
Terabytes on a Diet

Peter Chubb

July 15, 2002

Abstra
t

You 
an buy a multiTerabyte raid array o� the shelf nowadays. But

it's not mu
h use if you 
an't plug it into your trusty Linux box.

Although the blo
k layer is in 
ux, there's still a lot of 
areless


oding that means:

� Even 64 bit platforms are limited to 1 or 2 Tb �lesystems (use of

32-bit signed type to hold se
tor number; se
tor size hard-
oded

to 512 bytes)

� Even where the partitioning s
heme allows partitioning of larger

dis
s (e.g., EFI's GPT), other limitations prevent them from be-

ing used to their full 
apa
ity

� Even though the page-
a
he limit is 16Tb with 4k pages (and

indeed if you 
an 
reate a �le this big you 
an read and write it!)

you 
an't have a �lesystem that big.

So. . .

I set out to remove these limitations on both 64 and 32 bit plat-

forms.

But how do you test support for huge (>2TB) �lesystems under

Linux when the biggest dis
 you have is 100G? Simple, write a simu-

lator, and use a sparse �le for the dis
 
ontents. But. . . it's not that

simple.

1 The problem

Dis
s are getting bigger and bigger. Figure 1 (from the SCSI industry trade

asso
iation, http://www.s
sita.org/state
h/01s005r1.pdf) shows ever

bigger dis
s in the short-term future. Even though this graph was 
reated

in 1992, the year 2000 dis
 sizes and speeds are pretty 
lose to spot-on. If

Moore's law 
ontinues to hold, we'll have Terabyte

1

dis
s in our high-end

desk-top ma
hines within 5 years.

The only problem is that Linux at present doesn't support large dis
s. The

limitations lie in several pla
es (see �gure 2).

1

Throughout this do
ument, Terabytes, Exabytes et
., are binary Terabytes.

The 
orresponden
e is as follows:

Pre�x value

Mega- 2

20

1 048 576

Giga- 2

30

1 073 741 824

Tera- 2

40

1 099 511 627 776

Peta- 2

50

1 125 899 906 842 624

Exa- 2

60

1 152 921 504 606 846 976

1



20THD
CDROM320G

1TIPs
Workstation/Server

�
�
�

�
�
�

��
��
��
��

��
��
��
��
��
��
��

��
��
��
�
�
�

�
�
�
�
�
�

�
�
� �
�
�

�
�
�

��
��
��
��
��
��
��
��

�
�
�
�

Industry Chart to 2012

2000 0420 2008 2012

High end Disk  10 T

i

SRA

P
er

fo
rm

an
ce

 In
cr

ea
se

s 
10

X
E

ve
ry

 4
 y

ea
rs

Technology Trends Workstation 10TIps

PC 2TIPS

16Gb

H a
dr

D
s k

i

SRA
2Gb

WorkStation 1TIps
PC200Gips

Workstation 100GIps
PC 20GIps

WorkStation 10GIps
PC 2GIps

CD 4.7G

High End Disk 100T
Std PC 10T
Mobile 1T

Camera and PDA Storage HDD == Mobile compact flash size

Std PC 1Tb/Mobile 100G

High end Disk 100G
Std PC 10G, Mobile 1G

Hig end disk 1Tb
Std PC 100G, Mobile 10G

2048x1500 VGA

512M DRAM

20G HD

1GHz

PC Workstation/Server

RISC 10GIPS

200G HD

CDROM20G

2GDRAM

4096x3000 graphics

8waySMP

PC

10GHz

200G HD

2G DRAM

4096x3000VGA

CD 20G

CDROM80G

2THD

RISC 100GIPS

WorkStation/Server
20T HD
32G DRAM
16kx12k
CD400G

PC
1THz 10TIPS

200T HD
CDROM 1T
128G DRAM
32kx24k graphics

Workstation

2T HD
100GHz
PC

8G DRAM

16kx12k graphics   CD 100G
 8192x6000 VG   32G DRAM

t 
M

it 
M

64Gb it 
SRA M

1Tbit 
SRA M

Figure 1: How dis
s are getting bigger

� The size in kilobytes of a blo
k devi
e is held in an int, whi
h means

the maximum size that 
an be held is 2

31

� 1024 bytes | or 2TB.

