A Resource Management Framework for
Priority-Based Physical-Memory Allocation

Kingsley Cheung

Gernot Heiser

School of Computer Science and Engineering
University of NSW, Sydney 2052, Australia,
{kcheung, gernot}@cse.unsw.edu.au

Abstract

Most multitasking operating systems support scheduling pri-
orities in order to ensure that processor time is allocated to
important or time-critical processes in preference to less im-
portant ones. Ideally this would prevent a low-priority process
from slowing the execution of a high-priority one. In practice,
strict prioritisation is undermined by a lack of suitable alloca-
tion policy for resources other than CPU time. For example,
a low priority process may degrade the execution speed of a
high-priority process by competing with it for physical mem-
ory. We present the design of a flexible resource management
framework which prioritises memory allocation, and examine a
prototype implementation for the Mungi single-address-space
operating system.

1 Introduction

Resource management is one of the main responsibil-
ities of an operating system. Processes on a system
are generally in competition for resources such as pro-
cessor time, physical memory or secondary memory
(disk space), and it is the task of the operating sys-
tem to allocate them according to some policy. In
general, different policies are used for different kinds
of resources.

On the one hand, disk space is usually managed
with a quota system which limits the amount of space
a user can occupy. Alternatively, economic models
can be used, which associate a price with a resource,
and users “buy” or “rent” space, involving some form
of payment [Anderson et al., 1986, Mullender and
Tanenbaum, 1986, Drexler and Miller, 1988, Heiser
et al., 1998b].

On the other hand, processor time is allocated ac-
cording to some priority scheme. Priorities can be
hard, meaning that a process will only execute if no
higher priority process is runnable, or soft, meaning
that a process’ priority influences the frequency or
duration for which its process is allowed to execute.
Hard priorities are required for time-critical (real-
time) processes but can lead to starvation, which is
why time-sharing systems generally use soft priorities.
Priorities can be static or dynamic, e.g., the priority
of a CPU-bound process may decay over time. An
alternative to priorities are schemes which allocate
a certain share of available processor time to pro-
cesses or groups of processes [Larmouth, 1975, Kay
and Lauder, 1988, Waldspurger and Weihl, 1994].

Ideally the processor allocation policy should ex-
clusively determine whether and at which relative
speed a particular process is executing. In particu-
lar, a process which, according to the policy, is not

Copyright (©2002, Australian Computer Society, Inc. This paper
appeared at the Seventh Asia-Pacific Computer Systems Archi-
tecture Conference (ACSAC’2002), Melbourne, Australia. Con-
ferences in Research and Practice in Information Technology, Vol.
6. Feipei Lai and John Morris, Eds. Reproduction for academic,
not-for-profit purposes permitted provided this text is included.

to execute at a particular time should not influence
the execution of a process which should be executing
according to the policy. This, however, is difficult to
ensure, as the allocation of different types of resources
is not independent of each other. Most modern oper-
ating systems do not implement prioritised allocation
for resources such as physical memory and thus do
not completely isolate processes from other processes
competing for the same resources.

For example, a low priority process executing while
a high priority process is blocked waiting for an event,
may occupy a large amount of physical memory. The
higher priority process, once it becomes runnable,
may soon get blocked on a page fault, and as a re-
sult may execute more slowly than intended. As well,
frequent faulting by processes can degrade the perfor-
mance of other processes, due to contention for I/O
bandwidth.

One suggested cause of these problems is the
derivation of memory prioritisation from processor
prioritisation schemes [Chapin, 1997]. Memory is im-
plicitly prioritised by assuming that a higher prior-
ity process, which is allocated more processing time,
will automatically gain a larger resident set by ac-
cessing pages more frequently. This strategy worked
reasonably well with the slow processors of the past.
The high CPU speeds of modern computers permit
lower priority processes to reference many pages while
higher priority processes block, leading to a loss of
memory prioritisation. This is usually exacerbated by
the use of global replacement algorithms that focus on
total system throughput rather than the performance
of important applications.

The major challenge in managing system resources
is therefore to design a generic framework capable of
managing a diverse set of resources. Mechanisms for
prioritising resource allocation and isolating processes
from resource contention are needed. Such a design
should meet the following requirements:

Fairness: Other than dictated by system policies, or
explicit user requests (within the limits of those
policies), processes should be treated equally and
no processes should starve. The isolation of enti-
ties from resource contention by other entities
and the prioritisation of resource allocation is
necessary to ensure fairness.

Simplicity: There should be a simple model of re-
source prioritisation. Excessive complexity can
discourage users from applying the mechanism.

Flexibility: A resource management framework
should be flexible and provide simple abstrac-
tions suitable for building more complex policies
as needed. It should keep mechanism and policy
separate.

Performance: Resource allocation and prioritisa-
tion should be efficient and management over-

heads small. Poor performance would discourage
users from managing their resource usage.

Protection: A resource management framework
should operate within the operating system’s
protection system. Entities may only affect other
entities within the constraints of their imposed
resource policies.

This paper describes how the above requirements
have been addressed in the design of a new generic re-
source management framework and how this provides
a mechanism for prioritising physical memory for the
Mungi operating system. An overview of Mungi is
provided in Section 2, describing fundamental Mungi
abstractions and an existing economic model for man-
aging secondary storage in the system. Section 3 sur-
veys related research in resource management, partic-
ularly on approaches for prioritising physical memory.
The design of a generic resource management frame-
work is presented in Section 4, followed by details
on the mechanism for prioritising physical memory
allocation in Section 5. Experimental results for a
prototype model are presented in Section 6.

2 Mungi

2.1 Fundamental Abstractions

Mungi [Heiser et al., 1998a] is a single-address-space
operating system (SASOS), and as such executes all
processes on all nodes in a single, large virtual address
space. This address space contains all persistent and
transient data, simplifying data sharing and persis-
tent storage. All operations on this address space are
associated with a small number of fundamental ab-
stractions: threads, protection domains, capabilities,
and objects.

Mungi threads are kernel-scheduled units of exe-
cution. They form a hierarchy defined by the parent-
child relationship. In this hierarchy, threads may only
kill descendant threads and may not survive their cre-
ator threads unless adopted by a higher ancestor.

