation is to first implement a hypervisor that is
capable of full virtualisation (or close to it), making minimal modifications to the
operating system. Having done this, one can do detailed profiling to determine
which code paths would benefit most from para-virtualisation, and so achieve a
balance between performance and engineering effort.
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2.3 Pre-virtualisation

To address the performance cost associated with full virtualisation and the
engineering cost associated with para-virtualisation, LeVasseur et al (including
the present author) recently introduced the idea of pre-virtualisation [60]. Pre-
virtualisation is an automated form of para-virtualisation that can be used when
the source code for the operating system kernel is available. Instead of requiring a
programmer to manually modify the source code, it is transformed during the
build process, by using a special toolchain that replaces certain instructions.
The simplest option is simply to map each problematic instruction into an
implementation tailored for a particular hypervisor (a simple version of such
a technique was also used in the LilyVM virtual machine [25]). A more
sophisticated possibility is to transform the code into an intermediate form that
still executes correctly on real hardware but allows the problematic instructions to
be easily identified and replaced at runtime.

The vNUMA hypervisor described in this thesis uses pre-virtualisation.
However, pre-virtualisation was originally conceived with reference to the x86
architecture, whereas vNUMA is an Itanium virtual machine monitor; applying
these techniques to the Itanium architecture is not trivial. Chapter 3 will describe
general challenges associated with Itanium virtualisation, while Chapter 4 will
specifically address applying pre-virtualisation to the Itanium architecture.

2.4 Type I vs Type II

Para-virtualisation and pre-virtualisation can also be applied to allow an operating
system to run directly on top of another operating system. User Mode Linux [22]
is a para-virtualised port of Linux to Linux, whereby Linux is considered to be
another target architecture; hardware abstractions such as virtual address spaces
are implemented in terms of Linux processes and APIs. Clearly this requires
significant porting and maintenance effort, even greater than those changes
required by Xen. Linux-on-Linux, which will be described in Chapter 5, is a
less intrusive approach using pre-virtualisation, requiring minimal changes to the
two operating systems.
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It is useful to define some terminology in this context. User Mode Linux
and Linux-on-Linux are examples of what is known as Type II [36] or userspace

virtual machine monitors, in that they depend on an underlying operating system.
That operating system is known as the host operating system, whereas the
operating system inside the virtual machine is known as the guest operating
system. In contrast, a Type I or standalone virtual machine monitor executes
on bare hardware and does not utilise a host operating system. It is also possible
to construct a hybrid virtual machine monitor, such as VMware Workstation and
Microsoft Virtual PC, which utilise a host operating system for certain services
but steal the processor from the operating system while the VMM is executing.



Chapter 3

Itanium challenges

This hypervisor described in this thesis has initially been designed for the Itanium
processor architecture [47]. Itanium is a modern 64-bit processor architecture that
was developed jointly by HP and Intel in the late 1990s. While its instruction
set shares many features with HP’s earlier PA-RISC architecture, Itanium has a
number of novel features that set it apart in its own class.

Unlike most processor architectures, the Itanium architecture explicitly rep-
resents instruction-level parallelism in the instruction stream. This is described
as explicitly-parallel instruction-set computing (EPIC). Instructions are arranged
in bundles destined for specific execution units, and delineated into instruction
groups that specify which instructions can be executed in parallel. This results in
a simpler hardware design — the processor does not need to dynamically re-order
instructions — but shifts the burden of complexity to compilers and low-level
software.

Similarly, other processor architectures provide relatively small register sets;
high-performance processor implementations then dynamically remap these onto
a larger number of physical registers. Itanium instead provides a large architec-
tural register set, eliminating the need for dynamic remapping. To aid software
in the management of this large number of registers, the Itanium architecture
provides a register windowing feature, similar to but more flexible than that
provided by the SPARC architecture [84]. In addition to a set of 32 fixed registers,
each procedure can allocate a variable-sized window of up to 96 registers. This
window is divided into input, local and output portions; upon a procedure call,

19
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the window is shifted so that the output portion becomes the input portion for the
callee, and the caller’s local registers are safely hidden. Even though the physical
number of processor registers is limited, the Itanium architecture provides a
register stack engine (RSE) which transparently saves and restores registers in
the hidden portion, providing the illusion of an infinite continuum of registers.

This chapter will present the challenges involved in virtualisation of the Ita-
nium architecture, and how they can be addressed. When the Itanium architecture
was first developed, virtualisation was not seen as a design goal. As a result the
Itanium architecture, like IA-32, is not natively virtualisable in the classic way.
When an Itanium operating system is demoted to a lower privilege level — the
first step towards virtualisation — a number of issues arise that compromise the
ability of the hypervisor to provide a faithfully virtualised environment. These
issues will be explored in the following sections.

It should be noted that a number of these problems were also encountered
by the authors of vBlades [63], another virtual machine monitor for the Itanium
architecture that was developed independently from vNUMA. Except where
noted, vBlades employs very similar workarounds to vNUMA. The vBlades code
also later became the foundation for Xen/ia64, the Itanium port of the Xen virtual
machine monitor [29].

Most recently, Intel has added a set of extensions to the Itanium architecture,
codenamed Silvervale but officially known as Virtualisation Technology for
Itanium (VT-i) [47]. The first implementation of VT-i was released with the Dual-
Core Itanium 2 (‘Montecito’) processor in 2006. VT-i addresses some but not all
of Itanium’s virtualisability issues. Specifically, it provides a special processor
mode that alleviates the problems described in Sections 3.1, 3.2 and 3.3. While
this brings Itanium closer to being natively virtualisable, this is not a panacea; as
previously mentioned, para-virtualisation and pre-virtualisation approaches have
the potential to provide better performance than native virtualisation. For this
reason the vNUMA implementation does not utilise VT-i. Even with VT-i, some
architectural features, particularly those described in Sections 3.4 and 3.5, remain
difficult to virtualise efficiently and demand elaborate workarounds.
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Instruction Function
cover Allocate new register window, possibly save size of old
mov =ar.rsc Read RSE control register
thash/ttag Calculate page table hash and tag values
fc Flush cache line
mov =cpuid Read CPU type and feature information
mov =pmd Read performance monitoring counter
mov =ar.k* Read kernel register

Table 3.1: Sensitive Itanium instructions

3.1 Sensitive instructions

As mentioned previously, virtualisation involves running an operating system
in a less privileged mode. Privileged instructions trap when they are executed
in the less privileged mode, and can then be emulated by the virtual machine
monitor. Unprivileged instructions generally execute normally. However, many
architectures have unprivileged instructions which do not trap but somehow
behave differently in the less privileged mode; these are known as sensitive

instructions [79]. These are problematic because it is difficult for the virtual
machine monitor to intercept them in order to correct their behaviour. The
problematic instructions in the Itanium architecture are listed in Table 3.1 and
described in detail in this section.

For example, Itanium provides an instruction called cover which is used in
conjunction with the register windowing feature. The specific function of the
cover instruction is to hide the current register window — covering it — and to
allocate a new empty window.

Since control of register windows is in the hands of applications, the cover

instruction is unprivileged. Unfortunately, the designers saw it fit to overload the
instruction with another side-effect: in the special case that interruption collection
is disabled1, it also saves the original size of the register window to a control
register. This functionality is used by operating systems in order to save register

1Interruption collection is not the same as interrupt control, but the two control bits are closely
related. Interruption collection determines whether context is saved to control registers when a
new exception occurs, or whether the processor attempts to keep control registers intact. With
interruption collection off, it is not possible to return to the original context after an exception.



22 CHAPTER 3. ITANIUM CHALLENGES

window state during an exception, simultaneously hiding the old window and
obtaining its size. In a virtualised environment, it is not safe to allow an operating
system to disable interruption collection, so cover always executes using its
unprivileged semantics. Namely, it hides the old frame but does not write its
size to the control register (and does not trap to allow the hypervisor to save the
size). Thus, even though the hypervisor can intercept the later read of the control
register, the size of the old frame has been irrecoverably lost.

The register stack engine control register, ar.rsc, is also exposed to userspace.
This is problematic for virtualisation because it contains a field that specifies the
privilege level with which RSE accesses occur. Normally this cannot be used for
privilege escalation, since writing a value that is more privileged than the current
privilege level is never allowed; such values are silently clipped to the current
privilege level. However, in a virtualised environment, reads expose the actual
privilege level rather than the virtualised privilege level, which may or may not
affect correct execution. Of most concern, naı̈ve writes by privileged code may
establish incorrect values for less privileged code. For example, consider if an
operating system kernel attempts to confine code to ring 1, and therefore specifies
a value of 1 in the privilege level field. If the ring compression technique (Section
3.2) is used, this will inadvertantly give the code access to the ring where the
kernel itself is. Fortunately, existing Itanium operating systems only utilise rings
0 and 3, so this never occurs.

The thash and ttag instructions are used to calculate the address and tag
value, respectively, for an entry in the Itanium architectural page table (which is a
type of hashed page table [42]). While it would seem that these instructions have
little use to application code, they only perform calculations and thus processor
designers deemed that they could safely be made unprivileged. However, in order
to perform their calculations, these instructions actually utilise privileged state
information, namely the page table base address, size and format. When a guest
operating system executes these instructions, it expects the calculations to be made
in the context of its own page table. However, in actual fact, the instructions will
silently return information about the real page table used by hardware, namely the
virtual machine monitor’s page table!

The fc instruction to flush cache lines also has a curious quirk, albeit
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somewhat less problematic. When executed at the most privileged level (ring
0), it bypasses TLB protection checks. At lower privilege levels, such as when the
kernel is demoted to ring 1 in a virtualised environment, fc performs permission
checking as if it was a one-byte read. Attempts to flush execute-only pages now
result in memory protection faults. In this case the virtual machine monitor must
be very careful to emulate the fc instruction rather than delivering the protection
fault to the guest operating system, which may be fatal. To avoid extra checks in
the page fault path, it may be desirable to deal with fc by replacing it in the same
way as other sensitive instructions.

The cpuid register file is an array of registers providing identification
information about the processor, such as the vendor, model, architecture revision
and supported features. Access to this register file does not require any special
privileges; thus the real processor’s identification information is read directly by
the guest operating system and applications. In most cases this is not a problem,
since the processor features described by the Itanium’s cpuid registers primarily
describe the availability of user-level instructions. However, a guest operating
system may utilise the model information to tune its functionality in undesirable
ways; this may cause problems when a virtual machine is migrated to a different
type of processor. Additionally, there are situations where the virtual machine
monitor may want to avoid advertising certain features (for instance, vNUMA
does not currently support 16-byte atomic memory operations), and it would be
desirable to be able to reflect this in cpuid values.

The pmd register file provides access to performance monitoring counters.
Within a virtual machine, it might be desirable to virtualise these counters, so
as to isolate the operating system from the processor that it is executing on.
Unfortunately, even if the counters are configured to deny userspace accesses,
unauthorised reads do not fault and simply return zero values. This makes it
difficult for a hypervisor to intercept and emulate these accesses. If performance
monitoring functionality is to be exported to the guest operating system, the
counters must directly correspond to those provided by the underlying processor,
and their configuration and values must be context-switched as part of the virtual
machine state.

Finally, there is a set of kernel registers which can only be written by
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privileged code but are readable at any privilege level. This provides a lightweight
mechanism to convey certain data from a kernel to applications, although in
practice these registers are mainly used by operating systems to store processor-
local kernel data. Since reads of these registers never fault, at any privilege level,
they cannot be virtualised in the normal way. In Type I virtual machine monitors,
the registers can be context-switched between virtual machines, but this proves
problematic for Type II VMMs since a host kernel will use the kernel registers for
its own internal purposes. The guest kernel then unavoidably observes the values
written by the host kernel, instead of the virtual values.

There are a number of approaches for dealing with sensitive instructions.
Generally these can be categorised according to whether they detect the sensitive
instructions statically within a kernel binary or dynamically at runtime, and
whether they attempt to translate them intelligently or simply allow them to fault
to the hypervisor for handling.

Early versions of vBlades, Xen/ia64 and vNUMA have all used simple tools
which statically pre-process a kernel binary, replacing sensitive instructions such
that they fault. The replacement instructions are chosen from the set of privileged
or reserved instructions that are not normally used by an operating system, and
that fit in the same space as the original instruction. Such substitutions can also
be performed dynamically at runtime2, or on newer processors the instructions
can be intercepted at runtime using the VT-i extensions: VT-i provides a special
processor mode in which any attempt to execute a sensitive instructions results
in a fault. Such techniques are simple and reliable, but do not provide optimal
performance, since each sensitive instruction now causes a fault and is emulated
by the hypervisor.

Later versions of Xen/ia64 use manual para-virtualisation, relying on manual
modifications to the operating system that replace the sensitive instructions. To
avoid the associated engineering effort, the current version of vNUMA instead
uses the automated pre-virtualisation technique described in Chapter 4, which
substitutes the sensitive instructions as they pass through the assembler. In both

2A good technique, described by Lawton [57], is to translate a page at the time it is inserted
into the instruction TLB, while inserting the original version of the page into the data TLB. This
ensures that the operating system can never observe the modified pages, even if the translator
inadvertantly misidentifies data as instructions.
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Figure 3.1: Ring compression

cases, the changes are made statically; since symbolic information is still present
at build time, replacing a single instruction with larger emulation code rarely poses
problems. Performing this feat at runtime, on the other hand, would be far more
difficult.

3.2 Ring compression

The Itanium architecture, like x86, provides four hierarchical privilege levels or
rings, derived from the model introduced in Multics [18]. These privilege levels
are numbered from 0 to 3, with 0 being the most privileged and 3 the least.

Since code executing in ring 0 is generally allowed to execute any privileged
instruction, an operating system kernel must be demoted from ring 0 to ring 1 to
enforce virtualisation. However, this now only leaves three rings for the operating
system to use, instead of four. If the original operating system were to rely on all
four of those rings, it would be necessary for the hypervisor to merge two of them
together, as shown in Figure 3.1. This results in a loss of protection between those
two rings. Fortunately, in practice the majority of operating systems do not use
ring 1 and 2 at all, so this does not present a problem.

In processors with Intel VT-i, ring compression is unnecessary. This is
because, with VT-i, privileged instructions always fault when the processor is
executing in virtual machine mode, even in ring 0. Thus it is safe to execute the
guest operating system in ring 0, providing it with the full set of rings.
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3.3 Hiding the VMM

When the Itanium processor encounters an exception, it simply branches to
the appropriate exception vector address, without switching off virtual address
translation. This means that a hypervisor’s exception vectors must be located
somewhere in the virtual address space. However, it is not obvious where to put
them; the guest operating system believes that it has control of the entire virtual
address space, and may attempt to insert mappings in any portion of it.

One approach is to optimistically choose a location where guest operating
systems are unlikely to place mappings. If a guest operating system does attempt
to place a mapping there, the exception vectors can be remapped to a new location.

An even simpler approach is to leverage the fact that the Itanium architecture
defines a variable number of implemented virtual address bits, from a minimum
of 51 bits per region to a maximum of 61 bits per region (which, over 8 regions,
covers the entire 64 bit address space). At boot time, an operating system must
query the number of implemented address bits. When executing on a processor
with more than 51 implemented bits (any Itanium processor other than Itanium
1), the hypervisor can report that one less address bit is implemented. The
guest operating system must not attempt to place mappings in the part of the
address space that is reported as unimplemented, and this can be enforced by
the hypervisor. The hypervisor can then be hidden within that space.

In fact, VT-i enforces this one-bit differential. When executing in virtual
machine mode, the processor behaves as if one less bit was implemented, and
guarantees that the guest operating system cannot access the hidden region. When
an exception occurs, the virtual machine mode is exited, revealing this hidden
address space where the hypervisor is concealed. This is a necessary part of VT-i
because memory protections would not otherwise protect the hypervisor from the
operating system, since they both execute in ring 0.

3.4 Register stack engine faults

The register stack engine typically operates through virtual memory, and therefore
may encounter virtual memory faults while loading or storing registers. When
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this happens, RSE operation may be halted partway through loading a frame. The
exception handler then executes with an incomplete register stack frame, some of
which may be undefined; this is only possible in ring 0. When the handler has
finished, it executes the return from interruption (rfi) instruction, which returns
to the original context and causes the RSE to resume loading the current frame.

In a virtualised environment, the hypervisor will likely desire to reflect the
virtual memory fault to the guest operating system for handling. However, in
order to invoke the guest operating system in ring 1, the hypervisor must execute
an rfi instruction. Even though it is now returning to a different privilege level
and IP address, the rfi instruction nonetheless causes the RSE to resume loading
the current frame and the fault is raised again (Figure 3.2(a)).

The workaround used in vNUMA and all known Itanium hypervisors is to
emulate a cover instruction in the hypervisor when an incomplete frame is
detected. This cover hides the current incomplete frame and instead allocates a
new zero-size frame for the operating system exception handler. To the operating
system, it is as if the faulting userspace application was executing with a zero-size
frame. Typically the operating system handles the fault and executes rfi to return
to the application, at which point the hypervisor restores the original frame (Figure
3.2(c)). Alternatively, the operating system may desire to save the userspace state,
in order to enter C code or switch processes. In that case it necessarily executes
cover, which is required to obtain the size of the userspace frame. Now this latter
cover can be ignored since it has already been performed (Figure 3.2(d)).

It should be noted that, in addition to the case where loading of an RSE
frame is interrupted by a memory management fault, the frame load can also
be interrupted by the arrival of a hardware interrupt (Figure 3.2(b)). After the
hypervisor reflects the interrupt to the guest operating system, the RSE resumes
attempting to load the frame. If the RSE faults at this point, the fault appears to
come from the interrupt vector address; such nested faults are usually fatal. The
cover solution must also be applied to this scenario.
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3.5 Complex translation modes

When building a virtual machine monitor, it becomes necessary to virtualise the
physical memory of the virtual machine. A virtual machine must never actually
run with address translation disabled, or it could subvert all memory protection.
Instead, when the operating system disables address translation, a VMM tears
down the existing virtual address space and establishes a set of virtual mappings
that provide the illusion of a physical memory space.

An obscure feature of the Itanium architecture is the ability to separately
enable and disable virtual translation for instruction, data and register-stack-
engine accesses. For example, it is possible to arrange for instruction and data
accesses to be physically addressed (bypassing the TLB), while RSE accesses are
translated virtually, or any other combination. Thus, a data access to address X
may access physical address X , while a RSE access to address X may access
some other page. This poses complications for virtualisation.

It is theoretically possible to provide separate mappings for instruction and
data references, since the architecture provides for separate instruction and data
TLBs. This requires disabling hardware-assisted TLB reload, since it is not
possible to provide this distinction in either of the architectural page table formats.
Another possibility is to restrict permissions on each mapping to only allow either
data or instruction accesses, but not both, and emulate any instructions that require
incompatible mappings. However, all of these options are complex and do not
provide a mechanism to differentiate between data and RSE references, short of
emulating all data references. Unfortunately VT-i is of no help in the matter.

This is not purely an academic question; Itanium Linux regularly disables data
translation in order to access page tables, while continuing to execute instructions
virtually. It also happens to leave register stack translation enabled, although in
that particular case it has no effect on the outcome.

The solution used in current hypervisors is to expose the virtualised physical
address space in the bottom region of the address space if any of the physical
translation modes are enabled, while leaving the virtual address space active in
higher regions to satisfy other types of accesses. This works for Linux, but is not
a general solution. If an operating system kernel was to place virtual mappings in
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the bottom region of the address space, and then use complex translation modes,
this approach might be rendered invalid.



Chapter 4

Pre-virtualisation

As previously mentioned, using the trap-and-emulate method for all privileged
and sensitive instructions presents considerable performance overhead. This can
be addressed by para-virtualisation — modifying the guest operating system
— but to do this manually requires significant engineering effort and is error-
prone. Pre-virtualisation is a method by which much of this para-virtualisation
effort, namely substitution of sensitive instructions with code tailored for a virtual
machine, can be performed automatically. This section will first describe the
pre-virtualisation technique (which was developed in collaboration with others
[60]), and then specifically address the challenges in applying it to the Itanium
architecture.

4.1 Mechanism

The source code of an operating system kernel is typically a combination of
assembly language and a higher-level language such as C. At compile time, the C
code is also translated into assembly language. Thus, at some stage all operating
system code passes through the assembly language stage. This is the ideal level
to perform instruction transformations, because much symbolic information is
still present at this level: control flow transfers are performed via named labels
rather than fixed addresses. This means that it is generally possible to substitute
individual instructions with longer emulation sequences, without affecting control
flow.

31
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The pre-virtualisation process involves replacing the assembler with a wrapper
that performs certain replacements before invoking the real assembler. The first
stage is to translate the privileged and sensitive instructions into macro calls. For
example, a privileged instruction (p6) mov r16=cr18 — which reads control
register 18 into general register r16, conditional on predicate register p6 — might
be replaced by the macro call:

emul_read_cr pr=p6,dest=r16,cr=18 (1)

This makes further substitution simpler, since all instructions are now in a
common format that can be expanded by the assembler’s macro facilities.

Next, the assembler is invoked, together with a macro definition file that pro-
vides an implementation of each macro. In the simplest case, these macros target
a specific hypervisor. For example the following provides an implementation of
emul read cr for vNUMA, which reads the value of the control register from a
shared memory location:

.macro emul_read_cr pr,dest,cr

(\pr) mov \dest=__vnuma_cpu+CR0_OFFSET+(8*\cr)

;;

(\pr) ld8 \dest=[\dest]

.endm

(2)

Such substitutions result in more efficient virtualisation than a trap-and-
emulate approach. Many instructions can be directly replaced with simple emula-
tion code, avoiding the overhead of a trap and the complexity of reading, decoding
and simulating the instruction. Those which cannot be emulated completely in
user mode can access hypervisor services via the most efficient interface possible.
In particular, the Itanium architecture provides an epc instruction (enter privileged

code) which allows zero-overhead entry to privileged mode; vNUMA exports a
number of services in this way, which can be leveraged by the macro definitions.

However, a binary so compiled will only work on the specific hypervisor
targeted. A more sophisticated possibility (not yet implemented for vNUMA) is
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to insert the original instruction back into the binary, but add padding afterwards,
as follows:

.macro emul_read_cr pr,dest,cr

(\pr) mov \dest=cr\cr

(\pr) nop.m 0x0

.endm

(3)

The resulting binary contains the original instruction and will therefore
execute correctly on real hardware. The padding no-ops can generally be executed
in parallel with the instruction, so the only impact is a small increase in code size.

When loaded on a hypervisor, however, the hypervisor can easily substitute
the replacement instructions, since there is sufficient space to do so. For example,
on vNUMA the control register read and the padding might be replaced with the
mov and ld8 sequence in example (2) above. In order to aid the hypervisor in
locating and patching these instructions, it is helpful to record the beginning and
end of each patch target in a special section, which can be achieved by a macro
definition such as the following:

.macro emul_read_cr pr,dest,cr

9998:

(\pr) mov \dest=cr\cr

(\pr) nop.m 0x0

9999:

.pushsection .afterburn

.quad 9998b

.quad 9999b

.popsection

.endm

(4)

It is important to ensure that all code that originally executes in kernel mode
is pre-virtualised so that the sensitive instructions are replaced. In particular,
any dynamically loaded modules must also be built using the pre-virtualising
assembler.
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4.2 Challenges

While this idea of substituting instructions with emulation code is conceptually
simple, the specifics of various processor architectures present different chal-
lenges. Previous work has only addressed the x86 architecture, which has a
number of features that make pre-virtualisation particularly simple; for example, it
is always possible to save registers on the stack, even in low-level operating system
code. In this section the challenges associated with Itanium pre-virtualisation will
be described, and some solutions presented. Many of the same issues also apply
to other non-x86 architectures.

4.2.1 Scratch registers

The emulation code frequently requires spare registers in order to perform
intermediate calculations, call an external procedure, or simply access memory1.
However, it is non-trivial and sometimes impossible to determine which registers
are safe to overwrite in a given context; register usage conventions may not apply
in handwritten assembly code. It is also not possible to save and restore registers
to memory without having at least one scratch register to start with (in order to
generate the memory address); it is not safe to rely on the stack pointer since it
may be invalid in low-level code.

When substituting instructions that write a destination register, the destination
register can be considered scratch until the final result is generated. This is the case
in the emul read cr case in example (2) above, where the destination register has
been used to temporarily store the load address. However, many instructions do
not have a destination-register operand. It would also be preferable to have more
than one scratch register available, to avoid costly saving and restoring of further
needed registers.

The solution used in vNUMA is to virtualise a subset of the machine registers
that are rarely used, specifically r4-r7 and b2, when executing guest kernel code
(which should exactly correspond to the body of code that is pre-virtualised). All
references to those registers in the guest kernel code are replaced with instruction

1Itanium memory access instructions require the target address to be in a register.
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sequences that read and write shadow copies of those registers in memory, making
the real registers available for the emulation code itself. When transitioning from
guest user mode to guest kernel mode, the hypervisor saves the real registers to
the memory-backed shadow registers; this allows the guest kernel to access the
user mode values of the registers. Then, when returning to guest user mode, the
shadow register values are restored into the real registers2. This provides complete
transparency; the guest operating system is never aware of the conceit.

Since one of the most common functions of the emulation code is to access and
update the virtual CPU state, it is useful to have a pointer to that state available at
all times. One of the scratch registers is reserved for that purpose, and is initialised
by the hypervisor upon entry to the pre-virtualised guest kernel.

4.2.2 Atomicity

Instruction rewriting replaces a single, non-interruptible instruction with an
instruction sequence. If the emulation sequence updates state non-atomically
and an interrupt arrives during that sequence, the interrupt handler could execute
with the virtual CPU in some undefined state. Worse, the interrupt would clobber
the values of scratch registers, since the OS interrupt handler itself contains pre-
virtualised code. This would make the scratch registers useless in practice. There
are two possible solutions: deferring interrupts during a block of emulation code,
or attempting recovery if an interrupt arrives. Both options involve complications.

Initially the latter option was trialled; an emulation block would set one of
the scratch registers to the address of a roll-back point, and clear that register
at the end of the block. If an interrupt was delivered, the hypervisor would
override the instruction pointer reported to the interrupt handler, such that upon
return execution would be restarted from the roll-back point. This works well for
emulation sequences that simply perform calculations before committing state,
because it is safe to perform the calculations again. However, even in this case

2The guest kernel may also be entered without hypervisor intervention, using the epc —
enter privileged code — instruction; the emulation code for epc is then responsible for saving
the registers. It is also necessary to restore the registers on exit; unfortunately exiting the kernel
after an epc is done with a normal return instruction, which is difficult to detect and pre-virtualise
automatically. The guest kernel was modified to annotate that particular return instruction.
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there is the possibility that the state update might be applied twice, if an interrupt
is delivered between the state update and the clearing of the roll-back register.
Also, more complex emulation code can be difficult or impossible to write in
a way that is restartable, making it necessary for these emulation sequences to
explicitly disable and enable interrupts.

A better solution may be simply to provide a lightweight mechanism for
deferring interrupts during complex emulation code. The r4 register, which is
normally used to store a pointer to the virtual CPU state, can simultaneously
be used to store an interrupt deferral flag, avoiding the need for extra scratch
registers. Consider if the hypervisor initialises r4 to one byte before the virtual
CPU structure. A critical section might then be constructed as follows:

add r4=1,r4

...

add r4=-1,r4

(5)

Within the critical section, r4 points to the virtual CPU structure; outside the
critical section, r4 points one byte below it. In either case the members can be
accessed using offsets, and the hypervisor can easily determine whether interrupts
should be deferred by checking the lowest bit of r4.

However, this is not sufficient; there needs to be a lightweight mechanism
by which interrupts are finally delivered when the critical section completes. A
number of options are possible:

• The hypervisor could re-attempt delivery of the interrupt after a certain time
period. However, this has the usual drawbacks of a timed backoff approach:
if the timer is set too short, the critical section may not complete before
timer fires; if the timer is set too long, interrupt latency suffers.

• The hypervisor could write to a predicate register to indicate a pending
interrupt. This predicate register can then be tested in a single instruction at
the close of the critical section:

add r4=1,r4

...

(p63) break 0x1234 // invoke hypervisor if p63 true

add r4=-1,r4

(6)
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While simple, this solution is less attractive since it necessitates hijacking
a predicate register from the operating system, and requires an additional
instruction at the end of each critical section.

• The hypervisor could set the NaT bit3 on the r4 register to indicate a
pending interrupt. Certain instructions that ‘consume’ that register will then
cause a fault if and only if the NaT bit is set:

add r4=1,r4

...

lfetch.fault [r4],-1

(7)

Here lfetch (cache line prefetch) is chosen because it has a post-decrement
form that obviates the need for an extra instruction. The problem with this
approach is that it is no longer possible to use r4 within the critical section,
because it may acquire a NaT bit at any time (making it unsafe to use); thus
it would become necessary to use an additional register.

• The hypervisor could change virtual memory permissions to indicate a
pending interrupt, in order to force a final store to fault:

add r4=1,r4

...

st1 [r4]=r0,-1

(8)

Once again the post-decrement form of store is used to avoid an extra
instruction. Of course, if other instructions in the critical section were to
write to the same page, an undesired fault might occur. To avoid this, the
virtual CPU structure could be spanned over two pages, with permissions
only removed from one; the other possibility is to use the processor’s debug
functionality to only trap on writes to a certain word while leaving the rest
of the page writable.

