
Where’s all the time going?
Microstate accounting in Linux 2.5

Peter Chubb∗

September, 2003

Abstract

In a UNIX system, time command reports real,
system and user time used by command. For var-
ious reasons, the reported times are likely to be at
variance with the actual resources used by the pro-
gram.

We added high resolution timing of the actual time
spent in various states in the kernel to Linux 2.5.

1 The Problems

When you time a process using time(1), you get
back three numbers: real time, user time, and sys-
tem time. These numbers are generated statisti-
cally; at regular intervals, an interrupt occurs and
the current process gets an extra tick in either its
system time counter or its user time counter.

These numbers should be viewed with extreme
scepticism.

• Multi-threaded processes are not accounted
for correctly. Only the ‘main’ thread is
counted; time used by threads that it starts are
accounted for separately. As LinuxThreads
has an extra manager thread which starts all
the other threads, created threads are grand-
children not children of the main thread, so
their times are never accumulated into the
main thread’s timers.

• There are also processes that wake at regu-
lar intervals, do a small amount of process-
ing (less than a tick) then sleep (e.g., Apache)
— their wakeup interval tends to become syn-
chronised with the timer interrupt so their

∗This work was funded by HP through the Gelato pro-
gramme (http://www.gelato.org) and the University
of NSW

time is never accounted for (they are almost
never running when the timer tick happens
even though they are runnable then).

• Time spent in interrupt handlers is accounted
to the process that was interrupted, not to the
process that caused the interrupt.

• In addition, there are sources of poor perfor-
mance that just aren’t captured by these times
— scheduler latency, IO latency, etc., etc.

Most modern processor architectures have a high
precision clock that can be used to time things with
low overhead. A simple solution appears to be
to add timers using the processor’s inbuilt high-
resolution clock to track the time spent by each
thread in each state.

2 Related Work

The Solaris R© operating system has had microstate
accounting for its light-weight processes for a long
time. The state transition diagramme for its threads
is different from that for Linux tasks, so the states
tracked are different.

The IRIX R© operating system uses hardware timers
to track system and user time, rather than relying
on statistical sampling.

3 Thread States

Threads move through many states as they run (see
figure 1 for a simplified picture).

Some of these states are reflected in the state
variable in struct task_struct; but not all.

R©Solaris is a registered trademark of Sun Microsystems Inc
R©IRIX is a registered trademark of SGI

1



ONCPU
(R)

INTERRUPTED
(R)

ONACTIVE
(R)

ONEXPIRED
(R)

ZOMBIE
(Z)

STOPPED
(T)

(D)
UNINTERRUPTIBLE

(S)
INTERRUPTIBLE

Figure 1: Simplified Thread State Transition Diagramme

In particular, the states tracked in state do not
distinguish between running and runnable; nor be-
tween active and expired.

It’d be nice to capture the time spent in every pos-
sible state; however, it’s simpler just to capture the
most interesting states. From the point of view of
being able to tune the Linux scheduler, and being
able to measure an application’s actual impact on
the system, the interesting states are:

1. The time spent running on a processor.

2. The time spent on the active queue,

3. The time spent on the expired queue,

4. The time spent sleeping uninterruptibly (e.g.,
waiting for disc I/O)

5. The time spent sleeping interruptably (e.g.,
waiting for TTY I/O)

6. The time spent as a zombie, before the parent
lays the process to rest.

4 Implementation

4.1 Data structures

We added to each struct task_struct a
new data structure, struct microstates, de-
fined as in figure 2

Obviously, more states can be added if that turns
out to be desirable.

The timers array keeps track of times as the thread
states change; the child timers array is updated
when a thread waits for zombie children.

In addition, a per-cpu array per interrupt keeps
track of time spent handling each interrupt.

4.2 In-kernel interfaces

We added new functions:

‘msa_set_timer(tsk, newstate)’
which accumulates the time since last change
into timers[cur state] then sets cur state to
newstate.

2



typedef u64 clk_t;

enum thread_state {
UNKNOWN = -1,
ONCPU_USER,
ONCPU_SYS,
ONACTIVEQUEUE,
ONEXPIREDQUEUE,
UNINTERRUPTIBLE_SLEEP,
INTERRUPTIBLE_SLEEP,
ZOMBIE,
STOPPED,
INTERRUPTED,
NR_MICRO_STATES /* must be last */

};

struct microstates {
enum thread_state cur_state;
enum thread_state next_state;
int lastqueued;
unsigned flags;
clk_t last_change;
clk_t timers[NR_MICRO_STATES];
clk_t child_timers[NR_MICRO_STATES];

};

Figure 2: struct microstates definition

‘msa_init_timer(tsk)’ , which sets
all timers to zero, last change to
the current time, and cur state to
UNINTERRUPTIBLE_SLEEP.

‘msa_next_state(tsk, next_state)’
sets the next state field in the task to next.

