
Terabytes on a Diet

Peter Chubb

July 15, 2002

Abstrat

You an buy a multiTerabyte raid array o� the shelf nowadays. But

it's not muh use if you an't plug it into your trusty Linux box.

Although the blok layer is in ux, there's still a lot of areless

oding that means:

� Even 64 bit platforms are limited to 1 or 2 Tb �lesystems (use of

32-bit signed type to hold setor number; setor size hard-oded

to 512 bytes)

� Even where the partitioning sheme allows partitioning of larger

diss (e.g., EFI's GPT), other limitations prevent them from be-

ing used to their full apaity

� Even though the page-ahe limit is 16Tb with 4k pages (and

indeed if you an reate a �le this big you an read and write it!)

you an't have a �lesystem that big.

So. . .

I set out to remove these limitations on both 64 and 32 bit plat-

forms.

But how do you test support for huge (>2TB) �lesystems under

Linux when the biggest dis you have is 100G? Simple, write a simu-

lator, and use a sparse �le for the dis ontents. But. . . it's not that

simple.

1 The problem

Diss are getting bigger and bigger. Figure 1 (from the SCSI industry trade

assoiation, http://www.ssita.org/stateh/01s005r1.pdf) shows ever

bigger diss in the short-term future. Even though this graph was reated

in 1992, the year 2000 dis sizes and speeds are pretty lose to spot-on. If

Moore's law ontinues to hold, we'll have Terabyte

1

diss in our high-end

desk-top mahines within 5 years.

The only problem is that Linux at present doesn't support large diss. The

limitations lie in several plaes (see �gure 2).

1

Throughout this doument, Terabytes, Exabytes et., are binary Terabytes.

The orrespondene is as follows:

Pre�x value

Mega- 2

20

1 048 576

Giga- 2

30

1 073 741 824

Tera- 2

40

1 099 511 627 776

Peta- 2

50

1 125 899 906 842 624

Exa- 2

60

1 152 921 504 606 846 976

1

20THD
CDROM320G

1TIPs
Workstation/Server

�
�
�

�
�
�

��
��
��
��

��
��
��
��
��
��
��

��
��
��
�
�
�

�
�
�
�
�
�

�
�
� �
�
�

�
�
�

��
��
��
��
��
��
��
��

�
�
�
�

Industry Chart to 2012

2000 0420 2008 2012

High end Disk 10 T

i

SRA

P
er

fo
rm

an
ce

 In
cr

ea
se

s
10

X
E

ve
ry

 4
 y

ea
rs

Technology Trends Workstation 10TIps

PC 2TIPS

16Gb

H a
dr

D
s k

i

SRA
2Gb

WorkStation 1TIps
PC200Gips

Workstation 100GIps
PC 20GIps

WorkStation 10GIps
PC 2GIps

CD 4.7G

High End Disk 100T
Std PC 10T
Mobile 1T

Camera and PDA Storage HDD == Mobile compact flash size

Std PC 1Tb/Mobile 100G

High end Disk 100G
Std PC 10G, Mobile 1G

Hig end disk 1Tb
Std PC 100G, Mobile 10G

2048x1500 VGA

512M DRAM

20G HD

1GHz

PC Workstation/Server

RISC 10GIPS

200G HD

CDROM20G

2GDRAM

4096x3000 graphics

8waySMP

PC

10GHz

200G HD

2G DRAM

4096x3000VGA

CD 20G

CDROM80G

2THD

RISC 100GIPS

WorkStation/Server
20T HD
32G DRAM
16kx12k
CD400G

PC
1THz 10TIPS

200T HD
CDROM 1T
128G DRAM
32kx24k graphics

Workstation

2T HD
100GHz
PC

8G DRAM

16kx12k graphics CD 100G
 8192x6000 VG 32G DRAM

t
M

it
M

64Gb it
SRA M

1Tbit
SRA M

Figure 1: How diss are getting bigger

� The size in kilobytes of a blok devie is held in an int, whih means

the maximum size that an be held is 2

31

� 1024 bytes | or 2TB.

� The size of a partition is kept as unsigned long, whih means that

on 64-bit platforms, a partition an be larger than the devie that an

hold it!

� The SCSI and ATA drivers use the ten-byte ommand set, whih

means that the maximum sized dis that an be aessed is 2

32

�

1�hardware bloksize. Many diss use 512 or 1024 byte hard setors,

so the limit is 2TB or 4TB for those diss.

� The standard ext2 �lesystem layout restrits the maximum size of

a blok devie to ira 2TB if 1k bloks are used, or ira 16TB

(16384GB) if 4kB bloks are used.

� All �le system operations go through the page ahe, whih maps a �le

and an index to a hunk of memory. The index is an unsigned long,

and the hunk is urrently one page (4k on many platforms), whih

with 32-bit longs means the absolute largest addressable o�set within

a �le or blok devie is 16TB.