Each Mungi thread executes in exactly one
protection domain that defines the regions of virtual
address space it may legally address. Since virtual
address space is allocated in consecutive pages as ob-
jects, protection domains logically describe a set of
objects and a corresponding set of access rights to
these objects. These access rights are implemented
as password capabilities [Anderson et al., 1986].

Mungi capabilities contain an object address, a
password to protect it from forgery, and a set of ac-
cess rights. They may be stored and passed around
freely without system intervention and are registered
in a global, distributed data structure called the
object table (OT). When validating a capability, the
system compares it with registered capabilities. If a
match exists and the requested operation is compati-
ble with the access mode, access is granted. For per-
formance, validations are cached for each protection
domain. Cached validations are flushed periodically
to permit the revocation of access rights to objects.

2.2 Secondary Storage Management

Mungi has a secondary storage management model
designed to control the proliferation of objects in the
system [Heiser et al., 1998b]. This model is based
on the rent scheme in the Monash Password Capabil-
ity System [Anderson et al., 1986] and bank accounts
from Amoeba [Mullender and Tanenbaum, 1986]. Its
main objective is to ensure users do not starve or ex-
ploit others through excessive use.

2.2.1 Bank Accounts

Secondary storage is managed by charging rent for
backing store usage through special objects called
bank accounts. Accounts with money available for
rent charging have a financial flag set in their OT en-
try. Object creation is only permitted if a valid ca-
pability to a financial bank account is supplied to the
system. Checking this is efficient since OT entries are
stored with cached validations.

2.2.2 Rent Collection

Actual accounting is performed by a user-level back-
ground thread called the rent collector at a reason-
able frequency. Since rent collection is asynchronous
to other system activities, all object operations are
free of accounting overhead.

The rent collector has a capability to the OT. Dur-
ing rent collection it traverses the OT to charge bank
accounts for backing store used by their objects. The
rent charged is the product of the amount of back-
ing store used, the current storage cost per page, and
the elapsed time since the last rent collection. The
inclusion of time in the charge permits collection at
irregular times. Should a bank account be overdrawn,
it is rendered non-financial and object creation with
this account is prohibited once cached validations are
flushed and updated.

Short-lived objects are charged only if they exist
during rent collection. Unlike traditional disk quo-
tas, this permits users to temporarily utilise idle re-
sources. Rent collection could be scheduled at irreg-
ular intervals to prevent users from deliberately min-
imising storage usage during collection periods.

To adjust to high demand, the storage cost per
page varies with utilisation. It remains constant dur-
ing low utilisation and increases sharply when sec-
ondary storage becomes scarce, forcing users to free
storage as they can no longer afford to pay.

2.2.3 Income and Taxation

To fund rent collection, bank accounts receive a salary
from parent accounts, with an infinitely rich root ac-
count funding all top parent accounts. This hierar-
chy allows users to create additional accounts to man-
age different groups of objects. Salaries are paid by
a pay master thread, which periodically deposits in-
come scaled with time into each account.

To prevent users from accumulating excessive in-
come and buying out the system, tazation is per-
formed prior to salary deposition. This operation
is again scaled with time to prevent excessive tax-
ation during irregular salary depositions. Moreover,
the amount of taxation is adjustable, permitting the
construction of policies that consider resource usage
history.

2.2.4 Bank Account Operations

To protect the integrity of bank accounts, users are
only given read capabilities to their accounts, al-
lowing them to read but not modify account data.
All account modifications are performed through a
trusted path mechanism called protection domain
extension (PDX) [Vochteloo et al., 1996]. This mech-
anism allows the controlled extension of a thread’s
protection domain for the duration of a procedure
call. When a PDX procedure for modifying account
data is invoked with a valid read capability, the
caller’s protection domain is temporarily extended to
include a write capability to the bank account. All

write capabilities to accounts are kept by a bank man-
ager to ensure modifications are done only by the ac-
counting software.

3 Related Work

This section surveys related research in resource man-
agement, particularly work involving physical mem-
ory.

3.1 UNIX

UNIX [Thompson and Ritchie, 1974] systems gener-
ally have little support for fairly allocating resources
to groups of processes and provide only quota ab-
stractions for individual processes. Abstractions for
managing physical memory are usually per-process
resident set size limits. As with quotas, limits are
inflexible and physical memory can easily be under-
or over-committed. Together with global replacement
algorithms, these per-process mechanisms do not pri-
oritise physical memory allocation nor do they isolate
processes from resource contention.

3.2 Amoeba

The Amoeba [Mullender and Tanenbaum, 1986,
Tanenbaum et al., 1986] economic resource manage-
ment scheme uses bank accounts to pay for resources
with wvirtual money. To permit different policies or
subsystems, money is supported in possibly convert-
ible or inconvertible currencies. Users own individual
bank accounts; services own business bank accounts
to manage client money.

When a system service is required, clients request
a bank server to transfer money from their individ-
ual account to the business account of the service
provider. Advanced payments are made to amortise
the overhead of transfers. Quotas or rental models
may then be employed to control resource usage. For
example, a secondary storage quota scheme would
debit money per block allocated. Credit is returned
when blocks are freed. A rental model, in contrast,
would charge clients for resources at a rate of A money,
per unit resource and unit time. Clients need to trust
service providers, however, to provide the amount of
resources paid for.

3.3 The Share Fair Share Scheduler

Possibly the earliest ideas of proportional sharing are
by Larmouth [Larmouth, 1975], whose work recog-
nised the need to schedule CPU fairly between users
rather than processes. These ideas were the basis for
the Share fair share scheduler [Kay and Lauder, 1988].

Share schedules CPU according to user entitle-
ments, as defined by their shares and resource usage
history. Shares indicate the proportion of resource
to which a user is entitled. Usage history, a decayed
measure of resource consumption, affects usage re-
sponse. Process priorities are adjusted according to
these parameters to share the CPU amongst users.
Defining shares for groups of users is also possible,
permitting groups to share a machine at an organisa-
tional level. To ensure each group receives its fair
share, Share increases the effective share of active
users with the shares of inactive users in the same
group.

