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Abstrat

Most multitasking operating systems support sheduling pri-

orities in order to ensure that proessor time is alloated to

important or time-ritial proesses in preferene to less im-

portant ones. Ideally this would prevent a low-priority proess

from slowing the exeution of a high-priority one. In pratie,

strit prioritisation is undermined by a lak of suitable alloa-

tion poliy for resoures other than CPU time. For example,

a low priority proess may degrade the exeution speed of a

high-priority proess by ompeting with it for physial mem-

ory. We present the design of a exible resoure management

framework whih prioritises memory alloation, and examine a

prototype implementation for the Mungi single-address-spae

operating system.

1 Introdution

Resoure management is one of the main responsibil-

ities of an operating system. Proesses on a system

are generally in ompetition for resoures suh as pro-

essor time, physial memory or seondary memory

(disk spae), and it is the task of the operating sys-

tem to alloate them aording to some poliy. In

general, di�erent poliies are used for di�erent kinds

of resoures.

On the one hand, disk spae is usually managed

with a quota system whih limits the amount of spae

a user an oupy. Alternatively, eonomi models

an be used, whih assoiate a prie with a resoure,

and users \buy" or \rent" spae, involving some form

of payment [Anderson et al., 1986, Mullender and

Tanenbaum, 1986, Drexler and Miller, 1988, Heiser

et al., 1998b℄.

On the other hand, proessor time is alloated a-

ording to some priority sheme. Priorities an be

hard, meaning that a proess will only exeute if no

higher priority proess is runnable, or soft, meaning

that a proess' priority inuenes the frequeny or

duration for whih its proess is allowed to exeute.

Hard priorities are required for time-ritial (real-

time) proesses but an lead to starvation, whih is

why time-sharing systems generally use soft priorities.

Priorities an be stati or dynami, e.g., the priority

of a CPU-bound proess may deay over time. An

alternative to priorities are shemes whih alloate

a ertain share of available proessor time to pro-

esses or groups of proesses [Larmouth, 1975, Kay

and Lauder, 1988,Waldspurger and Weihl, 1994℄.

Ideally the proessor alloation poliy should ex-

lusively determine whether and at whih relative

speed a partiular proess is exeuting. In partiu-

lar, a proess whih, aording to the poliy, is not
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to exeute at a partiular time should not inuene

the exeution of a proess whih should be exeuting

aording to the poliy. This, however, is diÆult to

ensure, as the alloation of di�erent types of resoures

is not independent of eah other. Most modern oper-

ating systems do not implement prioritised alloation

for resoures suh as physial memory and thus do

not ompletely isolate proesses from other proesses

ompeting for the same resoures.

For example, a low priority proess exeuting while

a high priority proess is bloked waiting for an event,

may oupy a large amount of physial memory. The

higher priority proess, one it beomes runnable,

may soon get bloked on a page fault, and as a re-

sult may exeute more slowly than intended. As well,

frequent faulting by proesses an degrade the perfor-

mane of other proesses, due to ontention for I/O

bandwidth.

One suggested ause of these problems is the

derivation of memory prioritisation from proessor

prioritisation shemes [Chapin, 1997℄. Memory is im-

pliitly prioritised by assuming that a higher prior-

ity proess, whih is alloated more proessing time,

will automatially gain a larger resident set by a-

essing pages more frequently. This strategy worked

reasonably well with the slow proessors of the past.

The high CPU speeds of modern omputers permit

lower priority proesses to referene many pages while

higher priority proesses blok, leading to a loss of

memory prioritisation. This is usually exaerbated by

the use of global replaement algorithms that fous on

total system throughput rather than the performane

of important appliations.

The major hallenge in managing system resoures

is therefore to design a generi framework apable of

managing a diverse set of resoures. Mehanisms for

prioritising resoure alloation and isolating proesses

from resoure ontention are needed. Suh a design

should meet the following requirements:

Fairness: Other than ditated by system poliies, or

expliit user requests (within the limits of those

poliies), proesses should be treated equally and

no proesses should starve. The isolation of enti-

ties from resoure ontention by other entities

and the prioritisation of resoure alloation is

neessary to ensure fairness.

Simpliity: There should be a simple model of re-

soure prioritisation. Exessive omplexity an

disourage users from applying the mehanism.

Flexibility: A resoure management framework

should be exible and provide simple abstra-

tions suitable for building more omplex poliies

as needed. It should keep mehanism and poliy

separate.

Performane: Resoure alloation and prioritisa-

tion should be eÆient and management over-



heads small. Poor performane would disourage

users from managing their resoure usage.

Protetion: A resoure management framework

should operate within the operating system's

protetion system. Entities may only a�et other

entities within the onstraints of their imposed

resoure poliies.

This paper desribes how the above requirements

have been addressed in the design of a new generi re-

soure management framework and how this provides

a mehanism for prioritising physial memory for the

Mungi operating system. An overview of Mungi is

provided in Setion 2, desribing fundamental Mungi

abstrations and an existing eonomi model for man-

aging seondary storage in the system. Setion 3 sur-

veys related researh in resoure management, parti-

ularly on approahes for prioritising physial memory.

The design of a generi resoure management frame-

work is presented in Setion 4, followed by details

on the mehanism for prioritising physial memory

alloation in Setion 5. Experimental results for a

prototype model are presented in Setion 6.

2 Mungi

2.1 Fundamental Abstrations

Mungi [Heiser et al., 1998a℄ is a single-address-spae

operating system (SASOS), and as suh exeutes all

proesses on all nodes in a single, large virtual address

spae. This address spae ontains all persistent and

transient data, simplifying data sharing and persis-

tent storage. All operations on this address spae are

assoiated with a small number of fundamental ab-

strations: threads, protetion domains, apabilities,

and objets.