� Beause of these limitations, the user-mode utilities (mkfs, fsk, et)

have never been tested with large �les, and so there's no guarantee

that they'll work | and in fat they do not.

2 Some Solutions

In February 2002, Jens Axboe, one of the blok-layer maintainers, intro-

dued a new type setor_t into the 2.5 kernel. The intent was that this

2

type should be used wherever setors or bloks were ounted or indexed.

On 64-bit platforms, it was 64-bits; on 32-bit platforms, 32 bits now, and

possibly 64 bits later on. However, it has not been used onsistently.

The plaes sizes of diss and partitions are stored are:

1. In the strut gendisk there's an array of int, indexed by devie

minor number. This array holds the devie size in kilobytes.

2. Also in strut gendisk there's an array of strut hd_strut in-

dexed by minor number; strut hd_strut ontains the size and o�-

set of eah partition in setors, stored as unsigned long

3. Some of the drivers (e.g., the ataraid driver, the `old' hd driver, et.)

delare a stati array of int that is eventually pointed to by a strut gendisk.

Others alloate the array with kmallo().

4. There is an array int *blk_size[℄ indexed by major and minor de-

vie number that ontains the size of eah dis. this is, as far as I'm

aware, used diretly only by the blkdev_size_in_bytes() funtion.

All these had to be hanged to use setor_t instead of int, as did the

aess funtions that are used to extrat the starting setor and size for

eah partition.

The struture used to request a blok from the blok layer strut request

already used a setor_t at the time I started work.

The partition reognition ode was also hanged to return partition o�sets

and sizes in setor_t. The only partitioning sheme that that urrently

helps is the EFI GPT sheme, whih uses 64-bit integers on-dis to mark

out the partitions.

Other partitioning shemes use unsigned long if you're luky, int if you're

not, and in any ase use 32-bit on-dis numbers.

The �nal hanges were to the SCSI get-apaity ommand. Code like

sdkp->apaity = 1 + ((buffer[0℄ << 24) |

(buffer[1℄ << 16) |

(buffer[2℄ << 8) |

buffer[3℄);

where buffer is an array of unsigned har had to be hanged to ast

buffer[0℄ to unsigned expliitly, so that the ompiler didn't onvert it to

an int then sign extend.

3 Preliminary Testing

The �rst thing I did was to rede�ne setor_t to be a strut, and hange

the obvious plaes where dis sizes were stored from int to setor_t, so

that the ompiler would show me all the plaes it was used, so they ould

all be found and �xed. Then setor_t ould be made bak into an integral

type.

3

Having made the hanges, the �rst thing was to see that the result worked

on a 32-bit system without enabling the large blok devie ode (i.e., with

setor_t a unsigned long).

After �xing a few typos, the result worked!

OK, reate a large (15Tb) sparse �le, then mount it via the loop devie.

I found at this point, that even though writes to the devie appeared to

sueed, all reads failed. It turns out that if you want a blok devie to

work, its size in setors must �t into a setor_t. So I �xed error handling

on the loop devie.

It was now possible to reate up to a 2TB (sparse) �le, and reate a �le

system on it and mount it via the loop devie. Attempts to use the loop

devie on larger �les now returned sensible errors. (I still had aess to only

100G of dis).

Then the next step was to enable CONFIG_LBD on i386 (whih turned a

setor_t into a 64-bit unsigned type), rebuild and reboot, then see what

happened.

Now, writes sueed to the loop devie using a sparse �le up to 16 TB minus

one byte, and one an read bak what one has written (and it's the same!)

Hurrah.

Next was to test mkfs for di�erent �le systems. All the �lesystems tested

had essentially the same bug: they did not obtain the atual size of the

devie. This is beause they all used virtually the same ode:

Call iotl(fd, BLKGETSIZE, &sz);

If it fails,

all iotl(fd, FDGETPRM, &x)

if it fails,

do binary searh to �nd end of partition

and if these all failed, (beause, for instane, the size was held in a 32-bit

integer that wasn't big enough) didn't notie, and tried then to reate a

�lesystem on a devie of negative size, or that was very small (depending

on whether the 32-bit integer was signed or unsigned).

There were two problems here:

1. For a start, BLKGETSIZE returned an overowed 32-bit number if the

number-of-bloks wouldn't �t. After �xing this in the kernel,

2. the binary-searh overowed its o�set

I �xed the latter by using the BLKGETSIZE64 iotl, whih is supposed to

return the size in bytes of a blok devie. As it turns out, it'd probably be

better to just seek to the end of the devie, and return the resulting o�set

(perhaps trying to read from the last blok to make sure it's really there), as

BLKGETSIZE64 has di�erent iotl numbers di�erent versions of Linux. I'm

not sure why the binary searh is used in all these mkfs (and mkswap, for

that matter).

4

3.1 Ext[23℄

After �xing mkfs, I reated a large sparse �le (16TB), and ran mkfs on it.

