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Normally, user space programs run along happily without caring much
about the state of the hardware supporting their operation. If they want
the hardware to do something (like give them some more memory, or
some data from a file) they invoke the kernel by means of a system call.
The kernel runs with a higher privilege level, and controls access to the
hardware — it also contains all the code that understands how to drive
devices.

Sometimes, however, you want to run more than one instance of an
entire operating system. Typical reasons are:

• ‘Virtual Hosting’, where multiple complete images run simulta-
neously on the same hardware. Providing the isolation between
the virtual machines is sufficiently complete, sharing resources
like this can be more cost effective (in sysadmin time, aircondi-
tioning, etc) than providing a separate machine for each use.



• For security. For example on an embedded system such as a
mobile phone, one might wish to run the code that controls the
radio transmitter (and is highly regulated by government) in a
completely isolated virtual machine.

• For experimentation/development of new kernel features — it’s
easier to do this when not on the bare metal (reboot, for example
is a lot faster when the BIOS doesn’t have to check everything
under the sun).

• To allow more predictable real time performance (e.g., the ADEOS
approach)

• etc., etc.
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One approach used is to deprivilege the operating system kernel.
Then when the kernel tries to do something special (like talk to the
hardware), its attempt is trapped into a Virtual Machine Monitor (VMM),
supervisor or Hypervisor. The VMM pretends to be a machine that
looks more-or-less like the real one, while controlling page table, direct
device and privileged system control register accesses.

A bit of terminology: the operating system running on the virtual
machine is often termed a guest ; the VMM is sometimes termed a host.
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There are two kinds of virtual machine monitors (VMM). A Type
I VMM controls the hardware directly (The nomenclature was origi-
nally introduced by [Goldberg, 1973]). Guest operating systems see
a virtualised version of the hardware. Xen [Barham et al., 2003] and
vNUMA [Chapman and Heiser, 2005] are examples of Type I VMMs.

A Type II, or hosted VMM runs as an application on a normal op-
erating system. Examples are UML [Dike, 2000], VMware Worksta-
tion [Sugerman et al., 2001] and Gelato@UNSW’s own LinuxOnLinux [Chubb, 2005

Both a type I and a type II VMM have to virtualise not only the proces-
sor(s), but also some kind of I/O system. Most commonly, devices are
emulated at ‘standard’ I/O addresses — for example, the free VMware
workstation emulates a standard IDE controller based on the Intel PIIX4
chipset, a VGA controller, and a LANCE ethernet. The alternative is to
paravirtualise disk and console acess, as vNUMA does using the SKI

simulator Supervisor System Calls to emulate a SCSI disk and ethernet
controller.
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The Core Virtualisation Problem

✔ Performing a privileged operation traps

✘ Reading system state doesn’t always trap

✘ System and User state not cleanly separated

✘ Trapping is s l o w.
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If one runs an operating system kernel (e.g., Linux) in deprivileged
mode, then attempts to access device registers, or to change interrupt
collection state, etc., (all privileged operations) will trap to the VMM.

The VMM then emulates the operation in the virtual processor, and
resumes the kernel.

Unfortunately, not all operations that one would like to trap do so; and
some instructions don’t trap, but behave differently in different privilege
levels.

Moreover, trapping to the VMM can be very expensive — certainly
much more expensive than the operation performed. In a type-II VMM,
trapping usually involves a signal and a context switch; with Linux as
host, which does not (yet) have the ability to perform a directed context
switch, if the machine is at all busy context switches can add extra la-
tency (a trap merely makes the VMM runnable, which puts it onto the



run queue to contend with all other processes for processor time).
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Architecture Extensions for Virtualisation

• Vanderpool extensions:

– add extra privilege level

– All changes to privileged state trap
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Intel in recent processors introduced specific support for virtualisa-
tion, called variously the silvervale or vanderpool extensions. These
extensions add an additional privilege level; if the extension is enabled,
operations that need to trap for effective virtualisation do trap — to code
running at the most privileged level.

This solves the system state mixed with non-system state problem,
at least for type-I hypervisors (and with some kernel support, for type-II
VMMs as well; this support has very recently come into Linux with the
CONFIG KVM option.)

© Cyrille CARRY Afterburning Jan 2007

Virtualising Itanium

• Easier than IA32

• but non-trivial

• Non-virtualisable elements include:

– cover modifies IFS register when IC off.