Unfortunately, Share imposes a fixed hierarchical
policy structure of users and groups. It does not per-
mit more complex policies or differently structured
policies for different subsystems. Nor does Share
provide a uniform interface to manipulate process
scheduling, but supports UNIX nice semantics in-
stead. Employing process shares would be better,

since priorities are generally difficult to understand
and do not vary linearly with resource rights.

3.4 Stealth

Stealth [Krueger and Chawla, 1991], an operating sys-
tem for networked workstations, has a distributed
scheduler to prioritise resource allocation. It aims
to insulate workstation owner processes from foreign
processes started at other workstations by executing
foreign processes at a slower rate during resource con-
tention.

Stealth implements prioritised memory allocation
using a variant of the Mach 2.5 kernel memory man-
ager. Two separate sets of active, inactive, and
free page lists are maintained for owner and foreign
processes. Pages are moved between lists to favour
owner processes over foreign process. As well, to iso-
late owner processes from thrashing foreign processes,
Stealth only responds to foreign process page faults if
no owner process page faults are waiting. This per-
mits full utilisation of networked resources with iso-
lation for workstation owners.

However, although Stealth achieves its goal of
owner-process insulation, it cannot be applied to mul-
tiple user systems requiring resource prioritisation be-
tween many groups of logical entities. In particular,
its memory allocation scheme does not discriminate
between more than two groups. There is basically
no mechanism by which policies may be specified and
entity resource allocations enforced.

3.5 Opal

Opal [Chase et al., 1994], also a SASOS, manages seg-
ments, sections of its single address space, through
explicit reference counting. Reference counts reflect
the number of entities “interested” in a resource, and
resources are released only at zero counts. They are
used by applications and facilities like runtime li-
braries and garbage collectors to allocate and release
storage space.

To prevent abuse of reference counts, resource
groups are employed for resource accounting. Ca-
pabilities to these groups are needed whenever a re-
source is created or a reference count is incremented.
When a group is destroyed, the resources associated
with the group are released. Each thread has a cur-
rent resource group and implicitly passes a capability
to this group on system calls.

Resource groups also provide control over applica-
tion resource consumption. Groups can be nested into
a hierarchical tree to allow finer resource accounting.
A capability to a resource group permits a holder to
create subgroups and delete any descendant subgroup.
Accounting charges for a subgroup are passed to its
parent and presented to users at the root, requiring
them to limit resource usage with quota or billing
models.

Opal’s resource groups present a promising ap-
proach, although with some shortcomings. For one,
each Opal thread belongs to only one resource group
at any instance of time, namely its current group.
This is inflexible if different types of resources are to
be managed, since it restricts the management of all
types of resources to the same structure. Resource
specific structures would allow more flexibility in pol-
icy construction. Furthermore, the Opal approach to
managing secondary storage by having users declare
an explicit “interest” in objects, and using this as a
basis for reference counting and garbage collection,
is insufficient. It suffers from the same problems as
traditional file systems, where persistent objects are
entered into directories with human readable names.

An object of no “real” interest to entities can indefi-
nitely remain referenced by a directory entry and not
reclaimed by the garbage collector. We argue that
users must manage storage [Heiser et al., 1998b]. The
system can therefore only encourage users to clean up
by charging users for resource usage. Since quota ap-
proaches are inflexible, this is best achieved by billing
models.

3.6 Tickets and Currencies

[Waldspurger and Weihl, 1994, Waldspurger, 1995]
describe proportional sharing using tickets and cur-
rencies. Tickets are essentially shares and define the
proportion of resources a client may use. As mutu-
ally trusting clients can inflate their number of tickets,
currencies are used to denominate tickets and provide
isolation between clients. A base currency denomi-
nates the tickets directly proportional to the amount
of resources allocated to clients and has defined ex-
change rates with local currencies.

To prioritise memory, two algorithms are intro-
duced as possible methods for choosing a page re-
placement victim: minimum-funding revocation and
inverse lottery scheduling. The former algorithm re-
vokes a frame from the client with the least tickets per
frame; the latter uses a pseudo-random number gen-
erator to select a victim, with the probability a client
is chosen being inversely proportional to its number
of tickets. Using a tree data structure, O(log(n)) im-
plementations are possible for both algorithms, where
n is the number of clients in the system.

Unfortunately, this framework has shortcomings.
No consideration is given to accounting for shared
frames. Memory sharing is important to the per-
formance of modern systems. Copy-on-write shar-
ing avoids copying overhead, shared libraries re-
duce startup latency and improve memory utilisation,
and write-shared pages are the most efficient inter-
processor communication mechanism.

Furthermore, if entities frequently enter or leave
the system, frequent and possibly expensive changes
in exchange rates occur. Moreover, when entities
enter or leave the system, the inflation or deflation
of tickets proportionally adjusts the resource rights
of entities in the same currency. Policy, not the
framework, should determine how tickets are adjusted
among entities. These issues have yet to be consid-
ered, although other improvements, such as the re-
moval of the upper and lower limits imposed by cur-
rencies [Sullivan and Seltzer, 2000], have been made
by subsequent research.

3.7 IRIX

[Verghese et al., 1998] presents a performance isola-
tion model for managing resources in the IRIX operat-
ing system. It partitions resources into isolated units
called Software Performance Units (SPUs). Pro-
cesses in the same SPU contend for resources allo-
cated to the unit but do not experience any perfor-
mance degradation from processes in other SPUs.

To partition physical memory frames, each SPU
has an entitled, allowed, and used page count. The en-
titled page count represents the share of pages a unit
is permitted, whereas the allowed page count serves
as an upper limit. Used pages include process pages
and kernel pages used on behalf of the unit.

For improved throughput, idle memory is loaned
between SPUs by periodically adjusting allowed page
counts. Free pages are distributed to SPUs under
memory pressure and revoked when loaning SPUs re-
quire the lent resources. Since this revocation may
involve writing dirty pages to disk, a set of free pages
are reserved to minimise the revocation time.

The isolation model also accounts for shared re-
sources, including shared frames. When a page is
first accessed, it is assigned the SPU identifier of its
faulting process. Subsequent access by a process in
another SPU will assign the page to a default shared
SPU. This method, nonetheless, does not fairly charge
for shared frames since it effectively charges shared
frames to all units. It allows heavy sharing to occur
between several SPUs at the expense of all other units
in the system.