� The size of a partition is kept as unsigned long, whi
h means that

on 64-bit platforms, a partition 
an be larger than the devi
e that 
an

hold it!

� The SCSI and ATA drivers use the ten-byte 
ommand set, whi
h

means that the maximum sized dis
 that 
an be a

essed is 2

32

�

1�hardware blo
ksize. Many dis
s use 512 or 1024 byte hard se
tors,

so the limit is 2TB or 4TB for those dis
s.

� The standard ext2 �lesystem layout restri
ts the maximum size of

a blo
k devi
e to 
ir
a 2TB if 1k blo
ks are used, or 
ir
a 16TB

(16384GB) if 4kB blo
ks are used.

� All �le system operations go through the page 
a
he, whi
h maps a �le

and an index to a 
hunk of memory. The index is an unsigned long,

and the 
hunk is 
urrently one page (4k on many platforms), whi
h

with 32-bit longs means the absolute largest addressable o�set within

a �le or blo
k devi
e is 16TB.

� Be
ause of these limitations, the user-mode utilities (mkfs, fs
k, et
)

have never been tested with large �les, and so there's no guarantee

that they'll work | and in fa
t they do not.

2 Some Solutions

In February 2002, Jens Axboe, one of the blo
k-layer maintainers, intro-

du
ed a new type se
tor_t into the 2.5 kernel. The intent was that this

2



type should be used wherever se
tors or blo
ks were 
ounted or indexed.

On 64-bit platforms, it was 64-bits; on 32-bit platforms, 32 bits now, and

possibly 64 bits later on. However, it has not been used 
onsistently.

The pla
es sizes of dis
s and partitions are stored are:

1. In the stru
t gendisk there's an array of int, indexed by devi
e

minor number. This array holds the devi
e size in kilobytes.

2. Also in stru
t gendisk there's an array of stru
t hd_stru
t in-

dexed by minor number; stru
t hd_stru
t 
ontains the size and o�-

set of ea
h partition in se
tors, stored as unsigned long

3. Some of the drivers (e.g., the ataraid driver, the `old' hd driver, et
.)

de
lare a stati
 array of int that is eventually pointed to by a stru
t gendisk.

Others allo
ate the array with kmallo
().

4. There is an array int *blk_size[℄ indexed by major and minor de-

vi
e number that 
ontains the size of ea
h dis
. this is, as far as I'm

aware, used dire
tly only by the blkdev_size_in_bytes() fun
tion.

All these had to be 
hanged to use se
tor_t instead of int, as did the

a

ess fun
tions that are used to extra
t the starting se
tor and size for

ea
h partition.

The stru
ture used to request a blo
k from the blo
k layer stru
t request

already used a se
tor_t at the time I started work.

The partition re
ognition 
ode was also 
hanged to return partition o�sets

and sizes in se
tor_t. The only partitioning s
heme that that 
urrently

helps is the EFI GPT s
heme, whi
h uses 64-bit integers on-dis
 to mark

out the partitions.

Other partitioning s
hemes use unsigned long if you're lu
ky, int if you're

not, and in any 
ase use 32-bit on-dis
 numbers.

The �nal 
hanges were to the SCSI get-
apa
ity 
ommand. Code like

sdkp->
apa
ity = 1 + ((buffer[0℄ << 24) |

(buffer[1℄ << 16) |

(buffer[2℄ << 8) |

buffer[3℄);

where buffer is an array of unsigned 
har had to be 
hanged to 
ast

buffer[0℄ to unsigned expli
itly, so that the 
ompiler didn't 
onvert it to

an int then sign extend.

3 Preliminary Testing

The �rst thing I did was to rede�ne se
tor_t to be a stru
t, and 
hange

the obvious pla
es where dis
 sizes were stored from int to se
tor_t, so

that the 
ompiler would show me all the pla
es it was used, so they 
ould

all be found and �xed. Then se
tor_t 
ould be made ba
k into an integral

type.

