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Abstra
t

Most multitasking operating systems support s
heduling pri-

orities in order to ensure that pro
essor time is allo
ated to

important or time-
riti
al pro
esses in preferen
e to less im-

portant ones. Ideally this would prevent a low-priority pro
ess

from slowing the exe
ution of a high-priority one. In pra
ti
e,

stri
t prioritisation is undermined by a la
k of suitable allo
a-

tion poli
y for resour
es other than CPU time. For example,

a low priority pro
ess may degrade the exe
ution speed of a

high-priority pro
ess by 
ompeting with it for physi
al mem-

ory. We present the design of a 
exible resour
e management

framework whi
h prioritises memory allo
ation, and examine a

prototype implementation for the Mungi single-address-spa
e

operating system.

1 Introdu
tion

Resour
e management is one of the main responsibil-

ities of an operating system. Pro
esses on a system

are generally in 
ompetition for resour
es su
h as pro-


essor time, physi
al memory or se
ondary memory

(disk spa
e), and it is the task of the operating sys-

tem to allo
ate them a

ording to some poli
y. In

general, di�erent poli
ies are used for di�erent kinds

of resour
es.

On the one hand, disk spa
e is usually managed

with a quota system whi
h limits the amount of spa
e

a user 
an o

upy. Alternatively, e
onomi
 models


an be used, whi
h asso
iate a pri
e with a resour
e,

and users \buy" or \rent" spa
e, involving some form

of payment [Anderson et al., 1986, Mullender and

Tanenbaum, 1986, Drexler and Miller, 1988, Heiser

et al., 1998b℄.

On the other hand, pro
essor time is allo
ated a
-


ording to some priority s
heme. Priorities 
an be

hard, meaning that a pro
ess will only exe
ute if no

higher priority pro
ess is runnable, or soft, meaning

that a pro
ess' priority in
uen
es the frequen
y or

duration for whi
h its pro
ess is allowed to exe
ute.

Hard priorities are required for time-
riti
al (real-

time) pro
esses but 
an lead to starvation, whi
h is

why time-sharing systems generally use soft priorities.

Priorities 
an be stati
 or dynami
, e.g., the priority

of a CPU-bound pro
ess may de
ay over time. An

alternative to priorities are s
hemes whi
h allo
ate

a 
ertain share of available pro
essor time to pro-


esses or groups of pro
esses [Larmouth, 1975, Kay

and Lauder, 1988,Waldspurger and Weihl, 1994℄.

Ideally the pro
essor allo
ation poli
y should ex-


lusively determine whether and at whi
h relative

speed a parti
ular pro
ess is exe
uting. In parti
u-

lar, a pro
ess whi
h, a

ording to the poli
y, is not
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to exe
ute at a parti
ular time should not in
uen
e

the exe
ution of a pro
ess whi
h should be exe
uting

a

ording to the poli
y. This, however, is diÆ
ult to

ensure, as the allo
ation of di�erent types of resour
es

is not independent of ea
h other. Most modern oper-

ating systems do not implement prioritised allo
ation

for resour
es su
h as physi
al memory and thus do

not 
ompletely isolate pro
esses from other pro
esses


ompeting for the same resour
es.

For example, a low priority pro
ess exe
uting while

a high priority pro
ess is blo
ked waiting for an event,

may o

upy a large amount of physi
al memory. The

higher priority pro
ess, on
e it be
omes runnable,

may soon get blo
ked on a page fault, and as a re-

sult may exe
ute more slowly than intended. As well,

frequent faulting by pro
esses 
an degrade the perfor-

man
e of other pro
esses, due to 
ontention for I/O

bandwidth.

One suggested 
ause of these problems is the

derivation of memory prioritisation from pro
essor

prioritisation s
hemes [Chapin, 1997℄. Memory is im-

pli
itly prioritised by assuming that a higher prior-

ity pro
ess, whi
h is allo
ated more pro
essing time,

will automati
ally gain a larger resident set by a
-


essing pages more frequently. This strategy worked

reasonably well with the slow pro
essors of the past.

The high CPU speeds of modern 
omputers permit

lower priority pro
esses to referen
e many pages while

higher priority pro
esses blo
k, leading to a loss of

memory prioritisation. This is usually exa
erbated by

the use of global repla
ement algorithms that fo
us on

total system throughput rather than the performan
e

of important appli
ations.

The major 
hallenge in managing system resour
es

is therefore to design a generi
 framework 
apable of

managing a diverse set of resour
es. Me
hanisms for

prioritising resour
e allo
ation and isolating pro
esses

from resour
e 
ontention are needed. Su
h a design

should meet the following requirements:

Fairness: Other than di
tated by system poli
ies, or

expli
it user requests (within the limits of those

poli
ies), pro
esses should be treated equally and

no pro
esses should starve. The isolation of enti-

ties from resour
e 
ontention by other entities

and the prioritisation of resour
e allo
ation is

ne
essary to ensure fairness.

Simpli
ity: There should be a simple model of re-

sour
e prioritisation. Ex
essive 
omplexity 
an

dis
ourage users from applying the me
hanism.

Flexibility: A resour
e management framework

should be 
exible and provide simple abstra
-

tions suitable for building more 
omplex poli
ies

as needed. It should keep me
hanism and poli
y

separate.

Performan
e: Resour
e allo
ation and prioritisa-

tion should be eÆ
ient and management over-



heads small. Poor performan
e would dis
ourage

users from managing their resour
e usage.

Prote
tion: A resour
e management framework

should operate within the operating system's

prote
tion system. Entities may only a�e
t other

entities within the 
onstraints of their imposed

resour
e poli
ies.

This paper des
ribes how the above requirements

have been addressed in the design of a new generi
 re-

sour
e management framework and how this provides

a me
hanism for prioritising physi
al memory for the

Mungi operating system. An overview of Mungi is

provided in Se
tion 2, des
ribing fundamental Mungi

abstra
tions and an existing e
onomi
 model for man-

aging se
ondary storage in the system. Se
tion 3 sur-

veys related resear
h in resour
e management, parti
-

ularly on approa
hes for prioritising physi
al memory.

The design of a generi
 resour
e management frame-

work is presented in Se
tion 4, followed by details

on the me
hanism for prioritising physi
al memory

allo
ation in Se
tion 5. Experimental results for a

prototype model are presented in Se
tion 6.

2 Mungi

2.1 Fundamental Abstra
tions

Mungi [Heiser et al., 1998a℄ is a single-address-spa
e

operating system (SASOS), and as su
h exe
utes all

pro
esses on all nodes in a single, large virtual address

spa
e. This address spa
e 
ontains all persistent and

transient data, simplifying data sharing and persis-

tent storage. All operations on this address spa
e are

asso
iated with a small number of fundamental ab-

stra
tions: threads, prote
tion domains, 
apabilities,

and obje
ts.

