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Overview

• Gelato@UNSW Virtual Memory WIP

• Focus: Removing limitations in two key areas

1. Limited choice of Page Size

– Transparent Superpages (Ian)

2. Single Page Table Format

– Abstract the Page Table Interface (Paul)

– Guarded Page Table (Adam)
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Large Pages

• Problem: Want to use larger pages (TLB pressure, I/O

performance)

– Itanium (etc) provides more than one page size (12 for

I2)

– How can we make them available? Desiderata:

∗ Minimise (zero?) API/ABI changes

∗ Maximise number of sizes
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Current State

• Extensive literature review undertaken

http://www.gelato.unsw.edu.au/˜ianw/litreview

• Issues identified, research directions being planned

peterc@gelato.unsw.edu.au c© Gelato@UNSW 5

© Cyrille CARRY

Novel Page Tables Oct 2006

Key issues

1. Which way to grow?

• Promotion: start small and get big

• Demotion: start big and get small

2. big pages need big contiguous memory, small pages

fragment memory.

3. Many apps want huge pages, many apps don’t. Can

we give everyone what they want?
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When should we promote?
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Romer (95), Fang (01) — need cheap promotion for success
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The ski rental problem is an easy-to-explain analogue of some of the

issues with promotion.

If you go to a ski resort to learn to ski, then you have a choice to buy or

hire your skis. Say buying the skis costs as much as ten days hire. Then

if you buy the skis at the start, then ski for twenty days you’re ahead. If

you hedge your bets (maybe you won’t like skiing?) and hire for a few

days, then buy, you’re still ahead compared with hiring for the full twenty

days. If on the other hand you buy, then break a leg, then you’ve wasted

your money.

It can be shown that you have to buy before you’ve spent the cost of the

skis in hire charges to get the least worse case.

This is about the same as comparing the cost of promotion with the

costs of continuing with small pages. Unless the cost of promotion is

really small, it’s not worth doing, becaue you don’t know how far ahead

the superpage will be used.



Key point with Romer’s work was that he had a very high overhead for

promotion; this may not be the case on all architectures. But even so,

Fang et al. went and re-visited Romer’s work, and still found that it

was extremely difficult to regain the overheads from complex promotion

decisions. In fact, one particularly pertinent point they raise is that a

very low IPC (instructions per cycle) TLB miss handler can have a very

large effect on overall performance of a high IPC application; taking the

trap essentially flushes all the pipelines, and then you start feeding in a

very sequential instruction stream from the TLB miss handler.

The key point is that we can’t be doing too much at TLB miss time or

even with superpages we won’t reclaim the overheads.
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Where do we promote to?

• Large pages need contiguous memory.

• Buddy system reduces fragmentation
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Briefly, the problem here is

• fragmentation removes contiguous memory, so we use a buddy

allocator to reduce fragmentation.

• buddy allocators pack everything together, leaving no room to

grow.

• if we want to promote, we obviously need room to grow. a logical

idea is to “reserve” some space for us to grow into.

• but how much do we reserve?

• and eventually, we’re going to have filled up memory with large

reservations, how do we get them back for the common case of

smaller allocations? the second figure shows this, and is based

on the Rice work – thick boxes are reservations, but the system

has a request for 16KiB of memory. Where do we get it? We

need to keep track of all the reservations, and how much free

space each one has. We can then make a decision about what

to break up.

• reservations start to interfere with the page cache, which ex-

pects to be able to grab pages when they are not in use. but if

that page is reserved ...
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Managing wide range of page sizes

• The more page sizes, the more complexity in managing

reservations.

• Algorithms must scale with number of page sizes

• Limit page size choices – removing choice can hit some

apps badly

• Non-largest sweet spots
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The point of the first figure is not to be explained in depth, but to make

the point that more page sizes means a deeper tree and more complex-

ity. To be fair to Navarro, the point should be made that he came up with

an alternative scheme, but it relies on a VM splay-tree of ordered pages

which Linux by default doesn’t provide.

The solutions are not straight forward. You can simply artificially limit

the number of page sizes an application can choose from, but because

some apps take big hits without the largest page size this might be a

bad idea. Some apps have a sweet spot that is not the largest page

size so we don’t want to take that away from them. Navarro did come

up with some conclusions about page sizes, but we can agree more is

better.
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Conclusions

• Concentrate on demotion rather than promotion.