‘msa_flip_expired()’ which tracks the
time when the active and expired queues
were last flipped on the current processor
(Linux has a separate pair of queues for each
processor).

‘msa_switch(prev_task, next_task)’
tells the microstate tracking infrastructure
that prev task is coming off the processor,
and next task is going onto the processor. The
timers are updated appropriately. cur state in
prev is set to prev’s next state variable if it is
other than UNKNOWN; otherwise, cur state
is mapped from the task’s state.

‘msa_start_irq(cpu, irq)’ is called
from the architecture-dependent generic irq
handler to mark that the current state is
INTERRUPTED (it must previously have
been ONCPU). The code also starts timing
how long this IRQ will take.

‘msa_continue_irq(cpu, oldirq, newirq)’
is called when the generic interrupt routine
starts handling a new interrupt without
returning to normal processing. IA64 does
this; IA32 code doesn’t use this function.

‘msa_finish_irq(cpu, irq)’ marks
interrupt handling as over for the time being.

‘Time’ here is some architecture-specific mono-
tonically increasing clock. For uniprocessor sys-
tems, we use the in-built high-resolution clock
(TSC for IA32 systems, ITC for IA64). For
multiprocessor systems, there’s no guarantee

3



that these clocks are synchronised between pro-
cessors, so for IA32 systems, the code calls
‘monotonic_time()’, which is implemented
in various ways according to what hardware is
available. On IA64 SMP systems, the ITC is syn-
chronised between processors; on IA64 NUMA
systems, more work is needed to determine an ac-
ceptable clock (see section 6.1).

4.3 User-land interfaces

4.3.1 System Call

We provide a new system call, ‘msa()’ that re-
turns a snapshot of the current timers, or the chil-
dren’s timers. It takes as argument the number of
timers to retrieve, a pointer to them, and a flag to
say whether the child or self timers should be re-
trieved,

int msa(unsigned ntimers, unsigned which, clk_t *timers);

The ‘basic’ timers are first in the array; as new
timers are added for specific purposes, the existing
code can remain backwardly compatible.

4.3.2 Sample output

In addition, a new file ‘/proc/pid/msa’ gives an
ASCII representation of a snapshot of the current
timer set.

The contents of /proc/pid/msa for an instance of
xemacs:

State: Interruptible
ONCPU_USER 512707809528
ONCPU_SYS 0
INTERRUPTIBLE 6723140348728
UNINTERRUPTIBLE 81179247984
INTERRUPTED 8850680192
ACTIVEQUEUE 121728272508
EXPIREDQUEUE 65523052
STOPPED 0
ZOMBIE 0
UNKNOWN 0

As you can see, xemacs spends most of its time
waiting for user interaction, and most of the rest
either running on a processor, or waiting for disc
I/O.

These times are normalised to nanoseconds be-
fore being output. This instance had run for just
over two hours, and according to ps(1) had used
4 minutes 20 seconds of processor time. Compare
this with the measured 8 minutes 41 seconds (not
counting the time in INTERRUPTED state).

The reason for the discrepancy is that user time is
accrued only when the process is running at the
time a scheduler tick occurs. For an interactive
process, most of the time it is sleeping. It wakes,
runs for less than a tick, then goes back to sleep
again without accruing any time to the standard
UNIX accounting mechanism.

4.4 Scheduler interaction

4.4.1 Scheduler Queues

The O(1) scheduler has two run queues: the active
queue and the expired queue. Whenever a thread
uses its time slice entirely, it is requeued with a
new time slice to the expired queue; threads wak-
ing from sleep are queued to the active queue. The
scheduler runs threads from the active queue until
it is empty.

Whenever the active queue is empty, the active and
expired queues are swapped, so what was the (now
empty) active queue becomes the expired queue;
and what was the expired queue becomes the active
queue.

In this way, threads that run for a little and then
sleep (typical interactive behaviour) are favoured
over processor-bound jobs. The microstate ac-
counting infrastructure keeps track of the time
at which the queues are swapped. When a
thread whose last state was ONEXPIRED fi-
nally gets some CPU, times are accumulated
to both ONACTIVEQUEUE (now - lastflip) and
ONEXPIREDQUEUE (lastflip - last change).

It’s guaranteed that all threads on the active queue
will get to run before any threads on the expired
queue, so this is good enough for keeping track.

4.5 Task migration

When a processor is idle, it looks for work on other
processor’s expired queues before looking on ac-
tive queues. Thus a possible state transition is

4



EXPIRED(0) → ONCPU(1) This case is detected
by looking to see if

1. the last flip time for the processor the task was
last queued on is before the time the task en-
tered the ONQUEUED state, and

2. the processor it is about to be run on is dif-
ferent from the processor it was last queued
on.

In this case, the EXPIRED timer update uses the
current time, not the last queueflip time.