3NaT bits are an additional bit maintained with each register, used for data speculation.
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• The hypervisor can use the Itanium’s performance monitoring unit to detect
the final instruction of the critical section. This method requires no changes
to the original critical section code:

add r4=1,r4

...

add r4=-1,r4

(9)

The Itanium performance monitoring unit includes an opcode matcher

which allows specific instructions to be counted and, optionally, trigger an
interrupt. In this case, when an interrupt needs to be deferred, the opcode
matcher can be programmed to cause an interrupt when the add r4=-1,r4

is executed4, which is precisely what is desired. This method is simple and
works well.

4.2.3 IP-inspecting code

While rare, kernel code may occasionally inspect the instruction pointer and make
assumptions about code layout which are violated by pre-virtualisation. There is
one such instance in Linux, which is similar to the following:

L1:

ssm psr.i|psr.ic

mov r16=ip

;;

add r16=L2-L1,r16

L2:

(10)

The first instruction (ssm) enables interrupts. Then, the absolute address of
label L2 is calculated by reading the current instruction pointer (mov r16=ip)
and adding the offset L2-L1. Itanium instructions are contained in bundles of
three with a single instruction pointer value, and this code implicitly makes the
assumption that the instruction pointer read (mov r16=ip) is contained in the

4Technically, the filter that is programmed matches any instruction of the form add
r4=immediate,register , since that is the most specific form possible. However, this is without
consequence; there should be no other matching instructions within the critical section.



4.2. CHALLENGES 39

same bundle as the first instruction, and therefore returns the address of L1.
However, when the ssm instruction is substituted with larger emulation code, this
is no longer the case; the instruction pointer read is now contained in a subsequent
bundle and returns the address of that bundle.

This code can easily be modified so that it still functions identically on real
hardware and yet avoids making the layout assumption that is problematic for
pre-virtualisation. The obvious solution might be to place the label against the
instruction pointer read, or to place the instruction pointer read before the ssm

instruction; however, these both result in a slight code expansion because of the
specific way in which Itanium instructions are encoded in bundles. It is possible
to avoid this by using a tag within brackets, as follows:

ssm psr.i|psr.ic

[L1:] mov r16=ip

;;

add r16=L2+2-L1,r16

L2:

(11)

The tag functions like a label but does not force the assembler to start a
new bundle; however it also has the repercussion that L1 is now an intra-bundle
address, so some corrective arithmetic is necessary. The above code is correct as
long as the lowest 4 bits of the result is eventually ignored (which is generally
true since the lowest 4 bits of an IP address are ignored by the processor). A more
elegant way would be to round L1 down to a bundle boundary by masking out
the lowest 4 bits; unfortunately only limited arithmetic on labels is possible in
assembly code.

4.2.4 Code expansion

Substituting one instruction with multiple instructions causes an increase in code
size. This may be problematic if certain basic blocks are limited to an absolute
size. For example, this is an issue for the Itanium exception vector table, which
contains fixed size entries of either 256 or 1024 bytes (depending on the vector). In
practice, by carefully implementing the macros used in such contexts to minimize
code expansion, it was possible to avoid overflowing the Linux vectors. In rare
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cases where this is too difficult, it may be necessary to modify the source code to
relocate large vectors out-of-line, replacing them with a branch instruction. Since
this is a simple transformation, it could also be done automatically by a tool, given
the right annotations.



Chapter 5

Hypervisor architecture

The initial prototype of vNUMA was constructed on top of Linux as a Type II
VMM. This Linux substrate provided a rich development and debugging environ-
ment, in which the challenges involved in virtualising the Itanium architecture
could be investigated. To achieve maximum possible performance, vNUMA
was later adapted into a Type I VMM, executing in privileged mode without an
underlying operating system. However, the userspace version was not abandoned
and evolved into a separate project by the name of Linux-on-Linux [13], which
continues to be improved. The basic design of the userspace implementation is
described in Section 5.1, while Section 5.2 describes the corresponding design of
the standalone implementation.

5.1 Userspace (Linux-on-Linux)

In principle, it is quite straightforward to build a virtual machine monitor atop
Linux: the guest kernel code is simply loaded into a Linux process and executed
from the start address. The majority of instructions — such as arithmetic, memory,
or branch instructions — function identically in this userspace environment.
When a privileged instruction or other exception is encountered, a signal is
delivered to the process; the core of the virtual machine monitor is then embodied
in a set of signal handlers.

The signals hooked by the Linux-on-Linux VMM are listed in Table 5.1.
Whenever one of these signal handlers is invoked, Linux saves the register state

41
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Signal Function
SIGILL privileged instructions
SIGSEGV virtual memory faults
SIGFPE floating point exceptions
SIGTRAP simulator system calls (device interface)
SIGUSR1 redirected Linux system calls (see Section 5.1.2)
SIGVTALRM timer interrupts
SIGIO asynchronous IO (console, network)

Table 5.1: UNIX signals used by userspace VMM

Guest kernel //

Signal hander //

SIGILL

��:::::::::::

sigreturn

AA�����������

mov r15=psr

sc->gr[15] = virtual psr;

increment ip(sc->ip);

...

Figure 5.1: Emulation of a privileged instruction (move from processor status register to
r15). sc is a parameter to the signal handler that points to saved register state.

on the userspace stack1 and passes a pointer to this save area as an argument to
the signal handler. The signal handler can then use and update the register state in
order to emulate the desired behaviour, similarly to a standalone virtual machine
monitor. For example, handling of a privileged register read is shown in Figure
5.1: the faulting instruction is inspected, the virtualised value of the privileged
register is written to the target register (via the save area), and the instruction
pointer is incremented in order to skip to the next instruction. Finally, returning
from the signal handler invokes the sigreturn system call which restores the
register state from the save area and resumes execution.

A device and firmware environment must also be provided for the guest
operating system. Fortuitously, Itanium Linux includes a set of simple device
drivers and firmware stubs which use a system-call-like interface; these are

1The standard sigaltstack system call is used to provide a separate stack for the signal
handlers, as the guest stack pointer may not always be valid.



5.1. USERSPACE (LINUX-ON-LINUX) 43

CPU-local data

Cached physical7

Uncached physical6

Kernel5

Huge pages4

Data/Stack3

Code2

Shared libraries1

IA-32 code0

Reserved
(Host kernel)

7

6

5

Kernel 4

Data/Stack 3

Code 2

Shared libraries 1

Virtual physical 0
CPU-local data

����

))

//

//

//

Figure 5.2: Relocating a guest kernel to avoid conflicting with a host kernel. The shaded
regions are kernel areas; unshaded regions are available to applications.

normally used in conjunction with HP’s ski simulator [16]. This interface can
be leveraged to greatly simplify the VMM implementation, as compared to the
complexity of emulating real memory-mapped devices and firmware interfaces.
In Linux-on-Linux, the underlying devices are naturally implemented in terms of
UNIX devices — the console device is mapped to standard input and output, the
disk driver simply reads and writes from a flat file on disk, and a virtual Ethernet
device is created using Linux’s TUN/TAP driver [54].

5.1.1 Address space conflicts

In practice, there are a number of other issues that must be addressed. One of the
most problematic is the fact that the address space layout of the guest kernel is
likely to conflict with that of the host kernel. For example, the guest kernel will
desire to map its code or data at some fixed virtual address and refer to it through
that address. However, if the host kernel also uses that same area for its code or
data, then the userspace virtual machine monitor will be forbidden from placing
mappings there. Ultimately it is not possible to resolve this transparently (short of
individually emulating all guest kernel instructions, which would be very slow);
it is necessary to modify the guest operating system to avoid the conflict.

The Itanium architecture provides a 64-bit virtual address space divided into
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eight regions; each of these regions is a window into a larger conceptual address
space, providing a limited form of segmentation. Linux’s address space usage
is based around the eight regions, as shown in Figure 5.2. The bottom five
regions are available to applications, including the userspace virtual machine
monitor (which to the operating system is simply another application). Region
0 is primarily used for IA-32 applications, although it is also available to native
Itanium applications if they were to specifically request a mapping there. Region
1 is the default space for mappings returned by the mmap system call; shared
libraries and other mapped files are located there. Application code, data and
stack pages are placed in regions 2 and 3. Region 4 is assigned to a rarely used
feature known as huge pages, whereby applications can request large regions of
contiguous memory that are mapped using a large page size (to minimise TLB
footprint). The top three regions are reserved by the host kernel. Kernel code and
data are mapped into region 5. Regions 6 and 7 represent identity mappings of the
physical address space (the one difference being that the mappings in region 6 are
set up to bypass processor caches, for the benefit of device drivers). The very top
of region 7 is used for CPU-local kernel data; this location is chosen because the
address is equivalent to a small negative offset from zero.

In order to allow the guest kernel to execute within a userspace process,
it is necessary to modify it so that it only uses the lowest five regions, while
maintaining compatibility with the majority of applications. To achieve this, the
guest kernel is moved down from region 5 to region 4, as shown in the figure. Of
course, this is not compatible with the huge page feature, in either host or guest
kernel; however that feature is rarely used. The CPU-local data is moved to the
bottom of region 0, so now it is accessed using a positive offset from zero rather
than a negative offset.

The one issue that remains is to provide a mechanism for the guest kernel
to access (virtualised) physical addresses. Normally there are two ways that the
kernel accesses physical addresses: via the identity-mapped regions (6 and 7), or
by disabling address translation and accessing physical addresses starting at 0. If
that same bottom region of the address space is also used for the identity-mapped
region, then switches between the two modes can essentially be disregarded by the
virtual machine monitor, greatly decreasing their cost. The compromise made is
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that applications that explicitly require region 0 (IA-32 applications and some Java
virtual machines) will not function correctly. If this compromise was found to be
unacceptable, region 1 could instead be hijacked for virtual identity mappings by
merging the mmap region into region 2 or 3. In either case there is only one region
needed, not two as on real hardware; even if one was to directly map real devices
into the virtual machine, the virtual machine monitor can and should arrange for
the device memory to be mapped with the correct attributes, regardless of the
attributes specified by the guest kernel.

5.1.2 System call redirection

A namespace collision also occurs for system calls. Assuming that the host and
guest operating systems use the same instruction to invoke a system call, any
system call will be handled directly by the host kernel. However, within the
virtual machine, the system calls must be redirected to the guest kernel. This can
be achieved without modifying the host kernel by using the ptrace mechanism,
which notifies another process whenever a system call is entered or exited. While
the tracing process cannot abort the system call, it can adjust the register state
of the virtual machine process so that it instead executes a harmless system call
such as getpid. It simultaneously sends a signal (such as the user-defined signal
SIGUSR1) to the virtual machine process, which then invokes the guest kernel to
handle the system call. This process is shown in Figure 5.3.

However, as implied by the diagram, this ptrace redirection mechanism is
rather slow, requiring a context switch to the tracing process and a number of
extra system calls. This is exacerbated by the fact that, as a side-effect of ptrace
semantics, the tracing process also synchronously receives notification of all
signals delivered to the virtual machine, as well as system calls executed within the
VMM signal handlers — none of which it needs. More recent versions of Linux-
on-Linux modify the host kernel in order to provide more efficient primitives for
system call redirection. For example, the virtual machine monitor can arrange
for a particular user-specified signal to be delivered whenever a system call is
executed with that signal unmasked; within the VMM, the signal is masked,
allowing system calls made by the VMM to execute. This avoids the costly side-
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Guest VM //

Signal hander //

Host kernel //

Trace process //

��******************

notify
(syscall)

��*********

change
syscall #

II���������

notify
(return)

��*********

send SIGUSR1

II���������

SIGUSR1

II���������

reflect

II���������

open()

...getpid...

...open...

Figure 5.3: System call reflection using ptrace facility

effects of ptrace.

5.1.3 Other issues

Itanium Linux — like many operating systems — manages floating point state
in a lazy manner. Upon a context switch, floating point registers are disabled.
If the new process does not use those floating point registers, the values are
intact for when the first process resumes execution, without the cost of saving and
restoring. If the new process does happens to use those floating point registers,
a fault occurs; the operating system can then save the old registers and establish
values for the new process2. Unfortunately, within the userspace virtual machine
monitor, there is no way to disable floating point registers and receive a signal
notification when they are accessed; Linux provides applications with the illusion
that all registers are permanently enabled. It is therefore necessary to either force
the saves and restores to be performed eagerly — by immediately delivering a
fault after switching to a process with floating point disabled — or to modify the
host kernel to provide the required functionality. The latter was implemented by

2To be precise, a subset of the floating point registers (f2–f31) are saved and restored eagerly,
while the remaining registers (f32–f127) are switched lazily in the manner described.



5.2. STANDALONE 47

adding a mechanism that disables floating point registers and arranges for delivery
of a SIGFPE signal if those registers are accessed.

Virtual memory emulation also presents both overheads and limitations. In a
userspace virtual machine monitor, virtual memory mappings can be established
by using the mmap system call to map parts of a file, representing physical memory,
into the address space. However, a major limitation of the UNIX address space
model is that there is no support for multiple address spaces or protection levels
within a process. This means that, when the guest kernel switches address spaces,
the entire address space must be torn down with munmap and then re-established
(whether eagerly or lazily). Additionally, there is no memory protection between
the VMM, guest kernel and guest applications. This could theoretically be solved
by using multiple processes, but this would introduce significant overheads co-
ordinating the processes and transferring state between them.

5.2 Standalone

Considering the various limitations of a userspace implementation without intru-
sive changes to the host Linux, vNUMA was eventually ported to run standalone
and not depend on a host operating system. The standalone version of vNUMA
implements the Linux boot protocol and can therefore be started from the
Linux loader (elilo) in the same way that a Linux kernel would normally be
booted. The loader is also responsible for preloading the guest kernel binary,
via its initrd (initial RAM disk) facility. Once vNUMA starts, it installs its
own exception vector table, sets up memory management structures, and finally
switches to user mode to start executing the guest kernel. Instead of receiving
exception notification via UNIX signals, vNUMA now has full control of the
processor and handles exceptions directly.

5.2.1 Lightweight C environment

Absolute optimal performance might be achieved by writing the entire hypervisor
in hand-tuned assembly code, however the complexity of vNUMA makes this
impractical. Instead the vNUMA exception handlers are optimised with the
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goal of entering and exiting a lightweight C environment as fast as possible,
allowing the core of vNUMA to be written in C. The lightweight C environment
differs slightly from the normal C environment. Most notably, in order to
reduce the number of registers that need to be saved and restored, certain general
registers and branch registers are not available; compiler-specific flags are used to
prevent the compiler using those registers. While it might have been possible
to specify those registers as callee-saved — saved and restored on demand
— rather than forbidding their use completely, this would greatly complicate
the process of determining their exception-time values (which is needed for
instruction emulation). It is also of limited benefit, since it is in any case preferable
that the compiler allocate additional registers on the register stack, leaving the job
of saving and restoring registers to the processor. Floating point registers, and
other special-purpose registers, are also not saved by the entry code, and must be
explicitly saved and restored if they are to be used.

Additionally, the hypervisor code must be careful to avoid triggering processor
exceptions, except in certain limited cases. This limitation further reduces the
number of registers that must be saved. The Itanium register file includes a set of
16 banked registers, r16–r31, of which there exist two physical banks, 0 and 1.
Normally code executes using bank 1, but when an exception occurs the bank 0
registers are made available for the exception handler, with bank 1 safely hidden.
In vNUMA, these bank 0 registers are used for the hypervisor C code. If nested
exceptions were allowed, the exception entry code would need to save bank 1
and switch to it, in order to make bank 0 available for additional exceptions.
The exception code would also need to save and restore the various interruption
state registers (instruction pointer, processor status, function state, etc.), since
these would be overwritten by additional exceptions that occur; with one level
of exceptions they can simply be left intact. On the other hand, disallowing nested
exceptions places a greater burden on the programmer; any code that can cause an
nested exception such as a TLB miss must conform to a special calling convention
to be recoverable3.

3Specifically, it is not possible for execution to continue after the point of the exception, since
the processor does not record the instruction pointer (and other instantaneous state) to avoid
overwriting the unsaved data about the outer exception. However, the return address register
and the state of the parent function are available. Thus, the nested exception handler aborts the
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This leaves only a small number of registers that need to be saved and restored
by the exception entry/exit code. Its most important function, however, is to
switch stacks: both the memory stack and the register stack. It is not safe for the
hypervisor to execute on the userspace stack since the userspace stack pointer may
be invalid or malicious. Switching the memory stack is trivial; it simply involves
saving the old value of the stack pointer register and writing a new value. On
the other hand, switching the register stack is a convoluted process that involves
several instructions with non-trivial latencies. The scheduling in Figure 5.2 is
believed to be optimal, and the resultant timing is around 36 cycles (not counting
the fundamental overhead of vectoring to and from an exception, which is around
25 cycles); the remainder of the entry/exit code can be slotted in the latency gaps
and add no extra overhead. Compared to the thousands of cycles for delivery of
a Linux signal in the userspace VMM, this provides a much better foundation for
building a high-performance system.

5.2.2 Memory management

Rather than being restricted to the UNIX memory model and mmap, an entirely
new memory management layer was implemented for the standalone version of
vNUMA. This new memory management layer directly leverages the hardware
page table structures to provide the most optimal solutions with respect to the
vNUMA system.

Like other virtual machine monitors, the vNUMA memory architecture can
be thought of as having three layers: virtual memory that is used by applications
within a virtual machine, the simulated physical memory of each virtual machine,
and the real physical RAM of the host computer. The terminology for these
addressing layers varies amongst the literature, for example:

• Virtual→ physical→ machine (VMware, Xen)

• Virtual→ logical→ physical (IBM POWER)

faulting function and arranges for the value 0 to be returned to the caller. To indicate adherence to
this contract, a magic value must also be placed in a register when an exception is expected; this
avoids strange bugs that might result if an inadvertant exception caused a function to return to its
caller.
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Cycle Code Latency
0 Get ar.rsc (RSE control register) 12 cycles to use
1 Set ar.rsc = 0a 12 cycles to next RSE instb

(3) Get ar.bspstore (RSE store pointer) 12 cycles to use
(5) Set ar.bspstore to hypervisor stack 5 cycles to next RSE inst
13 Get ar.bsp (new RSE frame pointer) 12 cycles to use
14 Get ar.rnat (RSE NaT bits) 5 cycles to use

Call out to C code
0 Calculate parameters for register reload

using saved ar.bsp valuec 2 cycles
2 Set ar.rsc for register reload 12 cycles to next RSE inst
14 Force reload of any spilled registers 2 cycles min
16 Restore ar.bspstore 5 cycles to next RSE inst
21 Restore ar.rnat 1 cycle to next RSE inst
22 Restore ar.rsc 12 cycles to next RSE instd

Return from interruption

aThis places the RSE in enforced lazy mode, which is necessary to allow access to
ar.bspstore and ar.rnat.

bWhen ar.rsc is written with an immediate constant, two additional instructions can be
scheduled immediately afterwards with a lesser penalty. The details of this are complex and not
relevant to this thesis.

cIf any registers have been spilled onto the hypervisor register stack, they must be reloaded
into registers before switching back to the operating system register stack.

dThis should not have any impact as it is overlapped with the return.

Table 5.2: Switching register stacks

• Virtual→ real→ physical (SUN UltraSparc)

• Virtual→ metaphysical→ physical (vBlades, Xen/ia64)

The first option (virtual → physical → machine) makes sense from the point
of view of an operating system, which continues to manage virtual to physical
mappings and is oblivious to the machine addressing layer that has been added
underneath it. However, it tends to create considerable confusion when describing
the virtual machine monitor itself. Readers are familiar with the term ‘physical
memory’ referring to the lowest layer: actual physical RAM. Confusing this
terminology can lead to subtle bugs: for example, existing driver components
leveraged by vNUMA refer to ‘physical addresses’, and it would be a serious
error if a programmer accidentally provided a virtual machine address instead of
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Figure 5.4: Address translation layers

a physical RAM address. Also, the term ‘machine memory’ is ambiguous; it
is not immediately obvious whether it refers to the real machine or to a virtual
machine (virtual→machine→ physical might be equally sensible nomenclature,
with machine memory being the memory of a virtual machine, so a reader must
consciously remember which is intended).

Of the remaining options, both logical and real addressing have other specific
meanings in the IA-32 architecture, and so are poor choices when attempting
to avoid ambiguity. Hence, this thesis employs the last option: introducing the
term metaphysical memory to describe the abstract memory space of the virtual
machine, following the precedent set by publications related to vBlades and Xen
for Itanium. Physical memory retains its normal meaning, referring to the physical
RAM of the host system.

The virtual machine monitor is concerned with two levels of translation, as
shown in Figure 5.4: from virtual addresses to metaphysical addresses (managed
by the operating system and exposed through the operating system page tables),
and from metaphysical addresses to physical addresses (known only to the VMM).
The real TLB and the page table used by the processor (the virtual hashed page

table, or VHPT) cache the composition of these two mappings — i.e. mapping
virtual addresses directly to real physical addresses — so that applications can
execute transparently.

The mapping from metaphysical to physical addresses is simply implemented
via a flat array of mapping entries, since a virtual machine’s metaphysical address
space size is relatively small and bounded. The translation unit is fixed but
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configurable; normally it is set to 4 KiB since that is desirable for the distributed
shared memory system that will be described in Part II.

The operating system establishes virtual to metaphysical mappings via three
mechanisms: explicitly inserting pinned mappings by using the itr instruction,
explicitly inserting unpinned mappings by using the itc instruction, and im-
plicitly inserting unpinned mappings by writing to its page table. Any pinned
mappings must be maintained by the hypervisor in permanent data structures
— they must be retained indefinitely and must never raise TLB misses to the
operating system. However, the Itanium architecture only provides for a small
number of these pinned mappings. The majority of virtual memory mappings are
of the unpinned type; these are simply cached by a hypervisor in the same way
they would be cached in a processor TLB. If these mappings expire from the cache
and are required again, they can always be recovered from the operating system,
either by raising a TLB miss or by consulting the operating system page table.
Directly consulting the OS page table is clearly the more efficient method; to this
end Itanium processors feature a hardware page table walker which allows the
processor to directly access the OS page table (providing that it is in one of two
supported formats). In vNUMA, the OS page table cannot be directly exposed to
the processor, since vNUMA must enforce an additional layer of translation and
protection. However, vNUMA internally implements a page table walker with
similar semantics to the hardware walker; it can thus directly retrieve mappings
from a guest OS that supports the hardware page table walker, without the expense
of delivering a TLB miss.

vNUMA itself also exposes a page table in an appropriate format for the
Itanium hardware page table walker. This page table is directly accessed by
processor hardware as a logical extension of the TLB. In order to permit this,
it must contain mappings from virtual addresses directly to physical addresses.
(The downside of caching the composition of the mappings is that, like the TLB,
it must be updated whenever either of the two component mappings change.)

The format that was chosen for this page table is the long page table format
defined by the Itanium architecture, which is a type of hashed page table [42].
This page table format is fixed in size and supports multiple address spaces in
the one global hash table, making it well suited to application as a virtual TLB in
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vNUMA. In contrast, the Itanium short format requires separate page tables for
each address space (nested within that address space); this would create greater
complexity in memory management, and potentially greater inefficiency if the OS
uses address spaces sparsely.

There are, however, also some disadvantages to this choice. As defined by
the Itanium architecture, the long-format page table is a direct mapped cache with
only one entry per hash value; there are no hardware-walked overflow chains4.
The hash function that is currently implemented by Itanium hardware is also very
simple: it calculates the bitwise exclusive OR of the page number with the address
space number. If address space numbers are allocated consecutively (which is the
case for Linux) and page numbers co-incide between those consecutive address
spaces, the result is frequent pathological collisions. In order to address this,
vNUMA re-arranges the bit order of address space identifiers to improve the
distribution of hash entries. This is not particularly elegant, however, in that it
makes assumptions about operating system behaviour. If an operating system was
to choose an inverse redistribution function (which it may well do in order to
address the same problem), the pathological behaviour might re-emerge.

The fact that long-format entries are four words in size, compared to the
single-word short-format entries, is a mixed blessing. This larger entry size is
required to allow multiple address spaces to exist in the one page table, by tagging
each entry with the address space it belongs to, as well as allowing usage of other
Itanium TLB features such as protection keys and multiple page sizes (although
neither of those features are currently used by vNUMA). It also provides ample
space to store hypervisor metadata associated with a mapping, obviating the need
for additional data structures. Specifically, while the hashed page table nominally
tracks the effective mapping from virtual addresses to physical addresses, so that
it can be used directly by processor hardware, the hypervisor may also need to
determine the intermediate metaphysical address and OS-requested protections.
This information can easily be stored in spare bits of the long-format page table

4There is a reserved field in each entry which could be used to add software-walked overflow
chains, but then the additional entries are no longer transparently accessed by hardware, and the
structure would no longer be naturally bounded in size. It would be preferable if Itanium supported
multiple hardware-checked entries per hash value, as in the hashed page table defined by the
PowerPC architecture [65].
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Figure 5.5: Anatomy of a long-format page table entry. Unshaded portions are part of
the Itanium architectural definition [47], and more information can be found there; shaded
portions are hardware-ignored and used by vNUMA.

entries, as shown in Figure 5.5. The disadvantage of the larger entry size is that it
can impose greater demands on processor caches.

Even though vNUMA uses a fixed page size (usually 4 KiB) for its metaphysical-
to-physical mappings, the operating system may insert virtual mappings of any
page size. A naı̈ve approach would insert a page table entry for every 4 KiB
subpage of the large page, however this is clearly inefficient for very large page
sizes. For example, Linux typically uses 16 MiB or 64 MiB pages for mapping
physical memory. Inserting 4096 or 16384 consecutive 4 KiB mappings into the
hashed page table would make the mapping operation very expensive and evict
many existing hash table entries.

Thus, very large pages (>64 KiB) are instead inserted into a separate mapping
directory, and then smaller subpages are faulted into the hashed page table on
demand. (This mapping directory is also used for the pinned mappings referred to
earlier; thus, if those mappings are ever evicted from the hashed page table, they
can be restored on demand from the mapping directory.) With Linux as the guest
OS, this mapping directory only grows to a handful of entries, so it is currently
implemented as an array of eight linked lists — one per region of the address
space — but it could easily be replaced by a better data structure if necessary.

However, even if large pages are not directly inserted into the hashed page
table, purging large areas of the address space is still inefficient: the hypervisor
must individually check each 4 KiB sub-region of the requested range in the
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hashed page table to determine whether it needs invalidation5. Improving this
is a difficult feat. One possibility is to handle large purges by purging an entire
region (one-eighth of the address space), which can be done in O(1) time by
changing the address space number. However this introduces a large indirect cost
since many mappings may need to be re-established. If a bitmap was maintained
describing which areas of the address space have been mapped, relevant parts of
the purge range could more easily be targetted for shoot-down. Of course the
Itanium address space is very big and an efficient hierarchical encoding for this
bitmap would be needed. This could be the subject of future work.

It should also be noted that the implementation described violates the Itanium
architecture in one respect. A TLB purge for a given address range is defined to
flush all TLB entries that overlap with that range. This implies that inserting a
large page and then purging a small sub-region should purge the entire large page.
However, as a result of treating the large page as a collection of 4 KiB pages within
the hashed page table, information is lost about the original mapping size that
should be purged. Tagging the hashed page table entries with the insertion page
size does not solve the problem, since the page table entries within the requested
purge range may have been overwritten by hash collisions; there is no way for
the hypervisor to know which entries outside the purge range must be checked. A
practical solution is to perform purges at 64 KiB granularity, i.e. 16 entries at a
time; then it is guaranteed that pages of 64 KiB and smaller will be flushed, and
information about pages larger than 64 KiB can be found in the mapping directory.
However, this imposes a slight performance overhead for little practical benefit:
operating systems generally issue a purge for the entire range that they expect to
be purged, and do not rely on the original mapping size. This is certainly true for
Linux.

Inverse mappings

The structures described so far — the frame table, the hashed page table and the
mapping directory — enable the hypervisor to efficiently resolve translations from

5In fact, since the Itanium architecture defines that a TLB insertion purges previous translations
for that virtual address range prior to inserting the new translation, this also has an impact on
insertion performance.
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higher to lower layers: from virtual to metaphysical, metaphysical to physical,
and virtual to physical. It is also necessary to track the inverse mappings from
metaphysical to virtual addresses, so that the relevant virtual mappings can be
updated when the attributes of a metaphysical page are changed. This is a one-
to-many mapping, as each metaphysical page can simultaneously be mapped at
more than one virtual address (and in some cases must be: for example, some
small application binaries have the one underlying page mapped as code at one
virtual address and data at another virtual address, and both must be mapped
simultaneously for forward progress).

In operating systems and some other hypervisors, the data structure that is
often used for inverse mappings is a linked list of arrays, where each array
has space for a certain number of mappings. However, these systems have the
advantage that they can track the lifetime of address spaces, allocating and de-
allocating these lists as necessary. Itanium address spaces have a very long
lifetime: an operating system simply uses new address space numbers and leaves
the old address spaces to naturally expire from the TLB. This makes it especially
important that there is a size limitation on the number of mappings cached; an
ideal data structure would make it easy to target the least-recently-used (or at least
least-recently-inserted) entries for replacement.