• Allocate the largest possible superpages for a mapping

(Shimizu)
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Higher VA

• Demote when required (mem pressure, protection)
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Research targets

• Investigate trade-offs with hardware walkers

– Short-format can not insert arbitrary large pages

– Long-format has cache implications

– Investigate possibility of SF with only software loaded

large pages.

• PTE replication – can we shortcut through page table?
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This is my current thinking for research targets. I think these questions

are currently un-answered by the literature.

• of course we need something to experiment with

• both the long and the short format have different implications for

large page support. The short format can’t load an arbitrary su-

perpage, but if we were to keep all superpage entries as invalid

in the page table we end up with a situation of essentially a soft-

ware loaded TLB for superpages. I think it would be interesting

to see just how bad this actually is; especially since hardware

walkers for multiple page sizes aren’t really around (the long for-

mat VHPT has space for page size in the PTE, but the hash

function is based on a fixed page size).

• keeping parts of the page table invalid to the hardware walker

but valid to the operating system also opens up some other op-

portunities, such as “short-cuts” where we check the value of the

PMD which may be marked as a superpage PMD, etc. Previous

experimentation has tried this (Winwood) but we are of the opin-

ion it creates a lot of overheads. This is overlap area with the

GPT, as it wants to complicate the page table walker too. Ken

Chen has also maybe looked at this, but afaik there is nothing

published on it.
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Page Table Interface

• Open-coded accesses to page tables

– Advantages

∗ Simple

∗ Fast for chosen implementation

∗ Flexible within the implementation

– Disadvantages

∗ Replicated code

∗ Ties OS to an implementation

∗ Ties OS to a primary architecture

∗ Conceptually ugly
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• The Linux kernel accesses the page table implementation di-

rectly. This is a very practical engineering approach that has

served Linux very well for smaller address spaces (up to 32 bits).

Clever use of macros (see pgtable.h) has seen the implementa-

tion adapt to different architectures seamlessly. Keeping it sim-

ple has reduced the likelihood of bugs and races. Direct access

has eliminated the cost of accessing the page tables through

an interface. It has also proved to be enormously flexible within

the implementation, with each iteration being tailored for each

individual need.

• With the move into a sparsely occupied 64 bit address space,

Linux may have outgrown the current implementation. Unfortu-

nately the approach described above has served to tie the OS



to the MLPT and has served to entrench the x86 since the page

table is hardware walked.

• Changing the page table implementation can be achieved by

accessing the page table through a well defined and simple in-

terface. A clean interface would create, destroy, build, lookup

and iterate.
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The Linux Page Table Interface

• Linux kernel code assumes a 2,3,4 level hierarchical page

table (MLPT)

• It could be abstracted from the PT implementation

• This work: Modify kernel to be accessed by defined

interface ONLY

• Page table implementations implement the page table API

• Page tables could be swappable on boot, or maybe in the

future, per process depending on workload

peterc@gelato.unsw.edu.au c© Gelato@UNSW 13



© Cyrille CARRY

Novel Page Tables Oct 2006

VFS

LAYERLAYER
BLOCK

MEMORY

PHYSICAL

LAYER
VM

PMD PTE

PAGE TABLE API

CORE

KERNEL

LINUX KERNEL

PGD

PAGE TABLE ABSTRACTION LAYER

PAGE TABLE API

3/4 LEVEL PAGE TABLE

ALTERNATE PAGE TABLE

peterc@gelato.unsw.edu.au c© Gelato@UNSW 14

• Linux assumes a multi level hierarchical page table (MLPT). To

change the page table implementation we firstly abstracted the

page table implementation from the core kernel code. Secondly,

we defined a conceptually clean interface and modified the ker-

nel to access the page tables only through this interface.

• The kernel should access the page table through this interface

(think coding by contract). Page table implementors then imple-

ment the page table API e.g.,: GPT or MLPT. The immediate

goal is to chose a page table implementation at boot time, but a

longer term goal would be for processes to have different page

tables depending on workload.
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Our Page Table Interface

• PTI has arch independent and dependent components

• Most arches will not change page table. For these, the PTI

is cost only.

• For arches that change implementation (IA64), PTI cost

offset by:

– Seamless Superpages maybe

– Page Table Sharing perhaps

– Virtualisation opportunities in the future
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Progress Achieved

• Abstracted the page table for 2.6.17.1

• Measured the cost of the PTI

– Benchmarked with and without PTI.

– PTI costs around 4% on fork, gives 14% speedup on

page fault; /bin/sh speeds up slightly.