Mungi threads are kernel-sheduled units of exe-

ution. They form a hierarhy de�ned by the parent-

hild relationship. In this hierarhy, threads may only

kill desendant threads and may not survive their re-

ator threads unless adopted by a higher anestor.

Eah Mungi thread exeutes in exatly one

protetion domain that de�nes the regions of virtual

address spae it may legally address. Sine virtual

address spae is alloated in onseutive pages as ob-

jets, protetion domains logially desribe a set of

objets and a orresponding set of aess rights to

these objets. These aess rights are implemented

as password apabilities [Anderson et al., 1986℄.

Mungi apabilities ontain an objet address, a

password to protet it from forgery, and a set of a-

ess rights. They may be stored and passed around

freely without system intervention and are registered

in a global, distributed data struture alled the

objet table (OT). When validating a apability, the

system ompares it with registered apabilities. If a

math exists and the requested operation is ompati-

ble with the aess mode, aess is granted. For per-

formane, validations are ahed for eah protetion

domain. Cahed validations are ushed periodially

to permit the revoation of aess rights to objets.

2.2 Seondary Storage Management

Mungi has a seondary storage management model

designed to ontrol the proliferation of objets in the

system [Heiser et al., 1998b℄. This model is based

on the rent sheme in the Monash Password Capabil-

ity System [Anderson et al., 1986℄ and bank aounts

from Amoeba [Mullender and Tanenbaum, 1986℄. Its

main objetive is to ensure users do not starve or ex-

ploit others through exessive use.

2.2.1 Bank Aounts

Seondary storage is managed by harging rent for

baking store usage through speial objets alled

bank aounts. Aounts with money available for

rent harging have a �nanial ag set in their OT en-

try. Objet reation is only permitted if a valid a-

pability to a �nanial bank aount is supplied to the

system. Cheking this is eÆient sine OT entries are

stored with ahed validations.

2.2.2 Rent Colletion

Atual aounting is performed by a user-level bak-

ground thread alled the rent olletor at a reason-

able frequeny. Sine rent olletion is asynhronous

to other system ativities, all objet operations are

free of aounting overhead.

The rent olletor has a apability to the OT. Dur-

ing rent olletion it traverses the OT to harge bank

aounts for baking store used by their objets. The

rent harged is the produt of the amount of bak-

ing store used, the urrent storage ost per page, and

the elapsed time sine the last rent olletion. The

inlusion of time in the harge permits olletion at

irregular times. Should a bank aount be overdrawn,

it is rendered non-�nanial and objet reation with

this aount is prohibited one ahed validations are

ushed and updated.

Short-lived objets are harged only if they exist

during rent olletion. Unlike traditional disk quo-

tas, this permits users to temporarily utilise idle re-

soures. Rent olletion ould be sheduled at irreg-

ular intervals to prevent users from deliberately min-

imising storage usage during olletion periods.

To adjust to high demand, the storage ost per

page varies with utilisation. It remains onstant dur-

ing low utilisation and inreases sharply when se-

ondary storage beomes sare, foring users to free

storage as they an no longer a�ord to pay.

2.2.3 Inome and Taxation

To fund rent olletion, bank aounts reeive a salary

from parent aounts, with an in�nitely rih root a-

ount funding all top parent aounts. This hierar-

hy allows users to reate additional aounts to man-

age di�erent groups of objets. Salaries are paid by

a pay master thread, whih periodially deposits in-

ome saled with time into eah aount.

To prevent users from aumulating exessive in-

ome and buying out the system, taxation is per-

formed prior to salary deposition. This operation

is again saled with time to prevent exessive tax-

ation during irregular salary depositions. Moreover,

the amount of taxation is adjustable, permitting the

onstrution of poliies that onsider resoure usage

history.

2.2.4 Bank Aount Operations

To protet the integrity of bank aounts, users are

only given read apabilities to their aounts, al-

lowing them to read but not modify aount data.

All aount modi�ations are performed through a

trusted path mehanism alled protetion domain

extension (PDX) [Vohteloo et al., 1996℄. This meh-

anism allows the ontrolled extension of a thread's

protetion domain for the duration of a proedure

all. When a PDX proedure for modifying aount

data is invoked with a valid read apability, the

aller's protetion domain is temporarily extended to

inlude a write apability to the bank aount. All
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write apabilities to aounts are kept by a bank man-

ager to ensure modi�ations are done only by the a-

ounting software.

3 Related Work

This setion surveys related researh in resoure man-

agement, partiularly work involving physial mem-

ory.

3.1 UNIX

UNIX [Thompson and Rithie, 1974℄ systems gener-

ally have little support for fairly alloating resoures

to groups of proesses and provide only quota ab-

strations for individual proesses. Abstrations for

managing physial memory are usually per-proess

resident set size limits. As with quotas, limits are

inexible and physial memory an easily be under-

or over-ommitted. Together with global replaement

algorithms, these per-proess mehanisms do not pri-

oritise physial memory alloation nor do they isolate

proesses from resoure ontention.

3.2 Amoeba

The Amoeba [Mullender and Tanenbaum, 1986,

Tanenbaum et al., 1986℄ eonomi resoure manage-

ment sheme uses bank aounts to pay for resoures

with virtual money. To permit di�erent poliies or

subsystems, money is supported in possibly onvert-

ible or inonvertible urrenies. Users own individual

bank aounts; servies own business bank aounts

to manage lient money.