A novel data structure, shown in Figure 5.6, was designed to satisfy these
needs. The most recent mapping for any given metaphysical frame is contained in
its frame table entry. Then, overflow chains are stored in a circular buffer, which
makes allocation simple and provides a natural size limitation. To avoid having
to explicitly remove entries from chains when they are overwritten (which would
require doubly linked lists), the following trick is used. All of the pointers are
monotonically increasing indexes; they are not modulo the buffer size (although
the latter must be calculated when actually accessing the buffer). When traversing
the overflow chains, instead of checking for a NULL pointer, one checks whether
the index falls inside the current window of indexes that are still live in the
buffer. Thus, pointers to entries that have been overwritten automatically fall out
of scope6. Assuming that entries are always added to the beginning of a chain,

6It is still necessary to flush mappings from the TLB/VHPT when the corresponding inverse
mappings are overwritten, to ensure that the set of inverse mappings is complete.
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Figure 5.6: Tracking inverse mappings using a circular buffer as the overflow structure.
In this example there are 6 slots in the buffer, and the next index to be written is 8 (which
corresponds to slot 2); thus the currently valid indices are 2..7. Hence the link field with a
value of 1 is not followed, as the entry has been overwritten.

all further entries must be even older, and so encountering an out-of-scope index
terminates the list. In practice, since the indexes are of finite size, monotonicity
will eventually be violated when the index wraps around; however, even for a 32-
bit index this is very rare, and a complete flush of mappings can be done in this
case.

5.2.3 Devices

The para-virtualised device and firmware interface from Linux-on-Linux was
retained for the standalone version of vNUMA, but the backend implementation
is more problematic since UNIX devices can no longer be used. A locally-
developed device driver framework was employed. This was originally written
for the Mungi operating system [58], but it has also been used to implement
user-level drivers on Linux [27]; it is designed to be widely portable. Included
as part of this framework are drivers for IDE and two popular Gigabit Ethernet
chipsets (National Semiconductor DP83820 and Intel PRO/1000); the author
later added another Gigabit Ethernet chipset (Broadcom Tigon3) and SCSI
(LSI Logic Fusion-MPT). The Gigabit Ethernet drivers are critically important
for implementing the distributed hypervisor described in Part II. Indeed the
framework proved its portability; adapting it to the spartan environment of the
vNUMA hypervisor was easy, and no doubt much easier than trying to extricate
drivers from Linux or BSD. The disadvantage is that there are fewer drivers
currently available for this framework, so this limits the hardware supported by
the standalone version of vNUMA. In an ideal world, there would be a standard,
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portable driver framework which all drivers are written to, maximising code reuse.



Part II

Transparent distribution
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Having completed the first task of designing an efficient virtual machine
monitor, it is now possible to address the core goal of vNUMA. That is, to build
a virtual machine spanning multiple separate workstations, in order to combine
their processing power into a single virtual NUMA computer.

There are two aspects to achieving this goal. Firstly, there is some infras-
tructure required to co-ordinate the separate workstations, send inter-processor
messages and emulate devices. This enabling infrastructure will be described
in Chapter 9. However, a far bigger challenge is the distributed shared memory

(DSM) system, which is responsible for providing the illusion of a globally shared
memory. Since memory is such a fundamental abstraction in computer systems,
the performance of the DSM system is paramount.

There is already a large body of research on distributed shared memory.
However, achieving good performance in vNUMA involves different goals and
trade-offs. Most existing DSM systems have been designed as middleware
for writing distributed computational applications, and as such they vary the
programming model in order to achieve the desired balance between simplicity
and performance. In contrast, vNUMA must faithfully reproduce the hardware
SMP programming model so that unmodified applications and operating systems
can be run. The shared address space in vNUMA is not just some subset of
data memory that is known to be shared, but all of the memory of the virtual
machine — including private data, instruction pages and register stack pages —
thus efficiently and correctly handling a variety of access patterns is imperative.

However, there are also some unique opportunities for optimisation in vNUMA.
Since vNUMA is a virtual machine monitor that runs in processor privileged
mode, this paves the way for certain techniques that may be difficult or pro-
hibitively inefficient in a userspace DSM implementation. For example, in certain
cases vNUMA intercepts individual write instructions and emulates them (Section
8.2); in other cases it uses the processor’s performance monitoring hardware to
track the execution of certain instructions (Sections 7.5 and 8.8). These are novel
optimisations that go beyond the techniques used in past DSM systems.

This part of the thesis will present an overview of distributed shared memory,
the design of the vNUMA system, and the optimisations that were developed in
order to improve the performance of the system.
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Chapter 6

Shared memory

Multiprocessor programming models involve one or both of two paradigms: mes-

sage passing and shared memory. In a message-passing model, the programmer
must explicitly send and receive data in discrete packages. In a shared-memory
model, communication occurs implicitly by writing data to certain memory
locations that can then be read by other processors. Shared memory has long
been considered simpler for the programmer, and for this reason it is the ‘holy
grail’ of multiprocessor system design, despite the implementation challenges it
presents.

The first generation of symmetric multiprocessors did not have caches and
hence shared memory was a natural paradigm. All processors simply accessed
the same banks of physical memory in an interleaved fashion. A write to a
memory location would immediately be seen by a read from another processor
in a subsequent bus cycle.

However, as processors became more powerful, local caches at each processor
became essential for performance. In order to maintain the shared memory
abstraction, sophisticated protocols called cache coherency protocols were now
required to keep the data in the separate caches synchronised.

In small systems with a single memory bus, this can be achieved by having
each processor monitor the transactions on the memory bus and either update its
own cache with new data or simply invalidate any conflicting cache lines: this
are known as a snoopy protocol. A single shared bus is impractical in larger
systems, so beyond the local bus these snoopy protocols can be supplemented

63
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with directory-based protocols, wherein a central directory tracks which groups
of processors have possession or ownership of a particular cache line. The simpler
single-bus topology is described as symmetric multiprocessing (SMP), reflecting
the fact that all processors experience the same latency accessing memory. Larger
multi-bus systems are described as non-uniform memory access (NUMA). NUMA
systems that employ cache coherency protocols to maintain transparency of
shared memory access — the vast majority of commercial NUMA systems —
are sometimes further labelled as cache-coherent non-uniform memory access

(ccNUMA) systems.

It has also been demonstrated that similar coherency protocols can be imple-
mented in software, without special hardware support for shared memory. This
can be achieved either by instrumenting memory accesses or by using virtual
memory techniques to transparently intercept memory accesses. This allows a
shared memory programming model to be used on networks of general purpose
computers that do not have any hardware mechanism for cache coherency. Such
systems are known as distributed shared memory (DSM) systems.

6.1 Early software DSM systems

The ancestor of most modern DSM systems is IVY (Integrated shared Virtual
memory at Yale), developed in the late 1980s by Kai Li and Paul Hudak at Yale
University [61]. IVY was the first system to implement software distributed
shared memory by varying protections on virtual memory pages, which allowed
the shared memory to be simulated transparently to the application program. The
basic concepts developed by Li and Hudak are widely used in later DSM systems.

The Li-Hudak DSM algorithm can be characterised as a multiple-reader/single-
writer protocol. At any point in time, either multiple nodes have read-only replicas
of a page, or a single node has the one writable copy and no other nodes have
access. If the page is in the read-shared mode and a node requires write access,
it must first request other nodes to invalidate their copies of the page. Execution
only continues after replies have been received, guaranteeing that only one node
has write access to a page at any one time. Thus there are never any conflicts
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between writes simultaneously made by different nodes, because no page is ever
simultaneously writable on more than one node.

This can be made transparent to the application program by using the virtual
memory system of modern processors. For example, when a page is read-shared,
the page is made read-only to the application. If the application writes to the page,
a virtual memory fault occurs and the DSM system takes control, requesting other
nodes to invalidate their copies. Once this is complete, the page is made writable
and the application is continued.

Clearly an essential part of such a scheme is being able to track which nodes
have copies of the page (the copyset), and which node has the single authoritative
copy (the owner). A node that performs the function of tracking the owner
is known as the manager of a page. Li and Hudak experimented with several
different schemes:

• In a centralised manager scheme, there is a single manager on the network
which tracks ownership for all pages. Clearly, this manager can easily
become a bottleneck on the network, hindering scalability.

• In a fixed distributed manager scheme, the set of pages is statically parti-
tioned between different managers, such that there is no single bottleneck.
The manager for a page always knows the owner, so the owner of a page can
always be reached in a maximum of two hops; this is reduced to one hop if
either the faulting node is the manager or the manager is the current owner.
Unless the partition function is chosen with knowledge of the application,
probability will tend to favour the two-hop case on larger clusters.

• In a dynamic distributed manager scheme, there is no fixed manager for
a page; rather each node is responsible for remembering the last known
owner, and messages are forwarded until the current owner is reached. This
scheme can improve performance for certain page access patterns — only
one hop is required if the last known owner is indeed still the owner of
the page — but also increases the potential worst-case cost. Intermittent
broadcasts may be used to more aggressively notify nodes of ownership
changes.
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Other early DSM systems that followed IVY include those in Mirage [31]. The
Mirage DSM system is similar to that in IVY, but was implemented in an operating
system kernel rather than in userspace, allowing even greater transparency:
distributed shared memory segments could be created in the same way as local
interprocess shared memory segments. As well as introducing small optimisations
to the IVY protocol, Mirage’s major contribution was an attempt to address the
page thrashing problem, which will be discussed further in Section 7.5. Page
thrashing occurs when two or more nodes simultaneously demand write access
to the same page; depending on network timing, ownership may be continuously
transferred between the two nodes with neither performing useful work. Mirage
attempted to address this by guaranteeing that each recipient of a page retains
access for a certain minimum period of time, hopefully allowing it to make
progress.

Clouds [19] was designed from the ground up as a novel distributed object-
oriented operating system; the goal of its DSM layer is to permit network-
transparent access to objects in the system. The DSM protocol is somewhat
simpler than those implemented in IVY and Mirage, utilising a centralised man-
ager executing on a separate UNIX computer. However, Clouds also attempted
to address the thrashing problem (as well as providing richer synchronisation
options) by introducing a concept of locks on memory segments, so that the
application can lock an area of memory either exclusively (write) or shared (read).
This potentially provides better performance than the time-based approach of
Mirage, but at the expense of transparency; an application must be specially
written to take advantage of these locks.

There are a number of other similar first-generation DSM systems in the
literature, which are not necessary to describe in detail here (a summary is
provided in [77]). Before describing later DSM systems, the notion of consistency
models should be defined.

6.2 Consistency models

Distributed shared memory systems can be characterised by the consistency model

that they provide. Fundamentally, a program interacts with the memory system
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Figure 6.1: Hierarchy of common consistency models

by issuing writes and reads. The consistency model restricts the set of possible
outcomes for the reads, dictating which of the written values is returned by each
read. On a single processor, one expects a read to observe the value written by
the most recent write; however in a distributed system there may be various useful
interpretations of “most recent”.

One can arrange consistency models into a hierarchy. An overview of the
relationship between a number of common consistency models is provided in
Figure 6.1, loosely based on a similar diagram presented by Mosberger [72]. A
program that is correctly specified for a more relaxed consistency model — one
that is lower in the tree — will always execute correctly on a stricter consistency
model (the reverse is not true). However, stricter consistency models come at a
cost in performance; relaxed consistency models generally provide greater scope
for optimisations to be made in the shared memory system.

The models in the figure will be described shortly, but first some terminology
must be defined. In describing consistency models one frequently refers to
observation and visibility of accesses. Observation relates to a specific pair of
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accesses: a write is observed by a read when the read returns the value written; a
write is observed by a processor when a read on that processor observes the write.
In contrast, visibility is defined in terms of the outcome of a hypothetical access:
if a write on processor P1 can at some later time be observed by a hypothetical
read on processor P2, that write can be said to have become visible to P21. Read
visibility also can be defined: if a hypothetical write on processor P2 can no longer
affect the value returned by a read on P1, then that read has become visible to
P2 [24]2. Visibility can be a useful concept since it allows discussion of certain
dataflow properties without considering a specific execution.

In this section, brief informal summaries of common consistency models are
provided. More formal definitions can be found in many places such as [81,39,20]
and papers cited in individual definitions. Note that there is some confusion in
the field regarding consistency models and definitions; however, based on a wide
survey of literature, the author believes that the following definitions represent the
most common usage.

6.2.1 Atomic consistency (Linearisability)

Atomic consistency is the strongest possible consistency model. An atomically
consistent system produces the same result as if all the operations were executed
serially, in the specific real-time order in which they actually occurred3. Thus, the
notion of reads returning the “most recently” written value has its most intuitive
meaning: if a read on any processor occurs time-wise after the completion of a
write on any processor, then the read must return the data written. From the point
of view of write visibility, this requires that writes become visible to all processors
immediately after completion. Clearly, instantaneous notification is impossible in
practice, so this implies that a write must always invalidate cached values held
by other processors before it can be allowed to complete. The Li-Hudak protocol

1This does not necessarily imply that P2 already has a read copy; in an invalidation-based
protocol, the hypothetical read may need to fetch the value.

2If one assumes that the value returned by a read can no longer be affected after the read
completes (for some architecture-specific definition thereof), this implies that a read normally
becomes visible everywhere at some time before it completes.

3Some definitions of atomic consistency allow that, in the case that operations overlap and
hence there is no clear real-time ordering, sequential consistency applies.
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described in the preceding section is an example of such a protocol and indeed it
satisfies atomic consistency.

6.2.2 Sequential consistency (Sequentialisability)

A related fundamental consistency model is sequential consistency. As defined
by Lamport [56], it requires that the outcome of a parallel execution is one that
is possible to achieve via a serial execution in which the threads are interleaved
— but not necessarily one that corresponds to the original real-time order, as is
the case for atomic consistency. It must be possible to somehow merge the set of
operations that occurred into some global order that preserves program order and
the property known as legality: that there are no conflicting writes between a read
and the write that supplied the corresponding data.

Unfortunately, this definition does not immediately suggest a method of en-
forcement, and indeed the problem of determining whether a particular execution
obeys sequential consistency is believed to be NP-complete [35]. Real systems
guaranteeing sequential consistency do so by imposing an easily enforceable
constraint on the execution. Constraints that have been shown to guarantee
sequential consistency include: [70]

• Write-write (WW) constraint: The system enforces that all writes become
visible to all processors in the same order.

• Object-ordered (OO) constraint: The system enforces that any pair of
conflicting accesses appear to occur in the same order to all processors.
Conflicting accesses are any pair of accesses to a single object or data item,
in which at least one is a write (i.e. write-write, read-write and write-read
ordering is necessary; only read-read re-ordering is allowed).

6.2.3 Total store order (TSO)

Total store order is a relaxation of sequential consistency which has applications
to many real processor architectures. TSO is defined similarly to sequential
consistency, but allows a weakening of the program order restriction: earlier
writes and later reads on the same processor need not have this specific order
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preserved in the total order. In practice, this allows for a processor to buffer
writes and satisfy reads using those pending writes, before those writes become
visible globally. Thus, there exists a global ordering of writes, but any particular
processor can observe its own writes early.

6.2.4 PRAM consistency (FIFO consistency)

PRAM (pipelined RAM) consistency is weaker and merely requires that writes
of a given processor become visible in the order in which they were issued. In
other words, any two writes made by the same processor are observed in that
specific order, but different processors’ operations may be differently interleaved
to various observers; there is no global ordering of writes.

6.2.5 Causal consistency

Causal consistency strengthens PRAM consistency to take into account not only
writes by a single processor but also transitive causal relationships. For example,
consider if processor P1 issues a writeX = 1, and then a read on P2 observesX =

1 causing it to issue a writeX = 2. Causal consistency will guarantee that another
processor P3 will observe X = 1 before X = 2, whereas PRAM consistency
would allow either order. While this is still weaker than sequential consistency
and TSO, it satisfies common programming assumptions about causality, and the
majority of programs execute unmodified with causal consistency [3].

6.2.6 Coherence

Whereas the previous consistency models apply to the whole of memory, coher-
ence is defined for finer granularity objects — for example individual memory
locations, cache lines or pages. Technically, coherence specifies that writes to a

single object must become visible to all processors in the same order, although
most practical implementations allow a writer to observe its own writes early as
in TSO consistency. Thus coherence is sequential consistency or TSO consistency
applied at object granularity. One can also combine coherence with the weaker
models, resulting in:
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• Processor consistency = Coherence + PRAM consistency:
Processor consistency combines coherence on individual objects with
PRAM consistency for the entire address space.

• Coherent causal consistency = Coherence + Causal consis-
tency:
Coherent causal consistency combines coherence on individual objects with
causal consistency for the entire address space.

6.2.7 Weak consistency

All of the previous consistency models are referred to as uniform models, as
all operations are treated equally. In contrast, weak consistency is a hybrid

model which provides the programmer with two different types of operations,
synchronisation operations and unordered operations. Synchronisation operations
are guaranteed to obey a strong consistency model, such as sequential consistency.
Unordered accesses are only ordered with respect to the synchronisation opera-
tions, and may be arbitrarily re-ordered amongst themselves (subject to data-flow
considerations). Assuming that the majority of program operations are unordered,
the overhead of maintaining consistency can be reduced.

6.2.8 Release consistency

Release consistency [34] enhances weak consistency by providing two different
types of synchronisation operations, acquire and release. This terminology refers
to their association with critical section semantics. An acquire is used at the start
of a critical section, and prevents unordered accesses following the acquire from
being ordered before the acquire. A release is used at the end of a critical section,
and prevents unordered accesses preceding the release from being ordered after
the release. In effect, accesses are prevented from “leaking out” of the enclosing
critical section; but unlike weak consistency the ordering is one-way and does
not impose restrictions on unordered accesses outside the critical section. There
may also be a barrier or fence operation which prevents unordered accesses from
crossing it in both directions.
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6.2.9 Entry, scope and view-based consistency

These consistency models are based on release consistency, but add the concept
that each critical section only ‘protects’ a certain set of shared objects. Thus, they
bind each lock to specific shared objects; only those objects are guaranteed to be
made consistent by the acquire/release mechanism, instead of the entire address
space. This reduces the set of writes or invalidations that need to be communicated
at acquire/release time.

In entry consistency [7], the programmer must explicitly make the bindings
between locks and objects; clearly, this places a large burden on the programmer
and is error-prone. Scope consistency [43] and view-based consistency [41]
improve on entry consistency by establishing those bindings dynamically, at
least for certain classes of programs that include appropriate synchronisation
operations.

6.3 Later software DSM systems

All of the DSM systems described so far — IVY, Mirage and Clouds — implement
atomic consistency. More recently, DSM research has focused on more relaxed
consistency models, specifically release consistency, entry consistency, scope
consistency and view-based consistency.

Munin [9] was the first system to leverage release consistency to allow
multiple simultaneous writers. Rather than synchronously invalidating all other
copies when a write occurs, Munin allowed writes to be accumulated locally until
a synchronisation event forced those writes to be propagated to other nodes. In
Munin, writes were propagated at the time of a release, which is known as an eager

release consistency protocol. TreadMarks [50], one of the most commercially
successful DSM systems, pioneered the idea of lazy release consistency whereby
the propagation of updates is delayed until the next acquire by another node; this
can reduce the number of messages, at the expense of complicated bookkeeping
[51]. Some newer systems also use a hybrid scheme, home-based lazy release

consistency, which propagates updates eagerly to a home node, whereupon the
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Architecture Base model Per-location Store atomicity Atomic RW Fences
MIPS Sequential Sequential 3 3 7
SPARC TSO TSO TSO 3 3 3
Itanium stronga TSO TSO 3 3 3
IA-32 Processor TSO 7 3 3
Alpha Weak TSO 3 3 3
SPARC RMO Weak TSOrrb 3 3 3
PowerPC Weak TSOrr 7 3 3
Itanium weak Release TSOrr 3/7c 3 3

aWhen ordered forms of load and store instructions are used.
bTSOrr is a read relaxation of TSO; independent reads may be performed out of order.
cStores with release annotations become visible atomically, ordinary stores do not.

Table 6.1: Memory consistency models of common processor architectures

updates are discarded; other nodes then lazily fetch the new page data from the
home node [44].

Aside from release consistency, other systems have also implemented entry
consistency (Midway [7]), scope consistency (JIAJIA [26], Brazos [85]) and
view-based consistency (VODCA [40]). As described in the previous section,
these further relax the consistency model by associating specific objects with
critical sections.

6.4 Hardware shared-memory systems

In contrast, when building a system such as vNUMA — with a goal to execute
legacy software designed for hardware shared-memory systems — one does
not have the luxury of choosing an arbitrary consistency model. In order for
the legacy software to function correctly, it is necessary to provide the same
memory consistency guarantees as the hardware system originally provided to
the programmer.

To this end, the programmer-visible consistency models of several commercial
architectures are summarised in Table 6.1 (in general, this applies to both SMP
and ccNUMA implementations of each architecture). Itanium, which is of
primary importance to this thesis, has been considered here in the context of two
operating modes: a strongly-ordered mode in which all loads and stores are of the
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ordered form (as used by the IA-32 emulation mode, or by a paranoid Itanium
programmer), and a weakly-ordered mode in which ordinary loads and stores are
the norm. SPARC can also operate in a number of different ordering modes; the
table considers the most commonly used modes, namely total store order (TSO)
and relaxed memory ordering (RMO).

Out of these, only MIPS processors attempt to provide true sequential
consistency without the need for fences4. SPARC and Itanium’s strong models
both provide TSO, which is a little weaker than sequential consistency in that
reads may be satisfied from local write buffers before those writes become
remotely visible. IA-32 provides processor consistency, which guarantees that the
writes of a given processor become visible in order, but does not provide a global
total ordering or causality guarantees. Alpha, PowerPC, SPARC and Itanium’s
models are weaker still; the majority of operations can be arbitrarily re-ordered,
and fence instructions must be inserted where this re-ordering is to be prevented.
Itanium goes further in that it provides uni-directional half-fences labelled acquire
and release, motivated by the ideas of release consistency.

However, even these weaker models are surprisingly strong; certainly stronger
than a typical software DSM implementation making use of a relaxed consistency
model. The first striking difference is that all of the models guarantee coherence:
accesses to a single location must obey TSO (or at worst, TSOrr, which is similar
to TSO but does not guarantee the fulfilment order of two consecutive reads at
an observer). In contrast, the software implementations described in the previous
section do not provide any ordering guarantees for unordered writes to the same
location; generally this would be considered a data race and forbidden.

All of the surveyed architectures also provide atomic read-modify-write

instructions that expect to access the shared memory atomically. All except MIPS
provide fence operations that can be used to restrict ordering and ultimately, with
the right combination of fences, achieve execution compatible with sequential
consistency. While software DSM systems also provide synchronisation primi-
tives such as locks and barriers, their semantics are often quite different.

4Note that in order to achieve reasonable performance, advanced implementations such as
R10000 actually issue some operations speculatively and then roll back the program if sequential
consistency requirements are not met.
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Finally, many of the models require remote store atomicity: the property that,
once a write becomes visible to a processor other than the writer, it must also
atomically become visible to all other processors. This also implies that there must
exist a total store ordering, even if that ordering is not perceivable by individual
processors. Amongst the architectures surveyed, this is explicitly required by
MIPS, SPARC and Alpha, but not by IA-32 and PowerPC. In the case of Itanium,
it is only required for stores with release annotations but not for ordinary stores;
realistically this is of little comfort to a software DSM designer, since an annotated
store can occur at any time and the infrastructure for remote store atomicity must
be in place.

Thus, even the memory models that ostensibly provide weak consistency are
stricter than desirable for a software DSM system. They permit a great deal of
local re-ordering, but there is a pervading assumption of an underlying total store
order provided by the interconnect. Current DSM systems implementing release
consistency cannot cope with such requirements; they are unable to guarantee
per-location coherence, or store atomicity, or indeed correct execution of atomic
operations on the shared memory. They also assume that acquires and releases
come in pairs, which is not the case in the Itanium architecture; Itanium acquires
and releases are simply half-fence operations which can occur arbitrarily often.

The challenge facing vNUMA, which will be addressed in this thesis, is
to provide a software DSM system which can satisfy these requirements while
simultaneously taking advantage of optimisation opportunities. Just like there are
atomically-consistent cache consistency protocols underlying SMP consistency
models, so the base vNUMA protocol is atomically consistent; this base protocol
will be described in the next section. The other vNUMA-like systems that
were described in Chapter 1 only use such basic protocols. In vNUMA, this is
enhanced with more advanced write-update schemes that improve performance
while maintaining a consistency model compatible with TSO (Section 8.1).
Finally, the weakness of the Itanium model is exploited to allow some degree
of local re-ordering (Section 8.8).
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Chapter 7

The vNUMA DSM system

7.1 Integration with hypervisor

The most obvious novelty of vNUMA lies in the fact that the distributed shared
memory system is integrated at the hypervisor layer, which allows shared memory
to be provided completely transparently to a legacy operating system.

The hypervisor memory management model was detailed in Section 5.2.2,
and is summarised by the three layers depicted in Figure 7.1: virtual addressing,
metaphysical addressing and physical addressing. Applications generally execute
in a virtual address space. The operating system manages metaphysical addresses,
which embody the linear memory space of the virtual machine, and establishes
mappings from virtual addresses to metaphysical addresses. These mappings can
include permission information (pv) specifying whether read and/or write access is
allowed through these mappings. Then, the hypervisor is responsible for mapping

virtual address

pv

��
effective permissions
pe = pv ∩ pm

vv

metaphysical address

pm

��
physical address

Figure 7.1: Address translation layers
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metaphysical addresses to physical addresses, representing the RAM of the real
computer hosting the virtual machine.

To allow applications to execute transparently, the hypervisor establishes
mappings in the real processor’s TLB (and the architectural pagetable: the VHPT)
that correspond to the composition of the two mappings, i.e. mapping directly
from virtual to physical addresses. The hypervisor may also insert mappings
corresponding to the metaphysical to physical mapping, to provide a fake physical
address space for the guest operating system. In no case does the guest operating
system execute in the processor’s real physical mode, which would expose it to
the real physical address space.

In vNUMA, the operating system sees a single global metaphysical address
space, regardless of which node it executes on. All instructions and data
which can be accessed by the operating system and applications exist within
that shared metaphysical address space. Either the operating system can opt to
access metaphysical addresses directly, or it can establish virtual mappings to
metaphysical pages on a per-processor basis, and then access data through virtual
addresses. From the perspective of the operating system, this is indistinguishable
from a real NUMA system.

This illusion of a single global metaphysical address space is achieved by
selectively restricting the metaphysical page permissions — pm in Figure 7.1 —
according to a DSM algorithm, and performing any necessary remote synchroni-
sation operations when a protection fault occurs. This is exactly analogous to
the way in which a userspace DSM system implements a DSM algorithm by
restricting virtual page permissions. In the case of vNUMA, accesses may be
made through both metaphysical and virtual mappings, but the hypervisor ensures
that permissions on virtual mappings are constrained by the permissions on the
underlying metaphysical mappings, i.e. pe = pv∩pm. Thus, regardless of whether
a prohibited access occurs through virtual addressing or metaphysical addressing,
a page fault occurs and the DSM system is invoked.

Crucially, the hypervisor’s memory management layer must provide the ability
to update the DSM-specified permissions pm at will, which involves updating
not only the metaphysical-to-physical mapping but also any virtual-to-physical
mappings that have been composed from it. Generally this implies that it must
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Figure 7.2: Flowchart of protection fault handling

maintain reverse mappings from each metaphysical page to the set of virtual
addresses where it is mapped, so that each virtual mapping can be updated.
An efficient scheme for this was presented as part of the vNUMA memory
management design in Section 5.2.2.

In practice, the DSM permissions are enforced using the accessed (a) and
dirty (d) bits in the Itanium TLB and VHPT. Clearing the accessed bit causes
a fault on both read and write access to a page; clearing the dirty bit causes a
fault on write access only1. Note that the operating system may also use the
a/d bits for its own protection needs; these OS-specified permission bits will
be referred to here as va/vd. The effective values of a/d are calculated as the
intersection (specifically, logical AND) of the DSM-specified permissions and the
OS-specified permissions.

A flowchart for fault handling is shown in Figure 7.2. The fault handler
inspects the pagetable (VHPT) entry corresponding to the fault address. The
structure of a VHPT entry is shown in Figure 7.3. While nominally the VHPT
entry maps a virtual page directly to a physical frame, vNUMA also maintains —
within the hardware-ignored portion of the entry — information about the original
mapping made by the operating system, namely the metaphysical page number
(vmpn) and any OS-imposed protections (va, vd).

Using this information, the fault handler first checks whether the fault was

1The access rights (ar) field also provides a separate protection mechanism, but the a/d
mechanism is simpler and sufficient for the requirements of the DSM algorithm.
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vd va ed rv ppn ar pl d a ma rv p

rv key ps rv

ti tag
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063 ︷ ︸︸ ︷OS permissions ︷ ︸︸ ︷physical frame # ︷ ︸︸ ︷effective permissions

︸ ︷︷ ︸
metaphysical page #

Figure 7.3: Anatomy of a VHPT entry. Unshaded portions are part of the Itanium
architectural definition [47], and more information can be found there; shaded portions
are hardware-ignored and used by vNUMA.

due to those OS-specified protections, in which case the fault is reflected to the
operating system. If not, then the fault must be due to DSM-specified protections,
and the DSM system is invoked using the metaphysical page number from the
VHPT entry. All DSM requests ultimately use metaphysical addresses.