• Experimenting with alternate pagetable implementations

– Guarded Page Table (GPT), running rough in 2.6.17.1
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• We have abstracted the page table for 2.6.17.2 and the mea-

sured the cost of the PTI. The cost of the PTI is summarised

below:

1. Fork

2. Exec

3. Minor page fault

• We have a page table running rough (untuned) under the PTI for

2.6.17.2.
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Problems and Conclusion

• PTI hard to maintain internally

– Touches many functions across many files

– Ideally requires upstream acceptance

– More complex: new bugs and evil races??

• Excessive tailoring of iterations hampering simplicity

• Lack of community interest

– PTI may be used to enhance current implementation for

upstream acceptance
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• The PTI has proved a heavy burden to maintain internally for

several reasons

1. The page table interface touches many functions across

many files which are constantly evolving.

2. The kernel is increasingly being tied to the MLPT with

more and more iterations being tailored to individual needs

as the kernel evolves. At the very least, this is killing the

prospect of a simple elegant interface. (They are exer-

cising the flexibility within the implementation alluded to

earlier).

• Most developers prefer the simple direct approach as workloads

that will benefit from a sparsely occupied 64 bit address space

are still in the future. When we are able to demonstrate a new

implementation benefiting important workloads we hope to gain

community interest. We can also try to use the PTI’s flexibility

to study page tables and find ways to enhance the current page

table implementation.
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A Guarded Page Table (GPT) for Linux

• First attempt at using PTI for an alternative PT - Successful.

• GPT designed to support large & sparse address spaces.

• Combining path-/level-compression:

– Aims to reduce number of PT nodes & lookup cost.

– Extra guard & level size fields → Larger nodes?

• Limited applicability, only if Linux PT not hardware walked.

– Requires long format VHPT for IA64 - Patch in limbo.
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What is a GPT? It’s a generalised multi-level page table that supports

both path-compression (think Patricia tree) through the use of guards

fields in nodes, and level compression through the use of a size field for

internal levels.

Path-compression collapses unary paths in the tree into a single pointer,

while level-compression collapses full sub-trees into a single level.

The potential advantage of the GPT is reducing the number of nodes

in the tree. The tradeoff, though, is that the extra guard and level size

fields potentially increase the size of the node which can negate the

gains made through the reduction of the number of nodes.

Besides having tried out a different page table, the GPT has the po-

tential to save memory and reduce lookup cost. However, it is only

applicable to architectures where the Linux page table is NOT walked

by hardware (IA64, PowerPC, MIPS, etc). For IA64 the LVHPT patchset



is required which is currently not finding uptake by the community.
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Experience

• Code based on an independently developed GPT prototype.

– Supports superpages & variable level sizes - Unused!

• Lessons learnt:

1. Node size must to be reduced to a single word!

– Remove level size field - Unused (currently).

– Remove guards field from leaves - Not required.

– Restrict guards fields size - Hard to do!

2. Simplify code - Superpages support complex & unused.
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The Linux GPT was based on a GPT prototype being independently de-

veloped with support for superpages, full sized guards at both internal

levels and leaves, and support for mixed level sizes and a framework for

supporting level-compression in the future. Using the PTI proved fairly

simple (once the interface became more settled), main issues have

been with adapting the existing GPT code to the PTI and completing

the GPT code. The only issue with PTI is that when to lock is generally

unclear particularly in the iterators. This needs to be documented in the

PTI.

Although the GPT supports superpages, they are unused as Linux does

not currently use superpages. Similarly, for now, fixed page-size levels

are used so as to provide a baseline comparison with the standard Linux

page table by keeping the memory allocation the same as the standard

Linux page table and removing the overheads of level-compression from

the comparison. Level-compression will aim to increase the level size

anyway.

The prototype uses two 64-bit words to encode nodes (cf a single word

used by Linux’s standard page table nodes). This introduces a number

of problems. Firstly, it increases the memory requirements and cache

footprint of the GPT, which potentially removes any memory gains achieved

via guarded levels being skipped. Secondly, it introduces concurrency

issues as multiword loads and stores are typically not atomic. As a

result node reads and writes must incur the overhead of making them

appear atomic, particularly as page table lookup does not use any page

table locking mechanisms.

An issue not mentioned in the slides is that we currently don’t have the

VHPT enabled. This mainly effects page-fault cost and has no effect on

the iterators, hence minimal impact on fork()/exec() costs.