4.5.1 Scheduler Ticks

At regular intervals, a timer tick occurs, and decre-
ments the remaining time slice of the current task.
When the time slice reaches zero, the task is given
a new time slice, and requeued, possibly to the
expired queue, and the NEED_RESCHED flag set
to cause the scheduler to be called when the inter-
rupt returns to the interrupted context.

Moreover, the timer tick can occur when the pro-
cessor is handling another interrupt (in fact this
seems to happen fairly often — two or three times
a second on an active machine). When the inter-
rupt returns, ‘schedule()’ picks a new task to
run. ‘msa_switch()’ then notes that the cur-
rent state of the previous task is INTERRUPTED
and sets the current state of the new task to
INTERRUPTED as well.

5 Experiences

5.1 Overhead

We measured overhead using LMBench2 ([McV])
on 800MHz single and dual processor Itanium
2 machines, and on a single-processor 2.5GHz
Pentium-4 machine. The benchmark results are
summarised in Table 2.

The net result is that on IA64, there appears to be
a small (less than 5%) increase in context switch
overhead. ‘Real World’ benchmarks like Kern-
Bench (which is the time to build a Linux kernel
from scratch, using twice as many processes as one
has processors), show no significant time differ-
ences; in fact on UP Pentium-4, the real time taken
to compile a kernel is decreased

5.2 Comparison with ‘getrusage()’

On an otherwise unloaded system,
‘getrusage()’ results are identical to the
results from the ‘msa()’ system call for
processor-bound jobs.

The standard getrusage() system call under-reports
the actual times spent for a large number of com-
mon programs: (here say which processes mea-
sured, and the degree of under-reporting, also say
what optimisations are suggested by the measure-
ments, if any).

5.3 Other measurements

Other things that the ‘msa()’ call allows are di-
rect measurement of scheduler latency, correlation
with results from lockmeter, etc., to see what in-
kernel features affect real user processes, etc (this
paragraph to be reworded when we’ve got some
real results)

6 Future Work

6.1 Better Multiprocessor support

Our current code assumes that the hardware timer
(ITC or TSC) is a monotonic clock, regardless
of which processor a task is running on, and that
clocks are synchronised across all processors in a
machine. For small SMP systems, this assumption
is close to true with recent Linux.

However, for many architectures, clocks are not
synchronised with nanosecond precision across the
machine. In a NUMA multiprocessor, local clocks
need not be synchronised, and it can be expensive
to get an agreed-upon time.

An approach to solving this could be to add to the
struct microstate the processor ID of the proces-
sor on which the last state change occurred, and
to adjust the timers at migration time. Sleep times
could be miscalculated (a task that goes to sleep
after running on one processor, is then woken and
put onto the local percpu runqueue by a different
processor could not allow easily for the clock dif-
ference between itself and the original processor)

Another approach would be to use an optimised
version of ‘gettimeofday()’.

5



System With MSA Without MSA
real user sys real user sys

IA64 2P
IA64 UP
P4 UP 473.6 381.47 41.35 474.57 381.74 40.3

Table 1: Times for make in a kernel tree, average of 3 runs.

Context Switching, no state, microseconds. Smaller is better. stddev in parentheses

System 2proc 4proc 8proc 16proc 32proc
IA64 2P 1.582(0.154) 1.650(0.037) 1.830(0.043) 1.976(0.024) 2.326(0.196)
IA64 2P +MSA 1.664(0.089) 1.688(0.026) 1.850(0.053) 1.992(0.040) 2.480(0.416)
IA64 UP 1.368(0.018) 1.362(0.050) 1.424(0.071) 1.560(0.078) 1.820(0.209)
IA64 UP +MSA 1.538(0.038) 1.524(0.021) 1.608(0.030) 1.704(0.033) 2.038(0.244)

Context Switching, 4k state, microseconds. Smaller is better.

System 2proc 4proc 8proc 16proc 32proc
IA64 2P
IA64 2P +MSA 1.664(0.089) 1.688(0.026) 1.850(0.053) 1.992(0.040) 2.480(0.416)

Table 2: LMBench2 selected results

6.2 Tracking User and System time

The code we’ve written tracks all ONCPU time in a
single timer. An obviously desirable enhancement
would be to account separately for the time spent
in running user code and the time in system calls.

6.3 New states

With the infrastructure as described in place,
adding new (sleep) states is very easy and
cheap. The technique is to define the state
in ‘include/linux/msa.h’ then add a call
to ‘msa_next_state()’ just before going to
sleep (i.e., about the same place where at present
the task state is set to TASK_INTERRUPTIBLE
or TASK_UNINTERRUPTIBLE.

Interesting states to track might include:

• Sleeping on Futex.

• Waiting for a page after a page fault

• Waiting in poll(2) or select(2).

7 Code availability

The code is available as a patch against the
Linux kernel from the Gelato down-loads page,
http://www.gelato.unsw.edu.au/patches

References

[McV] Larry McVoy. LMBench2.
http://lmbench.bkbits.net/LMbench2.

6