When a system servie is required, lients request

a bank server to transfer money from their individ-

ual aount to the business aount of the servie

provider. Advaned payments are made to amortise

the overhead of transfers. Quotas or rental models

may then be employed to ontrol resoure usage. For

example, a seondary storage quota sheme would

debit money per blok alloated. Credit is returned

when bloks are freed. A rental model, in ontrast,

would harge lients for resoures at a rate of �money,

per unit resoure and unit time. Clients need to trust

servie providers, however, to provide the amount of

resoures paid for.

3.3 The Share Fair Share Sheduler

Possibly the earliest ideas of proportional sharing are

by Larmouth [Larmouth, 1975℄, whose work reog-

nised the need to shedule CPU fairly between users

rather than proesses. These ideas were the basis for

the Share fair share sheduler [Kay and Lauder, 1988℄.

Share shedules CPU aording to user entitle-

ments, as de�ned by their shares and resoure usage

history. Shares indiate the proportion of resoure

to whih a user is entitled. Usage history, a deayed

measure of resoure onsumption, a�ets usage re-

sponse. Proess priorities are adjusted aording to

these parameters to share the CPU amongst users.

De�ning shares for groups of users is also possible,

permitting groups to share a mahine at an organisa-

tional level. To ensure eah group reeives its fair

share, Share inreases the e�etive share of ative

users with the shares of inative users in the same

group.

Unfortunately, Share imposes a �xed hierarhial

poliy struture of users and groups. It does not per-

mit more omplex poliies or di�erently strutured

poliies for di�erent subsystems. Nor does Share

provide a uniform interfae to manipulate proess

sheduling, but supports UNIX nie semantis in-

stead. Employing proess shares would be better,

sine priorities are generally diÆult to understand

and do not vary linearly with resoure rights.

3.4 Stealth

Stealth [Krueger and Chawla, 1991℄, an operating sys-

tem for networked workstations, has a distributed

sheduler to prioritise resoure alloation. It aims

to insulate workstation owner proesses from foreign

proesses started at other workstations by exeuting

foreign proesses at a slower rate during resoure on-

tention.

Stealth implements prioritised memory alloation

using a variant of the Mah 2.5 kernel memory man-

ager. Two separate sets of ative, inative, and

free page lists are maintained for owner and foreign

proesses. Pages are moved between lists to favour

owner proesses over foreign proess. As well, to iso-

late owner proesses from thrashing foreign proesses,

Stealth only responds to foreign proess page faults if

no owner proess page faults are waiting. This per-

mits full utilisation of networked resoures with iso-

lation for workstation owners.

However, although Stealth ahieves its goal of

owner-proess insulation, it annot be applied to mul-

tiple user systems requiring resoure prioritisation be-

tween many groups of logial entities. In partiular,

its memory alloation sheme does not disriminate

between more than two groups. There is basially

no mehanism by whih poliies may be spei�ed and

entity resoure alloations enfored.

3.5 Opal

Opal [Chase et al., 1994℄, also a SASOS, manages seg-

ments, setions of its single address spae, through

expliit referene ounting. Referene ounts reet

the number of entities \interested" in a resoure, and

resoures are released only at zero ounts. They are

used by appliations and failities like runtime li-

braries and garbage olletors to alloate and release

storage spae.

To prevent abuse of referene ounts, resoure

groups are employed for resoure aounting. Ca-

pabilities to these groups are needed whenever a re-

soure is reated or a referene ount is inremented.

When a group is destroyed, the resoures assoiated

with the group are released. Eah thread has a ur-

rent resoure group and impliitly passes a apability

to this group on system alls.

Resoure groups also provide ontrol over applia-

tion resoure onsumption. Groups an be nested into

a hierarhial tree to allow �ner resoure aounting.

A apability to a resoure group permits a holder to

reate subgroups and delete any desendant subgroup.

Aounting harges for a subgroup are passed to its

parent and presented to users at the root, requiring

them to limit resoure usage with quota or billing

models.

Opal's resoure groups present a promising ap-

proah, although with some shortomings. For one,

eah Opal thread belongs to only one resoure group

at any instane of time, namely its urrent group.

This is inexible if di�erent types of resoures are to

be managed, sine it restrits the management of all

types of resoures to the same struture. Resoure

spei� strutures would allow more exibility in pol-

iy onstrution. Furthermore, the Opal approah to

managing seondary storage by having users delare

an expliit \interest" in objets, and using this as a

basis for referene ounting and garbage olletion,

is insuÆient. It su�ers from the same problems as

traditional �le systems, where persistent objets are

entered into diretories with human readable names.
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An objet of no \real" interest to entities an inde�-

nitely remain referened by a diretory entry and not

relaimed by the garbage olletor. We argue that

users must manage storage [Heiser et al., 1998b℄. The

system an therefore only enourage users to lean up

by harging users for resoure usage. Sine quota ap-

proahes are inexible, this is best ahieved by billing

models.

3.6 Tikets and Currenies

[Waldspurger and Weihl, 1994,Waldspurger, 1995℄

desribe proportional sharing using tikets and ur-

renies. Tikets are essentially shares and de�ne the

proportion of resoures a lient may use. As mutu-

ally trusting lients an inate their number of tikets,

urrenies are used to denominate tikets and provide

isolation between lients. A base urreny denomi-

nates the tikets diretly proportional to the amount

of resoures alloated to lients and has de�ned ex-

hange rates with loal urrenies.

To prioritise memory, two algorithms are intro-

dued as possible methods for hoosing a page re-

plaement vitim: minimum-funding revoation and

inverse lottery sheduling. The former algorithm re-

vokes a frame from the lient with the least tikets per

frame; the latter uses a pseudo-random number gen-

erator to selet a vitim, with the probability a lient

is hosen being inversely proportional to its number

of tikets. Using a tree data struture, O(log(n)) im-

plementations are possible for both algorithms, where

n is the number of lients in the system.

Unfortunately, this framework has shortomings.