7.2 Basic protocol

At the heart of the vNUMA DSM system is a simple atomically-consistent
single-writer/multiple-reader protocol. This core protocol, based on the Li-Hudak
protocol that was described in Section 6.1, provides a solid and reliable foundation
to enable correct execution of all existing SMP programs (and the Linux operating
system itself), since atomic consistency provides consistency guarantees at least as
strong as those provided by SMP and NUMA systems. It also provides a baseline
for performance and correctness comparisons.

There are a number of choices to be made when implementing such a protocol.
For page location, vNUMA implements a fixed distributed manager scheme,
whereby the global metaphysical address space is divided into equal-size portions;
each node is responsible for managing one of those portions. Hence there is a
simple fixed mapping from any given address to the manager node. In the ideal
case, the manager is the node which accesses the page most often, since it always
knows exactly where the page is located; this is normally the motivation behind
a dynamic distributed manager scheme. However, in vNUMA, the operating
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system is made aware of the locally-managed memory area via the concept of
NUMA node-local memory, and will favour that memory when making allocation
decisions. Thus, the fixed distributed manager scheme interacts well with a virtual
NUMA system.

Further there are two variations of the fixed distributed manager algorithm
described by Li and Hudak in their seminal paper [61]: an initial algorithm in
which both the copyset and owner information is maintained by the manager, and
an ‘improved’ algorithm in which the copyset is maintained by the owner and
transferred with the page. From the point of view of a virtual NUMA system
there may be some advantages to having the copyset available on the manager,
particularly with respect to propagating updates in a write-update version of the
protocol. However, that scheme increases the number of messages, and results
in deadlock cases that are difficult to avoid (a formal analysis of the deadlocks
involved in the Li-Hudak algorithms, using a model checker, was carried out by a
group at the University of Utah [37]). For these reasons, the vNUMA protocol is
based on the ‘improved’ variety of the algorithm.

There are some further refinements made to this algorithm, which are de-
scribed in the following sections. Unlike the write-update scheme described later
in this thesis, none of these optimisations have any effect on the program-visible
consistency model; they are purely performance optimisations. Pseudocode for
the overall algorithm is provided in Section 7.6.

7.3 Double fault optimisation

A double fault occurs when a node encounters a read fault on a page, obtains a
read copy, and then encounters a write fault. In the naı̈ve version of the Ivy DSM
algorithm, the page data would be re-fetched on the write fault. This is clearly
wasteful in the common case, since the node already has a read copy. However, if
a third node simultaneously writes to the page, then it is not correct for both nodes
to proceed using their cached data; one node proceeds first and then the other
node must receive a modified version of the page data. Thus, a write request may
conditionally return a copy of the page, and there is a question of how a responder
decides whether or not to send the page data.
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One common solution, presented as the “shrewd algorithm” in [52], is to
maintain a version number for each page. This page version number is transferred
along with the page and incremented each time read-write access is obtained.
When sending a write request, a requester sends the version number of the page
that it is in possession of. When the request is ultimately satisfied, the responder
can check the version number in the request against the version number on its
copy of the page, to decide whether or not fresh page data needs to be sent.

However, in actual fact this version number scheme is redundant; there is
a simpler solution that is equivalent and does not require maintaining version
numbers. The owner can simply inspect the copyset to decide whether or not new
page data needs to be sent to a given destination node. If some third node happens
to obtain write access first, its first action must be to invalidate all other nodes’
read copies and remove those nodes from the copyset. Thus if the destination
node is still in the copyset, that proves that there were no intervening writes and
its read copy is still valid. If the destination node is not in the copyset, there
must have been intervening writes and a new copy of the page must be sent. This
method also seems to be used in Mirage [31].

7.4 Manager as preferred owner optimisation

The second minor optimisation to the base DSM algorithm involves the situation
where a page is read-shared, and the manager node becomes part of the copyset
but would not normally become the owner. Since further requests for the page,
from other nodes, will be directed to the manager in the first instance, it would be
desirable to be able to satisfy them at the manager. Clearly the manager already
has a read replica so it could provide page data; however it does not have authority
to maintain the metadata since it is not the owner.

The Mirage system addressed this issue by sending an advisory message from
the manager to the owner so that the owner can update its metadata. However,
vNUMA implements it in a simpler way which does not require the extra message:
ownership is implicitly migrated to the manager when the manager becomes part
of the copyset. That is, if a non-manager node is the owner and it receives a read
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Figure 7.4: Timeline demonstrating the page thrashing problem. Solid lines indicate
transfers of ownership.

request from the manager, it transfers ownership with the read reply. Thus, the
manager becomes the owner and can service future requests locally.

7.5 Thrashing avoidance

A naı̈ve DSM implementation suffers from the problem illustrated in Figure 7.4,
often referred to as page thrashing. If two nodes simultaneously demand write
access to a page, the page may be transferred back and forth with no useful
work achieved. Assume that initially P2 sends a fetch message to P1 requesting
ownership of the page. As soon as P1 invalidates its local copy and sends a
fetch reply, it finds that it requires the page again, and sends a fetch message
immediately after the fetch reply. P2 now receives a fetch reply and fetch back-
to-back; assuming that it processes the fetch immediately and sends the page
back to P1, a situation can occur where neither node makes any progress. Such a
scenario is especially likely with fast networks, where the inter-packet delays are
insufficient to break the resulting livelock.

One obvious solution, used in many DSM systems including Mirage, is to
artificially introduce a delay to break the livelock. Depending on the protocol,
this can either happen on the requester, whereby a node that is repeatedly faulting
backs off and delays before trying again, or on the ‘responder’, whereby a node
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delays passing on a newly received page (either by responding with a NAK and
making the sender try again, or by simply delaying its response).

The problem with this timed backoff approach is that it is non-optimal by
design. There is no easy way to determine the appropriate delay (except perhaps
via a complex feedback algorithm). If the delay is too short, the livelock may not
be broken. If the delay is too long, then it may waste valuable execution time.

For the vNUMA system, a more deterministic approach was desired, which
would ensure that at least one instruction has executed each time a page is
transferred. In this way, forward progress of the system can always be guaranteed.

In the initial implementation, this was done by putting the virtual machine into
single step mode after receipt of a page. In the Itanium architecture, this means
that a trap is raised after an instruction completes. Any remote requests for the
page during this interim period are queued, and only serviced once the single step
trap is received and hence it is known that progress was made.

A refinement of this idea, which does not require the single step trap,
was implemented in a later version. In this improved version, a performance
monitoring unit counter is used to count completed instructions; by checking
this counter, vNUMA can always determine if progress has been made since a
page was last received2. The advantage of this approach is that it incurs minimal
overhead for pages that are not contended. If a lack of forward progress is
detected, there are two options: one is to arrange for a single-step trap to be
delivered once progress has been made, as in the previous approach; the other
is to recheck for progress after a short time. The latter option was eventually
chosen, since in the optimistic case this time window can allow more than one
access to a page to complete before the page is relinquished. However, unlike the
timed backoff scheme used in other DSM systems, this time delay can be set very
short to minimise latency, since progress is guaranteed independently of it.

A complication with enforcing forward progress is that it introduces the
possibility of deadlock. A single Itanium instruction can access up to four pages:
an instruction page, a data page and two register stack engine pages3. In any case

2Note that it is not sufficient to check the instruction pointer to determine if progress has
occurred, since code may be executing in a loop.

3This can occur when a memory access instruction is at the target of a return instruction, and
the register stack engine crosses a page boundary while reloading registers for the procedure being
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where pages are being held waiting for other pages, there is a possibility of a
circular wait condition, in other words a classic deadlock.

For example, consider if processor P1 has just received page A and is thus
refusing to relinquish it until progress is made; P2 has just received page B and
is similarly refusing to relinquish it until progress is made. However, if P1 also
requires page B to make progress, and P2 also requires page A to make progress,
then a deadlock occurs. Naturally more complicated circular dependencies are
possible.

In order to avoid such a deadlock, the livelock avoidance algorithm is only
applied to pages accessed via explicit data references, and not instruction or
register stack pages. Since the data reference is always logically the last reference
made by an instruction — occuring after the instruction reference, and after
any register stack accesses — instruction completion is guaranteed once the
data page is obtained, and there is no possibility of deadlock. Indeed it is not
necessary to apply the livelock prevention algorithm for instruction and register
stack references, since instruction accesses are always reads, and register stack
pages should not be simultaneously accessed by multiple CPUs (or undefined
processor behaviour could result). Even if a malicious application were to invoke
this livelock case, it would not prevent the operating system from taking control
and the process could be killed. Thus, this strategy prevents livelock in a well-
behaved operating system while also avoiding any possibility of deadlock.

On some other architectures such as x86, this approach might still result in
deadlock, since a single instruction may access several data pages. One possibility
would be to release pages after a random period of time, even if no progress is
made. In the worst case, this re-introduces the problems associated with backoff
algorithms, but should perform better in the common case, while ensuring that a
permanent deadlock does not occur.

returned to.
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7.6 Pseudocode

This section lists pseudocode for the core vNUMA DSM system. It is hoped
that this will be a useful resource for future developers of DSM systems,
since the pseudocode provided in many DSM papers is inadequate for practical
implementation, and in some cases missing critical details. The pseudocode
provided here is intended to reflect working source code as accurately as possible,
including such details as the parameters used in messages, while omitting syntax
details that would compromise readability.

When a program access causes a page fault that invokes the DSM system,
the fault handler shown in the pseudocode is invoked, specifying the page and
whether write access is required. This may send either fetch or invalidate
messages, which eventually result in fetch reply or invalidate reply response
messages. The handlers for all of these message types are also shown in the
pseudocode. Several items of metadata are tracked on each node for each page:
the owner of the page (page.owner), the copyset (page.copyset), the modes of
access currently allowed on the local node (page.permissions), a lock for the
page (page.lock) and a corresponding queue of requests waiting for the lock
(page.wait queue).
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fault(page, is write): handles a page fault on a DSM page
page.lock = 1

if page.owner = this node then
send invalidate(this node, page) to nodes in page.copyset

else if manager(page) = this node then
send fetch(this node, page, is write) to page.owner

else
send fetch(this node, page, is write) to manager(page)

end if
wait while page.lock = 1

fetch(requesting node, page, is write): server for fetch messages
if page.lock then

enqueue message on page.wait queue
else if no forward progress since page received then

enqueue message on page.wait queue
schedule callback to process page.wait queue

else if page.owner = this node then
if requesting node /∈ page.copyset then

send page data to requesting node
end if
send fetch reply(this node, page, is write, page.copyset) to requesting node

if is write or manager(page) = requesting node then
page.owner = requesting node

else
page.copyset = page.copyset ∪ {requesting node}

end if
page.permissions = is write ? nil : read

else
send fetch(requesting node, page, is write) to page.owner

end if
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fetch reply(from node, page, is write, copyset): server for fetch reply
if is write then
page.owner = this node

page.copyset = copyset \ {this node}
if page.copyset 6= ∅ then

send invalidate(this node, page) to nodes in page.copyset
return

end if
else if manager(page) = this node then
page.owner = this node

page.copyset = (copyset \ {this node}) ∪ {from node}
end if
page.permissions = is write ? readwrite : read
page.lock = 0

process page.wait queue

invalidate(requesting node, page): server for invalidate messages
if no forward progress since page received then

enqueue message on page.wait queue
schedule callback to process page.wait queue

else
page.permissions = nil
send invalidate reply(this node, page) to requesting node

end if

invalidate reply(from node, page): server for invalidate reply messages
page.copyset = page.copyset \ {from node}
if page.copyset = ∅ then
page.permissions = readwrite
page.lock = 0

process page.wait queue
end if



Chapter 8

Performance challenges

In utilising multiprocessor systems, the goal is usually either to minimise the time
taken to execute a task or to maximise the throughput of tasks. As an example
of the earlier case, assume that an easily-divisible computational task executes in
τ seconds of continuous runtime on a single processor, which might correspond
to a certain number of processor operations. Ideally, one might hope to be able
to divide the task equally between N processors to achieve a time of tideal =
τ
N

, which over the N processors similarly sums to τ total processor time. In
practice one generally finds that the actual execution time is somewhat greater,
t > tideal. In this longer time t, there is now potentially Nt of processor time
available. This implies that some of this processor time (τoverhead = Nt − τ ) is
used unproductively. The challenge is to identify and minimise this lost time, so
that it can instead be used for productive computation.

In a distributed shared memory system such as that described so far, the
lost time is primarily attributable to waiting for responses in the DSM protocol.
Whenever a fetch or invalidation message is sent, execution on the local processor
must stall until the response is received. As will be seen in Chapter 12, the
round-trip time in a typical Gigabit Ethernet network is around 17 µs, even
after extensive tuning of the network driver. On 900MHz Itanium systems this
corresponds to over 15,000 wasted processor cycles for each such communication
event. When a 4 KiB page of data must be fetched, this increases to around 62 µs,
or 56,000 cycles.

There are three main approaches that can be applied to better utilise compu-
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tational time: using lower-latency networking technologies that reduce the time
for each communication event, masking the latency of communication events via
multithreading, and applying more sophisticated DSM techniques that can reduce
the number of events that stall execution.

Indeed there are a number of low-latency high-bandwidth clustering tech-
nologies available, such as Myrinet [74], InfiniBand [45] and SCI [23], all of
which claim round-trip latencies of under 5 µs as well as very high bandwidth.
Interestingly, the latest generation of Myrinet is based on the 10 Gigabit Ethernet
standard, which suggests that similar performance may be achieved by other
future 10 Gigabit Ethernet chipsets. However, all of these technologies are
currently specialised and expensive. One of the central philosophies of vNUMA is
to leverage commodity hardware, and to investigate whether novel approaches can
allow commodity hardware to supplant expensive specialised hardware for certain
applications. For this reason, this thesis primarily considers Gigabit Ethernet.
There is no doubt, however, that a faster hardware interconnect would improve
the raw performance of vNUMA. Section 12.2.6 presents a latency sensitivity
analysis which can be used to infer possible performance improvements from
faster networks.

When long latencies are unavoidable, multithreading is a common technique
to reduce the amount of computational time that is wasted: by switching to a
different thread when a stall occurs in one thread, some of the stall time can
potentially be used usefully. This technique is used by some multithreaded DSM
systems, such as Distributed Filaments [32], Brazos [85] and DSM-Threads [73].
It is used by a number of modern CPUs, including the Itanium 2 “Montecito”
processor [67]. Indeed the same technique is also used by operating systems to
hide I/O latency. At the vNUMA hypervisor level, these threads would correspond
to extra virtual processors, beyond the number of physical processors. There are,
however, drawbacks to such an approach. For instance, tasks must be distributed
between even more processors, introducing extra overheads. Resources (such
as locks) held by processors that are not currently running could delay running
processors. For some workloads, the virtual threads co-habiting a node could
frequently stall simultaneously, negating any benefits. A multithreaded approach
seems a promising avenue for future research, but it is no substitute for reducing
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the frequency of stalls.

This thesis specifically focuses on reducing the frequency of stalls by using
better DSM protocols that leverage relaxed consistency models. The previous
section already presented a number of simple protocol optimisations beyond the
basic Li-Hudak protocol, however there are fundamental limitations due to the
atomic consistency model. If one permits a more relaxed consistency model,
further improvements are possible. This will be explored in the following sections.

8.1 Addressing sparse accesses

Minimising the number of communication events in a distributed shared memory
system depends critically on caching. Many commonly used data structures, such
as linked lists and trees, tend to have poor spatial locality, and may result in a
processor accessing many pages. If locally cached copies of these pages can be
accessed, then overheads are small, but if each of the pages regularly requires a
remote fetch, performance will suffer greatly.

In the absence of writes, pages eventually become read-shared, allowing each
processor to access the cached copy of those pages without any communication.
This is clearly desirable. Now consider that some processor occasionally writes
a value to a certain page that is otherwise read-shared. In the Li-Hudak protocol,
first the writer must stall while all of the read copies are invalidated, then all of the
active readers eventually stall and re-fetch the entire page data. Clearly it would
be more efficient, for such sparse updates, to simply propagate the write to any
readers.

Related to this sparse write problem is the problem of false sharing. This
occurs when two unrelated data items happen to co-exist on the same page, and
different processors inadvertantly write to these unrelated data items at the same
time (or one writes and another reads). The result is contention and unnecessary
communication, being a side-effect of the page granularity rather than a necessary
data integrity measure. Such false sharing can be addressed with a multiple-writer
protocol which permits multiple simultaneous writers (and readers) to a given
page, or at least a multiple-reader single-writer protocol which permits a writer



92 CHAPTER 8. PERFORMANCE CHALLENGES

to co-exist with readers. However, both of these require some relaxation of the
consistency model.

The PRAM consistency model — the most relaxed uniform consistency model
that was considered in Section 6.2 — provides some insight as to what an ideal
solution may look like. PRAM consistency was motivated by a scenario where
reads can always execute from a locally cached copy of a page, while writes
are lazily distributed to other nodes. In such a system, neither reads nor writes
must stall. The only restriction imposed by PRAM consistency is that writes
must become visible in the same order they were issued by the writing processor.
If one imagines a simple implementation in which each write is sent within a
message and applied upon receipt, this corresponds to the network providing
ordered delivery.

In fact, it turns out that such a design can quite easily provide stronger
consistency than PRAM consistency. For example, if the underlying network layer
provides causally ordered delivery, then the resulting consistency model is causal
consistency. Indeed, many network topologies that provide ordered delivery also
naturally provide causally ordered delivery; this will be illustrated for Ethernet in
Section 9.1.

Further, if the message delivery system provides total order broadcast, then
one can even achieve sequential consistency. This was first proven by Attiya
and Welch [5]. For some Ethernet topologies one can indeed obtain a limited
form of total order broadcast without protocol overhead (again the details are in
Section 9.1). However, in order to attain sequential consistency, the Attiya-Welch
protocol requires that a writer must immediately broadcast each write and stall
until it receives its own broadcast, thus guaranteeing that it observes the write in
the same order as other nodes. (Such an execution satisfies the WW constraint
for sequential consistency described in Section 6.2.) This would be prohibitive on
Ethernet, both because it implies that each write must occupy a separate Ethernet
frame, and also because Ethernet broadcasts are not normally received by the
sender.

If the stall that is required by the Attiya-Welch protocol is omitted, the
ramification is that a processor can observe its own writes before they become
visible to other processors (and thus observe a different relative order). However,
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this is also the case for real processor architectures that feature write buffers: reads
on the local processor can receive values bypassed from write buffers before they
have become globally visible. Thus, even though a system based on non-stalling
broadcast of updates does not strictly obey sequential consistency, it can reproduce
the memory consistency behaviour of a processor with write buffers, as embodied
by the TSO consistency model. This is the principle on which the vNUMA write-
update protocol is based.

The following sections will describe the write-update protocol in more detail.
In particular, Sections 8.2 and 8.3 describe how writes are intercepted and
transmitted to other nodes. Since this interception incurs overheads, it is not
appropriate for all pages; Section 8.4 describes an simple adaptive scheme which
decides between write-update and write-invalidate modes on a per-page basis.

While the consistency model that results is generally indistinguishable from
the presence of local write buffers, there are two important differences. Write
buffers have the property that they are always flushed eventually, and thus the
value of a variable always converges to a globally coherent value. This property
is not guaranteed by the write-broadcast protocol as it stands; the problem and
a solution that can restore coherence is presented in Section 8.6. The Itanium
architecture also provides a memory fence instruction that can, amongst other
effects, restrict bypassing from write buffers. The implications of this are
discussed in Section 8.9.

Additionally, the handling of atomic read-modify-write operations to shared
memory pages must be considered. A naı̈ve approach is to fall back to the core
invalidation-based protocol for such accesses, but this can degrade performance,
considering that these atomic operations are often used in concert with widely
shared data structures. A better protocol is described in Section 8.7.

Finally, the evaluation in Part III of this thesis provides benchmark results that
demonstrate the effectiveness of these protocols.

8.2 Write detection

Multiple-writer protocols such as the vNUMA write-update protocol allows writes
to a page to simultaneously complete on multiple nodes. Eventually, all of these
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writes must be merged together to produce a consistent version of the page. Thus
it is not sufficient to simply transfer entire page data in update messages, since it
would be impossible to know how to safely merge two versions of a page created
by different writers; aside from which, transferring entire pages is wasteful when
only small parts of a page are written at any time. Instead, it is necessary to detect
the individual writes that have been made to pages during a given interval, and
then apply these writes in a safe order on each node that requires them.

There are three basic approaches for detecting the writes made to a memory
page:

• Software write detection: The compiler and runtime system are modified to
attach instrumentation to write instructions. This scheme was used in the
Midway DSM system [92].

• Page diffing: Pages are write-protected. Upon a write fault, a ‘twin’ copy
of the page is created and the application is freely allowed to write to the
page. When updates need to be propagated, the new page is compared with
the twin to determine the changes that have been made. This scheme was
used in Munin [9] and many later systems.

• Write trapping: Pages are write-protected. Upon a write fault, the faulting
write instruction is disassembled and the data to write is determined.
The page is left write-protected and the program continued at the next
instruction. This scheme was also considered by the Munin authors [10],
but was presumed to result in excessively high runtime overheads.

The software write detection approach requires applications to be compiled
with a special compiler. This is not a good choice for vNUMA, since one of the
goals of vNUMA is to allow transparent distribution of legacy applications and
operating systems, which may be written in an assortment of languages.

Out of the two remaining approaches, based on hardware protection, the page
diffing approach is the one that is normally chosen for software DSM systems. Its
main advantage is that it avoids faulting to software on each write. Nonetheless
it also has significant overheads since a copy of each page needs to be made and
then compared, taking many cycles of processor time and polluting the cache.
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(For sparse writes to many pages, this per-page overhead can be significant; for
many writes to a single page, it may be more desirable to simply invalidate the
page and propagate the new data as a whole.)

Regardless of these trade-offs, the page diffing approach cannot be used
for vNUMA, for the following reasons. Firstly, by the time that the diffing is
performed, information has been lost about the size of the writes, which has
implications for the outcome of conflicting writes. For example, consider the
program execution in Figure 8.1, in which P2 writes -1, P3 writes 1, and then P1
issues a read. The Itanium architecture dictates that the outcome will be one of 0,
-1 or 1 (depending on which of the writes have been seen at P1). However, the diff
generated at P3 may contain as little as one byte, since in binary representation
only one byte of the value has changed. After both diffs are applied, the value
at P1 may be 0xffffff01, which is neither of the expected outcomes. Diffing at a
32-bit granularity would solve this problem for 32-bit values, but there would
still be problems with smaller and larger types. Systems that employ diffing,
such as TreadMarks [50], rely on the programmer to avoid issuing conflicting
writes within an interval, and to take care when using smaller types than the diff
granularity. However, the Itanium architecture does not have such a requirement;
in fact the code example is completely legal if the programmer does not require
a guarantee as to which change is applied first. This would present problems for
legacy code on vNUMA.

Secondly, the standard diffing approach involves making the page freely
writable, hence avoiding further write faults. However, if a page is both readable
and writeable, then atomic read-modify-write instructions such as compare-
and-exchange will freely execute. Allowing such instructions to execute on a
multiple-writer page destroys their very semantics; they are no longer atomic
with respect to the shared memory. These instructions must be intercepted and
performed in an exclusive fashion. Unfortunately, the Itanium architecture does
not provide any mechanism that would allow these specific atomic instructions
to be intercepted, short of either making the pages uncacheable or temporarily
denying read access to multiple-writer pages, both of which have significant
performance implications in themselves. Once again, user-level DSM systems
that employ diffing schemes can simply pass this restriction on to the programmer,
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P1 P2 P3

write X = −1 write X = 1

Generate diff:
old: 00000000
new: ffffffff
diff: ffffffff
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Generate diff:
old: 00000000
new: 00000001
diff: 01
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Apply diffs:
ffffffff
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ffffff01

read X = −255 ?!

time

��

Figure 8.1: Problem with write diffing in the presence of conflicting writes. Assume that
the initial value of X is 0.

by stating that the programmer must use the synchronisation constructs provided
by the DSM system, and not rely on the behaviour of atomic instructions to shared
memory. This is not practical for vNUMA.

For these reasons, a write trapping approach has been implemented for
vNUMA. Since vNUMA is a thin hypervisor running on bare hardware, the
cost of this write trapping can be kept to a minimum. The current C language
implementation results in an overhead of around 250 cycles per write, but this
is largely due to compiler limitations; in theory under 100 cycles should be
achievable. It should be noted that this cost is only incurred for sparse writes
to pages in write-update mode; the adaptive protocol in Section 8.4 causes write-
invalidate mode to be used if there are many writes to be made to the one page.
Thus, the overheads are quite reasonable in practice, as demonstrated by the
performance results in Part III.

8.3 Write propagation

Once a write has been detected, it is first necessary to apply it to the local copy
of the page, if the page is readable on the local node. This ensures that the write
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is immediately visible to subsequent local reads, which is a standard programmer
assumption and a requirement of all practical consistency models. In relation to
the hardware consistency model, this is analogous to the situation in which the
write is in local processor write buffers but not yet globally visible.

Program execution then continues, and additional writes may be accumulated.
At some point it becomes necessary to ‘flush’ the write buffers and make the
writes visible to other nodes. This may either be because the write buffers are full,
or a certain time has elapsed, or for consistency reasons; the question of when and
why it is necessary to flush write buffers will be discussed in Section 8.8.

There are then two options for propagating the writes to remote nodes: write-
invalidate or write-update. In a write-invalidate scheme, the local node could
acquire each page exclusively in order to apply the queued writes; this is similar
to the hardware model in which cache lines must be acquired exclusively in order
to apply the writes present in write buffers. This is still advantageous over the
original write-invalidate protocol which does not buffer writes, since program
execution need not be stalled while this occurs. However, it does not adequately
address one of the original problems that these improvements were intended to
address: in the presence of false sharing and sparse writes, such solutions perform
poorly because many invalidations occur.

Instead, a better alternative is to eagerly propagate the writes to other nodes;
either via broadcast or to specific nodes. In vNUMA, the write-broadcast
technique was chosen.

There are two advantages of broadcasting updates. Firstly, it greatly simplifies
the process of maintaining correct write ordering; there is no need to consider
nodes which have received some past updates and not others. In particular,
it makes it practical to implement consistency models which rely on a total
ordering of writes, such as TSO. Secondly, it avoids an explosion in the number
of messages when used in conjunction with the migratory DSM protocol used in
vNUMA. The issue arises because the copyset of the page is only known by the
owner, and the manager must be consulted to determine the owner. Given a set
of updates, the sender would first need to split them by manager and send each
subset to a manager. Then, each manager splits the updates by owner and sends
each subset to each owner. Finally, each owner propagates updates to its copyset.
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Naturally some optimisations could be made, however clearly such a protocol is
more complicated and uses more messages than a simple broadcast of updates, as
well as making ordering guarantees difficult.

It may seem wasteful to broadcast all write updates rather than propagating
the updates only to subscribers, and certainly this is one factor that could limit
scalability to large numbers of nodes. However, extreme scalability is not a goal
of vNUMA. Most importantly, write updates are only used in the case of sparse
writes to a contested page, otherwise the page is fetched exclusively (as described
in the next section); thus it can be assumed that a number of other nodes have an
interest in the page. Furthermore, each write only occupies 16 bytes and many
writes are batched into a single message; if each node is interested in some of the
writes contained in each message, the incremental cost of having some ignored
writes in a message is small. Once again, the performance results in Part III prove
that this approach is quite successful.

8.4 Adaptive hybrid protocol

In vNUMA all memory pages are part of the shared address space. Intercepting
individual writes is a good strategy for sparse write patterns that touch small areas
of many pages. However, if many writes are to be made locally to a single page,
then it is preferable to fetch the page for exclusive access. In that case, the cost of
the fetch is amortised over many writes and is less than the cumulative overhead of
intercepting each individual write and propagating it to other nodes. This suggests
a hybrid scheme in which the write-update scheme is used for sparse writes and a
write-invalidate scheme is used for dense writes.

Of course it is not possible to determine a priori how many writes are
to be made to a page when it is first accessed. Like many control problems
in the computing discipline, future behaviour must be inferred from available
information about past behaviour. It is necessary to choose an initial algorithm,
and then continuously adapt based on the observed write pattern.

In choosing a decision function for adaptation it is necessary to take into
account three factors: it should choose write-invalidate mode when many writes
are being made by a single node; it should choose write-update mode when there



8.4. ADAPTIVE HYBRID PROTOCOL 99

are sparse write patterns and/or false sharing; and the overhead of tracking page
statistics for the algorithm should be minimal.

In particular the scheme that was initially chosen is based on the RWB (Read
Write Broadcast) protocol described by Rudolph and Segall [82], from the domain
of hardware cache coherency research. Each page starts in write-update mode:
thus writes trap and it is trivial to maintain a counter of local writes to the page.
This counter is reset whenever a remote write arrives; hence it tracks the ‘run
length’ of local writes uninterrupted by remote writes. When the counter reaches
a certain threshold (T ), it can be assumed that either the local node is making many
consecutive updates, or the page is simply used by that node only. In either case
the page is acquired exclusively (write-invalidate) and further writes complete
without trapping.