– thash and ttag reveal real, not virtualised pagetable

details
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To virtualise an architecture requires

1. Clean separation between user and system state

2. All instructions that modify system state need to be privileged

3. All system state has to be visible

Itanium is not fully virtualisable, although maybe the Silvervale ex-
tensions available in Montecito will fix this.

At present, the cover instruction (which creates a new empty stack
frame) is not privileged; nor does it need to be. However, if it is executed
with interrupt collection off, it as a side effect saves information into
the interruption function state (IFS) register. The side effect has to be

emulated by the virtual machine, but as the instruction does not trap the
VMM doesn’t know it needs to.

Likewise, the instructions for calculating the hash and tag of a vir-
tual address in the VHPT are not privileged. But they return not the
virtualised address and tag, but the one of the underlying real machine.
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Virtualisation Techniques

• Full virtualisation

• Paravirtualisation

• hybrid techniques
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Because of the problem of non-trapping instructions, almost every
VMM modifies its guest, replacing sensitive non-trapping instructions
with sequences that trap.

One easy technique is to replace all non-trapping instructions with
trapping instructions, often illegal operations. This solves the non-clean
separation problem, but not the performance.

Another technique is to replace all privileged operations in the guest
operating system with instructions that alter the state in a memory re-
gion shared between VMM and guest — the virtual CPU state. Priv-
ileged operations and attempts to access non-accesible memory still
trap, but simple operations (like changing an interrupt mask) are almost
free.

In addition, such a paravirtualised operating system can have spe-
cial VMM system calls added to it, to allow the hypervisor to perform



complex actions in one chunk rather than having to infer a complex
action from the sequence of privileged operations performed. For ex-
ample, context switching in the guest operating system on Itanium sets
four region registers (RRs), each of which could cause a trap and re-
turn; it’d be much simpler to tell the VMM that the context is about to
change and to provide all the RRs at once.
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Hybrid Virtualisation Techniques

• optimised paravirtualisation

– Fully virtualise but...

– paravirtualise non-trapping instructions

– then paravirtualise performance hotspots

• Binary rewriting e.g., VMware

– replace non-trapping instructions with trapping ones

– Maybe paravirtualise for performance as well

• Our approach ...
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Xen on Itanium currently uses a technique called optimised paravir-
tualisation. Most of the kernel is unchanged, except for the bits neces-
sary for correctness. In addition, after profiling and performance mea-
surement, other code paths are paravirtualised to remove bottlenecks.
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Paravirtualising Itanium

• Provide (overridable) access functions for privileged

operations.

✔ (already done to support icc)

✘ Assembly language files not done

• Replace key routines (e.g., to set up page tables) with calls

to hypervisor.
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To paravirtualise the system, one starts by finding all the privileged
and should-be-privileged instructions, and replacing them with calls to
the hypervisor. IA64 Linux already wraps these instructions in macros
so that they can be used from C code. Finding all the instances in the
assembly level code is more interesting. This all starts to feel like a
lot of work, especially if the changes have to be pushed upstream to a
community that, until recently, didn’t much care about virtualisation.

For full paravirtualisation, one would make more extensive changes
— adding what are essentially hypervisor calls to tell the VMM about
state changes that it is (or ought to be) interested in — for example,
changing PTEs.
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Why paravirtualise by hand?
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The assembler already has to be able to find all the instructions we’re
interested in. Why not just it to find and fix the instructions? And then
add performance optimisations later. This idea came from the University
of Karlsruhe, see [LeVasseur et al., 2005], who did the work for IA-32;
we at UNSW worked on IA-64 with slightly different focus.
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Previrtualisation

• Replace as wth a perl script

• Script rewrites instructions, then invokes real /usr/bin/as

• Script saves addresses in special ELF section
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Rather than changing the assembler itself (and thus having to track
binutils development) we chose to write a little perl script that runs in-
stead of the assembler, and then invokes the assembler on a modified
version of the input file.

The modifications include rewriting instructions, and creating a spe-
cial ELF notes section containing a table of addresses of rewritten in-
structions.
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Instruction Rewriting

Original Rewritten Loaded

rsm.i psr.ic rsm.i psr.ic mov r5=__afterburn_cpu+CPU_PSR_OFFSET

nop mov.l r6=[r5]

nop dep r6=0,r6,13,1

nop mov [r5]=r6
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The three columns in the slide show the original, the version as
rewritten by the assembler, and the version as rewritten by the loader.
More complex instructions require more work,of course, and may be
implemented by a hypervisor system call.