Finally, although the model achieves performance
isolation, it unfortunately restricts the management
of different types of resources to the same structure.
As processes may use resources from their assigned
SPU only, it is not possible to manage different types
of resources in different groups. Like Opal’s resource
group abstraction, this restriction is inflexible.

4 A Generic Framework

Mungi’s existing secondary storage management
model varies cost with respect to utilisation
(cf. Section 2). It discourages maximised disk space
usage, which generally has little benefit to system per-
formance anyway. Usage of other resources, however,
needs to be maximised for increased system through-
put and performance. This requires the specification
of an amount of resource required for good perfor-
mance.

The existing model, nonetheless, was not designed
to specify an amount of resource to be allocated.
Bank account balances could serve this purpose, e.g.
by allocating more to a user with a high account bal-
ance. However, bank account balances vary with re-
source usage and salary deposition, and thus are not
particularly well suited to this purpose. They are bet-
ter suited to record a sense of usage history (as high
usage will deplete an account). Furthermore, such a
policy would significantly reduce the ability of users
to control their resource usage according to their own
requirements; effectively this would build too much
policy into the kernel. Hence another abstraction is
needed to specify an amount of resource to be used
by an individual entity or a group of entities. This
section presents the design of this abstraction with
the requirements of Section 1 in mind.

4.1 Resource Consumption Rates

As Mungi’s existing resource model is economic, an
economic specification of resource needs is desired. To
this end, resource consumption rates, a concept sim-
ilar to rates in the Amoeba rental model, are intro-
duced. These specify the maximum rate with which
a particular resource is allowed to draw funds — how
much of its income stream an entity is willing to com-
mit to a particular resource. Logical entities (e.g.,
threads) are associated with a rate for each account-
able type of system resource, and resource allocation
is dependent on the rate specified and the cost per
resource unit.

Together, rates and costs per unit resource pro-
vide much flexibility in policy construction. The sys-
tem may utilise idle resources by lowering costs, while
raising costs could be used to reserve resource units.
Costs can serve as a reflection of node load in load
balancing. As with backing store, setting arbitrar-
ily high costs during high utilisation can be used to
prevent maximised usage. A policy can also provide
resource guarantees by committing to an upper cost
limit.

As well, variable costs permit absolute or relative
shares. The former, a quota based policy, would have
a fized cost per resource unit. The latter could have
zero pricing, in which case usage is free as long as

there are idle units, and is in proportion to the spec-
ified rates when resources are in contention.

Finally, rates naturally supplement bank accounts.
While accounts indicate usage history and bound the
total resource usage of entities, rates determine the
speed at which funds are consumed. The two ab-
stractions give control over resource quantity and con-
sumption time. For example, low resource rates and
limited balances could be set for untrusted procedure
calls. Users with little usage history could be per-
mitted higher rates in accordance with system policy.
Rates could also be adjusted to permit users to pay
more for one resource and less for another resource
while consuming funds at the same total rate.

4.2 Resource Groups

As mentioned earlier, resource isolation and priori-
tisation should be applicable to a group of entities
(threads in this case). Any group abstraction must
therefore fit in with the thread hierarchy used by
Mungi (and most operating systems), with resource
group membership orthogonal to the thread hierar-
chy for maximum flexibility. We call this abstraction
resource groups, as in Opal where they were originally
proposed [Chase et al., 1994].

Mungi threads belong to a resource group for each
type of accountable system resource. Flexible thread
grouping is possible since groups are unrelated to
protection domains. Each group has a unique identi-
fier, a resource consumption rate, resource usage data,
creation and exit timestamps for accounting purposes,
and a single bank account. The unique identifier dis-
tinguishes groups associated with the same account.

For finer control, resource groups are nested in a
hierarchy per type of resource. This permits control
over the total rate in a tree of groups. Protection of
groups in this hierarchy is possible by validating ac-
cess to group bank accounts during important group
operations. Since validations are cached, this does
not slow the operations, which are as follows:

1. If a thread spawns or moves a child into its own
resource group, no access validation to its group’s
bank account is required.

2. When a thread spawns or moves a child into a
newly created subordinate group, the thread re-
quires a capability to its own group bank ac-
count. The new group is given a subset of its
parent’s rate and may be funded by another fi-
nancial bank account.

3. If a child is started or moved into an existing
group, directly or indirectly subordinate to its
own, its parent must have a capability to the
new group’s bank account.

4. A thread may decrease the rates of groups di-
rectly or indirectly subordinate to its own if
it has a capability to its own group account.
This allows resource revocation from subordinate
groups regardless of how these groups are funded.
However, to increase a subordinate group’s rate
a capability to its bank account is needed.

5. When parent threads delete descendants, empty
subordinate groups are removed and their rates
added to their own group rates. Orphaned
groups are adopted by groups above them in the
hierarchy.

Figure 1 illustrates a resource group hierarchy with
the Mungi thread hierarchy. Although this diagram
has groups comprised of subtrees in the thread hierar-
chy, less structured groups are possible since threads
can move descendants between groups.

Thread Hierarchy

Resour ce Groups

Figure 1: Resource groups and thread hierarchy

Resource groups also permit controlled resource
usage during an invocation (via PDX) of an untrusted
procedure. A thread may execute in existing or new
resource groups during the call. When the call is
completed, the calling thread resumes execution in
its original resource groups. This logical change in
groups during the PDX call is illustrated in Figure 2.

——— memory group
CPU group

Groups Before and After PDX Call Groups During PDX Call

Figure 2: PDX call with caller thread 0 changing re-
source groups temporarily

Finally, it must be stressed that groups do not
impose policy. Rather, user-level threads are respon-
sible for defining resource allocation policies for de-
scendants in subordinate groups. Unlike tickets and
currencies, no resource redistribution policy is im-
posed when subordinate groups exit the system; par-
ent groups only have their rates increased by the ex-
iting groups’ rates. It is completely up to the user-
level threads responsible for the policy imposed on
these groups to redistribute released resources among
remaining subordinate groups if required. Similarly,
to avoid imposing policy, the rates of groups are not
increased to account for idle groups. Adjusting re-
source rights to give active entities the resources of
idle entities is a policy imposed in Share to ensure
fairness when sharing at an organisation level.