Mungi threads are kernel-s
heduled units of exe-


ution. They form a hierar
hy de�ned by the parent-


hild relationship. In this hierar
hy, threads may only

kill des
endant threads and may not survive their 
re-

ator threads unless adopted by a higher an
estor.

Ea
h Mungi thread exe
utes in exa
tly one

prote
tion domain that de�nes the regions of virtual

address spa
e it may legally address. Sin
e virtual

address spa
e is allo
ated in 
onse
utive pages as ob-

je
ts, prote
tion domains logi
ally des
ribe a set of

obje
ts and a 
orresponding set of a

ess rights to

these obje
ts. These a

ess rights are implemented

as password 
apabilities [Anderson et al., 1986℄.

Mungi 
apabilities 
ontain an obje
t address, a

password to prote
t it from forgery, and a set of a
-


ess rights. They may be stored and passed around

freely without system intervention and are registered

in a global, distributed data stru
ture 
alled the

obje
t table (OT). When validating a 
apability, the

system 
ompares it with registered 
apabilities. If a

mat
h exists and the requested operation is 
ompati-

ble with the a

ess mode, a

ess is granted. For per-

forman
e, validations are 
a
hed for ea
h prote
tion

domain. Ca
hed validations are 
ushed periodi
ally

to permit the revo
ation of a

ess rights to obje
ts.

2.2 Se
ondary Storage Management

Mungi has a se
ondary storage management model

designed to 
ontrol the proliferation of obje
ts in the

system [Heiser et al., 1998b℄. This model is based

on the rent s
heme in the Monash Password Capabil-

ity System [Anderson et al., 1986℄ and bank a

ounts

from Amoeba [Mullender and Tanenbaum, 1986℄. Its

main obje
tive is to ensure users do not starve or ex-

ploit others through ex
essive use.

2.2.1 Bank A

ounts

Se
ondary storage is managed by 
harging rent for

ba
king store usage through spe
ial obje
ts 
alled

bank a

ounts. A

ounts with money available for

rent 
harging have a �nan
ial 
ag set in their OT en-

try. Obje
t 
reation is only permitted if a valid 
a-

pability to a �nan
ial bank a

ount is supplied to the

system. Che
king this is eÆ
ient sin
e OT entries are

stored with 
a
hed validations.

2.2.2 Rent Colle
tion

A
tual a

ounting is performed by a user-level ba
k-

ground thread 
alled the rent 
olle
tor at a reason-

able frequen
y. Sin
e rent 
olle
tion is asyn
hronous

to other system a
tivities, all obje
t operations are

free of a

ounting overhead.

The rent 
olle
tor has a 
apability to the OT. Dur-

ing rent 
olle
tion it traverses the OT to 
harge bank

a

ounts for ba
king store used by their obje
ts. The

rent 
harged is the produ
t of the amount of ba
k-

ing store used, the 
urrent storage 
ost per page, and

the elapsed time sin
e the last rent 
olle
tion. The

in
lusion of time in the 
harge permits 
olle
tion at

irregular times. Should a bank a

ount be overdrawn,

it is rendered non-�nan
ial and obje
t 
reation with

this a

ount is prohibited on
e 
a
hed validations are


ushed and updated.

Short-lived obje
ts are 
harged only if they exist

during rent 
olle
tion. Unlike traditional disk quo-

tas, this permits users to temporarily utilise idle re-

sour
es. Rent 
olle
tion 
ould be s
heduled at irreg-

ular intervals to prevent users from deliberately min-

imising storage usage during 
olle
tion periods.

To adjust to high demand, the storage 
ost per

page varies with utilisation. It remains 
onstant dur-

ing low utilisation and in
reases sharply when se
-

ondary storage be
omes s
ar
e, for
ing users to free

storage as they 
an no longer a�ord to pay.

2.2.3 In
ome and Taxation

To fund rent 
olle
tion, bank a

ounts re
eive a salary

from parent a

ounts, with an in�nitely ri
h root a
-


ount funding all top parent a

ounts. This hierar-


hy allows users to 
reate additional a

ounts to man-

age di�erent groups of obje
ts. Salaries are paid by

a pay master thread, whi
h periodi
ally deposits in-


ome s
aled with time into ea
h a

ount.

To prevent users from a

umulating ex
essive in-


ome and buying out the system, taxation is per-

formed prior to salary deposition. This operation

is again s
aled with time to prevent ex
essive tax-

ation during irregular salary depositions. Moreover,

the amount of taxation is adjustable, permitting the


onstru
tion of poli
ies that 
onsider resour
e usage

history.

2.2.4 Bank A

ount Operations

To prote
t the integrity of bank a

ounts, users are

only given read 
apabilities to their a

ounts, al-

lowing them to read but not modify a

ount data.

All a

ount modi�
ations are performed through a

trusted path me
hanism 
alled prote
tion domain

extension (PDX) [Vo
hteloo et al., 1996℄. This me
h-

anism allows the 
ontrolled extension of a thread's

prote
tion domain for the duration of a pro
edure


all. When a PDX pro
edure for modifying a

ount

data is invoked with a valid read 
apability, the


aller's prote
tion domain is temporarily extended to

in
lude a write 
apability to the bank a

ount. All

2



write 
apabilities to a

ounts are kept by a bank man-

ager to ensure modi�
ations are done only by the a
-


ounting software.

3 Related Work

This se
tion surveys related resear
h in resour
e man-

agement, parti
ularly work involving physi
al mem-

ory.

3.1 UNIX

UNIX [Thompson and Rit
hie, 1974℄ systems gener-

ally have little support for fairly allo
ating resour
es

to groups of pro
esses and provide only quota ab-

stra
tions for individual pro
esses. Abstra
tions for

managing physi
al memory are usually per-pro
ess

resident set size limits. As with quotas, limits are

in
exible and physi
al memory 
an easily be under-

or over-
ommitted. Together with global repla
ement

algorithms, these per-pro
ess me
hanisms do not pri-

oritise physi
al memory allo
ation nor do they isolate

pro
esses from resour
e 
ontention.

3.2 Amoeba

The Amoeba [Mullender and Tanenbaum, 1986,

Tanenbaum et al., 1986℄ e
onomi
 resour
e manage-

ment s
heme uses bank a

ounts to pay for resour
es

with virtual money. To permit di�erent poli
ies or

subsystems, money is supported in possibly 
onvert-

ible or in
onvertible 
urren
ies. Users own individual

bank a

ounts; servi
es own business bank a

ounts

to manage 
lient money.