No onsideration is given to aounting for shared

frames. Memory sharing is important to the per-

formane of modern systems. Copy-on-write shar-

ing avoids opying overhead, shared libraries re-

due startup lateny and improve memory utilisation,

and write-shared pages are the most eÆient inter-

proessor ommuniation mehanism.

Furthermore, if entities frequently enter or leave

the system, frequent and possibly expensive hanges

in exhange rates our. Moreover, when entities

enter or leave the system, the ination or deation

of tikets proportionally adjusts the resoure rights

of entities in the same urreny. Poliy, not the

framework, should determine how tikets are adjusted

among entities. These issues have yet to be onsid-

ered, although other improvements, suh as the re-

moval of the upper and lower limits imposed by ur-

renies [Sullivan and Seltzer, 2000℄, have been made

by subsequent researh.

3.7 IRIX

[Verghese et al., 1998℄ presents a performane isola-

tion model for managing resoures in the IRIX operat-

ing system. It partitions resoures into isolated units

alled Software Performane Units (SPUs). Pro-

esses in the same SPU ontend for resoures allo-

ated to the unit but do not experiene any perfor-

mane degradation from proesses in other SPUs.

To partition physial memory frames, eah SPU

has an entitled, allowed, and used page ount. The en-

titled page ount represents the share of pages a unit

is permitted, whereas the allowed page ount serves

as an upper limit. Used pages inlude proess pages

and kernel pages used on behalf of the unit.

For improved throughput, idle memory is loaned

between SPUs by periodially adjusting allowed page

ounts. Free pages are distributed to SPUs under

memory pressure and revoked when loaning SPUs re-

quire the lent resoures. Sine this revoation may

involve writing dirty pages to disk, a set of free pages

are reserved to minimise the revoation time.

The isolation model also aounts for shared re-

soures, inluding shared frames. When a page is

�rst aessed, it is assigned the SPU identi�er of its

faulting proess. Subsequent aess by a proess in

another SPU will assign the page to a default shared

SPU. This method, nonetheless, does not fairly harge

for shared frames sine it e�etively harges shared

frames to all units. It allows heavy sharing to our

between several SPUs at the expense of all other units

in the system.

Finally, although the model ahieves performane

isolation, it unfortunately restrits the management

of di�erent types of resoures to the same struture.

As proesses may use resoures from their assigned

SPU only, it is not possible to manage di�erent types

of resoures in di�erent groups. Like Opal's resoure

group abstration, this restrition is inexible.

4 A Generi Framework

Mungi's existing seondary storage management

model varies ost with respet to utilisation

(f. Setion 2). It disourages maximised disk spae

usage, whih generally has little bene�t to system per-

formane anyway. Usage of other resoures, however,

needs to be maximised for inreased system through-

put and performane. This requires the spei�ation

of an amount of resoure required for good perfor-

mane.

The existing model, nonetheless, was not designed

to speify an amount of resoure to be alloated.

Bank aount balanes ould serve this purpose, e.g.

by alloating more to a user with a high aount bal-

ane. However, bank aount balanes vary with re-

soure usage and salary deposition, and thus are not

partiularly well suited to this purpose. They are bet-

ter suited to reord a sense of usage history (as high

usage will deplete an aount). Furthermore, suh a

poliy would signi�antly redue the ability of users

to ontrol their resoure usage aording to their own

requirements; e�etively this would build too muh

poliy into the kernel. Hene another abstration is

needed to speify an amount of resoure to be used

by an individual entity or a group of entities. This

setion presents the design of this abstration with

the requirements of Setion 1 in mind.

4.1 Resoure Consumption Rates

As Mungi's existing resoure model is eonomi, an

eonomi spei�ation of resoure needs is desired. To

this end, resoure onsumption rates, a onept sim-

ilar to rates in the Amoeba rental model, are intro-

dued. These speify the maximum rate with whih

a partiular resoure is allowed to draw funds | how

muh of its inome stream an entity is willing to om-

mit to a partiular resoure. Logial entities (e.g.,

threads) are assoiated with a rate for eah aount-

able type of system resoure, and resoure alloation

is dependent on the rate spei�ed and the ost per

resoure unit.

Together, rates and osts per unit resoure pro-

vide muh exibility in poliy onstrution. The sys-

tem may utilise idle resoures by lowering osts, while

raising osts ould be used to reserve resoure units.

Costs an serve as a reetion of node load in load

balaning. As with baking store, setting arbitrar-

ily high osts during high utilisation an be used to

prevent maximised usage. A poliy an also provide

resoure guarantees by ommitting to an upper ost

limit.

As well, variable osts permit absolute or relative

shares. The former, a quota based poliy, would have

a �xed ost per resoure unit. The latter ould have

zero priing, in whih ase usage is free as long as
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there are idle units, and is in proportion to the spe-

i�ed rates when resoures are in ontention.

Finally, rates naturally supplement bank aounts.

While aounts indiate usage history and bound the

total resoure usage of entities, rates determine the

speed at whih funds are onsumed. The two ab-

strations give ontrol over resoure quantity and on-

sumption time. For example, low resoure rates and

limited balanes ould be set for untrusted proedure

alls. Users with little usage history ould be per-

mitted higher rates in aordane with system poliy.

Rates ould also be adjusted to permit users to pay

more for one resoure and less for another resoure

while onsuming funds at the same total rate.

4.2 Resoure Groups

As mentioned earlier, resoure isolation and priori-

tisation should be appliable to a group of entities

(threads in this ase). Any group abstration must

therefore �t in with the thread hierarhy used by

Mungi (and most operating systems), with resoure

group membership orthogonal to the thread hierar-

hy for maximum exibility. We all this abstration

resoure groups, as in Opal where they were originally

proposed [Chase et al., 1994℄.