The optimal value for the threshold T depends on the relative cost of
invalidating the page compared to the cost of intercepting writes individually.
However, the real cost of invalidating the page is difficult to determine, because it
depends on whether the page will be needed again on another node. The effect of
threshold choice is analysed experimentally in Section 12.2.2.

Aside from the case where the threshold is reached, there are also three other
types of accesses that can cause a page to immediately fall back to write-invalidate
mode.

• atomic read-modify-write instructions,

• certain rare store instructions which are not handled, such as 10-byte
floating point stores, and

• references made by the Itanium register stack engine — these are difficult
to emulate, and stack pages should in any case be used exclusively.

For the first case, a better solution will be presented in Section 8.7.
When transitioning to write-invalidate mode, acquiring page ownership from

the previous owner is done synchronously — as in the core protocol — which en-
sures that that multiple nodes cannot simultaneously claim ownership. However,
invalidations can then be propagated without waiting for replies. Propagating
invalidations is similar to propagating updates, so there is no relaxation of the
consistency model.
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One point to note is that there is no global consensus on which mode a page
is in: each node independently decides whether to intercept writes and send write
notices, or whether to attempt to acquire the page exclusively. Further, even if one
node owns a page exclusively, other nodes can still write to that page (as long as
they do not read from it); the write notices are applied by the exclusive owner on
behalf of the other nodes. This feature may be useful for certain scenarios where
one node accesses a page frequently and other nodes write occasionally.

An unfortunate problem with the RWB scheme is that read-write sharing is
not detected. A page that is written by one node and read by other nodes will
be periodically acquired by the writer each time its write counter reaches the
threshold; then the readers re-request the page and the page returns to write-
update mode for another cycle. This oscillation is clearly undesirable. A later
protocol, the Efficient Distributed Write Protocol (EDWP) [4], solves this problem
by tracking both read and write accesses on each node, and preventing a transition
to exclusive mode if more than one processor is accessing a page. Tracking
read accesses does present complications in a software DSM system, however;
it is necessary to remove read permissions and then observe if a fault occurs.
Additionally, the EDWP protocol invalidates some read copies even if a consensus
to invalidate is not reached globally, which may have detrimental impact on
performance. A better decision function, one that is more appropriate for the
vNUMA system while detecting read-write sharing, could be the subject of future
work.

8.5 Interaction with migration

Complications arise in the interaction between the write-update protocol and page
migration. When a node is waiting to receive a page, should it discard any updates
it receives for that page, or should it queue them and apply them to the new copy
of the page that it receives? Figure 8.2 shows that the answer to this is not a simple
one. Assume node P2 is fetching a page from node P1; whether node P2 needs to
apply certain updates depends on whether node P1 already received those updates
before sending off the page. Further, since node P1 was originally the owner,
it may have made local changes in the period between applying an update and
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Figure 8.2: Timelines showing interaction between migration and write updates

sending the page data, so updates must not be re-applied a second time if they
have already been applied. A decision algorithm will be presented here.

Derivation of algorithm

It will be assumed here that the network or network protocol provides causal order
delivery (as described in Section 9.1). Consider the events the events X , Y , and Z
as shown in figure 8.2, and any write w. According to causally ordered delivery,
because X → Y , (w →2 X)⇒ (w →1 Y ) 1. In plain language, any write that is
observed before X at P2 must be observed before Y at P1 (but note that additional

1Following notation used in many other sources, a → b states that a precedes b globally, and
a→p b states that a precedes b locally on processor p.
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writes may also be observed at P1 by Y). Since this holds true for every write,
given a counter at each node that counts observed writes, the value of the counter
at Y (at P1) must be at least that at X (at P2), i.e. CY ≥ CX . The difference
CY − CX corresponds to the additional writes that were not yet received by P2 at
X, but are applied at P1 while the fetch request is in transit.

Now consider the reply phase. By the same argument, (w →1 Y ) ⇒ (w →2

Z) and CZ ≥ CY . The difference CZ − CY corresponds to the set of writes that
are received at P2 by Z, but were not applied at P1 before Y.

Clearly all of {CX , CY , CZ} can be known to P2 at Z: CX and CZ are local
counter values, and it is easy enough to include CY in the fetch reply message.
Thus, P2 knows how many writes have already been applied to the page (Ndrop =

CY − CX) and how many have not (Napply = CZ − CY ), which must total the
number of writes that were queued (Nqueued = CZ − CX)2.

Now that it is known how many writes must be applied, what remains is
to determine which writes to apply. To determine this, it is again necessary to
consider the message ordering provided by the network. Given ordered delivery,
the writes from each individual processor arrive in order. Thus if one considers
each source processor separately — with a separate counter for each — then it
is simply a matter of dropping the oldest and applying the newest writes from

each processor. Such a set of per-processor event counters is similar to a vector
clock [64].

The problem with vector clocks is that they are large structures that are
unwieldy to send over the wire with each fetch reply. Therefore a simpler solution
is desirable when possible. If the network topology provides a form of total order
broadcast, then a vector clock becomes unnecessary, as there is a global total order
which can be leveraged. The solution then is trivial: the earliest Ndrop writes
should be dropped and the latest Napply writes should be applied.

The vNUMA network does not provide true total order broadcast, but it does
provide a form of sender-oblivious total order broadcast in which the sender
observes broadcasts earlier than the total order (see Section 9.1). In this case, the

2In fact the situation is slightly more complicated because in some cases the fetch request may
be routed via another node: the manager. However, this does not invalidate the argument, since
X → Y is still true.
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Figure 8.3: Timeline showing a possible ordering problem (see text)

trivial total order solution does not hold. Figure 8.3 shows a problematic timeline.
Comparing write counters (CX = 0, CY = 1, CZ = 2) shows that one write
should be applied and one should be discarded. The trivial solution would discard
the oldest write w1. However, careful examination of the timeline shows that in
fact w2 should be discarded — it was already applied at P1 — and w1 should be
applied, since it only arrived at P1 after Y.

The problem here is that the sender-oblivious total order broadcast scheme
does not guarantee the order of writes originating at one of the observing nodes;
thus one needs to separately consider the writes originating at P1 and P2:

• Writes by P1 before Y: all of these writes arrive at P2 before Z (ordered
delivery), and they can all be dropped! Hence, in Figure 8.3, it is known
that w2 must be discarded, leaving w1 to be applied.

• Writes by P1 after Y: these necessarily arrive after Z (ordered delivery), and
are applied normally.

• Writes by P2 before X: these necessarily arrive before Y (causally ordered
delivery), and are applied normally.

• Writes by P2 between X and Z: one might assume by ordered delivery that
these would arrive after Y, but given a situation in which the fetch request
must be routed via another node (a manager), it is possible that a write after
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X could arrive before Y. To avoid this situation occurring, sending writes
while waiting for page data is disallowed3.

• Writes by P2 after Z: these necessarily arrive after Y, and are applied
normally.

Final algorithm

Therefore, a final algorithm can be stated for processing the set of queued writes
once the page data is received at Z:

1. All writes from the page sender are dropped (assume there are Nsender of
these) — it is known that these are included in the page data.

2. Out of the remaining writes, the earliest CY − CX − Nsender writes are
dropped; equivalently the latest CZ − CY writes are applied. (CX , CY and
CZ are counts of received writes at X, Y and Z respectively, with CY sent
in the fetch reply.)

Note that it is not necessary to consider any later writes that are received at P2
after Z, because these writes necessarily arrive at P1 after Y (the contrapositive of
(w →1 Y )⇒ (w →2 Z) is that (Z →2 w)⇒ (Y →1 w)). Further writes should
simply be applied at both processors as normal.

8.6 Coherence

The write-update algorithm presented thus far is sufficient to run Linux and all
of the tested applications. It does, however, have a theoretical problem: it does
not fully guarantee coherence. Simultaneous writes by multiple nodes to the
same location may result in the writers disagreeing as to which value is the final
value. This is rarely a serious problem in practice, because each node individually
observes a consistent state of affairs. Nonetheless, it would be desirable to find a
solution.

3Since this is overly restrictive for some of the vNUMA optimisations, the present algorithm
is actually implemented with per-page counters rather than global counters, and thus only writes
to the particular page that is being waited on need be suppressed.
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P1 //

P2 //**VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV 44hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

write X = 1

write X = 2

(X = 2)

(X = 1)

Figure 8.4: Coherence problem with write notices

To see how the problem can occur, consider the simple timeline presented in
Figure 8.4, in which two processors simultaneously write different values to the
same read-shared location. Each node first observes the value that it wrote locally,
which is consistent with the behaviour of processor write buffers. However, both
nodes then apply the remote writes. In the absence of further writes, P1 now
has X = 2 and P2 has X = 1. Further, it can be seen that this situation
appears symmetric to both nodes: even though the network might provide (sender-
oblivious) total order broadcast, neither node observes its own transmission and
thus neither node can authoritatively determine a total order. It is up to the protocol
to provide a solution that provides for a true total ordering.

Indeed the total order broadcast problem is a common problem in distributed
systems, so existing work provides some insight into how this could be achieved.
There are two general approaches presented in the literature, as comprehensively
summarised by Defago et al [21]: protocols that use a central sequencer, and
deterministic merging protocols that reorder messages into a deterministic order
at each receiver.

A central sequencer does partially resolve the problem of Figure 8.4. Assume
that P1 and P2 must send their updates via a sequencer S. The result is shown
in Figure 8.5. Ultimately, both processors agree on the final value X = 1, so
this does solve the problem of shared memory divergence. However, note that P1
observes X = 1 followed by X = 2 followed by X = 1, even though X = 1 only
appears once in the program. (It is not possible to delay the visibility of the local
write and continue the program.) Strictly speaking this violates coherence and
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P1 //

P2 //

S //��:::::::::::

AA

88

$$JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ AA

88

write X = 1

write X = 2

(X = 2)

(X = 2)

(X = 2)

(X = 1)

(X = 1)

(X = 1)

Figure 8.5: A central sequencer prevents divergence but does not provide true coherence

is disallowed by the Itanium architecture. In addition, a central sequencer could
clearly become a bottleneck.

Deterministic merging allows for a better solution. Consider assigning every
write a globally unique sequence number S(w), and including that sequence
number when the write notice is transmitted on the network. Every node —
including the sender — can then reconstruct a unique ordering w1, w2, ..wn which
consists of the writes sorted by sequence number, i.e. S(w1) < S(w2) < ... <

S(wn).

In order to guarantee that every write has a globally unique sequence number,
one first ensures that uniqueness holds locally by using a monotonically increasing
counter. Then, one can use the node number as a secondary differentiator (for
instance, by placing it in the low-order bits of the sequence number). Where
there is a collision between counter values on different nodes, the node number
resolves the conflict. In order to preserve causality — the property that dependant
writes follow each other in the global order, in other words have a higher
sequence number — the counter used is a logical clock, and is synchronised on
communication. This is similar to the technique used in the mutual exclusion
algorithm presented by Lamport [55].

Of course, in order to calculate the total order {w1, w2, .., wn}, one must first
wait to receive write messages from all nodes. In vNUMA, write notices are only
sent when necessary, so there could be long periods when a particular node is
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P1 //

P2 //

S=257

**VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

S=258

44hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

write X = 1

write X = 2

(X = 2)

(drop: 257 < 258. X = 2)

Figure 8.6: Deterministic merging to ensure coherence. Both nodes ultimately agree
on X = 2, the write with the higher sequence number. A method for choosing unique
sequence numbers is described in the text.

quiet. In order to guarantee liveness and reduce latency, it would be necessary to
regularly send empty messages from each node.

However, coherence only requires total ordering on a per-location basis.
Consider the case where {w1, w2, .., wn} are a set of writes to the same location.
From the point of view of program semantics, it is not essential to guarantee that
all of {w1..wn} are observed, as long as the observed subset follows the correct
ordering and culminates in the proper final value. In other words, observing
{w2, w1, wn} is not allowed since S(w2) 6< S(w1), but observing {w1, wn} or
even just {wn} is allowable. In practical terms one could simply assume that that
processor was not fast enough to observe the intervening values.

This suggests a technique which will be referred to as incremental determin-
istic merging. Each incoming write notice is applied immediately, but it is only
applied to a certain location if its sequence number is greater than the last write to
that location. Since every node receives all write notices, the value of that location
always ultimately converges on the write with the maximum sequence number
(wn), with any intermediate values respecting the required ordering. Figure 8.6
shows how this resolves the original problem.

Practical implementation

In the preceding discussion the definition of a location was deliberately vague.
In a real computer architecture, it is possible to issue overlapping writes with
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P1 P2

Write wd: (S=1)
XX XX XX XX

##
��11111111111111

Write wb: (S=2)
.. .. .. YY

{{
��















Observed:
00 00 00 00
XX XX XX XX
XX XX XX YY

Observed:
00 00 00 00
00 00 00 YY
XX XX XX YY

Figure 8.7: Combining writes of different sizes. On P2, write wd appears to modify 3
bytes.

different sizes. For example, consider a 4-byte write wd with S(wd) = 1, and a
byte-sized write wb with S(wb) = 2 (thus wd precedes wb). If the newer byte-
sized write happens to be applied first at some node, then when the older 4-byte
write is received, it must only appear to modify the top 3 bytes, as illustrated in
Figure 8.7. This set of observed values is consistent with the Itanium memory
consistency model [46].

This illustrates that conflict resolution must be applied at the byte level and not
the word level. Conceptually the solution is to store a sequence number for each
byte. As soon as wb is applied, the sequence number of that lowest byte becomes
2, and thus wd with sequence number of 1 cannot affect the value of the lowest
byte.

In practice, of course, storing a sequence number for every byte of every page
is prohibitive; for 16-bit sequence numbers it would reduce the amount of usable
memory to a third. Fortunately, it is only necessary to store sequence number
information for a short time. Once updates are received from all nodes with at least
a certain sequence number, all information related to lower sequence numbers can
be discarded, since any new incoming writes will have a higher sequence number.

Since the conflict resolution algorithm is executed for every write update,
the data structure used to track sequence number information must be carefully
designed. In particular, since the majority of updates received will not conflict,
the tracking overhead must be minimised. It must also be easy to clean up data
about old sequence numbers that are no longer valid.
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address
mask
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0 1

0x1008

11111111

<invalid>

2 3 4

0x1008
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1

5
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0x1008oo

kkjj

S(w) //

Figure 8.8: Data structure used for coherence algorithm

address
mask

link

0 1

0x1008

11111111

<invalid>

2 3

0x1008

11110000

1

4

0x1008

00001111

3

5

hashtable

4

address
0x1008oo

kkaagg

S(w) //

Figure 8.9: Adding a new write. The incoming write has sequence number 3, address
0x1008 and mask 11111111 (entire 8 bytes). The hash chain is traversed as far back
as sequence number 4; since that logically newer write wrote 00001111 (the lower four
bytes), the mask is constrained to 11110000 (the top four bytes). The appropriate slot for
the new write is then updated and linked in place.

A number of formats were investigated for this data structure. Early imple-
mentations used a pool allocator to allocate tracking structures on demand, where
each tracking structure contained dense sequence number information for a small
fixed-size area of memory. These tracking structures were then added to two lists:
a per-page list, used for lookup, and a clean-up list. The per-page list was doubly
linked so that the clean-up process could later unlink the tracking structure from
the per-page list.

However, such implementations suffered from large overheads, because of the
complexity of the data structures and the cache misses caused by their sparseness.
A better implementation was designed, based on a data structure quite similar to
that introduced in Section 5.2.2.

In the improved implementation, a fixed size buffer stores information about a
certain number of preceding writes (Figure 8.8). Writes are directly inserted into
the buffer using the least significant bits of their sequence number as an index;
assuming that sequence numbers are allocated in a unique and relatively dense
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fashion, this mapping is quite efficient. For fast lookup, writes are then indexed
using a hash function of their target address; writes with the same hash value are
linked together in a chain. This chain is always kept in reverse sequence number
order.

There is only a single operation on this data structure: adding a new write
(Figure 8.9). The arguments are the sequence number of the new write, a word-
aligned address4, and a mask of bytes to write within that word. The hash chain for
that address is looked up and traversed as far back as the given sequence number;
this path encounters all logically newer writes, which are used to further constrain
the mask (in cases where the address matches). Once a link field with an older
sequence number is reached, traversal stops and the new write is inserted into
the chain. The constrained mask is returned and used to determine the bytes in
memory that should be written.

Since a chain is never traversed past the sequence number of a newly received
write, the chains need never be garbage-collected. It is sufficient to ensure that
the buffer is sized large enough so that it covers the window of valid sequence
numbers that can be received at any one time. Since each node tracks the last
sequence number received from each other node, a violation of this rule can
be detected and a stall induced if necessary; however such stalls are clearly
undesirable.

This algorithm is simple and has relatively low overheads. The cost will be
quantified in Chapter 12.

8.7 Atomic operations

In practice, locks and similar synchronisation primitives constitute a major cost
in many vNUMA workloads. This becomes particularly problematic within the
Linux kernel, since the same kernel necessarily runs on all CPUs. Large locking
overheads in the kernel can severely hamper scalability, even for workloads that
are not themselves limited by synchronisation performance.

4Word is used in this context is to refer to a machine word of 64 bits. It is assumed that
writes never cross a machine word boundary, or multiple lookups in the data structure would be
necessary.
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On an SMP system, locks are normally implemented by using atomic read-
and-write operations on shared memory; the write phase marks the lock as locked
and a ‘simultaneous’ read of the previous value is used to verify that no other
processors have already acquired the lock (the exact definition of atomicity will be
discussed shortly). The Itanium processor architecture provides three operations
that can be used for this purpose: the exchange (xchg) instruction atomically
writes a memory location and returns the earlier value; fetch-and-add (fetchadd)
also returns the previous value but adds the argument instead of storing destruc-
tively; finally compare-and-exchange (cmpxchg) is an enhancement of exchange

that only performs the write if the value read matches a given value5.

In the write-update protocol described thus far, any of these operations result
in a fallback to write-invalidate mode: exclusive page ownership is acquired and
all other read copies are invalidated. While this guarantees correct execution of
the atomic instruction, it is not optimal. For example, when a lock is acquired
on multiple nodes, the entire page contents must be transferred each time.
This section describes an extension to the write-update protocol (dubbed write-
update+) that allows the update strategy to be used even for atomic operations,
eliminating the need to continually invalidate pages containing locks and other
atomically accessed variables.

It is firstly necessary to define atomicity more precisely. Recall from Section
6.2 that coherence requires that accesses to a single location must be consistent
with the existence of a single total order of operations. Atomicity of a read-and-
write instruction to coherent memory means that the read and write operations
must be adjacent in that total order; any execution that implies a total order where
those operations are not adjacent is disallowed.

To give a practical example, if two processors attempt to acquire the same lock
simultaneously, at least one must observe it locked. Consider a lock implemented
with exchange operations; each exchange operation RW consists of a read
operation R and a write operation W . Processor P1 issues RW1 (consisting of
R1 and W1) and processor P2 issues RW2 (consisting of R2 and W2). The effect
must be consistent with one of two total orders, either R1 → W1 → R2 → W2 (in

5Note that both exchange and fetch-and-add semantics can be implemented in terms of
compare-and-exchange (sometimes known as compare-and-swap), but the reverse is not true.
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which case R2 observes the lock as locked due to W1) or R2 → W2 → R1 → W1

(in which case R1 observes the lock as locked due to W2). An execution that
allows neither processor to observe it locked — implying that the reads are ahead
of the writes in the total order, such as R1 → R2 → W2 → W1 — is disallowed
by the atomicity requirement; here R1 and W1 are not atomic.

The fact that one of the two processors must observe the lock’s memory
location in the locked state (the new state) means that two vNUMA nodes cannot
independently execute atomic instructions on the same location. At most, one
node can be granted permission to execute atomic instructions on a location at
any time; the next node must fetch changes from that node before being granted
permission to proceed. This implies that a token-passing protocol is necessary.

Ordinary reads on other nodes, however, can always execute from a cached
copy. A read on some processor p may validly observe either the value before
an atomic instruction or the value after an atomic instruction, supported by the
execution orders Rp → R1 → W1, and R1 → W1 → Rp respectively —
these execution orders simply represent the threads differently interleaved, with
atomicity of RW1 preserved. This means that it is not absolutely necessary for
the DSM implementation to invalidate read copies when emulating an atomic
instruction. Assuming that the current node has the token to perform an atomic
operation on the target address, it is safe to perform the operation locally and
propagate the write part of the operation in the normal write-update stream. This
is the critical observation behind the write-update+ protocol.

However, there are some complications. Unlike reads, writes on other nodes
need special care. Assume, as usual, that the initial value of a memory location
is zero. Consider if a fetch-and-add operation RW1 atomically increments the
memory location on one processor, and there is a write of the value 5 (denote
this as Wp(5)) on another processor. Wp(5) must either become visible before the
atomic operation (Wp(5) → R1(5) → W1(6)) or after it (R1(0) → W1(1) →
W1(5)), never interleaved with it. That is, the valid final values are 6 or 5; the
value 1 (that might result from R1(0)→ W1(5)→ W1(1)) violates the atomicity
of RW1. Additionally, it can be seen that observing the intermediate value 1 is
only valid in the execution where the final value is 5, and not in the execution
where the final value is 6.
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P1 //

P2 //**VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV 44hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

(owner) fetch-and-add X = 1

write X = 5

(X = 1 or X = 5)

(X = 1 or X = 5)

Figure 8.10: Problem arising from simultaneous writes and atomic operations. P1 is
the owner of X and therefore has the token to execute atomic operations. Without the
coherence algorithm, P1 finishes with X = 5 and P2 finishes with X = 1. With the
coherence algorithm, both nodes agree on either X = 1 or X = 5, depending on the
sequence numbers of the two writes. However, X = 1 is an invalid result.

Given the vNUMA write-update protocol, a final value of 1 can easily result,
as shown in Figure 8.10. This may, at first glance, seem like a problem that
should be solved by the write coherence algorithm. However, the write coherence
algorithm only guarantees that the value converges to either 1 or 5; it cannot know
that 1 is an invalid final value.

It may be possible to resolve this problem with a more complex deterministic
merging algorithm, such as by ensuring that writes resulting from atomic oper-
ations are always applied earlier in the case of an ordering ambiguity. However,
this would require delaying the application of received writes until it is definitively
known whether a conflicting atomic operation has occurred; the specific goal of
the incremental deterministic merging algorithm described in Section 8.6 is to
avoid delaying writes in this way.

To avoid such complications arising from simultaneous writes, the write-
update+ protocol enforces a single writer for pages targeted by atomic operations.
Thus, at any point, a page can be in one of three modes: write-invalidate, write-
update (multiple-writer), or write-update+ (single-writer). The transition from
write-update to write-update+ mode occurs when the first atomic operation to
the page is intercepted; nodes are synchronously notified that they can no longer
generate write updates to the page without acquiring ownership. The benefit of
the write-update+ mode, however, is that the owner is now allowed to send write
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updates for atomic operations as well as ordinary writes, which will be seen to
produce significant performance improvements.

8.8 Write batching

For simplicity, the protocol thus far has been described in terms of writes, and
writes were generally considered to correspond directly to messages. However, a
write notice is small and each Ethernet message has considerable overhead on the
wire (headers and inter-packet gap) as well as processing overhead at the receiver.
Thus it is clearly beneficial to slightly delay the sending of writes and ‘batch’ as
many as possible into a single Ethernet message.

However, since one node may be waiting on a write that is contained in another
processor’s write buffers, it is necessary to ensure that write buffers are flushed
eventually, and in fact in this case it might be preferable to flush the buffers more
eagerly.

Additionally, write batching has implications for the consistency model. If a
remote node requests a particular page, any writes that have been made to the page
locally will be made visible to that node. If there are other writes which are still
being delayed in the write buffers, the writes to the requested page will overtake
the buffered writes in visibility order, even though they may have been later in
program order. This may violate the consistency model, if the consistency model
specifies that writes must be observed in order.

There are two ways that this can be avoided, in order to maintain write
ordering:

• Service remote reads from a shadow copy of the page, where the shadow
copy represents the remotely visible state of the page at any point in time,
and is only updated when write notices are flushed. In this case, write
visibility is delayed until the time of the flush.

• Flush all pending write notices (or at minimum the writes that precede
any writes that will be made visible) before servicing a remote read to an
exclusively held page. Assuming that messages arrive correctly ordered,
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this guarantees that the previous writes will become visible before any
writes in the read response.

Both of these approaches are problematic because vNUMA does not intercept
writes to pages which are in write-invalidate mode, and thus some writes do not
pass through the write buffers. The first approach would require shadowing all
pages including those in write-invalidate mode; the second would require flushes
before every read, since it is not possible to determine the complete set of writes
that precede the writes that will be made visible.

However, the Itanium architecture does not require this level of strictness
in write ordering. As previously described, the Itanium architecture provides
a weaker ordering model based on release consistency. Load instructions can
optionally have acquire semantics, guaranteeing that they become visible prior
to subsequent accesses. Store instructions can optionally have release semantics,
guaranteeing that they become visible after all previous accesses. Atomic read-
modify-write instructions can optionally have either acquire or release semantics,
but not both. Finally, there is a special memory fence instruction that has both
acquire and release semantics.

In fact acquire semantics are guaranteed by processor hardware regardless of
DSM behaviour. Consider a read with acquire semantics Racq that is followed
by another read or write access A (ignoring memory fences, only reads can have
acquire annotations, so this describes a general case). To satisfy the consistency
model, Racq must become visible before A; the easiest way to guarantee this is to
ensure that Racq completes locally before A is issued (recall from Section 6.2 that
a read becomes visible before it completes, and by definition A cannot become
visible before it is issued). This is necessarily the case for two separate reasons.
Firstly, the processor hardware itself interprets the acquire annotation, and the
Itanium processor implementation of acquire semantics is such thatRacq is indeed
forced to complete before A is issued to the memory system. Even if this was not
the case, this still holds for a system with one processor per node, because locally
accesses always appear to follow program order; the actual order of accesses is
only determinable if remote accesses intervene. The only mechanism by which
remote accesses occur is via a network interrupt, and interrupts always serialise
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execution.

Release semantics require special care, however. This time, consider an
access A that is followed by a write with release semantics Wrel (only writes
can have release annotations). To satisfy the consistency model, A must become
visible before Wrel. The same argument as above can be applied; in particular,
the Itanium processor interprets the release annotation and guarantees that A
completes beforeWrel is issued. However, there is a complication: in the case that
A is a write, local completion does not imply remote visibility — in the present
DSM system, writes may be queued before being propagated to remote nodes. In
that case it is up to the DSM system to guarantee that A is observed before Wrel.

If A and Wrel are both writes to write-update pages, then this is trivial: one
simply needs to ensure that order is preserved when propagating the write notices.
If A is to an exclusively held page, then that write becomes visible immediately
(recall that a write-invalidate protocol is atomically consistent), and so there is no
question that Wrel becomes visible later. On the other hand, if A is a queued write
butWrel is to an exclusively held page, thenWrel potentially becomes visible first;
it is up to the protocol to ensure that Wrel is never actually observed before A. A
can only be observed after a remote node requests read access to that page, so it
is sufficient to ensure that Wrel is propagated before a read response for A.

It only remains to determine how to detect Wrel to an exclusively held page,
since it does not fault (and indeed cannot be made to fault without making all
ordinary writes to that page also fault). To do this, the Itanium performance
monitoring unit is used; there is a performance monitoring counter which can
be configured to count releases. When a read request arrives for an exclusive
page, the counter is checked to determine whether a release occurred on the last
interval. If so, the write buffers are flushed before sending the read response. This
is a refinement of the second mechanism listed above, reducing the frequency of
write queue flushes compared to performing a flush on every read.

Finally, the write queue is eagerly flushed at the time that a write is intercepted,
if a release has been seen (either on that instruction or in the previous interval) and
if the network card transmit queue is empty. This is an optimisation to expedite
transmission of writes, since a release is usually used in the context of data that
is intended to be observed by another processor. If the transmit queue is not
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empty, then the flush is scheduled to occur after a delay; this rate-limits the update
packets and allows additional writes to accrue while previous update packets are
being transmitted.

8.9 Memory fences

As well as acquire and release annotations — which provide “half fence”
semantics, in that they are each permeable in one direction — the Itanium
architecture also provides a full fence instruction (memory fence, mf) that enforces
the strictest possible ordering. Given any access A and B with an interposed mf

instruction, A must become visible before B.

mf is counted by the performance monitoring unit as a release (as well as an
acquire), so if A and B are both writes then the release detection mechanism
described in the previous section guarantees that A becomes visible before B. If
A is a read, the same argument used in that section can be applied again here: A is
always forced to complete locally before B is issued, so A also becomes remotely
visible before B.

The one case that is problematic is when A is a buffered write and B is a
read. Strictly, a memory fence should prevent B from returning a locally cached
value, forcing A to become visible everywhere before B completes. An example
execution is shown in Figure 8.11. Without the memory fence, the reads on both
processors may obtain locally cached values of X and Y (0). The memory fences
force the preceding writes to become visible before the reads are issued. If X is
the first read performed, then this implies Y = 1 is visible by that time, and so
the subsequent read of Y must return 1. If Y is the first read performed, then this
implies X = 1 is visible by that time, so the subsequent read of X must return 1.
Thus, the case where both reads return 0 is not allowed.