When a system servi
e is required, 
lients request

a bank server to transfer money from their individ-

ual a

ount to the business a

ount of the servi
e

provider. Advan
ed payments are made to amortise

the overhead of transfers. Quotas or rental models

may then be employed to 
ontrol resour
e usage. For

example, a se
ondary storage quota s
heme would

debit money per blo
k allo
ated. Credit is returned

when blo
ks are freed. A rental model, in 
ontrast,

would 
harge 
lients for resour
es at a rate of �money,

per unit resour
e and unit time. Clients need to trust

servi
e providers, however, to provide the amount of

resour
es paid for.

3.3 The Share Fair Share S
heduler

Possibly the earliest ideas of proportional sharing are

by Larmouth [Larmouth, 1975℄, whose work re
og-

nised the need to s
hedule CPU fairly between users

rather than pro
esses. These ideas were the basis for

the Share fair share s
heduler [Kay and Lauder, 1988℄.

Share s
hedules CPU a

ording to user entitle-

ments, as de�ned by their shares and resour
e usage

history. Shares indi
ate the proportion of resour
e

to whi
h a user is entitled. Usage history, a de
ayed

measure of resour
e 
onsumption, a�e
ts usage re-

sponse. Pro
ess priorities are adjusted a

ording to

these parameters to share the CPU amongst users.

De�ning shares for groups of users is also possible,

permitting groups to share a ma
hine at an organisa-

tional level. To ensure ea
h group re
eives its fair

share, Share in
reases the e�e
tive share of a
tive

users with the shares of ina
tive users in the same

group.

Unfortunately, Share imposes a �xed hierar
hi
al

poli
y stru
ture of users and groups. It does not per-

mit more 
omplex poli
ies or di�erently stru
tured

poli
ies for di�erent subsystems. Nor does Share

provide a uniform interfa
e to manipulate pro
ess

s
heduling, but supports UNIX ni
e semanti
s in-

stead. Employing pro
ess shares would be better,

sin
e priorities are generally diÆ
ult to understand

and do not vary linearly with resour
e rights.

3.4 Stealth

Stealth [Krueger and Chawla, 1991℄, an operating sys-

tem for networked workstations, has a distributed

s
heduler to prioritise resour
e allo
ation. It aims

to insulate workstation owner pro
esses from foreign

pro
esses started at other workstations by exe
uting

foreign pro
esses at a slower rate during resour
e 
on-

tention.

Stealth implements prioritised memory allo
ation

using a variant of the Ma
h 2.5 kernel memory man-

ager. Two separate sets of a
tive, ina
tive, and

free page lists are maintained for owner and foreign

pro
esses. Pages are moved between lists to favour

owner pro
esses over foreign pro
ess. As well, to iso-

late owner pro
esses from thrashing foreign pro
esses,

Stealth only responds to foreign pro
ess page faults if

no owner pro
ess page faults are waiting. This per-

mits full utilisation of networked resour
es with iso-

lation for workstation owners.

However, although Stealth a
hieves its goal of

owner-pro
ess insulation, it 
annot be applied to mul-

tiple user systems requiring resour
e prioritisation be-

tween many groups of logi
al entities. In parti
ular,

its memory allo
ation s
heme does not dis
riminate

between more than two groups. There is basi
ally

no me
hanism by whi
h poli
ies may be spe
i�ed and

entity resour
e allo
ations enfor
ed.

3.5 Opal

Opal [Chase et al., 1994℄, also a SASOS, manages seg-

ments, se
tions of its single address spa
e, through

expli
it referen
e 
ounting. Referen
e 
ounts re
e
t

the number of entities \interested" in a resour
e, and

resour
es are released only at zero 
ounts. They are

used by appli
ations and fa
ilities like runtime li-

braries and garbage 
olle
tors to allo
ate and release

storage spa
e.

To prevent abuse of referen
e 
ounts, resour
e

groups are employed for resour
e a

ounting. Ca-

pabilities to these groups are needed whenever a re-

sour
e is 
reated or a referen
e 
ount is in
remented.

When a group is destroyed, the resour
es asso
iated

with the group are released. Ea
h thread has a 
ur-

rent resour
e group and impli
itly passes a 
apability

to this group on system 
alls.

Resour
e groups also provide 
ontrol over appli
a-

tion resour
e 
onsumption. Groups 
an be nested into

a hierar
hi
al tree to allow �ner resour
e a

ounting.

A 
apability to a resour
e group permits a holder to


reate subgroups and delete any des
endant subgroup.

A

ounting 
harges for a subgroup are passed to its

parent and presented to users at the root, requiring

them to limit resour
e usage with quota or billing

models.

Opal's resour
e groups present a promising ap-

proa
h, although with some short
omings. For one,

ea
h Opal thread belongs to only one resour
e group

at any instan
e of time, namely its 
urrent group.

This is in
exible if di�erent types of resour
es are to

be managed, sin
e it restri
ts the management of all

types of resour
es to the same stru
ture. Resour
e

spe
i�
 stru
tures would allow more 
exibility in pol-

i
y 
onstru
tion. Furthermore, the Opal approa
h to

managing se
ondary storage by having users de
lare

an expli
it \interest" in obje
ts, and using this as a

basis for referen
e 
ounting and garbage 
olle
tion,

is insuÆ
ient. It su�ers from the same problems as

traditional �le systems, where persistent obje
ts are

entered into dire
tories with human readable names.
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An obje
t of no \real" interest to entities 
an inde�-

nitely remain referen
ed by a dire
tory entry and not

re
laimed by the garbage 
olle
tor. We argue that

users must manage storage [Heiser et al., 1998b℄. The

system 
an therefore only en
ourage users to 
lean up

by 
harging users for resour
e usage. Sin
e quota ap-

proa
hes are in
exible, this is best a
hieved by billing

models.

3.6 Ti
kets and Curren
ies

[Waldspurger and Weihl, 1994,Waldspurger, 1995℄

des
ribe proportional sharing using ti
kets and 
ur-

ren
ies. Ti
kets are essentially shares and de�ne the

proportion of resour
es a 
lient may use. As mutu-

ally trusting 
lients 
an in
ate their number of ti
kets,


urren
ies are used to denominate ti
kets and provide

isolation between 
lients. A base 
urren
y denomi-

nates the ti
kets dire
tly proportional to the amount

of resour
es allo
ated to 
lients and has de�ned ex-


hange rates with lo
al 
urren
ies.