Mungi threads belong to a resoure group for eah

type of aountable system resoure. Flexible thread

grouping is possible sine groups are unrelated to

protetion domains. Eah group has a unique identi-

�er, a resoure onsumption rate, resoure usage data,

reation and exit timestamps for aounting purposes,

and a single bank aount. The unique identi�er dis-

tinguishes groups assoiated with the same aount.

For �ner ontrol, resoure groups are nested in a

hierarhy per type of resoure. This permits ontrol

over the total rate in a tree of groups. Protetion of

groups in this hierarhy is possible by validating a-

ess to group bank aounts during important group

operations. Sine validations are ahed, this does

not slow the operations, whih are as follows:

1. If a thread spawns or moves a hild into its own

resoure group, no aess validation to its group's

bank aount is required.

2. When a thread spawns or moves a hild into a

newly reated subordinate group, the thread re-

quires a apability to its own group bank a-

ount. The new group is given a subset of its

parent's rate and may be funded by another �-

nanial bank aount.

3. If a hild is started or moved into an existing

group, diretly or indiretly subordinate to its

own, its parent must have a apability to the

new group's bank aount.

4. A thread may derease the rates of groups di-

retly or indiretly subordinate to its own if

it has a apability to its own group aount.

This allows resoure revoation from subordinate

groups regardless of how these groups are funded.

However, to inrease a subordinate group's rate

a apability to its bank aount is needed.

5. When parent threads delete desendants, empty

subordinate groups are removed and their rates

added to their own group rates. Orphaned

groups are adopted by groups above them in the

hierarhy.

Figure 1 illustrates a resoure group hierarhy with

the Mungi thread hierarhy. Although this diagram

has groups omprised of subtrees in the thread hierar-

hy, less strutured groups are possible sine threads

an move desendants between groups.

Thread Hierarchy

Resource Groups

Figure 1: Resoure groups and thread hierarhy

Resoure groups also permit ontrolled resoure

usage during an invoation (via PDX) of an untrusted

proedure. A thread may exeute in existing or new

resoure groups during the all. When the all is

ompleted, the alling thread resumes exeution in

its original resoure groups. This logial hange in

groups during the PDX all is illustrated in Figure 2.

O

O

memory group
CPU group

Groups Before and AfterPDX Call Groups During PDX Call

Figure 2: PDX all with aller thread O hanging re-

soure groups temporarily

Finally, it must be stressed that groups do not

impose poliy. Rather, user-level threads are respon-

sible for de�ning resoure alloation poliies for de-

sendants in subordinate groups. Unlike tikets and

urrenies, no resoure redistribution poliy is im-

posed when subordinate groups exit the system; par-

ent groups only have their rates inreased by the ex-

iting groups' rates. It is ompletely up to the user-

level threads responsible for the poliy imposed on

these groups to redistribute released resoures among

remaining subordinate groups if required. Similarly,

to avoid imposing poliy, the rates of groups are not

inreased to aount for idle groups. Adjusting re-

soure rights to give ative entities the resoures of

idle entities is a poliy imposed in Share to ensure

fairness when sharing at an organisation level.

4.3 Inorporation into Mungi

Resoure groups have little impat on the existing

disk management model, simplifying their inorpora-

tion into Mungi. Bank aounts and operations like

salary deposition and taxation are una�eted. Only

inreases in salary payments are needed to fund ad-

ditional resoure types.

On the surfae, this inrease in salary might seem
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to a�et seondary storage rent olletion. Sine

objet alloation is not limited by the resoure group

abstration, users ould feasibly spend all their funds

on baking store, even parts of their inreased salary

intended for other resoures. Other users ould be de-

nied their share of seondary storage. However, this is

not really a problem. Disk is managed to permit the

usage of idle storage and maximised usage is disour-

aged by raising storage osts as the resoure grows

sare. As well, unlike other resoures, buying more

baking store does not really a�et the performane of

other users. Therefore, as long as a user has a �nan-

ial bank aount the purhase of more disk storage

is legal. It may even be viewed as an advantage as

users an hoose to pay more for baking store with-

out having to adjust resoure onsumption rates for

seondary storage.

One other major onern is rent olletion for re-

soures like RAM. As with disk management, this is

onduted by a user-level bakground thread to en-

sure kernel operations are eÆient and that the Mungi

kernel does not ditate resoure management poliy.

The rent olletor regularly traverses all groups in the

system, deduting rent from their bank aounts. The

rent harged is the produt of the group resoure us-

age, the present ost per unit resoure, and the time

of utilisation. Usually this is the time elapsed sine

the last rent olletion, but may involve group re-

ation and exit timestamps for groups that entered or

left the system sine the last olletion.

Maintaining exit timestamps implies a delayed

leanup of resoure groups. Empty groups are not

immediately destroyed; the system retains group data

until a thread with a apability to the OT, namely the

rent olletor, inspets it. This permits aurate a-

ounting even if threads have short lifetimes and do

not exist during rent olletion. Sine group data on-

sists of a group's resoure usage and reation and exit

timestamps, the data retained by the system is min-

imal. Therefore, if rent olletion ours regularly,

delaying the leanup of group data has insigni�ant

overhead on the system.

Finally, kernel support for resoure group hierar-

hies is simple sine group relationships mirror thread

relationships. It merely involves maintaining pointers

between group parents, siblings, and hildren.

5 Prioritising Physial Memory

While resoure groups onstitute a exible manage-

ment framework, mehanisms to prioritise resoures

and provide isolation for groups of threads are still

needed to enfore resoure onsumption rates. This

setion onsiders the design of a mehanism for phys-

ial memory alloation. This resoure an be mul-

tiplexed in both time and spae, with the former

ahievable by ontrolling paging bandwidth. Paging

bandwidth ontrol is beyond the sope of this paper,

and we will present the design of a mehanism only

for prioritising physial memory frame alloation.