4.3 Incorporation into Mungi

Resource groups have little impact on the existing
disk management model, simplifying their incorpora-
tion into Mungi. Bank accounts and operations like
salary deposition and taxation are unaffected. Only
increases in salary payments are needed to fund ad-
ditional resource types.

On the surface, this increase in salary might seem

to affect secondary storage rent collection. Since
object allocation is not limited by the resource group
abstraction, users could feasibly spend all their funds
on backing store, even parts of their increased salary
intended for other resources. Other users could be de-
nied their share of secondary storage. However, this is
not really a problem. Disk is managed to permit the
usage of idle storage and maximised usage is discour-
aged by raising storage costs as the resource grows
scarce. As well, unlike other resources, buying more
backing store does not really affect the performance of
other users. Therefore, as long as a user has a finan-
cial bank account the purchase of more disk storage
is legal. It may even be viewed as an advantage as
users can choose to pay more for backing store with-
out having to adjust resource consumption rates for
secondary storage.

One other major concern is rent collection for re-
sources like RAM. As with disk management, this is
conducted by a user-level background thread to en-
sure kernel operations are efficient and that the Mungi
kernel does not dictate resource management policy.
The rent collector regularly traverses all groups in the
system, deducting rent from their bank accounts. The
rent charged is the product of the group resource us-
age, the present cost per unit resource, and the time
of utilisation. Usually this is the time elapsed since
the last rent collection, but may involve group cre-
ation and exit timestamps for groups that entered or
left the system since the last collection.

Maintaining exit timestamps implies a delayed
cleanup of resource groups. Empty groups are not
immediately destroyed; the system retains group data
until a thread with a capability to the OT, namely the
rent, collector, inspects it. This permits accurate ac-
counting even if threads have short lifetimes and do
not exist during rent collection. Since group data con-
sists of a group’s resource usage and creation and exit
timestamps, the data retained by the system is min-
imal. Therefore, if rent collection occurs regularly,
delaying the cleanup of group data has insignificant
overhead on the system.

Finally, kernel support for resource group hierar-
chies is simple since group relationships mirror thread
relationships. It merely involves maintaining pointers
between group parents, siblings, and children.

5 Prioritising Physical Memory

While resource groups constitute a flexible manage-
ment framework, mechanisms to prioritise resources
and provide isolation for groups of threads are still
needed to enforce resource consumption rates. This
section considers the design of a mechanism for phys-
ical memory allocation. This resource can be mul-
tiplexed in both time and space, with the former
achievable by controlling paging bandwidth. Paging
bandwidth control is beyond the scope of this paper,
and we will present the design of a mechanism only
for prioritising physical memory frame allocation.

5.1 The Dilemma of Shared Frames

Although memory frames can be easily divided among
entities, shared physical frames make fair account-
ing of memory resources difficult. As described in
Section 3.7, one solution is to charge all shared re-
sources to a single entity. (This is unfair, but accept-
able if sharing is rare.) For Mungi, this is unaccept-
able since data sharing is encouraged by its single ad-
dress space and shared memory is the basis for inter-
process communication. Resource accounting could
be greatly distorted if there is much sharing of re-
sources between particular entities in the system (as
it generally happens in other systems attempting to

account for physical memory). For fairness, a mech-
anism is needed to solve this while charging frames
only to entities using them.

5.2 A Fair Accounting Approach

[Chapin, 1997] states that physical memory control
is mainly achieved by prioritising memory allocation
and page replacement. This section introduces a fair
and simple prioritisation scheme based on the clock
page replacement algorithm. The clock algorithm is
used since it (or variants of it) are used for page re-
placement in most operating systems. In particular,
the existing Mungi virtual memory system employs a
global clock algorithm with reference bit emulation.

To eliminate the dilemma of shared frames, this
variant of the clock algorithm charges individual
memory frames to only one memory resource group
at a time. This provides a unique association between
frames and groups, permitting straightforward usage
accounting. A group is charged a frame if it sets the
frame’s reference bit (when one of its threads fault on
the page, or when Mungi uses the page on its behalf).
It remains charged for the frame until the page is re-
placed from physical memory, or the reference bit is
set by a thread from another group. The latter case
is referred to as a page transfer.

next frame to

replace

Figure 3: Page transfer between resource groups

Figure 3 shows a page transfer from group A to
group B. Before the transfer, group A is charged for
the frame marked page 13. This implies that some-
time earlier group A had been responsible by setting
the reference bit for page 13. Although the reference
bit for page 13 has since then been cleared and the
page unmapped from all threads by the page replace-
ment algorithm, the frame is still charged to group A.
Now when a thread from group B faults on page 13,
it sets the frame’s reference bit, resulting in a page
transfer. As seen in the diagram, this causes page 13
to be charged to group B instead of group A.

Note from the example that page replacement is
applied on a group basis, rather than globally. This
is because global page replacement violates isolation.
This approach does not imply localised page replace-
ment; page faults from threads do not necessarily re-
place frames charged to their own groups. Rather a

frame from a group which is over its entitlement is
selected for replacement.

One possible argument against this approach is its
reliance on reference bits. A group with a large re-
source consumption rate might always keep its pages
resident, allowing other groups to use them free of
charge. This is not an issue since a group only pays
for the frames it uses and its rate defines the maxi-
mum credit it is willing to pay. If the group’s working
set becomes too expensive, some pages will be auto-
matically transfered to other groups using the same
frames. Eventually this will lead to a fair distribution
of costs. Even in the short term there is some statis-
tical fairness, as a page will be charged to the first
group using it.

5.3 Prioritised Memory Revocation

While the charging scheme described above is fair
and simple, it still requires a method of selecting a
resource group for page replacement. This method
should only incur minimal overhead and must support
a cost per frame. This cost is a function of memory
utilisation, with an increasing value as free memory
decreases. It must be controllable by the system ad-
ministrator.

Minimum-funding revocation described in
Section 3.6 seems to be a possible approach. Eco-
nomically, this algorithm reallocates frames from
entities paying less to entities paying more. To
enforce a cost per frame, frames would be revoked
until all entities are paying the appropriate amount
per page. For efficiency, these revoked frames could
be buffered until free memory is available.