To prioritise memory, two algorithms are intro-

du
ed as possible methods for 
hoosing a page re-

pla
ement vi
tim: minimum-funding revo
ation and

inverse lottery s
heduling. The former algorithm re-

vokes a frame from the 
lient with the least ti
kets per

frame; the latter uses a pseudo-random number gen-

erator to sele
t a vi
tim, with the probability a 
lient

is 
hosen being inversely proportional to its number

of ti
kets. Using a tree data stru
ture, O(log(n)) im-

plementations are possible for both algorithms, where

n is the number of 
lients in the system.

Unfortunately, this framework has short
omings.

No 
onsideration is given to a

ounting for shared

frames. Memory sharing is important to the per-

forman
e of modern systems. Copy-on-write shar-

ing avoids 
opying overhead, shared libraries re-

du
e startup laten
y and improve memory utilisation,

and write-shared pages are the most eÆ
ient inter-

pro
essor 
ommuni
ation me
hanism.

Furthermore, if entities frequently enter or leave

the system, frequent and possibly expensive 
hanges

in ex
hange rates o

ur. Moreover, when entities

enter or leave the system, the in
ation or de
ation

of ti
kets proportionally adjusts the resour
e rights

of entities in the same 
urren
y. Poli
y, not the

framework, should determine how ti
kets are adjusted

among entities. These issues have yet to be 
onsid-

ered, although other improvements, su
h as the re-

moval of the upper and lower limits imposed by 
ur-

ren
ies [Sullivan and Seltzer, 2000℄, have been made

by subsequent resear
h.

3.7 IRIX

[Verghese et al., 1998℄ presents a performan
e isola-

tion model for managing resour
es in the IRIX operat-

ing system. It partitions resour
es into isolated units


alled Software Performan
e Units (SPUs). Pro-


esses in the same SPU 
ontend for resour
es allo-


ated to the unit but do not experien
e any perfor-

man
e degradation from pro
esses in other SPUs.

To partition physi
al memory frames, ea
h SPU

has an entitled, allowed, and used page 
ount. The en-

titled page 
ount represents the share of pages a unit

is permitted, whereas the allowed page 
ount serves

as an upper limit. Used pages in
lude pro
ess pages

and kernel pages used on behalf of the unit.

For improved throughput, idle memory is loaned

between SPUs by periodi
ally adjusting allowed page


ounts. Free pages are distributed to SPUs under

memory pressure and revoked when loaning SPUs re-

quire the lent resour
es. Sin
e this revo
ation may

involve writing dirty pages to disk, a set of free pages

are reserved to minimise the revo
ation time.

The isolation model also a

ounts for shared re-

sour
es, in
luding shared frames. When a page is

�rst a

essed, it is assigned the SPU identi�er of its

faulting pro
ess. Subsequent a

ess by a pro
ess in

another SPU will assign the page to a default shared

SPU. This method, nonetheless, does not fairly 
harge

for shared frames sin
e it e�e
tively 
harges shared

frames to all units. It allows heavy sharing to o

ur

between several SPUs at the expense of all other units

in the system.

Finally, although the model a
hieves performan
e

isolation, it unfortunately restri
ts the management

of di�erent types of resour
es to the same stru
ture.

As pro
esses may use resour
es from their assigned

SPU only, it is not possible to manage di�erent types

of resour
es in di�erent groups. Like Opal's resour
e

group abstra
tion, this restri
tion is in
exible.

4 A Generi
 Framework

Mungi's existing se
ondary storage management

model varies 
ost with respe
t to utilisation

(
f. Se
tion 2). It dis
ourages maximised disk spa
e

usage, whi
h generally has little bene�t to system per-

forman
e anyway. Usage of other resour
es, however,

needs to be maximised for in
reased system through-

put and performan
e. This requires the spe
i�
ation

of an amount of resour
e required for good perfor-

man
e.

The existing model, nonetheless, was not designed

to spe
ify an amount of resour
e to be allo
ated.

Bank a

ount balan
es 
ould serve this purpose, e.g.

by allo
ating more to a user with a high a

ount bal-

an
e. However, bank a

ount balan
es vary with re-

sour
e usage and salary deposition, and thus are not

parti
ularly well suited to this purpose. They are bet-

ter suited to re
ord a sense of usage history (as high

usage will deplete an a

ount). Furthermore, su
h a

poli
y would signi�
antly redu
e the ability of users

to 
ontrol their resour
e usage a

ording to their own

requirements; e�e
tively this would build too mu
h

poli
y into the kernel. Hen
e another abstra
tion is

needed to spe
ify an amount of resour
e to be used

by an individual entity or a group of entities. This

se
tion presents the design of this abstra
tion with

the requirements of Se
tion 1 in mind.

4.1 Resour
e Consumption Rates

As Mungi's existing resour
e model is e
onomi
, an

e
onomi
 spe
i�
ation of resour
e needs is desired. To

this end, resour
e 
onsumption rates, a 
on
ept sim-

ilar to rates in the Amoeba rental model, are intro-

du
ed. These spe
ify the maximum rate with whi
h

a parti
ular resour
e is allowed to draw funds | how

mu
h of its in
ome stream an entity is willing to 
om-

mit to a parti
ular resour
e. Logi
al entities (e.g.,

threads) are asso
iated with a rate for ea
h a

ount-

able type of system resour
e, and resour
e allo
ation

is dependent on the rate spe
i�ed and the 
ost per

resour
e unit.

Together, rates and 
osts per unit resour
e pro-

vide mu
h 
exibility in poli
y 
onstru
tion. The sys-

tem may utilise idle resour
es by lowering 
osts, while

raising 
osts 
ould be used to reserve resour
e units.

Costs 
an serve as a re
e
tion of node load in load

balan
ing. As with ba
king store, setting arbitrar-

ily high 
osts during high utilisation 
an be used to

prevent maximised usage. A poli
y 
an also provide

resour
e guarantees by 
ommitting to an upper 
ost

limit.

As well, variable 
osts permit absolute or relative

shares. The former, a quota based poli
y, would have

a �xed 
ost per resour
e unit. The latter 
ould have

zero pri
ing, in whi
h 
ase usage is free as long as
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there are idle units, and is in proportion to the spe
-

i�ed rates when resour
es are in 
ontention.

Finally, rates naturally supplement bank a

ounts.

While a

ounts indi
ate usage history and bound the

total resour
e usage of entities, rates determine the

speed at whi
h funds are 
onsumed. The two ab-

stra
tions give 
ontrol over resour
e quantity and 
on-

sumption time. For example, low resour
e rates and

limited balan
es 
ould be set for untrusted pro
edure


alls. Users with little usage history 
ould be per-

mitted higher rates in a

ordan
e with system poli
y.

Rates 
ould also be adjusted to permit users to pay

more for one resour
e and less for another resour
e

while 
onsuming funds at the same total rate.