The nice thing is that the rewritten code will still run on the bare
hardware.
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The wedge
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Having rewritten the code, there’s still need to interface with a variety
of hypervisors. This is done by means of a wedge, a piece of code that
can be called by the rewritten code to interface into the hypervisor.

A different wedge is needed for each combination of operating sys-
tem and hypervisor. Wedges are not particularly large — the x86 XEN
wedge is around 5000 LOC (including comments and whitespace).

In addition, it’s possible to increase performance by hooking particu-
lar operations, in a way similar to manual paravirtualisation. For exam-
ple, telling the hypervisor about pte changes directly, instead of allowing
it to infer them.

The result is pretty good.
Using the XEN hypervisor on Linux IA64, the automatically paravir-

tualised code is very close to the manually paravirtualised code, with a
fraction of the engineering effort, and almost no changes to the source

tree. This work was carried out by Matthew Chapman.
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2p/0k Pipe AF TCP File Mmap

ctxsw UNIX reread reread

(usec) (usec) (usec) (usec) (MB/s) (MB/s)

Native 1.270 4.197 7.89 13.7 2273.5 889.1

Manual 2.720 6.68 11.6 18.8 2200 879

Auto 2.530 6.84 11.9 17.3 2200 879
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In this slide, ‘Native’ is the standard Linux kernel; ‘Manual’ is the
manually optimally-paravirtualised Xen guest, and Auto is the guest par-
avirtualised by afterburning.
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Type II VMMs on Linux

• UML on IA32 — Heavily paravirtualised

• On Itanium:

– Rearrange memory map to avoid host

– per-CPU data area moves to region 0

– Reuse device etc., infrastructure for SKI Simulator

• System calls via break a problem
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You can use Linux itself, together with a bit of extra software, as a
virtual machine monitor. On Itanium, this requires significant changes
to the base kernel, as the host kernel steals regions 5, 6 or 7, making
them unavailable to any guests. In addition, hugeTLBFS cannot be
configured in either host or guest, as that takes away region 4, and
Linux needs at least two regions for the OS and the hypervisor, leaving
only two for the guest’s user-level programs.
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In the guest, the per-cpu region, the kernel’s identity-mapped region,
the VMM text and data, and a file representing ‘physical’ memory are all
mapped into region zero. The kernel’s virtual addresses are in region
four, because there are several places in Linux where it is assumed that
all kernel addresses are above all user-space addresses. While this
reduces the space available for user processes, most processes (other
than those running in IA-32 emulation mode or that use hugeTLBfs)
only use regions one through three anyway.
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The main performance issue with using Linux as the VMM involves
system calls. In Itanium Linux, there are two ways to invoke a system
call. The old way is to use a break instruction, which traps to the kernel;
the new way is to branch to an entry point in a shared gate page.

If a program running under a guest operating system does a system
call via break, then the host kernel intercepts it and tries to implement
it as a system call. But what we want is for the guest OS to run it.

The current solution is for the VMM to set up a separate process, that
uses ptrace on the VMM plus guest OS process, and intercepts all sys-
tem calls, redirecting them to the guest OS if and only if they were not
executed from the VMM itself. This leads to a major performance loss,
as every address space switch causes many VMM system calls, and
every signal delivery not only stops the machine and transfers control
to the ptracer, but causes two more stops in sys rt sigreturn().
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Hack the host

• Restrict ptrace to ranges of addresses

• Add PT ONESHOT flag

• Add PT NOSIGSTOP flag

• Add way to set psr.dfh (necessary for correctness)
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To avoid these superfluous context switches, I added a heap of hacks
to the host operating system. The first one I tried was to restrict ptrace’s
stops to only the addresses we’re interested in. Unfortunately when
a process returns from a signal handler it does so via a system call,
sys sig rt return() which essentially does a setcontext()
— and ptrace will stop the traced process for each signal return. So
I added PT ONESHOT, which disables a single ptrace, and arranged
for it to be set in the sys rt sigreturn path. The large number of
signals was still slowing things down, so the next step was to turn off
ptrace stopping with signals.