However, this is difficult to enforce in a protocol such as that in vNUMA. If
one considers the situation that both nodes have pagesX and Y read-shared and in
write-update mode, the writes will result in the local page versions being updated
and remote writes being queued (and possibly sent on the network), but neither
the mf instruction nor the subsequent reads trap to vNUMA so that a stall can be
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P1
Y = 1

mf
read X

P2
X = 1

mf
read Y

Figure 8.11: Example execution illustrating one effect of a memory fence. Assume that
the initial values of X and Y are 0. The case where both reads return 0 is not allowed.

enforced6. Thus, it is very likely that the reads will return the previous locally
cached values, in violation of strict memory fence semantics. The correct values
only become visible once the remote writes arrive.

Even if the mf instruction could be intercepted, the challenge with such
memory fences is that it is not possible to determine, at the time of the memory
fence or read, which nodes to communicate with to acquire the relevant updates.
P1 does not know that P2 has updates pending toX , and that there is a fence on P2
that would force ordering. In order to implement strict memory fence semantics it
is therefore necessary either to synchronously communicate with all other nodes
and acquire updates, or alternatively to use a global lock that only allows one
node to execute a memory fence at any time, preventing the race condition in an
execution such as Figure 8.11. Both of these solutions can introduce significant
overheads in a large system: in the first case, many messages are required; in the
latter case, the single lock becomes a bottleneck.

Fortunately, such strict memory fence semantics are actually rarely needed.
Often, full memory fences are used by programmers as a conservative measure,
but the code would function correctly with a weaker fence — such as an acquire,
release, write fence, read fence, or I/O fence — all of which can be implemented
with minor overhead on vNUMA. In cases where a full fence is needed, the
same effect can be achieved using atomic operations. Implementing a fence using
atomic operations is essentially equivalent to a lock-based implementation of mf,
but it is far more scalable because the scope is restricted using the address targeted
by the atomic operation; it does not require processors executing unrelated fences

6It is possible to arrange for a performance monitoring interrupt on the mf instruction, but these
interrupts are not synchronous with the instruction stream. By the time the interrupt is delivered
it is often too late to rectify the bad value returned by the following read, short of rolling back the
entire virtual machine to a safe point.
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P1
try to lock (fail)

add self to wake-up queue
mf

re-check lock (locked)
sleep

P2

unlock lock
mf

check wake-up queue
wake up waiters

Figure 8.12: Use of memory fences in the Linux wait on bit lock implementation.
Italics show the correspondence with Figure 8.11.

to communicate.

Despite the assortment of synchronisation algorithms implemented in Linux,
only one case was encountered in testing which required a full fence — the
implementation of the wait on bit lock function — and this was resolved via a
simple modification. Pseudocode which demonstrates the issue is shown in Figure
8.12. In some memory management data structures, a single bit within a word is
used as a lock for the rest of the data structure. In the case that the lock bit is
found to be already set, a thread adds itself to a wake-up queue, re-checks the
lock bit, and (assuming that it is still set) goes to sleep. Memory fences are used
to ensure that either P1 observes the unlock, or P2 observes the write to the wake-
up queue (or both, but not neither — if neither occurs then P1 will never be woken
up). This is logically identical to the previous example, where the lock and the
wake-up queue correspond to X and Y .

Notably, the lock attempt and the unlock are already performed using atomic
operations, although the position of these operations with respect to the queue
operations cannot prevent the undesired outcome. However, if the re-check of the
lock is also performed using an atomic operation — it is in any case desirable
to lock it if it is found to be unlocked — then atomicity guarantees that this
instruction is definitely ordered with respect to the unlock. If the re-check occurs
after the unlock, then it observes the unlock, and P1 does not go to sleep. If the
re-check occurs before the unlock, then at unlock time P2 will acquire updates
from P1, and P2 will necessarily observe the wait queue update (vNUMA does

enforce the write-write ordering semantics of the mf). This resolves the problem.

Clearly this solution violates one of the goals of vNUMA, which is trans-
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parency. Nonetheless, the problem arises sufficiently rarely that it would be
unfortunate to introduce large overheads intercepting and synchronising memory
fences when the majority of uses of memory fences do not rely on strict write-read
ordering. Better solutions to this problem should be a subject for future work.

8.10 Pseudocode

In this section, the pseudocode in Section 7.6 is extended to reflect the en-
hancements described in this chapter. As before, a page fault causes the fault
handler to be invoked. The fault handler now additionally takes an is rse flag
which indicates whether the access was caused by the Itanium register stack
engine (since these accesses cannot be emulated easily). If the faulting operation
is a write access and the conditions hold for the write-update algorithm to be
used, fault calls emulate store operation or emulate atomic operation. These
procedures acquire ownership of the page if necessary, apply the operation to
the local copy of the page and queue a remote store message to be sent to
all other nodes. The ultimate receiver of these messages executes the code
shown in handle remote store. Whenever page data or ownership is required,
acquire page is called, which is essentially the same as the original write-
invalidate protocol — fetch or invalidate messages are sent as appropriate.

In addition to the per-page metadata previously described (page.owner,
page.copyset, page.permissions, page.lock and page.wait queue), the new
algorithm also tracks the total number of write updates applied to a page
(page.write count), the number of locally generated write updates without an
intervening remote update (page.write run count), whether the page is in the
multiple-reader single-writer mode described in Section 8.7 (page.mrsw mode),
and a queue of pending stores (page.store queue).
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fault(page, is write, is rse): handles a page fault on a DSM page
if is write and not is rse and page.write run count < invalidate threshold

then
disassemble instruction→ operation, size, is release
read source register→ write value

if operation = store then
emulate store operation(address, size, is release, write value)
return

else if operation = cmpxchg or operation = xchg or operation = fetchadd
then

read compare value register→ compare value

result = emulate atomic operation(operation, address, size, is release,
write value, compare value)

write result to target register
return

else
{fall through to acquire page}

end if
end if
acquire page(page, is write, is write)

emulate store operation(address, size, is release, value): emulates a store
if page.mrsw mode and page.owner! = node id then

acquire page(page, true, false)
end if
store(address, size, value) {perform store locally}
queue remote store(address, size, is release, value))

emulate atomic operation(operation, address, size, is release, new value,
compare value): emulates an atomic operation (cmpxchg, xchg or fetchadd)
if page.owner != node id then

acquire page(page, true, false)
end if
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if not page.mrsw mode then
broadcast mrsw mode(this node, page)
wait for all mrsw mode reply responses
page.mrsw mode = true

end if
old value = operation(address, size, new value, compare value)

{perform operation locally}
if operation == cmpxchg and old value != compare value then
{cmpxchg aborted}
return old value

end if
queue remote store(address, size, is release, new value)
return old value

queue remote store(address, size, is release, value): queue a store to be
sent to other nodes
page(address).write count++
page(address).write run count++
add remote store(address, size, value) message to write buffer
if write buffer full then

flush write buffer (broadcast and clear)
else if is release then

schedule expedited flush of write buffer, after configurable delay
end if

mrsw mode(requesting node, page): server for mrsw mode messages
if writes to page in write buffer then

flush write buffer
end if
page.mrsw mode = true
send mrsw mode reply(page) to requesting node

remote store(address, size, value): server for remote store messages
page(address).write count++
page(address).write run count = 0
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if page(address).lock then
queue store on page.store queue

else
store(address, size, value) {perform store locally now}

end if

acquire page(page, request ownership, exclusive): fetches a DSM page
if writes to page in write buffer then

flush write buffer
end if
if page.owner = this node then

send invalidate(page) to nodes in page.copyset
page.copyset = ∅
page.permissions = readwrite
page.mrsw mode = false
return

end if
page.lock = 1

if manager(page) = this node then
send fetch(this node, page, true, exclusive) to page.owner

else
send fetch(this node, page, request ownership, exclusive) tomanager(page)

end if
wait while page.lock = 1

fetch(requesting node, page, request ownership, exclusive): server for
fetch messages
if writes to page in write buffer or release seen since last flush (see Section 8.8)
then

flush write buffer
end if
if page.lock then

enqueue message on page.wait queue
else if no forward progress since page received then
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enqueue message on page.wait queue
schedule callback to process page.wait queue

else if page.owner = this node then
if exclusive then
page.mrsw mode = false

end if
if requesting node /∈ page.copyset then

send page data to requesting node
end if
send fetch reply(this node, page, request ownership, exclusive, page.copyset,

page.write count, page.mrsw mode) to requesting node
if request ownership then
page.owner = requesting node

else
page.copyset = page.copyset ∪ {requesting node}

end if
page.permissions = exclusive ? nil : read
page.write run count = 0

else
send fetch(requesting node, page, request ownership, exclusive) to page.owner

end if

fetch reply(from node, page, grant ownership, exclusive, copyset,write count,
mrsw mode): server for fetch reply messages
if exclusive then
page.owner = this node

copyset = copyset \ {this node}
if copyset 6= ∅ then

send invalidate(page) to nodes in copyset
end if
page.copyset = ∅

else if grant ownership then
page.owner = this node
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page.copyset = (copyset \ {this node}) ∪ {from node}
end if
page.permissions = exclusive ? readwrite : read
page.mrsw mode = mrsw mode

page.write run count = 0

page.lock = 0

if page data received with this message then
drop stores in page.store queue from from node

drop stores in page.store queue except last page.write count−write count
(as per Section 8.5)

end if
process page.store queue
process page.wait queue

invalidate(page): server for invalidate messages
if no forward progress since page received then

enqueue message on page.wait queue
schedule callback to process page.wait queue

else
page.permissions = nil
page.mrsw mode = false
page.write run count = 0

end if
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Chapter 9

Other infrastructure

In addition to the distributed shared memory system that was the focus of this part
of the thesis, there are a number of other components that make the distributed
hypervisor a reality. These pieces include: efficient inter-node communication
protocols, a mechanism for interprocessor interrupts, an appropriate set of
network-transparent virtual devices, and a bootstrap process to co-ordinate the
nodes during startup.

9.1 Efficient inter-node communication

A vNUMA cluster consists of commodity workstations connected by Gigabit
Ethernet. Thus, an obvious requirement is that each node have a Gigabit Ethernet
card, and vNUMA must have an efficient driver for that card that can be leveraged
for inter-node communication. In many modern virtual machine monitors —
including Xen, VMware Server and Microsoft Virtual Server — network device
drivers are contained not in the VMM itself but in one of the virtual machines.
This not only prevents that particular virtual machine from being distributed, but
also impacts latency. As will be demonstrated in Chapter 12, latency is absolutely
critical to DSM performance, and this would put such hypervisor designs at a
disadvantage. vNUMA contains, within the hypervisor, latency-optimised drivers
for a number of Gigabit Ethernet chipsets.

Just as it was sought to achieve the lowest possible virtualisation overhead by
developing a thin standalone hypervisor, so it was sought to provide the lowest
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destination source proto from type arguments payload CRC

(bytes) 6 6 2 1 1 up to 24 up to 4096 4︸ ︷︷ ︸
Ethernet header

︸ ︷︷ ︸
vNUMA header

Figure 9.1: Anatomy of a vNUMA packet

Type Purpose
fetcha Core DSM protocol (§7.6)
invalidatea Core DSM protocol (§7.6)
storeb Write-update protocol (§8.1)
ipi Inter-processor interrupt (§9.2)
purgeb Global TLB purge (§9.2)
diskio Disk I/O (§9.3)
discoverab Initialisation (§9.4)
configurea Initialisation (§9.4)
startup Initialisation (§9.4)
resetb Reboots all nodes

aRequest/reply pair
bBroadcast message

Table 9.1: vNUMA message types

possible communication overhead by using a very simple protocol at the Ethernet
layer. This avoids the complexity and overheads of protocols such as TCP/IP,
which have primarily been designed for wide area networks, and allows the
protocol to be customised to the desired requirements.

Packet format

The format of a vNUMA packet is shown in Figure 9.1. It starts with the
Ethernet-mandated header, containing a destination Ethernet address, a source
Ethernet address, and a protocol number (which in this case identifies the vNUMA
protocol). This is followed by a vNUMA header, specifying the logical source
node, message type (Table 9.1) and arguments specific to that message type (such
as the page number and request sequence number). Finally there is a variable
length data payload and a CRC checksum (mandated by Ethernet). Typically, the
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data payload contains page data, although it is also used for other purposes such
as transferring write updates in the write-update protocol.

Nominally, the maximum Ethernet payload is 1500 bytes, excluding Ethernet
header and CRC; hence a single 4096 byte page requires three frames to transmit.
However, almost all Gigabit Ethernet network cards (and some but not all
switches) support so-called jumbo frames, which allows the maximum frame size
to be raised as high as 9000 bytes, easily accommodating an entire page in one
packet. vNUMA can either use jumbo frames or it can fragment a page between an
arbitrary number of packets. The effect of this is investigated in section 12.2.7. In
fact, with low-cost store-and-forward switches, fragmenting the page into multiple
frames can be advantageous for latency.

All Gigabit Ethernet network cards support coalescing data from multiple
buffers into a single packet, and one can leverage this to avoid copying large
amounts of data when constructing a frame. Nevertheless, there is overhead for
each additional buffer, so only two buffers are used. The Ethernet header and
vNUMA header are constructed in the first buffer; the second buffer references
the source page data directly, avoiding any copying in the common case.

If jumbo frames are used then zero-copy receive is also possible using a similar
setup, although this has not yet been implemented. Since the headers are of a
fixed length, the card can be instructed to receive the headers into one buffer
and the data payload onto a separate page (alternatively, a single buffer can be
set up crossing two pages in the appropriate way). Then, virtual memory tricks
can be used to swap the received page with the target page, without copying.
The vNUMA memory management infrastructure makes this relatively simple,
although modifications to the network card drivers would be needed to set up the
buffers appropriately.

A distinctly problematic case occurs when a page is queued to be transmitted
and a local write to the page is intercepted7. It would not be safe to resume local
execution without applying a local write. However, it is also not safe to apply the
write in-place, since it is not known whether the network card has already read
the page data or not, and so the copy being sent would be in an indeterminate

7Note that it is not necessary to suppress remote writes received during this period; these will
be re-applied at the destination and it does not matter if they are applied twice.
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state. When this occurs, the page data is copied to a newly allocated frame;
this newly allocated frame is swapped into the virtual machine while the network
card continues to transmits the old frame. Thus, sending is still zero-copy in the
common case, but a single copy is occasionally necessary.

Ethernet reliability and ordering properties

vNUMA’s distributed shared memory system depends, to varying degrees, on the
inter-node communication layer providing four properties:

• Reliability: no messages are lost or corrupted

• Ordered delivery: messages from a single sender arrive at any given receiver
in the same order they were sent; if P1 transmitsm1 beforem2, then P2 must
receive m1 before m2.

• Causally ordered delivery: messages that are causally related (one message
was transmitted following transmission or receipt of another message)
arrive in the proper order at any given receiver. This is a superset of ordered
delivery that applies to more than two nodes. For example, if P1 broadcasts
m1, and then P2 transmits m2 upon receiving m1, then m1 must arrive
before m2 (Figure 9.2).

• Sender-oblivious total order broadcast: if P1 broadcasts m1, and P2
broadcasts m2, then either all other observers observe m1 before m2, or
all other observers observe m2 before m1. Note that in an Ethernet-like
network, P1 and P2 do not receive their own broadcasts and cannot make
any conclusions as to the total order; this is what is meant by sender-
oblivious.

Most distributed systems rely on high-level network protocols to provide
these guarantees. However, the vNUMA system is a well-controlled hardware
environment. Clearly, if it can be shown that the system hardware exhibits certain
properties by design, then it is most efficient to leverage those properties and
reduce the software overhead.
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P1 //

P2 //

P3 //

m1

��11111111111111111111

��77777777777

m2
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Figure 9.2: Causally ordered delivery. m1 is received at P2 before m2 is sent, therefore
m1 must be received at P3 before m2 is received.

To understand message delivery in an Ethernet network, it is necessary to
consider how a typical Ethernet switch is designed. The majority of commodity
switches employ a single switch chip which performs packet processing, as in
Figure 9.3; some modern designs are capable of supporting up to 48 ports with
the one switch chip.

A switch chip has a transmit and receive process for each port, a switching
process, and packet data memory, as shown in Figure 9.4. When a packet is
incoming, the receive process first transfers the data into the packet data memory.
The switching process is then notified; it determines the set of output ports based
on the destination Ethernet address of the packet, and adds a reference to the
packet in each of the corresponding output queues. Each output port’s transmit
process gradually transmits packets from its queue in FIFO (first-in first-out)
order. When no references to the packet remain in any output queue, the packet’s
buffers are released.

Ordered delivery is a natural consequence of such a design. If m1 is
transmitted by P1 before m2, then m1 is received first, switched first, queued
to the output FIFO first, and transmitted on the output port first. Causally ordered
delivery is also guaranteed: if P2 has received m1, then any other recipients’
output queues must also already contain m1; thus an observer will necessarily
receivem2 afterm1. In fact, total order broadcast is also provided by the atomicity
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Figure 9.3: Typical design of a Gigabit Ethernet switch. Each PHY transceiver is
connected to a port.

port 1
receive process

//

!!

switching process

address table

port 2
transmit process

FIFO

packet data
memory

port 3
transmit process

FIFO

//

��..............

FF

<<

Figure 9.4: Basic operation of a switch chip

of the switching process: either the switching process first considers m1 and
queues it to all output queues before m2, or it first considers m2 and queues it
to all output queues before m1.

It should be noted that some switches support cut-through switching, in
which case transmission on the output port may commence immediately after
the destination address is seen — and while the rest of the packet is still being
received — as opposed to store-and-forward switching which first requires the
whole packet to be received. Since cut-through switching is only used when the
output queue is empty, there is no practical distinction to be made in terms of
the ordering guarantees provided. Indeed cut-through switching is very much
desirable for a vNUMA system, since it reduces latency.
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Figure 9.5: Design of a switch with two switch chips

A more complicated situation arises if the Ethernet fabric has more than one
switch chip, such that there is no longer a single central point at which switching
occurs. This occurs in some large switch designs, or if multiple switches are
connected together. An example topology with two switch chips is shown in
Figure 9.5; the set of ports is now divided into two groups, connected together
with a trunk that is essentially like another port.

Assuming that packets are forwarded over the trunk in FIFO order, it is
possible to show that such a topology still guarantees ordered delivery and
causally ordered delivery, even for nodes located in different groups: these
properties hold between a source node and the trunk, they hold between the trunk
and the destination node, and they are transitive. Total order broadcast, however,
cannot be guaranteed in this scenario: a broadcast will first be queued to local
ports before being forwarded over the link. There is no longer a central atomic
switching process to provide a total order. Thus, in such a topology, one could not
rely on atomic broadcast; protocol-level solutions become necessary. Firstly, the
algorithm of 8.5 would need to use the more complex vector clock solution rather
than the simpler algorithm described. More fundamentally, remote store atomicity
would be violated; the Itanium architecture requires remote store atomicity for
stores with release annotations. However, since causality and coherence are still
preserved, it is unlikely that this would affect many algorithms in practice. This
could be resolved with a more complex protocol for store atomicity, as has been
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done in this thesis for coherence.

The vNUMA protocol is also heavily optimised for the case where there is no
packet loss, although some consideration has been given to detection and recovery.
It can reasonably be assumed that link-level transmission over short distances of
quality cabling is reliable — since all physical parameters are well within their
specifications, signal-to-noise ratio is high, and Gigabit Ethernet is capable of
correcting a certain number of random bit errors. Thus, packets are only lost in
two cases: if the receiver has insufficient buffers, or the switch has insufficient
buffers. Receive buffers are within the control of vNUMA, and indeed can be
set high enough that no loss occurs even at network saturation. Switch buffers
also tend to be generous, but for certain pathological communication patterns it is
nonetheless possible to queue data faster than the available output bandwidth.

Dealing with packet loss in the base DSM protocol is relatively simple. The
base protocol uses request/reply pairs, and the request is retransmitted after a
timeout. The sequence number contained in the packet allows a receiver to detect
a request that it has already processed (implying that the reply was lost). Further,
the request/reply nature of the protocol bounds the number of in-flight messages
and the required buffer space in the switch. The greatest amount of buffer space
is taken when each node is waiting on page data and that page data is in-flight;
for N nodes, this is a little over N multiples of the page size, or 32 KiB for 8
nodes — significantly smaller than the packet buffers in a typical 8 port switch (at
least 128 KiB). Additionally, if jumbo frames are not used, then this requirement
is reduced, since the page data moves through the switch in a pipelined fashion.

In the case of the write-broadcast protocol, the situation is more complicated,
since there are no synchronous replies. A loss is detected when the next packet
from the same sender arrives, with an unexpected sequence number, and at that
point the earlier update could be re-requested. This does not violate coherence,
since the coherence algorithm can cope with receiving writes in any order. It is
also processor consistent, assuming that the earlier update is applied before the
later update from the same sender. However, the relative order of writes from
different processors is affected; globally it can violate remote store atomicity and
causality. This would not be a problem for the IA-32 architecture, which only
guarantees processor consistency; however as previously mentioned the Itanium
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architecture insists on remote store atomicity for the subset of stores with release
annotations. A more complex protocol that would provide this level of store
atomicity in the face of lost packets is theoretically possible but beyond the scope
of this thesis.

9.2 Inter-processor interrupts

In addition to providing shared memory, vNUMA must also provide inter-

processor interrupts (IPIs), which allow an operating system to send a notification
to another processor. In the Itanium architecture, IPIs are sent by writing a value
to a virtual array located at a certain address; the index in the array specifies
the destination processor and the value specifies the interrupt number to deliver.
vNUMA intercepts these writes via the same mechanism as used by the write-
update protocol, and sends an IPI message to the destination node which delivers
the interrupt8.

The Itanium architecture also provides a global TLB purge instruction, which
allows an entry to be invalidated from remote TLBs without needing to invoke OS
code on every processor. This is implemented in the obvious way, by broadcasting
a TLB purge request to all processors. The global TLB purge instruction has
release semantics, so local write buffers must be flushed before the TLB purge
message is sent.

9.3 Distributing I/O

vNUMA also must provide certain virtual devices to the operating system. As
presented in Part I, the operating system interface provides for three virtual device
classes: network (Ethernet), disk (SCSI) and console.

In that chapter it was assumed that these facilities could simply be mapped
directly onto physical devices. However, in a distributed environment this is
more complicated. Linux assumes that any device can be accessed from any

8While a separate message type is used in vNUMA, it would also be possible to use a normal
write message for this purpose; a node that receives a write to its own special interrupt address
then delivers an interrupt.
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node. However, in a vNUMA cluster, there will be multiple physical devices
of each type, each of which can only be accessed on a particular node. For each
device type, there are two possible options: either (a) to present each physical
device to the operating system, and route non-local I/O requests to the node with
the requested device; or (b) to present a single virtual device that vNUMA is
responsible for mapping onto one or more physical devices.

Network

The network device type lends itself to solution (b): a single virtual Ethernet card.
Since processes arbitrarily and transparently migrate between nodes, and TCP/IP
connections are fixed to a certain IP address, it is necessary to have a single IP
address for the cluster. With a single virtual Ethernet interface, the user can simply
configure an IP address on that interface; it would be confusing and fruitless to
provide multiple virtual interfaces.

Since all of the nodes are on a shared Ethernet, outgoing packets can be sent
from any node. The design of Linux is such that packets are generally sent from
whichever node the sending process is running on, which is the optimal solution.
In order to avoid confusing network switches (which keep track of which port an
Ethernet address has been seen on), vNUMA substitutes the Ethernet address of
the real local network card into outgoing packets.

Unfortunately, due to the limitations of the IP protocol, there is no easy way
to avoid all incoming packets arriving at a single node (the node with the specific
Ethernet address that appears in Address Resolution Protocol replies). The current
implementation simply delivers the packets on that node. This has the advantage
that the receiving part of the driver and network stack always runs on a single node,
but the disadvantage that the actual consumer of the data may well be running on
a different node. An alternative implementation could be to use a dedicated load
balancer in between the cluster and the outside world. This load balancer could
distribute packets to different nodes based on the TCP/UDP port numbers, which
provide a hint as to where different applications are running.
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Disk

In such a system the ideal method for dealing with disks is to connect them to
a storage area network, so that they can be accessed from any of the nodes. For
example, if the disks were connected to the Ethernet, a protocol like iSCSI could
be used. Virtual Iron’s VFe hypervisor relies on such a storage area network
topology.

However, storage area networks are not widely deployed outside the enter-
prise, and the vNUMA philosophy is to support commodity hardware. Thus in
the absence of a SAN, vNUMA provides the virtual machine with a single virtual
SCSI disk. vNUMA routes accesses to this disk back to the bootstrap node, which
is assumed to be a node with physical disks. Given a disk request — which can
contain a scatter-gather list — the bootstrap node acquires the required pages via
the DSM system, performs the I/O, and delivers the completion interrupt locally.
As in the Ethernet case, the SCSI interrupt handler always runs on that one node,
even though the ultimate consumer may be remote.

Clearly having one node responsible for all disk I/O can become a bottleneck;
an alternative possibility would be to employ striping or mirroring across available
disks on other nodes.

Console

The console device is primarily used for debugging; it is expected that most
users would access a vNUMA system via the network. Hence the current
implementation sends all console output to the local console, which has the
strange but informative (for developers) effect that output migrates as processes
migrate, while input can be accepted on any node. An alternative implementation
might direct output to the bootstrap node. In this case a timed coalescing algorithm
would be necessary, to avoid a multitude of single character packets flooding the
network.
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9.4 Bootstrap process

Finally, the process by which a vNUMA system is booted deserves a mention.
All of the nodes in the cluster must be configured to boot the vNUMA hypervisor
image in place of an operating system kernel. Then, one of the nodes is selected
by the administrator to be the bootstrap node, by providing it with a guest kernel
image and boot parameters; the other nodes need no special configuration.

Once the bootstrap node initialises, it broadcasts discovery messages on the
network to locate the other nodes that are online and determine their resources. It
then sends a configure message to each node that will participate in the vNUMA
system, providing information necessary for communication with other nodes:
that node’s logical number in the cluster, the total number of nodes, and a table of
MAC addresses of the other nodes.

The bootstrap node then copies the guest kernel image into memory allocated
for it, and commences booting it, no differently from a uniprocessor virtual
machine. The other nodes await their turn. Eventually the guest kernel registers an
SMP startup address and starts sending startup IPIs to wake up other processors.
In vNUMA, this sends startup messages over the network; those nodes then
blindly start executing at the given address. Immediately they encounter a page
fault, which is handled by the DSM system by fetching the appropriate code
page from the bootstrap node, and in this way — page by page — these remote
processors come alive.
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The goals of this evaluation are to:

• demonstrate that the vNUMA system works for a variety of applications,

• determine the performance that can be achieved,

• demonstrate the effects of optimisations described in this thesis,

• characterise remaining overheads,

• compare vNUMA with a real SMP or ccNUMA system, and

• compare vNUMA with a userspace DSM system or other application-
specific solutions.

Three particular types of application are considered, which cover some of
the most common use scenarios for large computer systems: computationally-
intensive scientific workloads, software build workloads, and database server
workloads. Chapter 10 will present information about the test environment and
methodology. Chapter 11 will introduce the benchmarks, with results that show
the performance achievable on vNUMA. Chapter 12 will explore implementation
trade-offs behind these results, and how specific decisions affect performance.
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Chapter 10

Methodology

10.1 Test environment

The test system used for this experimental work consists of HP rx2600 servers
with 900MHz Itanium 2 processors, connected using Gigabit Ethernet via an HP
ProCurve 2708 switch. Most analysis was done on a four-node cluster, but four
additional nodes were added for scalability testing.

The current implementation of vNUMA, as described in this thesis, is around
10,000 lines of code. Of this around 4000 lines constitute a generic Itanium virtual
machine monitor, the DSM system is around 3000 lines of code, and the remainder
deals with machine-specific initialisation and fault handling. In addition to this
core which was developed from scratch, C library functions and device drivers
from the Kenge project [76] were utilised on an as-needed basis.

Since vNUMA does not yet support SMP within a node, only one CPU was
used in each server; the terms CPU, processor and node are used interchangably.
In a production system, it would obviously be preferable to utilise all local
resources before going beyond the node boundary, particularly with the increasing
prevalence of multi-core processors. However, the intent of these benchmarks is
to measure the achievable inter-node performance, so additional hierarchy would
only serve to complicate the evaluation.

Linux 2.6.16 was used as the operating-system kernel, both on vNUMA and
for comparative measurements. Default configuration settings were used where
possible, including a 16 KiB page size. This does provide the native kernel
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with a certain advantage, since vNUMA normally uses 4 KiB hardware pages,
and therefore incurs more TLB misses than a native kernel using 16 KiB page
size. On the other hand, having the guest kernel compiled with 16 KiB page
size also benefits vNUMA, since virtualisation overhead is reduced by the larger
page size at the interface between the hypervisor and guest kernel. Overall, it
was considered that configuring both kernels with 16 KiB page size provides the
most sensible comparison. (The one exception is the Treadmarks measurements;
these were performed with 4 KiB page size to provide a fair comparison of DSM
performance.)