4.2 Resour
e Groups

As mentioned earlier, resour
e isolation and priori-

tisation should be appli
able to a group of entities

(threads in this 
ase). Any group abstra
tion must

therefore �t in with the thread hierar
hy used by

Mungi (and most operating systems), with resour
e

group membership orthogonal to the thread hierar-


hy for maximum 
exibility. We 
all this abstra
tion

resour
e groups, as in Opal where they were originally

proposed [Chase et al., 1994℄.

Mungi threads belong to a resour
e group for ea
h

type of a

ountable system resour
e. Flexible thread

grouping is possible sin
e groups are unrelated to

prote
tion domains. Ea
h group has a unique identi-

�er, a resour
e 
onsumption rate, resour
e usage data,


reation and exit timestamps for a

ounting purposes,

and a single bank a

ount. The unique identi�er dis-

tinguishes groups asso
iated with the same a

ount.

For �ner 
ontrol, resour
e groups are nested in a

hierar
hy per type of resour
e. This permits 
ontrol

over the total rate in a tree of groups. Prote
tion of

groups in this hierar
hy is possible by validating a
-


ess to group bank a

ounts during important group

operations. Sin
e validations are 
a
hed, this does

not slow the operations, whi
h are as follows:

1. If a thread spawns or moves a 
hild into its own

resour
e group, no a

ess validation to its group's

bank a

ount is required.

2. When a thread spawns or moves a 
hild into a

newly 
reated subordinate group, the thread re-

quires a 
apability to its own group bank a
-


ount. The new group is given a subset of its

parent's rate and may be funded by another �-

nan
ial bank a

ount.

3. If a 
hild is started or moved into an existing

group, dire
tly or indire
tly subordinate to its

own, its parent must have a 
apability to the

new group's bank a

ount.

4. A thread may de
rease the rates of groups di-

re
tly or indire
tly subordinate to its own if

it has a 
apability to its own group a

ount.

This allows resour
e revo
ation from subordinate

groups regardless of how these groups are funded.

However, to in
rease a subordinate group's rate

a 
apability to its bank a

ount is needed.

5. When parent threads delete des
endants, empty

subordinate groups are removed and their rates

added to their own group rates. Orphaned

groups are adopted by groups above them in the

hierar
hy.

Figure 1 illustrates a resour
e group hierar
hy with

the Mungi thread hierar
hy. Although this diagram

has groups 
omprised of subtrees in the thread hierar-


hy, less stru
tured groups are possible sin
e threads


an move des
endants between groups.

Thread Hierarchy

Resource Groups

Figure 1: Resour
e groups and thread hierar
hy

Resour
e groups also permit 
ontrolled resour
e

usage during an invo
ation (via PDX) of an untrusted

pro
edure. A thread may exe
ute in existing or new

resour
e groups during the 
all. When the 
all is


ompleted, the 
alling thread resumes exe
ution in

its original resour
e groups. This logi
al 
hange in

groups during the PDX 
all is illustrated in Figure 2.

O

O

memory group
CPU group

Groups Before and AfterPDX Call Groups During PDX Call

Figure 2: PDX 
all with 
aller thread O 
hanging re-

sour
e groups temporarily

Finally, it must be stressed that groups do not

impose poli
y. Rather, user-level threads are respon-

sible for de�ning resour
e allo
ation poli
ies for de-

s
endants in subordinate groups. Unlike ti
kets and


urren
ies, no resour
e redistribution poli
y is im-

posed when subordinate groups exit the system; par-

ent groups only have their rates in
reased by the ex-

iting groups' rates. It is 
ompletely up to the user-

level threads responsible for the poli
y imposed on

these groups to redistribute released resour
es among

remaining subordinate groups if required. Similarly,

to avoid imposing poli
y, the rates of groups are not

in
reased to a

ount for idle groups. Adjusting re-

sour
e rights to give a
tive entities the resour
es of

idle entities is a poli
y imposed in Share to ensure

fairness when sharing at an organisation level.

4.3 In
orporation into Mungi

Resour
e groups have little impa
t on the existing

disk management model, simplifying their in
orpora-

tion into Mungi. Bank a

ounts and operations like

salary deposition and taxation are una�e
ted. Only

in
reases in salary payments are needed to fund ad-

ditional resour
e types.

On the surfa
e, this in
rease in salary might seem
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to a�e
t se
ondary storage rent 
olle
tion. Sin
e

obje
t allo
ation is not limited by the resour
e group

abstra
tion, users 
ould feasibly spend all their funds

on ba
king store, even parts of their in
reased salary

intended for other resour
es. Other users 
ould be de-

nied their share of se
ondary storage. However, this is

not really a problem. Disk is managed to permit the

usage of idle storage and maximised usage is dis
our-

aged by raising storage 
osts as the resour
e grows

s
ar
e. As well, unlike other resour
es, buying more

ba
king store does not really a�e
t the performan
e of

other users. Therefore, as long as a user has a �nan-


ial bank a

ount the pur
hase of more disk storage

is legal. It may even be viewed as an advantage as

users 
an 
hoose to pay more for ba
king store with-

out having to adjust resour
e 
onsumption rates for

se
ondary storage.

One other major 
on
ern is rent 
olle
tion for re-

sour
es like RAM. As with disk management, this is


ondu
ted by a user-level ba
kground thread to en-

sure kernel operations are eÆ
ient and that the Mungi

kernel does not di
tate resour
e management poli
y.

The rent 
olle
tor regularly traverses all groups in the

system, dedu
ting rent from their bank a

ounts. The

rent 
harged is the produ
t of the group resour
e us-

age, the present 
ost per unit resour
e, and the time

of utilisation. Usually this is the time elapsed sin
e

the last rent 
olle
tion, but may involve group 
re-

ation and exit timestamps for groups that entered or

left the system sin
e the last 
olle
tion.

Maintaining exit timestamps implies a delayed


leanup of resour
e groups. Empty groups are not

immediately destroyed; the system retains group data

until a thread with a 
apability to the OT, namely the

rent 
olle
tor, inspe
ts it. This permits a

urate a
-


ounting even if threads have short lifetimes and do

not exist during rent 
olle
tion. Sin
e group data 
on-

sists of a group's resour
e usage and 
reation and exit

timestamps, the data retained by the system is min-

imal. Therefore, if rent 
olle
tion o

urs regularly,

delaying the 
leanup of group data has insigni�
ant

overhead on the system.

Finally, kernel support for resour
e group hierar-


hies is simple sin
e group relationships mirror thread

relationships. It merely involves maintaining pointers

between group parents, siblings, and 
hildren.