Unfortunately, minimum-funding revocation is in-
efficient, with a tree data structure implementation
requiring O(log(n)) operations, where n is the num-
ber of clients competing for memory. For a system
where memory is prioritised only when there are no
idle resources, this might be acceptable if page re-
placement is infrequent and accountable entities are
few. However, this is unacceptable for our model since
prioritisation depends on a cost per frame and revo-
cation may occur even with available idle resources.

A set of group queues solves this inefficiency while
also providing support for rates and a cost per frame.
These queues are based on the array of 32 run queues
employed in the 4.4BSD Operating System [McKu-
sick et al., 1996] to manage processes. Whereas the
4.4BSD scheduler assigns a process to a queue accord-
ing to its priority, this approach assigns a group to a
queue according to its bidding price. This is defined
as the ratio of its resource consumption rate over the
number of physical frames it is charged for. It reflects
the price the group is willing to pay per frame given
its present allocation. A bidding price below the cur-
rent frame price is an indication that the group holds
too many frames — revoking some (assuming a fixed
resource consumption rate) will increase its bidding
price.

When scaled appropriately, the bidding price in-
dexes into an array of 64 group queues, thereby lo-
cating the queue for the group.! As with 4.4BSD
run queues, this array has an associated 64 bit vec-
tor identifying non-empty queues. Figure 4 illustrates
this data structure.

A single ordered list would make the selection of
the next victim group is fast, but all other operations
would become expensive. By employing an array of
queues, the expense of other operations is reduced,
while the cost of selecting the next victim remains
reasonably low (time to search the 64-bit vector).

L This scaling implies that the bidding price is treated as a dis-
crete entity with 64 possible values.

Queues

high I
gi_(iicdéng (group) < group) C@

L Com 5 Cown
L o

low e I
bidding
price

Figure 4: Group queueing structure for memory pri-
oritisation

Given that the selection of a victim group is less fre-
quent than the operations required to order groups,
this poses no problems. With the array, fast selec-
tion of a victim group is possible by searching the bit
vector. The lowest nonempty queue is indicated by
finding the first bit set in the vector. Page replace-
ment is subsequently possible with the first group on
this queue. After page replacement this group is then
appended to a queue reflecting its new bidding price.

Notice how choosing the first group trades the cri-
teria of choosing the client with minimum funds for
speed; fairness is still retained as groups are selected
from the lowest nonempty queue. Another advan-
tage of selecting the first group is that groups which
have been in the queue longest are chosen first, thus
protecting a group from losing too many frames too
quickly.

5.4 Kernel Modification Details

Support for our fair charging scheme requires some
substantial modifications to the existing Mungi vir-
tual memory design. Kernel page fault handling
now considers four cases of faults to correctly charge
frames to groups:

1. If the faulting page is not resident, but free
memory is available, I/O is initiated to load
the page into a free frame. When the I/O is
completed, the frame is mapped to the faulting
thread and is charged to the faulter’s group.

2. If the page is not resident and free memory
is unavailable, the pager selects the first group
from the lowest non-empty queue for page re-
placement. Appropriate I/O operations are initi-
ated and, once these are completed, virtual mem-
ory mappings are established and the replaced
frame is charged to the group of the faulting
thread.

3. If the page faulted on is resident and charged
to a resource group, the pager determines
whether it may be mapped immediately with-
out a page transfer. This occurs if the reference
bit is set. If the reference bit is cleared but the
faulter belongs to the same group as the frame, a
mapping is likewise immediately returned. Oth-
erwise, a frame transfer is needed to charge the
frame to the faulter’s group before mapping the
page to the faulter.

4. Otherwise the page faulted on is resident and
not charged to a resource group. Pages of
this type are buffered on a dirty list. A fault on

a buffered dirty page charges the frame to the
faulter’s group.

Note that although buffering improves system
performance, it introduces two complications.
Firstly, uncontrolled buffering of dirty pages
leads to high cost when revoking dirty pages
which require writing to disk. Secondly, buffer-
ing dirty pages does not permit policy to reserve
frames by raising the cost per frame. These is-
sues are a part of controlling paging bandwidth
and are subject to future research.

In all cases where no free memory is available, page
replacement may be required for the faulting group
prior to charging the frame to its new group. If the
frame’s resource group is exceeding its rate, the pager
invokes the clock algorithm to select a replacement
frame. Other frames are unmapped and have their
reference bits cleared. The replaced frame may then
be buffered in memory and dirty frames cleaned when
necessary.

Also, notice how this algorithm only replaces one
page per fault for resource groups unable to pay for
frames. It serves to limit the frames of groups over
their rates while permitting fast fault handling. This
is sufficient if memory only needs to be prioritised
on page replacement (which is the case when a zero
cost per frame is specified). An asynchronous thread,
such as the page cleaner, must therefore periodically
revoke frames when group rates are reduced or the
cost per frame increased. The algorithm to achieve
this is as follows:

1. The cleaner is initially awaken by one of three
events: an increase in frame price, a decrease in
a resource group’s rates, or a timeout indicating
a periodic cleaning sweep is due. The number of
frames replaced each round is limited to minimise
the processing time spent and the amount of disk
traffic produced by the cleaner.

2. Firstly, the cleaner locates the lowest nonempty
queue. If the lower limit of the bidding prices rep-
resented by this queue exceeds the frame price,
no groups require revocation (all pay at least the
present price for what they consume) and the
thread can sleep again.

3. Otherwise, if the queue covers a range less than
the cost per frame, the first of its groups is se-
lected. Some of its frames are replaced before ap-
pending the group to a queue reflecting its new
bidding price. This is repeated while the lowest
queue is not empty and the target number of re-
placed frames is not reached. Should the current
queue become empty, the cleaner must locate the
next lowest nonempty queue.

4. As groups move up the array with revocation,
the queue specified by the cost per frame will
eventually be the lowest non-empty queue. For
this queue, all groups paying less than this cost
require revocation. The thread sleeps when no
more groups require revocation or the maxi-
mum number of frames to replace each period
is reached. If the latter occurs, a timeout is set
to wake the cleaner to repeat the process later.