After half an hour or so, it was still trying to write out the same inode

group.... and the onsole was going razy.

mkfs doesn't expet to fail writes beause the dis has �lled up. (On a real

dis, it an't happen) (remember I had only 100G of dis).

The ext2/ext3 �lesystem layout uses quite a lot of metadata | inodes and

bitmaps are written to the dis at mkfs time. On a dis of any size, one

inode per 4Megabytes of dis. Fortunately this an be ontrolled by a ag,

to allow a sparse �le on limited dis storage to be an ext2 �le system.

3.2 JFS

On IA32, JFS worked like a harm (one the initial problems in mkfs were

�xed). The JFS maintainers are quite responsive, and even though I found

three bugs (two in mkfs, and one related to page size not equal to blok size)

| they're all �xed now.

3.3 The Loop Devie

The loop devie is a way of making a �le or a blok devie appear as a

di�erent blok devie (/dev/loopn). As data is transferred through the

loop devie it an be massaged in various ways, e.g., to add transparent

enryption/deryption. In addition, beause a �le an be made to appear

as a blok devie, a �le ontaining a �le system image an be mounted into

the �le system hierarhy.

The loop devie required some degree of surgery. Unfortunately, there are

modules not distributed with the kernel, that do enryption et., that are

going to break with the interfae hanges neessary to do large blok devies.

At present, I've just hanged the interfaes, but probably ought to add new

ones in parallel with the existing interfaes.

3.4 Fake SCSI

One way to hek that the SCSI layer is working properly, is to put a simu-

lation of a SCSI host adapter on top of a loop-like devie struture. Using

real SCSI adapters at present is not an option, beause none of them have

(yet) been audited for 64-bit leanness (in fat, the ones I'm using to test

2.4TB �le systems will work only up to 2

32

512byte setors.)

There are two SCSI simulators in the Linux kernel. There is one that uses a

small (8M) memory region as a dis (CONFIG_SCSI_DEBUG) and one that

is designed to run on top of the Itanium simulator (CONFIG_HPSIM and

CONFIG_SIMSCSI). I grabbed the latter, moved it into the drivers/ssi di-

retory, and haked at it with a large axe until it used Linux kernel servies

rather than the simulator servies. Beause the driver was meant only as a

debugging aid, it uses extremely dubious ode (I wrote kernel_write() to

go with kernel_read(), modi�ed both to throw away some error heking,

and added a ustom loopssi_open() routine as well.

5

This allowed me to hek that the partitioning ode worked, and that large

partitions ould be reated and reognised by the kernel.

4 Current Status of the path

With my path I see this:

SCSI devie sda: 18446744073395863552 512-byte hdwr setors (3783947180439 MB)

Without the path on the same hardware I see this:

SCSI devie sda: -313688064 512-byte hdwr setors (-160607 MB)

On IA32, (Linux 2.5.24) I've tested ext3, reiserfs and JFS on linear software

RAID up to 3.5TB on real hardware, and up to 15TB on the loopbak

devie. All three �lesystems work.

On IA64, (Linux 2.5.18 plus IA64 pathes), I've tested ext2, reiserfs and JFS

on a 2.4TB linear software RAID, but only ext2 works. I didn't test ext3

beause of the well-known data-orruption problems in 2.5.18 with ext3.

JFS has issues with page sizes greater than 4k, that I believe are �xed in

the urrent (1.0.20) release. (Even without the LBD path, JFS from the

2.5.18 kernel would not work on this platform).

Reiserfs wouldn't work either. Onmounting, one gets the error: reiserfs_fill_super: unable to read bitmap

beause the �lesystem tries to alloate a hunk of memory 173656 bytes long

using kmallo. Kmallo thinks this is too large (the largest hunk it'll allo-

ate is 131072 bytes).

Thus Reiserfs is limited at present to 1073709055 bloks (just under 4TB)

on a 32-bit system and 536838143 bloks on a 64-bit system (just under

2TB).

The �lesystem developers are responsive, and I expet all these problems to

be �xed by the time this paper is presented.

You an feth the path from http://www.gelato.unsw.edu.au/pathes

Whether or not the path makes it into the mainline kernel is in one way

irrelevant| what it has done is to raise awareness amongst all the developers

of what the issues are, and how to work around them. Reent pathes that

have made it in have used setor_t orretly, and don't get in the way of

future large-blok-devie work.

6

4T

2T

1T

16T

8T

1K 2k 4k 8k 16k

Page cache limit (32−bit)

Ext2 FS limits

512T

JFS limits
1PBT

2PB

4PB
Note: XFS is off the graph

at 8Eb

ReiserFS theoretical

ReiserFS actual (32bit)

ReiserFS actual (64bit)

(JFS currently supports only 4k blocks)

pre−patch device size Limit

Figure 2: Blok devie size limitations in Linux 2.4

7