5 Prioritising Physi
al Memory

While resour
e groups 
onstitute a 
exible manage-

ment framework, me
hanisms to prioritise resour
es

and provide isolation for groups of threads are still

needed to enfor
e resour
e 
onsumption rates. This

se
tion 
onsiders the design of a me
hanism for phys-

i
al memory allo
ation. This resour
e 
an be mul-

tiplexed in both time and spa
e, with the former

a
hievable by 
ontrolling paging bandwidth. Paging

bandwidth 
ontrol is beyond the s
ope of this paper,

and we will present the design of a me
hanism only

for prioritising physi
al memory frame allo
ation.

5.1 The Dilemma of Shared Frames

Although memory frames 
an be easily divided among

entities, shared physi
al frames make fair a

ount-

ing of memory resour
es diÆ
ult. As des
ribed in

Se
tion 3.7, one solution is to 
harge all shared re-

sour
es to a single entity. (This is unfair, but a

ept-

able if sharing is rare.) For Mungi, this is una

ept-

able sin
e data sharing is en
ouraged by its single ad-

dress spa
e and shared memory is the basis for inter-

pro
ess 
ommuni
ation. Resour
e a

ounting 
ould

be greatly distorted if there is mu
h sharing of re-

sour
es between parti
ular entities in the system (as

it generally happens in other systems attempting to

a

ount for physi
al memory). For fairness, a me
h-

anism is needed to solve this while 
harging frames

only to entities using them.

5.2 A Fair A

ounting Approa
h

[Chapin, 1997℄ states that physi
al memory 
ontrol

is mainly a
hieved by prioritising memory allo
ation

and page repla
ement. This se
tion introdu
es a fair

and simple prioritisation s
heme based on the 
lo
k

page repla
ement algorithm. The 
lo
k algorithm is

used sin
e it (or variants of it) are used for page re-

pla
ement in most operating systems. In parti
ular,

the existing Mungi virtual memory system employs a

global 
lo
k algorithm with referen
e bit emulation.

To eliminate the dilemma of shared frames, this

variant of the 
lo
k algorithm 
harges individual

memory frames to only one memory resour
e group

at a time. This provides a unique asso
iation between

frames and groups, permitting straightforward usage

a

ounting. A group is 
harged a frame if it sets the

frame's referen
e bit (when one of its threads fault on

the page, or when Mungi uses the page on its behalf).

It remains 
harged for the frame until the page is re-

pla
ed from physi
al memory, or the referen
e bit is

set by a thread from another group. The latter 
ase

is referred to as a page transfer.
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Figure 3: Page transfer between resour
e groups

Figure 3 shows a page transfer from group A to

group B. Before the transfer, group A is 
harged for

the frame marked page 13. This implies that some-

time earlier group A had been responsible by setting

the referen
e bit for page 13. Although the referen
e

bit for page 13 has sin
e then been 
leared and the

page unmapped from all threads by the page repla
e-

ment algorithm, the frame is still 
harged to group A.

Now when a thread from group B faults on page 13,

it sets the frame's referen
e bit, resulting in a page

transfer. As seen in the diagram, this 
auses page 13

to be 
harged to group B instead of group A.

Note from the example that page repla
ement is

applied on a group basis, rather than globally. This

is be
ause global page repla
ement violates isolation.

This approa
h does not imply lo
alised page repla
e-

ment; page faults from threads do not ne
essarily re-

pla
e frames 
harged to their own groups. Rather a
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frame from a group whi
h is over its entitlement is

sele
ted for repla
ement.

One possible argument against this approa
h is its

relian
e on referen
e bits. A group with a large re-

sour
e 
onsumption rate might always keep its pages

resident, allowing other groups to use them free of


harge. This is not an issue sin
e a group only pays

for the frames it uses and its rate de�nes the maxi-

mum 
redit it is willing to pay. If the group's working

set be
omes too expensive, some pages will be auto-

mati
ally transfered to other groups using the same

frames. Eventually this will lead to a fair distribution

of 
osts. Even in the short term there is some statis-

ti
al fairness, as a page will be 
harged to the �rst

group using it.

5.3 Prioritised Memory Revo
ation

While the 
harging s
heme des
ribed above is fair

and simple, it still requires a method of sele
ting a

resour
e group for page repla
ement. This method

should only in
ur minimal overhead and must support

a 
ost per frame. This 
ost is a fun
tion of memory

utilisation, with an in
reasing value as free memory

de
reases. It must be 
ontrollable by the system ad-

ministrator.

Minimum-funding revo
ation des
ribed in

Se
tion 3.6 seems to be a possible approa
h. E
o-

nomi
ally, this algorithm reallo
ates frames from

entities paying less to entities paying more. To

enfor
e a 
ost per frame, frames would be revoked

until all entities are paying the appropriate amount

per page. For eÆ
ien
y, these revoked frames 
ould

be bu�ered until free memory is available.

Unfortunately, minimum-funding revo
ation is in-

eÆ
ient, with a tree data stru
ture implementation

requiring O(log(n)) operations, where n is the num-

ber of 
lients 
ompeting for memory. For a system

where memory is prioritised only when there are no

idle resour
es, this might be a

eptable if page re-

pla
ement is infrequent and a

ountable entities are

few. However, this is una

eptable for our model sin
e

prioritisation depends on a 
ost per frame and revo-


ation may o

ur even with available idle resour
es.

A set of group queues solves this ineÆ
ien
y while

also providing support for rates and a 
ost per frame.

These queues are based on the array of 32 run queues

employed in the 4.4BSD Operating System [M
Ku-

si
k et al., 1996℄ to manage pro
esses. Whereas the

4.4BSD s
heduler assigns a pro
ess to a queue a

ord-

ing to its priority, this approa
h assigns a group to a

queue a

ording to its bidding pri
e. This is de�ned

as the ratio of its resour
e 
onsumption rate over the

number of physi
al frames it is 
harged for. It re
e
ts

the pri
e the group is willing to pay per frame given

its present allo
ation. A bidding pri
e below the 
ur-

rent frame pri
e is an indi
ation that the group holds

too many frames { revoking some (assuming a �xed

resour
e 
onsumption rate) will in
rease its bidding

pri
e.

When s
aled appropriately, the bidding pri
e in-

dexes into an array of 64 group queues, thereby lo-


ating the queue for the group.

1

As with 4.4BSD

run queues, this array has an asso
iated 64 bit ve
-

tor identifying non-empty queues. Figure 4 illustrates

this data stru
ture.

A single ordered list would make the sele
tion of

the next vi
tim group is fast, but all other operations

would be
ome expensive. By employing an array of

queues, the expense of other operations is redu
ed,

while the 
ost of sele
ting the next vi
tim remains

reasonably low (time to sear
h the 64-bit ve
tor).