3



Having made the 
hanges, the �rst thing was to see that the result worked

on a 32-bit system without enabling the large blo
k devi
e 
ode (i.e., with

se
tor_t a unsigned long).

After �xing a few typos, the result worked!

OK, 
reate a large (15Tb) sparse �le, then mount it via the loop devi
e.

I found at this point, that even though writes to the devi
e appeared to

su

eed, all reads failed. It turns out that if you want a blo
k devi
e to

work, its size in se
tors must �t into a se
tor_t. So I �xed error handling

on the loop devi
e.

It was now possible to 
reate up to a 2TB (sparse) �le, and 
reate a �le

system on it and mount it via the loop devi
e. Attempts to use the loop

devi
e on larger �les now returned sensible errors. (I still had a

ess to only

100G of dis
).

Then the next step was to enable CONFIG_LBD on i386 (whi
h turned a

se
tor_t into a 64-bit unsigned type), rebuild and reboot, then see what

happened.

Now, writes su

eed to the loop devi
e using a sparse �le up to 16 TB minus

one byte, and one 
an read ba
k what one has written (and it's the same!)

Hurrah.

Next was to test mkfs for di�erent �le systems. All the �lesystems tested

had essentially the same bug: they did not obtain the a
tual size of the

devi
e. This is be
ause they all used virtually the same 
ode:

Call io
tl(fd, BLKGETSIZE, &sz);

If it fails,


all io
tl(fd, FDGETPRM, &x)

if it fails,

do binary sear
h to �nd end of partition

and if these all failed, (be
ause, for instan
e, the size was held in a 32-bit

integer that wasn't big enough) didn't noti
e, and tried then to 
reate a

�lesystem on a devi
e of negative size, or that was very small (depending

on whether the 32-bit integer was signed or unsigned).

There were two problems here:

1. For a start, BLKGETSIZE returned an over
owed 32-bit number if the

number-of-blo
ks wouldn't �t. After �xing this in the kernel,

2. the binary-sear
h over
owed its o�set

I �xed the latter by using the BLKGETSIZE64 io
tl, whi
h is supposed to

return the size in bytes of a blo
k devi
e. As it turns out, it'd probably be

better to just seek to the end of the devi
e, and return the resulting o�set

(perhaps trying to read from the last blo
k to make sure it's really there), as

BLKGETSIZE64 has di�erent io
tl numbers di�erent versions of Linux. I'm

not sure why the binary sear
h is used in all these mkfs (and mkswap, for

that matter).

4



3.1 Ext[23℄

After �xing mkfs, I 
reated a large sparse �le (16TB), and ran mkfs on it.

After half an hour or so, it was still trying to write out the same inode

group.... and the 
onsole was going 
razy.

mkfs doesn't expe
t to fail writes be
ause the dis
 has �lled up. (On a real

dis
, it 
an't happen) (remember I had only 100G of dis
).

The ext2/ext3 �lesystem layout uses quite a lot of metadata | inodes and

bitmaps are written to the dis
 at mkfs time. On a dis
 of any size, one

inode per 4Megabytes of dis
. Fortunately this 
an be 
ontrolled by a 
ag,

to allow a sparse �le on limited dis
 storage to be an ext2 �le system.

3.2 JFS

On IA32, JFS worked like a 
harm (on
e the initial problems in mkfs were

�xed). The JFS maintainers are quite responsive, and even though I found

three bugs (two in mkfs, and one related to page size not equal to blo
k size)

| they're all �xed now.

3.3 The Loop Devi
e

The loop devi
e is a way of making a �le or a blo
k devi
e appear as a

di�erent blo
k devi
e (/dev/loopn). As data is transferred through the

loop devi
e it 
an be massaged in various ways, e.g., to add transparent

en
ryption/de
ryption. In addition, be
ause a �le 
an be made to appear

as a blo
k devi
e, a �le 
ontaining a �le system image 
an be mounted into

the �le system hierar
hy.