5.1 The Dilemma of Shared Frames

Although memory frames an be easily divided among

entities, shared physial frames make fair aount-

ing of memory resoures diÆult. As desribed in

Setion 3.7, one solution is to harge all shared re-

soures to a single entity. (This is unfair, but aept-

able if sharing is rare.) For Mungi, this is unaept-

able sine data sharing is enouraged by its single ad-

dress spae and shared memory is the basis for inter-

proess ommuniation. Resoure aounting ould

be greatly distorted if there is muh sharing of re-

soures between partiular entities in the system (as

it generally happens in other systems attempting to

aount for physial memory). For fairness, a meh-

anism is needed to solve this while harging frames

only to entities using them.

5.2 A Fair Aounting Approah

[Chapin, 1997℄ states that physial memory ontrol

is mainly ahieved by prioritising memory alloation

and page replaement. This setion introdues a fair

and simple prioritisation sheme based on the lok

page replaement algorithm. The lok algorithm is

used sine it (or variants of it) are used for page re-

plaement in most operating systems. In partiular,

the existing Mungi virtual memory system employs a

global lok algorithm with referene bit emulation.

To eliminate the dilemma of shared frames, this

variant of the lok algorithm harges individual

memory frames to only one memory resoure group

at a time. This provides a unique assoiation between

frames and groups, permitting straightforward usage

aounting. A group is harged a frame if it sets the

frame's referene bit (when one of its threads fault on

the page, or when Mungi uses the page on its behalf).

It remains harged for the frame until the page is re-

plaed from physial memory, or the referene bit is

set by a thread from another group. The latter ase

is referred to as a page transfer.
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Figure 3: Page transfer between resoure groups

Figure 3 shows a page transfer from group A to

group B. Before the transfer, group A is harged for

the frame marked page 13. This implies that some-

time earlier group A had been responsible by setting

the referene bit for page 13. Although the referene

bit for page 13 has sine then been leared and the

page unmapped from all threads by the page replae-

ment algorithm, the frame is still harged to group A.

Now when a thread from group B faults on page 13,

it sets the frame's referene bit, resulting in a page

transfer. As seen in the diagram, this auses page 13

to be harged to group B instead of group A.

Note from the example that page replaement is

applied on a group basis, rather than globally. This

is beause global page replaement violates isolation.

This approah does not imply loalised page replae-

ment; page faults from threads do not neessarily re-

plae frames harged to their own groups. Rather a
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frame from a group whih is over its entitlement is

seleted for replaement.

One possible argument against this approah is its

reliane on referene bits. A group with a large re-

soure onsumption rate might always keep its pages

resident, allowing other groups to use them free of

harge. This is not an issue sine a group only pays

for the frames it uses and its rate de�nes the maxi-

mum redit it is willing to pay. If the group's working

set beomes too expensive, some pages will be auto-

matially transfered to other groups using the same

frames. Eventually this will lead to a fair distribution

of osts. Even in the short term there is some statis-

tial fairness, as a page will be harged to the �rst

group using it.

5.3 Prioritised Memory Revoation

While the harging sheme desribed above is fair

and simple, it still requires a method of seleting a

resoure group for page replaement. This method

should only inur minimal overhead and must support

a ost per frame. This ost is a funtion of memory

utilisation, with an inreasing value as free memory

dereases. It must be ontrollable by the system ad-

ministrator.

Minimum-funding revoation desribed in

Setion 3.6 seems to be a possible approah. Eo-

nomially, this algorithm realloates frames from

entities paying less to entities paying more. To

enfore a ost per frame, frames would be revoked

until all entities are paying the appropriate amount

per page. For eÆieny, these revoked frames ould

be bu�ered until free memory is available.

Unfortunately, minimum-funding revoation is in-

eÆient, with a tree data struture implementation

requiring O(log(n)) operations, where n is the num-

ber of lients ompeting for memory. For a system

where memory is prioritised only when there are no

idle resoures, this might be aeptable if page re-

plaement is infrequent and aountable entities are

few. However, this is unaeptable for our model sine

prioritisation depends on a ost per frame and revo-

ation may our even with available idle resoures.

A set of group queues solves this ineÆieny while

also providing support for rates and a ost per frame.

These queues are based on the array of 32 run queues

employed in the 4.4BSD Operating System [MKu-

sik et al., 1996℄ to manage proesses. Whereas the

4.4BSD sheduler assigns a proess to a queue aord-

ing to its priority, this approah assigns a group to a

queue aording to its bidding prie. This is de�ned

as the ratio of its resoure onsumption rate over the

number of physial frames it is harged for. It reets

the prie the group is willing to pay per frame given

its present alloation. A bidding prie below the ur-

rent frame prie is an indiation that the group holds

too many frames { revoking some (assuming a �xed

resoure onsumption rate) will inrease its bidding

prie.

When saled appropriately, the bidding prie in-

dexes into an array of 64 group queues, thereby lo-

ating the queue for the group.

1

As with 4.4BSD

run queues, this array has an assoiated 64 bit ve-

tor identifying non-empty queues. Figure 4 illustrates

this data struture.

A single ordered list would make the seletion of

the next vitim group is fast, but all other operations

would beome expensive. By employing an array of

queues, the expense of other operations is redued,

while the ost of seleting the next vitim remains

reasonably low (time to searh the 64-bit vetor).