Finally, note that in both algorithms frequent
movement of groups between queues do not occur un-
less the cost per frame or group rates change often.
Group memory usage generally reaches a maximum
determined by the group rate or the working sets of
group threads. Little overhead is therefore incurred in
maintaining queues; the movement of groups between
queues usually settles down quickly.

6 Experimental Results

Mungi is built on top of the L4 p-kernel. Current
versions execute as user-level tasks on top of the
MIPS [Elphinstone et al., 1997] and Alpha [Potts
et al., 2001] versions of L4. Our prototype model was
implemented with Mungi version 1.2 using L4/MIPS.
Relevant machine hardware characteristics are a
100MHz R4600 CPU, 2-way set associative 16KB in-
struction and data caches with 32 byte line sizes, and
a main memory size of 64MB.

Mungi’s VM paging system is undergoing major
revision, as the existing implementation is a stop-gap
version unsuitable for benchmarking. Consequently
we did not benchmark any actual paging activity, but
only tested the control of resident set sizes, and mi-
gration of frames between resource groups.

A simple experiment was conducted to see whether
rates were enforced by our prototype model with
Mungi on L4/MIPS. In this experiment a thread
spawns two threads in its own protection domain
and sets the cost per frame to 1024 units. (Such
a thread could be a trusted “system” thread, or a
“user” thread which manages sub-threads within its
own share of the system.) The child threads are as-
signed to separate memory resource groups each en-
titled to 50 frames. These threads dirty pages in an
object of 100 pages for 50 seconds. Child thread!
continuously loops and dirties the first 75 contiguous
pages, while thread2 loops and dirties the last 75 con-
tiguous pages. In this manner, the threads share 50
frames between them.

During the test two parameters are changed. The
rate of group2, the group for thread?2, is halved 20
seconds into the test. The cost per frame is set to
zero 10 seconds later. The results are illustrated in
Figure 5, a graph of the number of frames charged to
each group per page fault incurred.

70 T
group é ° P
+
ol group group 2 rate & i
halved &
X
'3
>
&
A
50 PR ©<zz>m B
+ (2
+ '3
i &
k2 &
= i <§§2>
e040 - i &]
5 H & - o
ha K H
P e & A+
8 i & i
g 30 i & A _
] g R g
— h k3 HiHHHIHHHHH
S+ & ¥
H '
H k3
& & [
20 - ha ® 08 . B
ﬁ*# @@ cost per page
s & set to zero
H '3
g &
P 4
10F F @ b
+ k3
+ '
P 4
-4
kd
0 M I I I

| | | | |
20 40 60 80 100 120 140 160 180
page faults

Figure 5: Experimental results

Initially, each child thread sleeps and periodically
awakes to check a flag signalling it to start dirtying
pages. Child thread?2 sees the flag set and dirties
pages first. A few faults later, thread1 likewise begins
to dirty pages. It is charged frames for the first 25
pages of the object, but ceases to incur new charges
while it dirties frames already resident and charged
to group2. This is illustrated in the plateau between
60 to 80 faults. New charges to group! only occur

after group2 reaches its maximum of 50 frames and
is subject to page replacement.

At 20 seconds, Figure 5 shows a sharp drop in the
frames charged to group2 when the rate for group2 is
halved and the background cleaner immediately re-
places some of its frames. The cleaner then sleeps for
a second before continuing to replace group2 frames
until group2 has roughly 25 frames remaining. No
more frames are replaced by the cleaner as both
groups are executing within their rates.

Finally, when zero page pricing is set at 30 sec-
onds, both groups steadily incur new frame charges.
Several page transfers occur during these last faults,
causing the rather bumpy increase for groupl. Page
faults cease when groupl has 64 frames and group2
has 36 frames, a reflection of the ratios of the threads’
resource consumption rates.

Overall, these experimental results are encourag-
ing, showing how shared frames can be fairly charged
among different entities. It demonstrates how frames
are successfully allocated according to group rates
and the cost per frame.

7 Conclusion

Operating systems require a generic framework to
manage a diverse range of resources, as well as mech-
anisms to prioritise resource allocation and isolate
processes from resource contention. In Section 1 we
specified the requirements of a generic resource man-
agement framework. To satisfy these requirements, a
new kernel abstraction, the resource group, was intro-
duced to support allocating proportions of resources
to groups of threads. The kernel was augmented by
data structures for supporting physical-memory pri-
ortisation, and by mechanisms which allow resource
groups to control this priorisation. The design meets
the following goals:

Fairness: Resource isolation and prioritisation were
stressed as necessities for fairness in resource
management. The mechanism designed met
these requirements for physical memory. In
particular, it provides fair accounting of shared
frames, a problem often overlooked.

A fair resource framework should also permit pol-
icy to consider usage history when allocating re-
sources. Our framework achieves this using bank
accounts from the existing storage management
model. Bank accounts serve as a means of track-
ing usage history; high and low resource usage is
indicated by low and high account funds respec-
tively.

Flexibility: A resource group is a flexible and sim-
ple abstraction on which more complex policies
can be built. Threads are assigned to groups for
each type of accountable resource in the system
and flexible grouping is possible since groups are
unrelated to protection domains.

Moreover, the kernel does not redistribute the re-
source rights released by exiting resource groups
among other groups, nor does it increase the
rights of groups with the resources of idle groups.
In this manner, no policy is imposed by the ker-
nel. Rather, the system enforces policy defined
at user-level: threads in higher groups define the
policy to impose and determine the resources
allocated to subordinate groups. This permits
policies where entities choose to pay more or less
for resources within policy constraints. Resource
groups also permit absolute or relative propor-
tions of resources to be specified.

Performance: The existing storage management
model has minimal accounting overhead since
most, accounting is conducted outside the ker-
nel. This approach is employed for accounting
resources allocated to resource groups, ensuring
kernel operations remain fast.

Performance has likewise been addressed in the
design of a queueing structure for the quick pri-
oritisation of frame allocations. This approach is
faster than algorithms such as lottery scheduling
and minimum-revocation funding.

Protection: Protection for our framework has been
provided by the validation of group bank ac-
counts in group operations. These operations
ensure threads do not violate policy constraints
by illegally modifying the rates of groups in the
group hierarchy.