The loop devi
e required some degree of surgery. Unfortunately, there are

modules not distributed with the kernel, that do en
ryption et
., that are

going to break with the interfa
e 
hanges ne
essary to do large blo
k devi
es.

At present, I've just 
hanged the interfa
es, but probably ought to add new

ones in parallel with the existing interfa
es.

3.4 Fake SCSI

One way to 
he
k that the SCSI layer is working properly, is to put a simu-

lation of a SCSI host adapter on top of a loop-like devi
e stru
ture. Using

real SCSI adapters at present is not an option, be
ause none of them have

(yet) been audited for 64-bit 
leanness (in fa
t, the ones I'm using to test

2.4TB �le systems will work only up to 2

32

512byte se
tors.)

There are two SCSI simulators in the Linux kernel. There is one that uses a

small (8M) memory region as a dis
 (CONFIG_SCSI_DEBUG) and one that

is designed to run on top of the Itanium simulator (CONFIG_HPSIM and

CONFIG_SIMSCSI). I grabbed the latter, moved it into the drivers/s
si di-

re
tory, and ha
ked at it with a large axe until it used Linux kernel servi
es

rather than the simulator servi
es. Be
ause the driver was meant only as a

debugging aid, it uses extremely dubious 
ode (I wrote kernel_write() to

go with kernel_read(), modi�ed both to throw away some error 
he
king,

and added a 
ustom loops
si_open() routine as well.

5



This allowed me to 
he
k that the partitioning 
ode worked, and that large

partitions 
ould be 
reated and re
ognised by the kernel.

4 Current Status of the pat
h

With my pat
h I see this:

SCSI devi
e sda: 18446744073395863552 512-byte hdwr se
tors (3783947180439 MB)

Without the pat
h on the same hardware I see this:

SCSI devi
e sda: -313688064 512-byte hdwr se
tors (-160607 MB)

On IA32, (Linux 2.5.24) I've tested ext3, reiserfs and JFS on linear software

RAID up to 3.5TB on real hardware, and up to 15TB on the loopba
k

devi
e. All three �lesystems work.

On IA64, (Linux 2.5.18 plus IA64 pat
hes), I've tested ext2, reiserfs and JFS

on a 2.4TB linear software RAID, but only ext2 works. I didn't test ext3

be
ause of the well-known data-
orruption problems in 2.5.18 with ext3.

JFS has issues with page sizes greater than 4k, that I believe are �xed in

the 
urrent (1.0.20) release. (Even without the LBD pat
h, JFS from the

2.5.18 kernel would not work on this platform).

Reiserfs wouldn't work either. Onmounting, one gets the error: reiserfs_fill_super: unable to read bitmap

be
ause the �lesystem tries to allo
ate a 
hunk of memory 173656 bytes long

using kmallo
. Kmallo
 thinks this is too large (the largest 
hunk it'll allo-


ate is 131072 bytes).

Thus Reiserfs is limited at present to 1073709055 blo
ks (just under 4TB)

on a 32-bit system and 536838143 blo
ks on a 64-bit system (just under

2TB).

The �lesystem developers are responsive, and I expe
t all these problems to

be �xed by the time this paper is presented.

You 
an fet
h the pat
h from http://www.gelato.unsw.edu.au/pat
hes

Whether or not the pat
h makes it into the mainline kernel is in one way

irrelevant| what it has done is to raise awareness amongst all the developers

of what the issues are, and how to work around them. Re
ent pat
hes that

have made it in have used se
tor_t 
orre
tly, and don't get in the way of

future large-blo
k-devi
e work.

6



4T

2T

1T

16T

8T

1K 2k 4k 8k 16k

Page cache limit (32−bit)

Ext2 FS limits

512T

JFS limits
1PBT

2PB

4PB
Note: XFS is off the graph

at 8Eb

ReiserFS theoretical

ReiserFS actual (32bit)

ReiserFS actual (64bit)

(JFS currently supports only 4k blocks)

pre−patch device size Limit

Figure 2: Blo
k devi
e size limitations in Linux 2.4

7