1

This saling implies that the bidding prie is treated as a dis-

rete entity with 64 possible values.

group group group

group

group

group

group

group

group

bidding
low

price

bidding
high

price

Queues

Figure 4: Group queueing struture for memory pri-

oritisation

Given that the seletion of a vitim group is less fre-

quent than the operations required to order groups,

this poses no problems. With the array, fast sele-

tion of a vitim group is possible by searhing the bit

vetor. The lowest nonempty queue is indiated by

�nding the �rst bit set in the vetor. Page replae-

ment is subsequently possible with the �rst group on

this queue. After page replaement this group is then

appended to a queue reeting its new bidding prie.

Notie how hoosing the �rst group trades the ri-

teria of hoosing the lient with minimum funds for

speed; fairness is still retained as groups are seleted

from the lowest nonempty queue. Another advan-

tage of seleting the �rst group is that groups whih

have been in the queue longest are hosen �rst, thus

proteting a group from losing too many frames too

quikly.

5.4 Kernel Modi�ation Details

Support for our fair harging sheme requires some

substantial modi�ations to the existing Mungi vir-

tual memory design. Kernel page fault handling

now onsiders four ases of faults to orretly harge

frames to groups:

1. If the faulting page is not resident, but free

memory is available, I/O is initiated to load

the page into a free frame. When the I/O is

ompleted, the frame is mapped to the faulting

thread and is harged to the faulter's group.

2. If the page is not resident and free memory

is unavailable, the pager selets the �rst group

from the lowest non-empty queue for page re-

plaement. Appropriate I/O operations are initi-

ated and, one these are ompleted, virtual mem-

ory mappings are established and the replaed

frame is harged to the group of the faulting

thread.

3. If the page faulted on is resident and harged

to a resoure group, the pager determines

whether it may be mapped immediately with-

out a page transfer. This ours if the referene

bit is set. If the referene bit is leared but the

faulter belongs to the same group as the frame, a

mapping is likewise immediately returned. Oth-

erwise, a frame transfer is needed to harge the

frame to the faulter's group before mapping the

page to the faulter.

4. Otherwise the page faulted on is resident and

not harged to a resoure group. Pages of

this type are bu�ered on a dirty list. A fault on
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a bu�ered dirty page harges the frame to the

faulter's group.

Note that although bu�ering improves system

performane, it introdues two ompliations.

Firstly, unontrolled bu�ering of dirty pages

leads to high ost when revoking dirty pages

whih require writing to disk. Seondly, bu�er-

ing dirty pages does not permit poliy to reserve

frames by raising the ost per frame. These is-

sues are a part of ontrolling paging bandwidth

and are subjet to future researh.

In all ases where no free memory is available, page

replaement may be required for the faulting group

prior to harging the frame to its new group. If the

frame's resoure group is exeeding its rate, the pager

invokes the lok algorithm to selet a replaement

frame. Other frames are unmapped and have their

referene bits leared. The replaed frame may then

be bu�ered in memory and dirty frames leaned when

neessary.

Also, notie how this algorithm only replaes one

page per fault for resoure groups unable to pay for

frames. It serves to limit the frames of groups over

their rates while permitting fast fault handling. This

is suÆient if memory only needs to be prioritised

on page replaement (whih is the ase when a zero

ost per frame is spei�ed). An asynhronous thread,

suh as the page leaner, must therefore periodially

revoke frames when group rates are redued or the

ost per frame inreased. The algorithm to ahieve

this is as follows:

1. The leaner is initially awaken by one of three

events: an inrease in frame prie, a derease in

a resoure group's rates, or a timeout indiating

a periodi leaning sweep is due. The number of

frames replaed eah round is limited to minimise

the proessing time spent and the amount of disk

traÆ produed by the leaner.

2. Firstly, the leaner loates the lowest nonempty

queue. If the lower limit of the bidding pries rep-

resented by this queue exeeds the frame prie,

no groups require revoation (all pay at least the

present prie for what they onsume) and the

thread an sleep again.

3. Otherwise, if the queue overs a range less than

the ost per frame, the �rst of its groups is se-

leted. Some of its frames are replaed before ap-

pending the group to a queue reeting its new

bidding prie. This is repeated while the lowest

queue is not empty and the target number of re-

plaed frames is not reahed. Should the urrent

queue beome empty, the leaner must loate the

next lowest nonempty queue.

4. As groups move up the array with revoation,

the queue spei�ed by the ost per frame will

eventually be the lowest non-empty queue. For

this queue, all groups paying less than this ost

require revoation. The thread sleeps when no

more groups require revoation or the maxi-

mum number of frames to replae eah period

is reahed. If the latter ours, a timeout is set

to wake the leaner to repeat the proess later.

Finally, note that in both algorithms frequent

movement of groups between queues do not our un-

less the ost per frame or group rates hange often.

Group memory usage generally reahes a maximum

determined by the group rate or the working sets of

group threads. Little overhead is therefore inurred in

maintaining queues; the movement of groups between

queues usually settles down quikly.

6 Experimental Results

Mungi is built on top of the L4 �-kernel. Current

versions exeute as user-level tasks on top of the

MIPS [Elphinstone et al., 1997℄ and Alpha [Potts

et al., 2001℄ versions of L4. Our prototype model was

implemented with Mungi version 1.2 using L4/MIPS.

Relevant mahine hardware harateristis are a

100MHz R4600 CPU, 2-way set assoiative 16KB in-

strution and data ahes with 32 byte line sizes, and

a main memory size of 64MB.

Mungi's VM paging system is undergoing major

revision, as the existing implementation is a stop-gap

version unsuitable for benhmarking. Consequently

we did not benhmark any atual paging ativity, but

only tested the ontrol of resident set sizes, and mi-

gration of frames between resoure groups.