1

This s
aling implies that the bidding pri
e is treated as a dis-


rete entity with 64 possible values.

group group group

group

group

group

group

group

group

bidding
low

price

bidding
high

price

Queues

Figure 4: Group queueing stru
ture for memory pri-

oritisation

Given that the sele
tion of a vi
tim group is less fre-

quent than the operations required to order groups,

this poses no problems. With the array, fast sele
-

tion of a vi
tim group is possible by sear
hing the bit

ve
tor. The lowest nonempty queue is indi
ated by

�nding the �rst bit set in the ve
tor. Page repla
e-

ment is subsequently possible with the �rst group on

this queue. After page repla
ement this group is then

appended to a queue re
e
ting its new bidding pri
e.

Noti
e how 
hoosing the �rst group trades the 
ri-

teria of 
hoosing the 
lient with minimum funds for

speed; fairness is still retained as groups are sele
ted

from the lowest nonempty queue. Another advan-

tage of sele
ting the �rst group is that groups whi
h

have been in the queue longest are 
hosen �rst, thus

prote
ting a group from losing too many frames too

qui
kly.

5.4 Kernel Modi�
ation Details

Support for our fair 
harging s
heme requires some

substantial modi�
ations to the existing Mungi vir-

tual memory design. Kernel page fault handling

now 
onsiders four 
ases of faults to 
orre
tly 
harge

frames to groups:

1. If the faulting page is not resident, but free

memory is available, I/O is initiated to load

the page into a free frame. When the I/O is


ompleted, the frame is mapped to the faulting

thread and is 
harged to the faulter's group.

2. If the page is not resident and free memory

is unavailable, the pager sele
ts the �rst group

from the lowest non-empty queue for page re-

pla
ement. Appropriate I/O operations are initi-

ated and, on
e these are 
ompleted, virtual mem-

ory mappings are established and the repla
ed

frame is 
harged to the group of the faulting

thread.

3. If the page faulted on is resident and 
harged

to a resour
e group, the pager determines

whether it may be mapped immediately with-

out a page transfer. This o

urs if the referen
e

bit is set. If the referen
e bit is 
leared but the

faulter belongs to the same group as the frame, a

mapping is likewise immediately returned. Oth-

erwise, a frame transfer is needed to 
harge the

frame to the faulter's group before mapping the

page to the faulter.

4. Otherwise the page faulted on is resident and

not 
harged to a resour
e group. Pages of

this type are bu�ered on a dirty list. A fault on
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a bu�ered dirty page 
harges the frame to the

faulter's group.

Note that although bu�ering improves system

performan
e, it introdu
es two 
ompli
ations.

Firstly, un
ontrolled bu�ering of dirty pages

leads to high 
ost when revoking dirty pages

whi
h require writing to disk. Se
ondly, bu�er-

ing dirty pages does not permit poli
y to reserve

frames by raising the 
ost per frame. These is-

sues are a part of 
ontrolling paging bandwidth

and are subje
t to future resear
h.

In all 
ases where no free memory is available, page

repla
ement may be required for the faulting group

prior to 
harging the frame to its new group. If the

frame's resour
e group is ex
eeding its rate, the pager

invokes the 
lo
k algorithm to sele
t a repla
ement

frame. Other frames are unmapped and have their

referen
e bits 
leared. The repla
ed frame may then

be bu�ered in memory and dirty frames 
leaned when

ne
essary.

Also, noti
e how this algorithm only repla
es one

page per fault for resour
e groups unable to pay for

frames. It serves to limit the frames of groups over

their rates while permitting fast fault handling. This

is suÆ
ient if memory only needs to be prioritised

on page repla
ement (whi
h is the 
ase when a zero


ost per frame is spe
i�ed). An asyn
hronous thread,

su
h as the page 
leaner, must therefore periodi
ally

revoke frames when group rates are redu
ed or the


ost per frame in
reased. The algorithm to a
hieve

this is as follows:

1. The 
leaner is initially awaken by one of three

events: an in
rease in frame pri
e, a de
rease in

a resour
e group's rates, or a timeout indi
ating

a periodi
 
leaning sweep is due. The number of

frames repla
ed ea
h round is limited to minimise

the pro
essing time spent and the amount of disk

traÆ
 produ
ed by the 
leaner.

2. Firstly, the 
leaner lo
ates the lowest nonempty

queue. If the lower limit of the bidding pri
es rep-

resented by this queue ex
eeds the frame pri
e,

no groups require revo
ation (all pay at least the

present pri
e for what they 
onsume) and the

thread 
an sleep again.

3. Otherwise, if the queue 
overs a range less than

the 
ost per frame, the �rst of its groups is se-

le
ted. Some of its frames are repla
ed before ap-

pending the group to a queue re
e
ting its new

bidding pri
e. This is repeated while the lowest

queue is not empty and the target number of re-

pla
ed frames is not rea
hed. Should the 
urrent

queue be
ome empty, the 
leaner must lo
ate the

next lowest nonempty queue.

4. As groups move up the array with revo
ation,

the queue spe
i�ed by the 
ost per frame will

eventually be the lowest non-empty queue. For

this queue, all groups paying less than this 
ost

require revo
ation. The thread sleeps when no

more groups require revo
ation or the maxi-

mum number of frames to repla
e ea
h period

is rea
hed. If the latter o

urs, a timeout is set

to wake the 
leaner to repeat the pro
ess later.

Finally, note that in both algorithms frequent

movement of groups between queues do not o

ur un-

less the 
ost per frame or group rates 
hange often.

Group memory usage generally rea
hes a maximum

determined by the group rate or the working sets of

group threads. Little overhead is therefore in
urred in

maintaining queues; the movement of groups between

queues usually settles down qui
kly.

6 Experimental Results

Mungi is built on top of the L4 �-kernel. Current

versions exe
ute as user-level tasks on top of the

MIPS [Elphinstone et al., 1997℄ and Alpha [Potts

et al., 2001℄ versions of L4. Our prototype model was

implemented with Mungi version 1.2 using L4/MIPS.

Relevant ma
hine hardware 
hara
teristi
s are a

100MHz R4600 CPU, 2-way set asso
iative 16KB in-

stru
tion and data 
a
hes with 32 byte line sizes, and

a main memory size of 64MB.

Mungi's VM paging system is undergoing major

revision, as the existing implementation is a stop-gap

version unsuitable for ben
hmarking. Consequently

we did not ben
hmark any a
tual paging a
tivity, but

only tested the 
ontrol of resident set sizes, and mi-

gration of frames between resour
e groups.