The pre-virtualisation technique, described in Chapter 4, was used to trans-
form the Linux kernel for efficient execution on vNUMA. Three minor changes
were made manually. Firstly, the Linux wait on bit lock function was modified
as described in Section 8.9. Secondly, the clear page function was replaced with
a hypervisor call to allow it to be implemented more optimally. Since it is known
that the existing version of the page is no longer needed, there is no need to fetch
the previous data; the page can be invalidated asynchronously. Finally, the kernel
linker script was modified to place the .data.read mostly section — which
contains data that is rarely written and should be read-shared — on a separate
page. Otherwise, it happens to share a page with the .data.cacheline aligned

section, which is generally undesirable (the latter contains locks and data that is
written to frequently).

Wherever possible, results presented are a median of the results from at least
ten runs of a benchmark. The median was chosen as it naturally avoids counting
outliers.

10.2 Analysis tools

vNUMA contains instrumentation to allow comprehensive analysis of overheads.
Profiling can be started and stopped to delineate the particular benchmark under
test. During the profiled period, a number of performance metrics are collected.
Firstly, the total time is measured using the Itanium cycle counter, and the time
spent in the hypervisor is measured using one of the counters in the Itanium
performance monitoring unit (configured to count the number of cycles that the



10.2. ANALYSIS TOOLS 145

Total time

Application/kernel execution
wwooooooooo

Hypervisor time
''OOOOOOOOO

DSM stalls
ttjjjjjjjjjjjj

Application
��������

Kernel
��??????

Network interrupts
��

Idle time
''OOOOOOOOO

Other++WWWWWWWWWWWWWWWWWWWW

Figure 10.1: Breaking down execution time in vNUMA

processor is executing at the most privileged level); using the hardware counters
for this ensures that nothing is missed. Then, as a subset of this hypervisor
time, specific regions within the hypervisor are timed. This includes stalls
waiting for DSM communication, network interrupts (representing the overhead
of processing requests and notices from other nodes) and idle time (when the
guest kernel has no runnable processes and enters a sleep state). The DSM
stalls are further classified into those originating from the guest kernel, and those
originating from the guest user application.

The effect is that the vNUMA provides a hierarchical breakdown of the total
time, as shown in Figure 10.1. This data is provided separately for each node,
but the values can be summed across the nodes to account for all of the available
processor time. This provides an effective overview of where time is being spent.

Typically, the greatest vNUMA overheads lie in DSM stalls. A DSM stall
occurs as a result of a faulting memory access that invokes the DSM system, when
the fault cannot be resolved without waiting on network communication. This
typically occurs because page data is not available to satisfy a read, or because
an atomic read-modify-write instruction must acquire exclusive ownership of the
page. In some cases — such as if the page is in a single-writer mode — ordinary
write instructions may also stall waiting on ownership, but generally write stalls
can be avoided by buffering writes using the mechanisms described in Chapter 8.

To allow analysis of the DSM stalls that occur during the runtime of an
application, data about individual stalls is logged to a profiling buffer. Each time
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the buffer becomes full, the data is sent to a central profiling node, which can be
any computer on the same network as the vNUMA cluster. The data collected
includes:

• the node that faulted,
• the virtual address that was accessed,
• the underlying DSM page number,
• the address of the referencing instruction,
• the type of the access (read or write; instruction, data or register stack),
• the node(s) that were involved in resolving the fault,
• whether the response included new page data, or whether the cached copy

was found to be up-to-date,
• the number of outgoing frames in the network card’s transmit queue that

had to be waited for,
• the relative time at which the fault occurred, and
• the time taken to resolve the fault.

Based on this foundation, a variety of analysis tools can be constructed to
analyse the performance of the vNUMA DSM. The output of these tools will be
presented throughout this evaluation.



Chapter 11

Benchmarks

11.1 HPC benchmarks

One of the most exciting applications of powerful computer systems is the numer-
ical solution of computationally complex problems, such as those encountered in
the physical sciences and engineering. Simulating the gravitational interaction of
planets, the air flow over an aeroplane wing, or the deposition of metal atoms on
a silicon wafer — to name but a few examples — all require complex numerical
calculations. The application of large computers and clusters of computers to
solve such problems is generally termed high-performance computing (HPC).

Since HPC applications are computationally intensive, they are usually de-
signed to make use of multiple processors in parallel. This means that they
are generally written to one of three paradigms: explicitly passing data between
processing nodes (often via middleware such as MPI [69]), using a middleware
system that provides distributed shared memory, or using multiple operating-
system threads and relying on hardware support for shared memory. vNUMA can
provide benefits in all of these scenarios: it can transparently distribute a program
written for a shared memory system, or it can be used in place of a middleware
DSM system (the benefits will become evident in the upcoming chapters), or it
can even be used to host applications that use explicit message passing. In all
cases it provides the advantages of a single system image — appearing to the user
as a single node, with all the conveniences of a single process space and a single
filesystem to store inputs and outputs.
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In theory, explicit message passing can always achieve higher performance
than shared memory, since shared memory is a higher-level abstraction on top
of message passing. Thus one might question the usefulness of shared memory
systems for high-performance applications. Nonetheless shared memory remains
a compelling and widespread programming model, due to its simplicity. The
ubiquitousness of the shared memory abstraction is evidenced by the fact that the
great majority of SMP systems do not provide explicit message passing between
processors, only shared memory (despite the fact that the physical interconnect is
message-based!).

The main question, then, is whether vNUMA can provide adequate perfor-
mance for HPC applications. The TreadMarks DSM system [50], as introduced
in Chapter 6, was used for comparison. TreadMarks is a second-generation DSM
system that achieves good performance using a release consistency model. While
TreadMarks may no longer represent the state of the art in DSM research, it is one
of the few DSM systems that has been widely used in the scientific community.
This is because it is readily obtainable, relatively easy to use, and stable —
attributes that set it apart from many research systems.

TreadMarks is distributed with an assortment of benchmark applications
which have already been ported to TreadMarks, mostly from the SPLASH-2
benchmark suite from Stanford University [91] and the NAS Parallel Benchmarks
from NASA [28]. These benchmark applications are well-known in the field and
representative of a wide set of HPC problems.

The versions of the applications that are provided with TreadMarks explicitly
make use of TreadMarks library functions, as is required by the TreadMarks
programming model. To allow these to run on an SMP system, ccNUMA
system, or on vNUMA, a stub library was created that implements the TreadMarks
functions in terms of fork() and shared memory. Barriers and locks were
implemented using atomic operations on the shared memory, as they might
normally be realised on an SMP system. This allowed running the same
application code for all of the configurations, simply by substituting different
libraries. Use of the applications provided with TreadMarks (and optimised for
TreadMarks) also ensured that TreadMarks was not unfairly disadvantaged.
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Benchmark descriptions

For this analysis, the C language subset of the benchmarks was chosen; the author
is not well versed in FORTRAN and the C language benchmarks are sufficient to
cover a wide range of different memory access patterns. The benchmarks used
are:

• Barnes [91, 62]: Simulates the gravitational interaction of many particles
using the hierarchical Barnes-Hut algorithm. While the particle data is
in a contiguous array, the particular particles accessed and updated by
a processor are data-dependent, reflecting the relative position of each
particle. Thus Barnes exhibits sparse read and write patterns and the
potential for false sharing.

• CG (conjugate gradient) [28]: Approximates one eigenvalue of a very large
sparse matrix, using the inverse power method. The matrix is too large to be
stored as an explicit array; instead it is stored in terms of the non-zero values
and their locations, the list of which is partitioned between processors. The
inverse power method is an iterative method, each step of which involves
dividing a vector by the matrix (in other words, solving the equivalent linear
system Ax = b). The particular method used to solve the linear system (the
conjugate gradient method) is itself an iterative method, each step of which
involves multiplication of the matrix by a vector and calculation of gradients
between resulting vectors. Thus at its core CG consists of a large number of
distributed matrix-vector operations; in each of these a vector is distributed
to processors and multiplied by the local portion of the large matrix.

• FFT [28, 62]: Performs a fast fourier transform in three dimensions. The
3D space is partitioned between processors in one of the dimensions, such
that each processor has a subset of planes. FFTs are first calculated within
each processor’s local planes, then the matrix is transposed, and the final
FFT is performed. Significant communication occurs in the transposition
step, in which each processor accesses every other processor’s planes.

• Gauss: Performs Gaussian elimination on a matrix. For each row, the
processor assigned to that row chooses a pivot element, swaps it into the
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diagonal position, and divides the row by it. After a barrier, each processor
fetches the entire pivot row and the index of the pivot column. It performs
the appropriate column swap and subtracts a multiple of the pivot row from
its own rows.

• IS (integer sort) [28, 62]: Sorts a set of integers of known range using a
counting sort method. The set of integers is partitioned between processors,
and each processor first calculates the frequency distribution of its own
integers. Then, the frequency distribution is accumulated into a global
frequency distribution; to minimise false sharing, the processors update
separate portions of the frequency distribution at each step. Finally, each
processor reads back the global frequency distribution to determine the
position of each of its integers in the overall ordering.

• MG (multigrid) [28]: Computes an approximate solution to a partial
differential equation ∇2u = v in three dimensions, using a numerical
method that interpolates between grids of different resolution. Like FFT,
the grids are partitioned between processors in one of the dimensions.
Each basic operation — projection, interpolation, residual calculation and
smoothing — involves calculating cells in an output grid as a function of the
set of cells spatially adjacent to the corresponding cells in an input grid (in
each of the three dimensions). Hence, communication is necessary when
performing calculations for planes that border those owned by neighbours.

• Raytrace [91]: Renders a three-dimensional scene into a two-dimensional
image using ray tracing. The scene is represented using various shared data
structures that represent objects, lights and so forth, and each processor
is assigned a certain number of 16x16 blocks of output pixels that it
must calculate. While access to the data structures describing the scene
can be very irregular, almost all of these accesses are read-only, so little
communication is necessary during most of the execution. At worst there
is some false sharing in the output frame buffer to which pixel values are
written. Once a processor runs out of work, work is taken from other
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processors’ work queues; however this only happens near the end of a run
and does not contribute significantly to communication overheads.

• SOR (successive over-relaxation) [62]: Another linear equation solver, this
time using the successive over-relaxation method. The implementation is
specifically designed to minimise false sharing. Each row of the matrix has
a red and a black half, each of which is page-aligned. Nodes always read
red and write black positions and then, after a barrier, read black and write
red positions, such that there are never any read/write conflicts.

• TSP [62]: Finds a solution to a given instance of the well-known travelling
salesman problem, using a branch-and-bound method. Partial tours are
placed in a shared priority queue, protected by a lock, which each processor
draws from whenever it is idle; this data structure involves irregular read-
write sharing. If the next partial tour is close enough to a complete tour
for a single processor to complete, the shortest possible completion of
that partial tour is found exhaustively by that processor, otherwise the
problem is split and the resulting partial tours pushed back onto the priority
queue for other processors. Whenever a processor finds a solution better
than the current best solution, it updates the global best tour accordingly.
Processors frequently access this best tour information to prune less optimal
solutions; thus this structure is read frequently by all processors and updated
intermittently.

• Water [91, 62]: Simulates molecular interactions within a liquid (H2O).
The Water benchmark is similar in many ways to Barnes. Like Barnes,
it involves calculating forces on the set of particles that are spatially ‘near’
a particle, and updating those particles appropriately. However, the false
sharing in Water is not as serious as Barnes, since there are far fewer
particles per page (just over 6, versus 39 for Barnes, although neither
enforce page alignment). Also, while Barnes both reads and writes particles
in an unpredictable order, Water reads data contiguously.

The Water benchmark was modified in one respect to improve performance:
the per-molecule locks were placed together with the data in the molecule array,
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rather than maintaining a separate array of locks. This does not violate the
specification of the benchmark, and placing locks together with data is standard
SMP programming practice; having a contiguous lock array may necessitate
wasting a whole cache line (or in vNUMA a page) for each lock to avoid
unnecessary contention.

Results

Figure 11.1 shows an overview of results for each benchmark. While the
ultimate limits of scalability are difficult to establish without a much larger cluster,
vNUMA was designed for optimal performance on a small cluster. The graphs
demonstrate that vNUMA performs very competitively in this environment. On a
four or eight node cluster it surpasses TreadMarks on all of the benchmarks. This
is particularly true for Barnes, Water, TSP and IS.

vNUMA’s performance advantages in these benchmarks can be attributed to
two factors. Firstly, as a hypervisor-based DSM system vNUMA is not restricted
to using operating-system services for memory management and communication,
and can therefore achieve much lower latencies. This provides improvements for
all benchmarks, but particularly those that are communication-dominated; IS is
the most extreme case.

Secondly, TreadMarks always uses an invalidation-based protocol (propagat-
ing invalidations during barriers and lock acquisitions, and lazily obtaining the
actual page changes). The main advantage of an invalidation-based protocol is
that it eliminates redundant communication when changed data is not needed by
the recipients. However, in the case that the data is needed, it makes the protocol
particularly sensitive to latency. A subsequent read must synchronously wait for
data to be obtained from the writer, and this large transfer of data tends to be
high-latency. In contrast, vNUMA uses a write-update protocol by default (while
falling back to invalidation if update bandwidth proves excessive). In cases where
there is a need for read-write sharing (Barnes and Water due to false sharing, and
TSP in which all nodes frequently read a shared data structure which is written to
intermittently), vNUMA can achieve significant benefits by propagating updates
to readers without invalidating read copies.
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Figure 11.1: HPC benchmark performance summary. Horizontal axes represent number
of nodes, vertical axes represent speed-up.
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SOR and Raytrace are examples of benchmarks that perform well on
TreadMarks as well as vNUMA. SOR has no false sharing, with 16 KB blocks
of data migrating from one processor to another in each step. Thus, most
DSM protocols can provide good performance. Similarly Raytrace is almost
embarrassingly parallel, with little communication necessary for most of the
computation. Although there is some false sharing in the output frame buffer,
there are few barriers that would force synchronous communication, and therefore
the multiple-writer protocols in both vNUMA and TreadMarks perform well.

MG proves the greatest challenge for both TreadMarks and vNUMA. While
the actual data resolution uses powers of two, periodic boundary conditions
are implemented by replicating boundaries at opposite sides of the grid. This
simplifies the program but makes each grid an awkward size in which planes are
not page-aligned (66x66x66, 34x34x34, 18x18x18). Additionally, to keep the
boundaries in each dimension synchronised, the first and last processor must ex-
change entire planes after each stage, which requires significant communication.
Nonetheless, vNUMA is definitively ahead, achieving a speed-up of 1.92 on four
nodes compared to TreadMarks’ 1.34.

More detailed analysis of how various factors contribute to performance will
be presented in the next chapter, but first the remaining benchmarks will be
introduced.

11.2 Compile benchmark

A second application where large servers and clusters are commonly deployed is
to improve the speed of software builds. Software development cycles often rely
on frequent compilation and testing, and therefore developer productivity depends
critically on fast compilation times.

While there exists software that can help to distribute builds across a cluster
of separate workstations (distcc [78]), there are a number of disadvantages of
such a model. Firstly, to protect against differences in the available files and
environment between cluster nodes, distcc only distributes the core C/C++
compilation step; for each file, self-contained (pre-processed) source code is sent
over the network and object code is received. Pre-processing and linking stages
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are still performed on a single node, as well as compilation of any other languages
that may not be easy to incorporate into the distcc model. It is also left to the
system administrator to ensure that an identical C/C++ compiler is installed on all
nodes of the cluster, otherwise there can be subtle build-to-build variations that
make debugging difficult.

In contrast, vNUMA provides a single system image model which is no
different from an SMP server; there is only one server to deal with, and any tool
with multiple processes or threads distributes transparently. If a vNUMA cluster
can perform comparably to distcc, then this provides compelling advantages.

When run on a disk-backed filesystem, compile benchmark throughput is
significantly affected by disk performance. Since I/O performance is not a core
goal of this work, this factor was eliminated by running the compile benchmark
with all files on a memory-backed filesystem (a RAM disk). The traditional choice
of compile benchmark — a Linux source tree — is prohibitively large for the
workstations’ RAM, so the vNUMA source tree was used instead. However, the
nature of the workload is similar: a large number of parallel compiles (invoked
via make -jN) finishing with a link stage which is not parallelisable. Conventional
wisdom suggests setting N to twice the number of available CPUs; this rule was
also followed for this evaluation, and generally produces the best results.

The results are summarised by Figure 11.2. vNUMA performance is prac-
tically identical to distcc, despite the fact that the two approaches are quite
different in nature. The line labelled ‘Optimal’ is an extrapolation of SMP results,
based on an idealised model where the parallelisable portion of the workload
(86%) scales perfectly. On 4 nodes, the ideal speed-up is 2.8, while both vNUMA
and distcc achieve 2.3. On 8 nodes, the ideal speed-up is 4.0, while both
vNUMA and distcc achieve 3.1.

While the effective performance of both systems is similar, the overheads that
limit the performance are different. In the case of distcc, the overheads stem
from the centralised pre-processing of source files (which creates a bottleneck on
the first node), as well as the obvious overheads of transferring all source files
and results over the network. In the case of vNUMA, there is overhead from
the DSM system and virtualisation. A breakdown of vNUMA’s processor time
usage on four nodes is presented in Figure 11.3. The idle time represents non-
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Figure 11.3: Time breakdown for compile benchmark (4 nodes)

parallelisable stages of the build, and while high, it is consistent with the expected
value from the idealised model. The vNUMA overheads total 15%, with DSM
stalls accounting for 7%. The 5% counted as ‘other overhead’ represents both the
cost of intercepting writes (≈ 3%) and other virtualisation overheads.
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The majority of the DSM stalls originate from the guest kernel. This is because
the compiler processes do not themselves communicate through shared memory.
Their code pages are easily replicated throughout the cluster and their data pages
become locally owned. However, inputs and outputs are read from and written
to the file system, which shifts the burden of communication onto the kernel. In
general, the compile benchmark can be considered representative of an application
that consists of many processes which do not interact directly but interact through
the filesystem.

Profiling the kernel overheads shows that the largest communication costs
arise from maintaining the page cache (where cached file data is stored), and
acquiring related locks. Similarly the file system directory entry cache (which
caches filenames), and related locks, also feature as major contributors. Nonethe-
less, considering that the overall overhead is no greater than that of distcc —
a solution specifically crafted for distributed compilation — this seems a small
price to pay for the benefits of a single system image.

11.3 Database benchmark

Database servers are another application where large SMP and ccNUMA servers
are commonly deployed, and commercial database benchmarks such as TPC-
C [86] are frequently quoted when such servers are advertised. Most database
server software has multiple threads or processes to service requests, and therefore
large SMP systems can achieve high throughput. In contrast, distributing a single
database across multiple nodes of a workstation cluster is difficult, and most
software cannot do so transparently. The question is whether vNUMA can be
used for such an application.

The database server used for this evaluation is PostgreSQL [80], one of the
two most popular open source database servers used on Linux (the other being
MySQL [75]). It was important to use an open source database server so that its
source code could be inspected to understand performance problems. For the same
reason — ease of understanding — simple synthetic benchmarks were employed
instead of a complex hybrid workload such as TPC-C. Two tables were initialised
with 10,000 rows each: one describing hypothetical users of a system, and the
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other representing posts made by those users on a bulletin board. A pool of client
threads then performed continuous queries on this table1. The total number of
queries completed in 30 seconds (after 5 seconds of warm-up) is recorded. This
is similar in principle to benchmarks like TPC-C, but it utilises a smaller number
of tables and a simpler mix of transactions.

Five different types of queries were used:

• SELECT: retrieves a row from the users table by matching on the primary
key

• SEARCH: retrieves a row from the users table by searching a column that
is not indexed

• AGGREGATE: sums all entries in a certain column of the users table

• COMPLEX: returns information about the five most prolific posters (this
involves aggregating data in the posts table, and then performing a ‘join’
with the user table)

• MIXED: randomly selects one of the above queries to perform

The results are summarised in Figure 11.4. vNUMA performs well for
COMPLEX and MIXED, which involve a base throughput of tens of queries a
second. However, performance is degraded for the higher-throughput workloads,
SEARCH and AGGREGATE, and most significantly so for SELECT, which
involves little computation per query and can thus usually achieve thousands of
queries a second on a single node. SEARCH and AGGREGATE barely manage
to regain single-node performance on 8 nodes, while SELECT does not scale.

The cause of this throughput-limiting behaviour is simple: using multiple dis-
tributed nodes suddenly introduces the potential for much larger communication
and synchronisation latencies. If one considers that each query involves at least a
certain number of these high-latency events, then the maximum query throughput
per node is inversely proportional to the number and cost of those events.

SELECT will be analysed further, since it is the workload with the worst
performance. A breakdown of processor time usage is shown in Figure 11.5.

1The number of client threads was chosen to maximise throughput; the maximum throughput
invariably occurred when the number of threads equalled the number of processors.
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Figure 11.5: Time breakdown for SELECT workload

Only 14% of available processor time is used productively, which explains why
the four nodes cannot match the performance of a single node. Another 12% is
spent idle, which occurs when the PostgreSQL server processes are waiting to
acquire locks. DSM stalls account for the largest portion of the runtime (57% of
processor time), with three-quarters of those being in userspace and specifically in
the PostgreSQL server processes, and the other quarter in the Linux kernel. The
11% accounted for as ‘other overhead’ primarily reflects the overhead of logging
writes for the write-update protocol (≈ 9%), with ≈ 2% virtualisation overhead
(while SELECT normally experiences high virtualisation overheads, as shown in
the next chapter, the fact that the it is only running 14% of the time makes the
virtualisation overhead insignificant).

Since DSM stalls account for 57% of processor time usage, they deserve
further attention. The vNUMA profiling tools can be used to summarise the
stalls by function, as shown in Table 11.1. By far the greatest culprits are the
LWLockAcquire and LWLockRelease functions, used for internal locks within
PostgreSQL. Various kernel functions related to semaphores (and subsequently
waking up processes) also feature highly; PostgreSQL uses semaphores to sleep
when waiting on locks. get hash entry is an internal function used by the
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21046 ms LWLockAcquire [PostgreSQL (lightweight locks)]
12156 ms LWLockRelease [PostgreSQL (lightweight locks)]

3439 ms try to wake up [kernel (semaphores)]
2498 ms IncrBufferRefCount [PostgreSQL]
2350 ms get hash entry [PostgreSQL (heavyweight locks)]
2294 ms spin lock [kernel]
2051 ms update queue [kernel (semaphores)]
1800 ms GrantLock [PostgreSQL (heavyweight locks)]
1547 ms s lock [PostgreSQL (spinlocks)]
1426 ms mutex lock [kernel]

Table 11.1: Stalls by function, SELECT query mix (top 10)

PostgreSQL lock manager. In other words, the major overheads are related to
locking within PostgreSQL. Other functions that one might expect to feature
highly in such a database workload — such as the socket communication between
client and server processes — are much further down the profile and pale into
insignificance.

To explain this, it is necessary to delve briefly into lock usage in PostgreSQL.
There are three types of locks in PostgreSQL: spinlocks, ‘lightweight’ locks and
regular heavyweight locks. Spinlocks are implemented using an atomic exchange
operation, and have the conventional semantics. Lightweight locks are built on
spinlocks, and are slightly higher-level, providing simple sharing semantics and
sleeping if the lock is contended. Heavyweight locks provide even richer sharing
semantics that are useful for objects such as database tables. Heavyweight locks
are built on lightweight locks; however, notably, each heavyweight lock does
not use its own lightweight lock, but there are a small number of contiguous
lightweight locks which are used for protecting data about all of the heavyweight
locks in the system2. Thus, contention for this small number of lightweight locks
can hamper the scalability of all heavyweight locks.

A critical point to note is that, in addition to this bottleneck, the multi-
layer design substantially increases the potential overheads when lock contention

2In fact, prior to PostgreSQL 8.2, there was only a single global lock used for this purpose. In
version 8.2 this was improved such that regular locks are partitioned into 16 partitions each having
a lightweight lock. However, these 16 lightweight locks still span only four cache lines on SMP,
and are co-located on one page in vNUMA.
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occurs. Each attempt to acquire a lock involves first locking all lower level
locks. First, the underlying spinlock must be acquired (which may take multiple
attempts). Once the spinlock is held, the lightweight lock can be tested; if it is
found to be locked, then the spinlock is unlocked and the whole process must
be tried again later. Once the lightweight lock is held, the heavyweight lock can
be tested; if it is found to be locked, then the whole process has been in vain.
To make matters worse, unlocking both lightweight and heavyweight locks also
requires locking the underlying locks3.

In a system with large and unpredictable latencies for certain operations, it
is not unlikely that one of these layers will regularly encounter a lock that is
temporarily locked by another node. Since each retry attempt involves locking
all lower layer locks, increasing the chances of contention on those locks, this
can produce an avalanche effect whereby all locks become exponentially more
contended. Whenever locks are contended, communication is unavoidable, and
the system becomes limited by network latency.

It is not necessarily fair to extrapolate from PostgreSQL and assume that all
database software will experience such severe locking problems. Since vNUMA
can provide high levels of read replication and caching — and potentially a
large amount of distributed RAM that may be faster than disk — designs that
allow lock-free read accesses to data, such as via read-copy-update techniques
[66, 33], could theoretically provide very good performance. In this case, kernel
performance would again become the ultimate challenge.

3Comically, this means that a failed attempt at locking a heavyweight lock requires locking a
spinlock in order to unlock the lightweight lock.



Chapter 12

Analysis of implementation choices

The previous chapter introduced a set of benchmarks and presented sample
results demonstrating the performance achievable on vNUMA. However, these
performance numbers depend on many different factors and implementation
choices. For the benefit of designers of future systems, it is important to be able
to quantify the effects of individual design decisions. In this chapter, some of the
most important decisions are discussed.

12.1 Pre-virtualisation

To minimise the overheads resulting from virtualisation, vNUMA uses the pre-
virtualisation technique described in Chapter 4. Pre-virtualisation automatically
replaces the privileged and sensitive instructions in a guest kernel with hypervisor-
specific emulation code. Compared to a traditional trap-and-emulate approach —
which relies on privileged and sensitive instructions trapping to the hypervisor
and being transparently emulated — pre-virtualisation significantly reduces virtu-
alisation overhead, without requiring the manual effort of para-virtualisation.

Some basic measurements that illustrate the effect of virtualisation on basic
operating system code paths are listed in Table 12.1. These numbers were ob-
tained using lmbench [68], a widely used suite of operating system microbench-
marks. In the table, pre-virtualisation is compared both to native execution — with
no virtualisation layer — and to a trap-and-emulate virtualisation method. In the
latter case, a largely unmodified Linux kernel is used, with privileged operations

163
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Native Pre-virt Full
Fast system calla (getppid) 0.07 0.09 0.96
Slow system call (write) 0.35 0.66 2.46
Page fault 1.47 3.13 8.19
Context switch 1.79 2.56 7.72
Pipe communication 7.30 9.90 30.27
Socket communication (AF UNIX) 13.3 16.7 59.9
Create new process (fork) 133 218 503
Load new program (exec) 1585 1803 2848

aIn the Itanium Linux kernel, some system calls use a special fast path that incurs less overhead.

Table 12.1: Latencies for basic operating system operations (all values in microseconds,
obtained using lmbench 3.0). Native represents a kernel on bare hardware, pre-virt is the
pre-virtualisation method, and full represents a trap-and-emulate form of full virtualisation
in which all privileged and sensitive instructions trap to vNUMA for emulation.

still intact; a simple opcode substitution technique is used to replace problematic
unprivileged instructions with opcodes that trap to vNUMA.

In each case, the virtualisation overhead is reduced significantly by pre-
virtualisation. For example, a basic context switch is measured to be 1.79 µs
on real hardware. This increases to 7.72 µs when using the trap-and-emulate
approach, due to the high frequency of hypervisor traps; this is despite the fact
that vNUMA is optimised for efficient trap handling. When pre-virtualisation is
used, the context switch cost falls to 2.56 µs, which is much closer to the native
value. The other measurements follow similar patterns.

While this thesis focuses on vNUMA, the author also experimented with using
the same pre-virtualisation technique in the Xen/ia64 hypervisor; this similarly
yielded significant performance improvements over full virtualisation and even
over a kernel that had been partly para-virtualised by hand [60]. The data provided
in [60] also demonstrates that, for the version of Xen/ia64 studied, vNUMA
virtualisation performance surpassed unmodified Xen and was comparable to Xen
with para-virtualisation retrofitted.

The practical effect of virtualisation overhead on a subset of the benchmarks
studied in this thesis is shown in Figure 12.1, for both 16 KiB and 4 KiB
choices of hypervisor page size1. Larger page sizes reduce memory management

1This refers to the page size used internally in the hypervisor; in both cases the guest kernel
uses a 16 KiB page size.
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Figure 12.1: Virtualisation overhead
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overheads, so the 16 KiB page size is a better reflection of achievable virtualisation
performance. However, when the distributed shared memory system is introduced,
a smaller page size becomes desirable, as will be seen in Section 12.2.3.

Not surprisingly, the greatest virtualisation overhead is incurred by the
compile and database benchmarks, which involve the greatest use of operating
system services. SELECT is the most extreme case; as previously mentioned,
it is a very high throughput benchmark which executes thousands of queries per
second. Each query is computationally simple but involves services such as inter-
process communication and context switching, which virtualisation increases the
cost of.

Pre-virtualisation is very effective in reducing overheads for these OS-
intensive benchmarks; for example, in the 16 KiB case, SELECT overhead is
reduced from over 20% to under 10%, MIXED overhead is reduced from 3.8% to
1.0%, and Compile overhead is reduced from 5.1% to under 1.4%.