A simple experiment was onduted to see whether

rates were enfored by our prototype model with

Mungi on L4/MIPS. In this experiment a thread

spawns two threads in its own protetion domain

and sets the ost per frame to 1024 units. (Suh

a thread ould be a trusted \system" thread, or a

\user" thread whih manages sub-threads within its

own share of the system.) The hild threads are as-

signed to separate memory resoure groups eah en-

titled to 50 frames. These threads dirty pages in an

objet of 100 pages for 50 seonds. Child thread1

ontinuously loops and dirties the �rst 75 ontiguous

pages, while thread2 loops and dirties the last 75 on-

tiguous pages. In this manner, the threads share 50

frames between them.

During the test two parameters are hanged. The

rate of group2, the group for thread2, is halved 20

seonds into the test. The ost per frame is set to

zero 10 seonds later. The results are illustrated in

Figure 5, a graph of the number of frames harged to

eah group per page fault inurred.
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Figure 5: Experimental results

Initially, eah hild thread sleeps and periodially

awakes to hek a ag signalling it to start dirtying

pages. Child thread2 sees the ag set and dirties

pages �rst. A few faults later, thread1 likewise begins

to dirty pages. It is harged frames for the �rst 25

pages of the objet, but eases to inur new harges

while it dirties frames already resident and harged

to group2. This is illustrated in the plateau between

60 to 80 faults. New harges to group1 only our
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after group2 reahes its maximum of 50 frames and

is subjet to page replaement.

At 20 seonds, Figure 5 shows a sharp drop in the

frames harged to group2 when the rate for group2 is

halved and the bakground leaner immediately re-

plaes some of its frames. The leaner then sleeps for

a seond before ontinuing to replae group2 frames

until group2 has roughly 25 frames remaining. No

more frames are replaed by the leaner as both

groups are exeuting within their rates.

Finally, when zero page priing is set at 30 se-

onds, both groups steadily inur new frame harges.

Several page transfers our during these last faults,

ausing the rather bumpy inrease for group1. Page

faults ease when group1 has 64 frames and group2

has 36 frames, a reetion of the ratios of the threads'

resoure onsumption rates.

Overall, these experimental results are enourag-

ing, showing how shared frames an be fairly harged

among di�erent entities. It demonstrates how frames

are suessfully alloated aording to group rates

and the ost per frame.

7 Conlusion

Operating systems require a generi framework to

manage a diverse range of resoures, as well as meh-

anisms to prioritise resoure alloation and isolate

proesses from resoure ontention. In Setion 1 we

spei�ed the requirements of a generi resoure man-

agement framework. To satisfy these requirements, a

new kernel abstration, the resoure group, was intro-

dued to support alloating proportions of resoures

to groups of threads. The kernel was augmented by

data strutures for supporting physial-memory pri-

ortisation, and by mehanisms whih allow resoure

groups to ontrol this priorisation. The design meets

the following goals:

Fairness: Resoure isolation and prioritisation were

stressed as neessities for fairness in resoure

management. The mehanism designed met

these requirements for physial memory. In

partiular, it provides fair aounting of shared

frames, a problem often overlooked.

A fair resoure framework should also permit pol-

iy to onsider usage history when alloating re-

soures. Our framework ahieves this using bank

aounts from the existing storage management

model. Bank aounts serve as a means of trak-

ing usage history; high and low resoure usage is

indiated by low and high aount funds respe-

tively.

Flexibility: A resoure group is a exible and sim-

ple abstration on whih more omplex poliies

an be built. Threads are assigned to groups for

eah type of aountable resoure in the system

and exible grouping is possible sine groups are

unrelated to protetion domains.

Moreover, the kernel does not redistribute the re-

soure rights released by exiting resoure groups

among other groups, nor does it inrease the

rights of groups with the resoures of idle groups.

In this manner, no poliy is imposed by the ker-

nel. Rather, the system enfores poliy de�ned

at user-level: threads in higher groups de�ne the

poliy to impose and determine the resoures

alloated to subordinate groups. This permits

poliies where entities hoose to pay more or less

for resoures within poliy onstraints. Resoure

groups also permit absolute or relative propor-

tions of resoures to be spei�ed.

Performane: The existing storage management

model has minimal aounting overhead sine

most aounting is onduted outside the ker-

nel. This approah is employed for aounting

resoures alloated to resoure groups, ensuring

kernel operations remain fast.

Performane has likewise been addressed in the

design of a queueing struture for the quik pri-

oritisation of frame alloations. This approah is

faster than algorithms suh as lottery sheduling

and minimum-revoation funding.

Protetion: Protetion for our framework has been

provided by the validation of group bank a-

ounts in group operations. These operations

ensure threads do not violate poliy onstraints

by illegally modifying the rates of groups in the

group hierarhy.

Simpliity: Our physial memory prioritisation re-

lies on a simple onept of harging. The unique

assoiation of frames to groups ensures users are

harged only for the frames they use without

ompliated division of osts for shared frames.

Overall, these ahievements are an important step

towards a generi resoure management framework

for Mungi. The results of our simple experiment have

been enouraging, demonstrating the ease at whih

our resoure group abstration an be applied to

physial memory. This group abstration �ts in well

with Mungi's other fundamental abstrations, parti-

ularly with the Mungi thread hierarhy. Sine these

fundamental abstrations are not spei� to Mungi,

our framework an be easily adapted to other systems

too.

Further development is needed, nonetheless, es-

peially if resoure isolation for physial memory is

to be fully ahieved. This requires an implementa-

tion of paging bandwidth ontrol to prevent thrashing

threads from degrading the performane of others and

thus omplete the isolation property. Atual perfor-

mane measurements with benhmarks and real work-

loads would then give more evidene of the strengths

of our design.
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