When using 16KB pages, each level contains 2
1
0 entries mapping 10-

bits. Thus 5 levels cover 50 bits, the page offset supplying the remaining

14-bits. Compare this with Linux’s standard page table on IA64 which

requires 64KB pages and the full 4 levels to map the same. Unlike the

standard page table, the GPT adapts during runtime to address space

usage — it doesn’t require compile time configuration of table depth.

This should attract distribution providers who like to go with the single

kernel image method of distribution.

Experience playing with the GPT has been that during startup, applica-

tions typically lookup paths only 2–3 levels deep — shorter then the 3

or 4 levels of the standard page table on IA64.

Leaves are never guarded. This is expected as the level sizes are large

(1024 entries) and we would expect dense clumps of PTEs.

The main observation has been the cost of the actions which use iter-

ators heavily such as fork(), exec() and mmap(). The performance of

these as seen in LMbench has been up to twice as slow as standard

Linux. These costs almost undoubtedly are dominated by the increase

in node size for the GPT blowing out the cache footprint. Regardless of

anything else, the PTE nodes of which ’n’ will be visited during iteration

are twice the size.

Additional problems will result from the currently complexity of the GPT

code due to support for superpages (through replication) and the vari-

able level sizes. The iterators themselves may also have design over-

heads, for example, the copy and move iterators still re-traverse the tree

for the target PTE range though this iterator effects are limited to fork().

So what have we learnt from these observations? Firstly, it is critical to

reduce the node size back down to a single word. We don’t use variable

sized levels currently so ditch the field. Guards on leaves (PTEs) are



used to ditch them. The last step that remains is to reduce the guard

field’s size, but this is hard. We don’t have many bits to spare and the

guard requires a size of up to 50 bits for the value and then another

field to say how long it is! This remains the main challenge to reducing

the node size. The second lesson is to embrace KISS (keep it sim-

ple stupid) and remove support for unused features like superpages,

level-compression, etc., as these add a lot of complexity increasing the

chance of bugs and potentially impacting performance. As a side note

reducing the node size to a single word simplifies the code for accessing

nodes as node loads/stores are then atomic.
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Future direction

• Develop tools to better understand applications PT structure.

• Cherry pick GPT ideas & build hybrids with standard PT.

1. Add guards to PUD/PMD in standard PT, no PTI.

2. GPT with PTE arrays as leaves - Requires PTI.

• Incremental road map from standard PT to full GPT.

• More digestible for community uptake.
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The first thing are looking into is developing better tools to understand

the structure of both Linux’s standard page table and the GPT for vari-

ous applications of interest. The aim of this is to ascertain where exactly

gains can be made through the use of GPT mechanisms.

The next step is to cherry pick ideas from our experience with the GPT

under Linux and develop a road map from the standard Linux page table

to potentially a general GPT implementation in the future. The motiva-

tions behind this are that it provides a more digestible progression to

facilitate uptake into the mainstream kernel, and that it allows a number

of features to be preserved during development.
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Future direction - Cont.

• Hybrid focus on keeping PT nodes size a single word!

• Advantages of both hybrid approaches over full GPT:

– Fine grained locking on PTE arrays can be used.

– Use the short format VHPT on IA64.

– Can be combined with shared page table patch set.

• If hybrids beneficial, level-compression can be revisited.
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The focus of the hybrid approach is to keep the page table node size

down to a single word and benefits can be achieved.

Simply adding guards to the PUD/PMD levels of the standard page table

is the least intrusive approach, as the PTI isn’t required. However, it also

has the least potential gains, allowing only the middle two levels of the

page table to be skipped.

A GPT with PTE arrays as leaves provides more room for potential gains

and for experimentation. Using PTE arrays as leaves simplifies the GPT

code, while at the same time providing the benefits mentioned below. It

is however more intrusive, requiring the PTI.

Benefits of both hybrid stages are they they preserve the following fea-

tures:

• Maintaining the fine-grained locking of PTE arrays (GPT uses

global lock per PT) → Better scalability.

• Both using IA64’s short format VHPT, rather then being depen-

dent on yet another set of patches → Simpler update.

• Both can be combined with the shared page table patch set from

Dave McCracken → Further reduction of PT memory.

If both of these stages prove to be beneficial the next step would be to

revisit level-compression once more.
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Summary

Gelato@UNSW’s Virtual Memory research focuses on

• Flexibility,

• Scalability

• and Performance
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