In contrast, the HPC benchmarks are very much computation-dominated and
show relatively low virtualisation overheads; any overheads are related to memory
management. A few of the HPC benchmarks, particularly in the 16 KiB case,
actually show negative virtualisation overhead: that is, they are marginally faster
on vNUMA than on native hardware. This may seem unlikely, but is in fact not
uncommon. Many of the HPC benchmarks have large working sets, larger than
the coverage of the processor’s TLB, and thus they depend on good hit rates in
the next-level translation structure (the virtual hashed page table, or VHPT). The
‘long’ VHPT format used by vNUMA provides different trade-offs to the ‘short’
format used natively by Linux, which can affect some workloads positively and
others negatively. Raytrace experiences a small performance degradation. (A
comparison of the two VHPT formats is provided in an earlier paper [12].)

Compared to the other HPC benchmarks, Barnes and Raytrace show the
greatest sensitivity to page size: for these benchmarks, the overhead of lowering
the page size to 4 KiB is almost 3%. This is because they exhibit sparse memory
access patterns that place the greatest demands on the processor’s TLB. Since
the number of entries in the TLB is fixed, using smaller pages decreases TLB
coverage and therefore increases TLB miss rates.
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12.2 DSM protocol

12.2.1 Protocol optimisations

vNUMA’s distributed shared memory system also involves many design choices
that should be evaluated.

The core DSM protocol is a multiple-reader/single-writer write-invalidate pro-
tocol, as described in Chapter 7. In this protocol, writing to a page always results
in synchronously invalidating other nodes’ copies of that page, which provides
the strongest consistency guarantees but typically not the best performance. Such
protocols are the most basic of DSM protocols and widely understood.

However, vNUMA also provides additional protocol optimisations to cope
with particular page access patterns that result in poor performance when the core
protocol is used. When the write-update protocol (described in Section 8.1) is
enabled, certain pages use a multiple-writer protocol in which writes are queued
and transmitted as update messages. This mitigates the impact of false sharing
and enables greater caching of pages for reads. For pages where invalidation
is preferable, invalidations are propagated asynchronously. The write-update+
protocol (described in Section 8.7) extends the write-update protocol to not only
handle ordinary writes but also atomic memory operations, used to implement
primitives such as locks and barriers. Since such operations are frequently used in
conjunction with shared data structures, this can further improve performance.

Figure 12.2 summarises the performance of the compile benchmark at these
different protocol levels. Performance is improved significantly by the more
advanced protocols, with speed-up on four nodes increasing from 1.84 to 2.02
to 2.34. This is due to a sharp reduction in the number and latency of stalls.
With the write-invalidate protocol, 420,000 synchronous stalls are required for
invalidations and subsequent fetches, totalling 26.0 seconds (an average of 62
µs/stall, which is dominated by the high latency of fetching page data that is
required in 66% of cases). The write-update protocol reduces the number of
synchronous stalls to 285,000, with a proportional decrease in stall time to 19.2s.
However, the write-update+ protocol has the most dramatic impact, reducing stall
time to only 5.1s. While the total number of stalls is still 164,000, the majority
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Processor time breakdown (Compile)

Total processor time 97.6s 89.2s 78.0s
Speed-up 1.84 2.02 2.34
DSM stall time 26.0s (27%) 19.2s (22%) 5.1s (7%)
Number of stalls 420,000 285,000 164,000
Stalls requiring data 276,000 187,000 28,000
Buffered writes 0 435,000 3,284,000
Write notices sent 0 47,000 496,000

Figure 12.2: Compile benchmark comparison for different protocols. Stall and write
counts are given to the nearest thousand.

of these are now ownership transfers, which involve minimum-length packets and
therefore have low latency. The number of stalls that must fetch data has decreased
to only 28,000, which shows the effectiveness of this protocol in enhancing read-
caching.

The price of this improved read-caching is that many more writes must
be intercepted and propagated, which is reflected in higher overheads both for
intercepting the writes (reflected in hypervisor overhead) and at the receivers of
the write notices (reflected in interrupt overhead). Nonetheless there is still a
significant net performance improvement.

Results for the database benchmark are shown in Figure 12.3. Surprisingly,
the total number of stalls actually increases with the more advanced protocols
rather than decreasing. This can be explained by looking at the throughput and
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Total processor time 120.0s 120.0s 120.0s
Throughput 104 q/s 413 q/s 1137 q/s
DSM stall time 23.6s (20%) 52.0s (43%) 69.6s (58%)
Number of stalls 357,000 689,000 1,476,000
Stalls requiring data 231,000 466,000 80,000
Buffered writes 0 3,325,000 18,866,000
Write notices sent 0 293,000 3,522,000

Figure 12.3: Database benchmark (SELECT) comparison for different protocols

the idle time. With the write-invalidate protocol, PostgreSQL experiences such
serious lock contention that it sleeps 78% of the time, and very little real work is
achieved. This happens far less often with the write-update+ protocol; throughput
is increased ten-fold and lock ownership transfers become the dominant factor
limiting performance.

For the HPC benchmarks, the write-update protocols produce the most
significant improvements for those benchmarks that exhibit the greatest read-
write sharing (Barnes, Water and TSP). Performance metrics for a representative
application in this set — Barnes — are shown in Figure 12.4, while Figure
12.5 presents a performance overview of all of the HPC benchmarks. Write-
update+ has lesser effect for the HPC set of benchmarks, since most of the HPC
benchmarks are less dependent on locking and synchronisation (aside from those



170 CHAPTER 12. ANALYSIS OF IMPLEMENTATION CHOICES

Other overhead

Network interrupts

DSM stalls

Idle

Computation

  0

  5

  10

  15

  20

  25

  30

  35

Write−invalidate Write−update Write−update+

P
ro

ce
ss

o
r 

ti
m

e 
(s

)

Processor time breakdown (Barnes)

Total processor time 31.48s 15.68s 15.68s
Speed-up 1.60 3.22 3.22
DSM stall time 14.06s (45%) 0.52s (3%) 0.46s (3%)
Number of stalls 245,000 7,000 6,300
Stalls requiring data 133,000 5,200 4,300
Buffered writes 0 1,656,000 1,663,000
Write notices sent 0 38,000 39,000

Figure 12.4: Barnes benchmark comparison for different protocols

that are barrier-intensive, such as Gauss). SOR is the one benchmark that gains
no benefit from write-update or write-update+; it is specifically designed to have
no false sharing, and the write-invalidate method of propagating data is essentially
optimal for it.

The fact that the write-update+ protocol has such dramatic effects on the
compile and database workloads bears noting, as it has important implications
for future vNUMA-like systems. The only difference between the write-update
and write-update+ protocols is the treatment of atomic operations, yet this has
significant effects on the number of writes buffered, the number of remote reads,
and overall performance. The reason is that many shared data structures, both in
the Linux kernel and in applications designed for SMP systems, have embedded
locks and/or reference counts. Without the enhancements in the write-update+
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Figure 12.5: HPC benchmark performance for different protocols

protocol, pages with such data structures always fall back to write-invalidate
mode, and there is little benefit from advanced protocols. Yet it is precisely
such data structures — frequently accessed by multiple nodes and often with false
sharing problems — that can stand to benefit most from novel schemes that allow
simultaneous readers and writers.

12.2.2 Invalidation threshold

With the write-update protocols, it is rarely necessary to invalidate a page.
Ordinary write operations can always be buffered and propagated as updates,
and the write-update+ protocol even allows similar treatment for atomic memory
operations. Thus, most pages can become widely cached for reading, with the
write-update protocol used to propagate updates. An invalidation is only forced in
certain limited cases — for register stack engine accesses, for certain infrequent
Itanium instructions that are not handled in vNUMA, and when the Linux kernel
explicitly requests it (in the para-virtualised clear page function).

As proven by the results in the last section, this increased caching can provide
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Figure 12.6: Compile performance at different invalidation thresholds (T)

significant benefits by reducing the frequency with which read instructions must
stall. However, if the write-update protocol were to be used for every page in
the system, the number of buffered writes and write notices sent could increase
by many orders of magnitude (for example, the total number of writes during a
compile benchmark run is around 2 × 109). The resulting increase in overheads
would negate any benefit, and indeed have severe negative effects. A critical part
of the write-update protocols, therefore, is determining when not to use the write-
update protocols — in other words, when to invalidate a page instead.

In vNUMA, the scheme described in Section 8.4 is used. Briefly, each page
starts off in write-update mode, and vNUMA tracks the number of successive
local writes with no intervening remote accesses. Once this ‘run’ of local writes
reaches a certain threshold, the page is invalidated — it is assumed that either
the node is using the page exclusively, or that the node is making a large set of
changes that would be inefficient to propagate individually. This scheme has the
advantage of being simple and minimal in overhead. However, it does depend on
tuning of the threshold parameter.

Figure 12.6 shows compile performance for different invalidation thresholds
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Figure 12.7: HPC benchmark performance at different invalidation thresholds (T)

T . Since vNUMA’s per-page write counter is an 8-bit number and never reaches
256, T = 256 is equivalent to T = ∞: in other words, a pure write-update
protocol. T = 0 represents a pure write-invalidate protocol. The graph shows that
both of these extremes are non-optimal, and the optimal performance is achieved
for a hybrid adaptive protocol with T between around 50 and 200. There is low
sensitivity to the exact value of this parameter.

The basic relationship holds for most workloads, with varying degrees of
curvature depending on the amount of false sharing (which penalises a pure
write-invalidate solution) and number of writes (which penalises a pure write-
update solution). For certain simple benchmarks, write-invalidate can be optimal,
in which case performance degrades slightly for increasing values of T (this
represents unnecessary write-update overhead before each page falls back to
write-invalidate mode). This is the case for SOR. Some benchmarks also happen
to perform well with a pure write-update scheme; however in the majority of
cases this results in severe performance degradation due to the volume of writes
propagated. The effect of varying the threshold on the various HPC benchmarks
is summarised in Figure 12.7.
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Figure 12.8: Benchmark performance at different DSM page sizes

12.2.3 Page size

The Itanium architecture does not have a fixed or preferred page size; the page size
can be chosen out of a large set of options. For a DSM system, the most obvious
choice is to use the minimum supported page size (4 KiB). This is because one
of the big challenges facing DSM systems is false sharing — unrelated data co-
habiting the same page and causing undesired contention — and this is minimised
by using the smallest page size.

Nonetheless, there are some disadvantages of using such a small page size.
Firstly, it increases memory management overheads in the hypervisor, as was
shown in Section 12.1. Additionally, some DSM workloads — those that have
little false sharing and access memory relatively contiguously — can benefit from
a larger page size, since more data is transferred per fault.

Given that the vNUMA DSM protocol can cope reasonably well with work-
loads that involve false sharing (such as Barnes, Water and the Linux kernel
itself), it is interesting to investigate the effect of changing the page size. Results
on four nodes for various page sizes are shown in Figure 12.8.
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Barnes and SOR benefit from larger page sizes even up to 16 KiB. For SOR,
this is because it’s fundamental unit of sharing is 16 KB: contiguous blocks of
16,000 bytes are transferred in each step of the benchmark, so a 16 KiB page size
is ideal. In the case of Barnes, it is due to its high memory management overheads
at smaller page sizes, combined with the fact that the write-update protocol is
effective in addressing its false sharing; thus an overall gain is achieved from the
larger page sizes.

In all other cases, 16 KiB pages degrade performance; thus 16 KiB does not
seem to be a good general-purpose default for DSM page size. On the other hand,
8 KiB produces good performance for a larger number of the benchmarks. In
fact, even Compile — the DSM performance of which is limited by the Linux
kernel — benefits very slightly from 8 KiB pages; again this is due to the reduced
memory management overhead. Unfortunately, 8 KiB pages produce significant
degradation for Gauss. In Gauss, the unit of sharing (a matrix row) is 4 KiB,
so performance degradation occurs at higher page sizes, both due to unnecessary
data transfer and due to false sharing.

Ultimately the choice of page size is very much workload-dependent. 4 KiB
pages are used throughout this thesis in order to minimise the number of cases in
which false sharing arises. However, workloads which have large working sets
and transfer data in large blocks can benefit from larger DSM page sizes. One of
the advantages of a hypervisor-based DSM system is that the DSM page size can
be varied independently of the operating system page size.

12.2.4 Coherence algorithm

Another aspect that warrants evaluation is the overhead of the coherence algorithm
described in Section 8.6. In the benchmarks thus far, this algorithm was not
enabled, since all of the tested workloads execute correctly without it. Nonetheless
it may be useful when stronger coherence guarantees are required.

Microbenchmarks show that, using the data structures described in this thesis,
the coherence algorithm increases the cost of intercepting a write from 243 cycles
to 268 cycles, and the cost of applying a remote write from 56 to 91 cycles (in
the optimal case that the chains do not need to be traversed, i.e. there are no
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Figure 12.9: Performance effects of enabling coherence algorithm

hash table conflicts and no newer writes that conflict). These overheads seem
quite reasonable. As always, they could be reduced by implementing the write
interception code in assembly language rather than C, but at the expense of
maintainability.

The performance of the various benchmarks with the coherence algorithm
enabled is presented in Figure 12.9. Not surprisingly, the overhead is greatest for
those benchmarks which generate the most write-update traffic, namely Barnes
and the database benchmarks. It is also quite high for Raytrace, despite the
fact that it does not generate as many writes as some of the other benchmarks;
this seems to be because this benchmark stresses the processor caches (due to
its sparse access pattern, like Barnes) and so the extra cache footprint of the
coherence tracking structures has a greater effect. However, overall, the overheads
are acceptable.
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12.2.5 Release detection

One interesting feature of the vNUMA DSM is the use of release consistency
annotations — a feature of the Itanium architecture — to optimise the generation
of write notices. Store instructions in the Itanium architecture provide no ordering
guarantees, unless they are of the release form, which indicates that they must
become visible after any previous operations by the same processor.

vNUMA utilises this release consistency mechanism as described in Section
8.8. Consider when a vNUMA node receives a fetch request for a page that is
exclusively owned and may therefore contain local writes. At the same time,
vNUMA may be buffering writes to other pages. Since it does not track every
write to the exclusive mode page, it does not know how the two sets of writes were
interleaved in the source program; to guarantee processor consistency, it would
have to ensure that they are made visible simultaneously (by flushing buffered
writes before the fetch reply). This slightly increases network traffic and the
latency of the fetch reply. However, given release consistency, this flush can be
avoided in many cases; unless a release-type store has been made to the exclusive
page, it is safe to allow the fetch to bypass the buffered writes.

Experiments show that the effect of this optimisation is very minor; bench-
mark results are not affected to any degree of statistical significance. This is
primarily due to the fact that write buffer flushes are sufficiently common that
the occasional avoided flush is lost in the noise. An additional factor is that,
even with the optimisation enabled, the release detection check often returns a
false positive. This is because vNUMA can only determine (using the Itanium
performance monitoring unit) whether a release-type store has been made in the
last interval, and not to what specific page it was made.

This result is a mixed blessing. While it is a pity that the effect of this novel
technique is so insignificant, it is also a technique that is only feasible on the
Itanium architecture. The fact that the vNUMA DSM performs well without it
bodes well for implementations on other architectures.
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12.2.6 Latency sensitivity

Throughout this thesis, the importance of latency has been stressed. In the
vNUMA DSM system, like most other DSM systems, there are certain events
which cause execution to be stalled; when such an event is encountered, it is not
possible to continue the execution of the program until the appropriate data is
fetched or synchronisation is performed. The program stalls for a period of time
equal to the communication latency. In vNUMA, this time is wasted. In some
multi-threaded DSM systems, it is possible to use some of this time usefully by
switching to another thread, and this would be a worthwhile future improvement
for vNUMA. This is no magic bullet, however, and minimising communication
latency is still important.

Different workloads will have different sensitivity to latency. Primarily, the
sensitivity to latency depends on the frequency of DSM stalls2. Figure 12.10
shows an example plot of latency sensitivity for the compile benchmark. (This
graph was produced by artificially introducing extra latency into the communica-

2Of course, even if stalls could be eliminated completely, there are still cases in which network
latency is important; for instance, if a receiver is waiting on an update from another node.
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tion path.) While vNUMA’s write-update+ helps reduce the sensitivity to latency
by reducing the number of stalls, latency is still a very important parameter. A
network card driver that is not optimised for latency can easily add 100 µs or
more, resulting in performance that is at the right of the graph rather than the left.

Given the importance of latency for many applications, it is surprising that
latency is so often neglected in both hardware and software design. Compared
to Linux’s UDP round-trip latency of 63 µs, vNUMA achieves 17 µs round-trip
latency on the benchmarked systems. As demonstrated by the graph, this in itself
can provide significant performance advantages.

Note that the quoted 17 µs latency includes the HP Procurve switch; with two
nodes connected back-to-back, this round-trip latency can be reduced to 12 µs.
This is still disappointingly high, however, when one considers that a minimum
length packet only takes 576 ns to be transmitted on the Ethernet. Nevertheless
it seems to be close to the optimal performance achievable on today’s commodity
systems; the GAMMA project, which seeks to provide low-latency messaging for
Linux clusters, reports similar results [14].

The latency of 6 µs each way can be explained as follows. In a traditional
network card architecture, each packet send requires writing to a device register
to trigger the send (where the CPU-to-device latency is typically of the order of
500ns). Then, the device must perform at least two DMA reads, one for the packet
descriptor and one for the packet data (each DMA read incurs a minimum of 600–
700ns latency in the system under test, as measured with a PCI bus analyser).
Inevitably there is also some internal latency within the network device before
and after these reads, which can be of the order of a microsecond. Finally, the
packet is transmitted onto the Ethernet (576 ns). The receiving card incurs some
internal latency, performs one DMA write with the packet data, performs another
DMA write to update the in-memory receive descriptor, and toggles its interrupt
line. Some 700ns later, the destination CPU receives an interrupt. These basic
latencies can easily add up to 6 µs or more.

There are some important considerations when optimising a network driver for
latency. Since each DMA read involves significant latency to set up, the number of
packet fragments should be minimised, and copying data into a single buffer may
be preferable unless CPU time is at a premium. To ensure that receive interrupts
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are delivered as early as possible, any interrupt throttling features of the network
card should generally be switched off. Finally, software overhead should not be
underestimated; small optimisations such as filling in packet headers ahead of
time can make a difference. If possible, the device should be configured so that
a send can be triggered with a single write and there are no device reads on the
criticial path.

12.2.7 Transferring page data

As well as short synchronisation packets, vNUMA must also frequently transfer
large packets, containing an entire page of data (4 KiB). Minimising the latency
of these packets requires special consideration.

The standard Ethernet frame size limit (1518 bytes excluding preamble)
implies that it is necessary to fragment a page into at least three packets. However,
many Ethernet devices support ‘jumbo’ frames — frames larger than the normal
maximum, typically up to around 9 KiB — in which case it is theoretically
possible to transmit a page in a single packet.

The obvious choice would be to transmit the page data in as few packets as
possible, since each extra packet adds some overhead. However, using multiple
smaller packets can be advantageous for latency, by enabling pipelining. This is
illustrated graphically in Figure 12.11 and 12.12.

In the case where the entire page data is transmitted in one packet, each stage
of the communication is serialised (Figure 12.11). Consider the reply phase
of the fetch, depicted in lighter shading. First, the entire packet data must be
transferred over the PCI bus before Ethernet transmission can start3. In the figure,
this is labelled P1 PCI. For a vNUMA packet containing page data (one transmit
descriptor pointing to 32 bytes of headers, and one transmit descriptor pointing to
4096 bytes of data), this stage takes around around 13 µs. Then, transmitting the
page over the first Ethernet segment (Net1) takes 33 µs. Given a store-and-forward
switch design — which was the case for both of the switches available for testing
— the switch waits to receive the entire packet. The switch inspects the packet,

3Because an Ethernet frame must be transmitted contiguously and PCI does not provide any
timing guarantees for supplying data, it is not safe to start transmission before the entire packet is
buffered on the network card.
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Figure 12.11: Using a single jumbo frame, page fetch latency is ≈ 97µs
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Figure 12.12: Splitting the page into four fragments reduces latency to ≈ 62µs

routes it to the appropriate output port (around 2.5 µs for the tested switches), and
begins transmission on the second network segment (Net0, which takes another
33 µs). Finally the packet is received at the destination node and transferred over
PCI to memory (P0 PCI)4 Overall, this takes around 89 µs, producing a 97 µs
turnaround time for the page fetch.

In contrast, consider if the page data is transmitted in four fragments of 1024
bytes each (Figure 12.12). For each fragment, the PCI transfer takes around 5µs,
and transmitting the fragment on the Ethernet takes 8.5 µs; repeating the same
calculations as before, this means that the first fragment arrives after around 26.5
µs. The remaining fragments can be pipelined through the stages; for instance,

4Some parts of this DMA can occur in parallel with reception if the network card is configured
to do so.
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the second fragment can commence PCI DMA while the first fragment is being
transmitted on the Ethernet. The overall latency in this case is 54 µs, allowing the
page fetch to return data in 62 µs — a significant improvement over 97 µs.

Increasing the number of fragments can reduce latency even further, however
it also adds to overheads. Both PCI and network bandwidth demands become
greater because of the extra packet descriptors and packet headers that must be
transferred. Also, the receiver incurs the CPU overhead of an interrupt for each
packet, which can be significant if a large number of fragments are used.

vNUMA can be configured to use four different options: a single jumbo
packet, three packets (of 1408, 1408 and 1280 bytes), four packets (of 1024
bytes each), and eight packets (of 512 bytes each). The respective best-case fetch
latencies are around 97 µs, 68 µs, 62 µs and 52 µs, as predicted by the pipelining
model and verified experimentally.

Experiments show that the four packet configuration is optimal, performing
better than the other options; therefore it was used for the reported results. The
eight packet configuration results in higher overheads and does not scale as well.

Interactions

Thus far, round-trip latencies have been quoted assuming a quiescent system.
However, plotting a histogram of stall latencies in a real application reveals an
interesting anomaly. A number of applications produce distributions such as that
shown in Figure 12.13 (this was produced from a FFT benchmark run on 2 nodes).
The leftmost peak, at around 17 µs, represents short requests that do not return
page data. The center peak, at around 62 µs, represents the latency of fetching
page data (at a fragment size of 1024 bytes). What, then, is the rightmost peak in
the graph, at around 112 µs?

This right peak corresponds to a case where a fetch request is delayed behind
a fetch reply to another node, as shown in Figure 12.14. The large latency of the
fetch reply is added to the normally small latency of the fetch request. The chance
of such non-optimal behaviour grows with increasing numbers of nodes, since it
becomes increasingly more likely that a request is delayed behind outgoing page
data for another node.
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Figure 12.13: Stall latency histogram for FFT on 2 nodes

Assuming that page fragmentation is being used, it is possible to improve
performance for such cases by allowing outgoing requests (which are typically the
result of stalls, and therefore latency-critical) to be transmitted ahead of pending
page fragments. This is shown in Figure 12.15. The latency saving for the short
packet (up to 26 µs) is much greater than the extra latency incurred by the page
fragments (less than a microsecond), so this is invariably a good optimisation.

This improvement can easily be implemented by maintaining two transmit
queues: a high priority queue and a low priority queue. The network adapters
used for this experimental work (based on the DP83820 chipset) support multiple
priority queues by design, so the implementation is trivial. For network cards
that do not have this support, priority queuing can be emulated in software by
queueing low priority frames only when the network card becomes idle. The
priority queueing technique provided slight performance improvements for some
benchmarks, with no negative side-effects, and was therefore enabled for the
results reported in other sections.
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Figure 12.14: Request 2 incurs large latency as a result of being delayed behind the page
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Conclusion

This thesis has explored the challenges associated with building a hypervisor-
based multiprocessor. The result, vNUMA, is impressively usable for a variety of
applications. It uses several novel techniques which have been described in this
thesis, both to minimise virtualisation overhead and to optimise the performance
of the distributed shared memory.

For computationally dominated applications, the system performs well, and
there are compelling arguments for using such a system on a small compute
cluster. The user gains the benefit of a single system image, indistinguishable
from a single computer; there is a single filesystem, a single process space, and
so on. The operating system performs automatic migration and load-balancing
of processes between processors, just as it would on a SMP or ccNUMA system.
If finer control is desired, processes and even entire login sessions can be locked
to particular nodes, using the standard operating system mechanisms. All of this
incurs little overhead for a CPU-bound application. Pages that are used locally by
a process become owned by the node that process is executing on, and incur no
extra overheads. When pages are shared between multiple processes that execute
on different nodes, the user effortlessly gains the services of a high-performance
DSM implementation.

Merely by virtue of being lower in the software stack, the vNUMA DSM
can achieve significant performance advantages over a userspace DSM such as
Treadmarks. It can incorporate its own network drivers, optimised to minimise
latency for the particular packets it sends; it can bypass the inefficiencies of OS
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mechanisms such as mmap and signals; it can intercept individual write faults with
reasonably low overhead; and it can directly harness hardware resources such
as Itanium’s performance monitoring unit in order to make better decisions. Such
optimisations would also available to a DSM implemented at the operating system
level, but the vNUMA approach has the advantage of not requiring intrusive
modifications to the operating system. This makes it more practical both for
legacy operating systems and also rapidly evolving operating systems such as
Linux.

The disadvantages of implementing the DSM at such a low layer — primarily,
the fact that less application-specific information is available — can be mitigated
by adding a minimal hypervisor interface to allow hints to be provided about
certain pages. In vNUMA, such a technique is used to invalidate a page when
the Linux kernel intends to clear it, avoiding the need to acquire ownership of the
old data.

vNUMA’s sophisticated DSM protocol can also competently handle work-
loads with sparse memory accesses, false sharing and atomic read-modify-write
operations — such as the Linux kernel itself. This is achieved via an adaptive
protocol that can operate in both write-invalidate and write-update modes.
As demonstrated in this thesis, the write-update mode can provide significant
advantages, allowing the maintenance of high levels of read replication even in
the presence of writes, and thereby reducing the frequency with which the DSM
system must stall waiting on page data. A particularly novel scheme is used for
emulating atomic read-modify-write operations to a page, which can again avoid
the necessity for invalidation of data. Naturally, replicating all data cluster-wide
would be prohibitive, so vNUMA uses an adaptive algorithm that decides whether
to update or invalidate on a per-page basis.

With these advanced protocols, vNUMA performs competitively even for
complex workloads such as a software build. On a small cluster vNUMA can
transparently achieve compile performance comparable to distcc — a custom
software solution for distributing portions of a compile to cluster nodes — while
appearing like a regular SMP system to users.

Of course, vNUMA cannot magically implement synchronisation without
communication, and performance does suffer for certain workloads that make
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significant use of synchronisation primitives (specifically atomic memory oper-
ations). By their very nature, atomic operations to a memory location must be
ordered, and if these operations occur on multiple nodes, then communication
latencies cannot be avoided. While vNUMA attempts to do this as efficiently
as possible, its 17 µs latency for acquiring ownership of a page is still two
orders of magnitude more expensive than a cache line transfer in an SMP system.
Workloads which depend on being able to achieve a high throughput of such
synchronisation operations, such as the PostgreSQL benchmark studied in this
thesis, may therefore become performance-limited by this latency. In most such
cases performance could be improved by re-designing the application, but one
of the major motivations of the vNUMA architecture is transparent support for
legacy applications.

This 17 µs communication latency that vNUMA incurs is largely dominated
by the latency of the I/O architecture between the CPU and network device,
particularly the DMA latency, and only secondarily determined by the network
itself. For example, a minimum-length frame can be transferred over Gigabit
Ethernet in a little under 600 ns, but the end-to-end latency in the system under test
is at least 6 µs; similar latencies are reported by other researchers [14]. Ironically,
even when vNUMA is run across cluster nodes that are physically separated in
different areas of a building, the intra-node legs of the journey still dominate.

One approach that could be used to mask this latency is to use multiple threads
of execution, which at the hypervisor layer would correspond to simulating
multiple virtual processors per physical processor. When one thread is waiting
on remote communication, switching to a different thread could potentially allow
useful work to be done.

Hopefully emerging hardware developments will also enable lower commu-
nication latencies. Higher bandwidth demands and ever-improving fabrication
technology are resulting in greater integration of memory and I/O interfaces
directly into processors. Sun’s recent UltraSPARC T2 processor [30] even
integrates dual low-latency 10 Gigabit Ethernet interfaces on the processor die.
Such architectures open up exciting possibilities for a system like vNUMA.
Given low enough communication latencies, a network of such processors could
potentially be used as a practical substitute for an SMP system, without the
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engineering complexity of implementing SMP in hardware.
Simultaneously, increasing processor speeds and parallelism are also increas-

ing the demands on the memory hierarchy, even in hardware-based SMP systems.
Ultimately, it may be that current SMP memory models — based on notions
of strict global coherence and atomicity — will reach their scalability limits,
and operating systems and applications will need to be able to support weaker
consistency models. Such developments could offer new opportunities for a
hypervisor-based software DSM.

Implementing a DSM system inside a hypervisor opens up a large space of
previously unexplored possibilities. This thesis has attempted to explore as much
as practical of the problem space, yet there are still many possibilities that are
uncharted. The author hopes that this thesis provides valuable insights that can be
used as a basis for future research and development.
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