The remaining hack was to allow the virtual machine monitor to turn
of the DFH bit in the PSR if it was the current owner of the FPU, so that
the floating point state could be saved/restored appropriately.

The hacks reduce the overhead in the trace thread from around 50%



to around 5%. But the resulting virtual machine still feels slow and
sluggish.

To deliver a SIGILL still takes three context switches. And there
are a lot of them. Paravirtualisation by afterburning seems the ideal so-
lution to remove the extra context switch overhead. And maybe we can
remove some other overheads at the same time, by inlining common
operations.
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Afterburning

• For now, link wedge with OS

• Hacks to guest prevent use on bare metal or simulator

• Development harder than it might be

– At least until the Afterburner and Wedge are bug-free

• 5 days part time (4 h/day) work!!!!
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Some Linux-on-Linux results

2p/0k Pipe AF TCP File Mmap

ctxsw UNIX reread reread

(usec) (usec) (usec) (usec) (MB/s) (MB/s)

L-o-L 252 490 859 540 1684 886

virt 1550 3071 5100 4060 185 887

Native 1.270 4.197 7.89 13.7 2273.5 889.1

Manual/Xen 2.720 6.68 11.6 18.8 2200 879

Auto/Xen 2.530 6.84 11.9 17.3 2200 879
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As can be seen, changing to afterburning cuts costs dramatically
compared with full virtualisation; but a type-I hypervisor (or the bare
metal) is still much faster. ‘virt’ here is a fully virtualised system that
merely replaces non-trapping sensitive instructions with trapping instruc-
tions; ‘L-o-L’ is the afterburnt system with the ptrace hacks in place.
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• Better than before —But still too slow!

• Main overheads are system call, I/O and context switch time.
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There’s still room for improvement.
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More Improvements

• Fast system calls

– 4 fewer context switches per syscall — ptracer mostly

unused

– Except for clone, fork etc

– And legacy statically linked programmes

• VMM improvements

– Eager mapping of address spaces cuts 30% off context

switch time

• Direct access to hardware (using user driver framework)
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The obvious steps are first to get fast system calls working. A fast
system call is entered by branching to the gate page, and never involves
the host kernel at all. So the ptracer overhead (or more importantly the
context switches involved in switching to and from the ptracer) is not
incurred.
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With faster system calls, context switch overhead becomes the main
problem.
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‘physical’

memory

virtual frames mapped from ‘physical’

region
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The VMM has an area of memory shared between virtual CPUs to
act as its physical memory. Pageframes from the ‘physical’ memory are
mapped into the virtual address space of the guest under control of the
guest OS.

Every time the address space changes, the VMM has to unmap all
the mappings for the current address space. Originally it was lazy, and
waited for the guest to fault in new mappings; changing to keep a few
contexts around and eagerly map them shaved 30% off the context
switch time.
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Xen allows device drivers in dom0 to access real hardware, and per-
form I/O on behalf of other guests on the system. Can we do the same
for a Type-II virtual machine monitor?
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• Use User-Level Driver framework developed at UNSW

• Device Discovery, IO-space access, Interrupts, DMA
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We have been working on deprivileged device drivers (see [Leslie et al., 2005
and [Chubb, 2004]) for some time. The framework developed here al-
lows suitably privileged processes to set up and tear down mappings
for DMA, and to receive interrupts.

It should be possible to integrate this into the VMM, and respond to
requests by the guest kernel to do, say, pci dma map sg() with an
appropriate call into the user level driver framework.

Myrto Zehnder did this in early ’06, leading to a heavily hacked sys-
tem where the user-level guest kernel could access an IDE PCI con-
troller as if it were on the bare metal. Unfortunately the work she did
was fairly restricted to that one device.

Remaining to do are implementing a virtual PCI bus, providing enough
ACPI tables to discover it, and generalising the infrastructure to allow
access to any device that is not already claimed by the host.
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Future Work

• Gate page for VMM calls

– Reduce cost of many ops currently using break

• Finish device driver work
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The remaining pieces of work to improve usability and performance,
are to remove the use of break for hypervisor calls, and use a gate
page instead. I do not expect that top lead to a massive performance
enhancement, as system time in the guest is already fairly low.

Also, I’m intending to work on removing the need for a ptracer pro-
cess, which will allow gdb to be used directly on the guest (as well as
improving performance); and on the ability to multiplex address spaces
for a single process in the host, thus speeding context switch time im-
mensely.
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