Simplicity: Our physical memory prioritisation re-
lies on a simple concept of charging. The unique
association of frames to groups ensures users are
charged only for the frames they use without
complicated division of costs for shared frames.

Overall, these achievements are an important step
towards a generic resource management framework
for Mungi. The results of our simple experiment have
been encouraging, demonstrating the ease at which
our resource group abstraction can be applied to
physical memory. This group abstraction fits in well
with Mungi’s other fundamental abstractions, partic-
ularly with the Mungi thread hierarchy. Since these
fundamental abstractions are not specific to Mungi,
our framework can be easily adapted to other systems
too.

Further development is needed, nonetheless, es-
pecially if resource isolation for physical memory is
to be fully achieved. This requires an implementa-
tion of paging bandwidth control to prevent thrashing
threads from degrading the performance of others and
thus complete the isolation property. Actual perfor-
mance measurements with benchmarks and real work-
loads would then give more evidence of the strengths
of our design.

References

[Anderson et al., 1986] Anderson, M., Pose, R., and
Wallace, C. S. (1986). A password-capability sys-
tem. The Computer Journal, 29:1-8.

[Chapin, 1997] Chapin, J. (1997). A fresh look at
memory hierachy management. In Proceedings of
the 6th Workshop on Hot Topics in Operating Sys-
tems (HotOS), pages 130-134, Cape Cod, MA,
USA.

[Chase et al., 1994] Chase, J. S., Levy, H. M., Fee-
ley, M. J., and Lazowska, E. D. (1994). Sharing
and protection in a single-address-space operating
system. ACM Transactions on Computer Systems,
12:271-307.

[Drexler and Miller, 1988] Drexler, K. E. and Miller,
M. S. (1988). Incentive engineering for computa-
tional resource management. In Huberman, B. A.,
editor, The Ecology of Computation, Studies in
Computer Science and Artifical Intelligence, pages
231-266. North-Holland, Amsterdam.

[Elphinstone et al., 1997] Elphinstone, K., Heiser,
G., and Liedtke, J. (1997). L4 Reference Manual:
MIPS R/x00. School of Computer Science and En-
gineering, University of NSW, Sydney 2052, Aus-
tralia. UNSW-CSE-TR-9709. Latest version avail-
able from http://www.cse.unsw.edu.au/~disy/
L4/.

[Heiser et al., 1998a] Heiser, G., Elphinstone, K.,
Vochteloo, J., Russell, S., and Liedtke, J. (1998a).
The Mungi single-address-space operating system.
Software: Practice and Experience, 28(9):901-928.

[Heiser et al., 1998b] Heiser, G., Lam, F., and Rus-
sell, S. (1998b). Resource management in
the Mungi single-address-space operating system.
In Proceedings of the 21st Australasian Com-
puter Science Conference (ACSC), pages 417-428,
Perth, Australia. Springer-Verlag. Also available
as UNSW-CSE-TR-9705 from http://www.cse.

unsw.edu.au/school/research/tr.html.

[Kay and Lauder, 1988] Kay, J. and Lauder, P.
(1988). A fair share scheduler. Communications
of the ACM, 31(1):44-55.

[Krueger and Chawla, 1991] Krueger, P. and
Chawla, R. (1991). The Stealth distributed
scheduler. In Proceedings of the 11th IFEE In-
ternational Conference on Distributed Computing
Systems (ICDCS), pages 336-343, Los Alamitos,
CA, USA.

[Larmouth, 1975] Larmouth, J. (1975). Scheduling
for a share of the machine. Software: Practice and
Ezxperience, 5:29-49.

[McKusick et al., 1996] McKusick, M. K., Bostic, K.,
Karels, M. J., and Quarterman, J. S. (1996). The
Design and Implementation of the 4.4BSD Operat-
ing System. Addison Wesley.

[Mullender and Tanenbaum, 1986] Mullender, S. J.
and Tanenbaum, A. S. (1986). The design of a
capability-based distributed operating system. The
Computer Journal, 29:289-299.

[Potts et al., 2001] Potts, D., Winwood, S., and
Heiser, G. (2001). Lj Reference Manual: Alpha
21z64. University of NSW, Sydney 2052, Aus-
tralia. UNSW-CSE-TR-0104. Latest version avail-
able from http://www.cse.unsw.edu.au/~disy/
L4/.

[Sullivan and Seltzer, 2000] Sullivan, D. and Seltzer,
M. (2000). Isolation with flexibility: A resource
management framework for central servers. In Pro-
ceedings of the 2000 USENIX Technical Confer-
ence, pages 337-350, San Diego, CA, USA.

[Tanenbaum et al., 1986] Tanenbaum, A. S., Mullen-
der, S. J., and van Renesse, R. (1986). Using sparse
capabilities in a distributed operating system. In
Proceedings of the 6th IEEE International Confer-
ence on Distributed Computing Systems (ICDCS),
pages 558-563. IEEE.

[Thompson and Ritchie, 1974] Thompson, K. and
Ritchie, D. M. (1974). The UNIX time-sharing sys-
tem. Communications of the ACM, 17:365-375.

[Verghese et al., 1998] Verghese, B., Gupta, A., and
Rosenblum, M. (1998). Performance isolation:
Sharing and isolation in shared-memory multi-
processors. In Proceedings of the 8th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (AS-
PLOS), pages 181-192, San Jose, Ca, USA.

[Vochteloo et al., 1996] Vochteloo, J., Elphinstone,
K., Russell, S., and Heiser, G. (1996). Protection
domain extensions in Mungi. In Proceedings of the
5th IEEE International Workshop on Object Ori-
entation in Operating Systems (IWOOOS), pages
161-165, Seattle, WA, USA.

10

[Waldspurger, 1995] Waldspurger, C. A. (1995). Lot-
tery and Stride Scheduling: Flexible Proportional-
Share Resource Management. PhD thesis, Dept of
EECS, MIT.

[Waldspurger and Weihl, 1994] Waldspurger, C. A.
and Weihl, W. E. (1994). Lottery scheduling:
Flexible proportional-share resource management.
In Proceedings of the 1st USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), pages 1-11, Monterey, CA, USA.