A simple experiment was 
ondu
ted to see whether

rates were enfor
ed by our prototype model with

Mungi on L4/MIPS. In this experiment a thread

spawns two threads in its own prote
tion domain

and sets the 
ost per frame to 1024 units. (Su
h

a thread 
ould be a trusted \system" thread, or a

\user" thread whi
h manages sub-threads within its

own share of the system.) The 
hild threads are as-

signed to separate memory resour
e groups ea
h en-

titled to 50 frames. These threads dirty pages in an

obje
t of 100 pages for 50 se
onds. Child thread1


ontinuously loops and dirties the �rst 75 
ontiguous

pages, while thread2 loops and dirties the last 75 
on-

tiguous pages. In this manner, the threads share 50

frames between them.

During the test two parameters are 
hanged. The

rate of group2, the group for thread2, is halved 20

se
onds into the test. The 
ost per frame is set to

zero 10 se
onds later. The results are illustrated in

Figure 5, a graph of the number of frames 
harged to

ea
h group per page fault in
urred.
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Figure 5: Experimental results

Initially, ea
h 
hild thread sleeps and periodi
ally

awakes to 
he
k a 
ag signalling it to start dirtying

pages. Child thread2 sees the 
ag set and dirties

pages �rst. A few faults later, thread1 likewise begins

to dirty pages. It is 
harged frames for the �rst 25

pages of the obje
t, but 
eases to in
ur new 
harges

while it dirties frames already resident and 
harged

to group2. This is illustrated in the plateau between

60 to 80 faults. New 
harges to group1 only o

ur

8



after group2 rea
hes its maximum of 50 frames and

is subje
t to page repla
ement.

At 20 se
onds, Figure 5 shows a sharp drop in the

frames 
harged to group2 when the rate for group2 is

halved and the ba
kground 
leaner immediately re-

pla
es some of its frames. The 
leaner then sleeps for

a se
ond before 
ontinuing to repla
e group2 frames

until group2 has roughly 25 frames remaining. No

more frames are repla
ed by the 
leaner as both

groups are exe
uting within their rates.

Finally, when zero page pri
ing is set at 30 se
-

onds, both groups steadily in
ur new frame 
harges.

Several page transfers o

ur during these last faults,


ausing the rather bumpy in
rease for group1. Page

faults 
ease when group1 has 64 frames and group2

has 36 frames, a re
e
tion of the ratios of the threads'

resour
e 
onsumption rates.

Overall, these experimental results are en
ourag-

ing, showing how shared frames 
an be fairly 
harged

among di�erent entities. It demonstrates how frames

are su

essfully allo
ated a

ording to group rates

and the 
ost per frame.

7 Con
lusion

Operating systems require a generi
 framework to

manage a diverse range of resour
es, as well as me
h-

anisms to prioritise resour
e allo
ation and isolate

pro
esses from resour
e 
ontention. In Se
tion 1 we

spe
i�ed the requirements of a generi
 resour
e man-

agement framework. To satisfy these requirements, a

new kernel abstra
tion, the resour
e group, was intro-

du
ed to support allo
ating proportions of resour
es

to groups of threads. The kernel was augmented by

data stru
tures for supporting physi
al-memory pri-

ortisation, and by me
hanisms whi
h allow resour
e

groups to 
ontrol this priorisation. The design meets

the following goals:

Fairness: Resour
e isolation and prioritisation were

stressed as ne
essities for fairness in resour
e

management. The me
hanism designed met

these requirements for physi
al memory. In

parti
ular, it provides fair a

ounting of shared

frames, a problem often overlooked.

A fair resour
e framework should also permit pol-

i
y to 
onsider usage history when allo
ating re-

sour
es. Our framework a
hieves this using bank

a

ounts from the existing storage management

model. Bank a

ounts serve as a means of tra
k-

ing usage history; high and low resour
e usage is

indi
ated by low and high a

ount funds respe
-

tively.

Flexibility: A resour
e group is a 
exible and sim-

ple abstra
tion on whi
h more 
omplex poli
ies


an be built. Threads are assigned to groups for

ea
h type of a

ountable resour
e in the system

and 
exible grouping is possible sin
e groups are

unrelated to prote
tion domains.

Moreover, the kernel does not redistribute the re-

sour
e rights released by exiting resour
e groups

among other groups, nor does it in
rease the

rights of groups with the resour
es of idle groups.

In this manner, no poli
y is imposed by the ker-

nel. Rather, the system enfor
es poli
y de�ned

at user-level: threads in higher groups de�ne the

poli
y to impose and determine the resour
es

allo
ated to subordinate groups. This permits

poli
ies where entities 
hoose to pay more or less

for resour
es within poli
y 
onstraints. Resour
e

groups also permit absolute or relative propor-

tions of resour
es to be spe
i�ed.

Performan
e: The existing storage management

model has minimal a

ounting overhead sin
e

most a

ounting is 
ondu
ted outside the ker-

nel. This approa
h is employed for a

ounting

resour
es allo
ated to resour
e groups, ensuring

kernel operations remain fast.

Performan
e has likewise been addressed in the

design of a queueing stru
ture for the qui
k pri-

oritisation of frame allo
ations. This approa
h is

faster than algorithms su
h as lottery s
heduling

and minimum-revo
ation funding.

Prote
tion: Prote
tion for our framework has been

provided by the validation of group bank a
-


ounts in group operations. These operations

ensure threads do not violate poli
y 
onstraints

by illegally modifying the rates of groups in the

group hierar
hy.

Simpli
ity: Our physi
al memory prioritisation re-

lies on a simple 
on
ept of 
harging. The unique

asso
iation of frames to groups ensures users are


harged only for the frames they use without


ompli
ated division of 
osts for shared frames.

Overall, these a
hievements are an important step

towards a generi
 resour
e management framework

for Mungi. The results of our simple experiment have

been en
ouraging, demonstrating the ease at whi
h

our resour
e group abstra
tion 
an be applied to

physi
al memory. This group abstra
tion �ts in well

with Mungi's other fundamental abstra
tions, parti
-

ularly with the Mungi thread hierar
hy. Sin
e these

fundamental abstra
tions are not spe
i�
 to Mungi,

our framework 
an be easily adapted to other systems

too.

Further development is needed, nonetheless, es-

pe
ially if resour
e isolation for physi
al memory is

to be fully a
hieved. This requires an implementa-

tion of paging bandwidth 
ontrol to prevent thrashing

threads from degrading the performan
e of others and

thus 
omplete the isolation property. A
tual perfor-

man
e measurements with ben
hmarks and real work-

loads would then give more eviden
e of the strengths

of our design.
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