
Linux Scalability — from the micro to the HUGE

Peter Chubb and Darren Williams

National ICT Australia
and

Gelato Project, School of Computer Science and Engineering
University of NSW, Sydney 2052, Australia

peterc,dsw@gelato.unsw.edu.au

April, 2005

Abstract

Linux is possibly the most scalable operating sys-
tem ever. From the Linux Watch to the 1024 and
more processor ALTIX machines from SGI; one ker-
nel runs on them all.

The kinds of challenges that are presented by the very
small are in some way related to the challenges of
the very large, but for different reasons. For exam-
ple, memory footprint is very important for both: on
small systems you just don’t have much memory; on
large systems, caching effects dominate performance
— if you can keep cache lines local, you win.

Likewise, power management is extremely important
for both ends of the scale. At the low end, to max-
imise battery life, at the high end, to minimise air-
conditioning costs.

However, the mechanisms available, and the specific
goals differ.

I shall attempt to explain what scalability is as far
as an operating system kernel is concerned, explain
where Linux has come from and is now, and then give
a possible vision for the future, as to how Linux can
maintain and enhance its already good scalability. I’ll
also present benchmarks on a variety of machines to
show where the problems are now.

1 Introduction

Linux runs from essentially the same source
code base on a very wide variety of machines,
from Ricoh’s RDC-i700 digital camera [OV04],
and the Linux watch [GK02], to the NASA
‘Thunder’ system of 10240 64-bit Itanium pro-
cessors and close to a terabyte of real memory.

In this sense one could say that it is ‘scalable’
— the operating system runs on all of these ma-
chines, presenting essentially the same program-
ming API to user programs on all of them.

This kind of scalability is provided by phase
changes: the binary that runs on the watch is dif-
ferent from the binary that runs on the supercom-
puter. Not only are the processors different, but
the Linux kernel is highly configurable, allow-
ing support for different features, or the use of
different algorithms, while providing the same
API.

However, core algorithms (like memory man-
agement and the processor scheduler), while
they are adjusted slightly for the two extremes
(both have to be aware of the NUMA topology
on high-end machines; the page table has fewer
levels on low end machines), are essentially the
same across all platforms.

2 What is scalability anyway?

A computer has some amount of resources — so
much memory at such and such a bandwidth, so
many processors, so much disc space etc., etc.

One can think of this as a set of orthogonal vec-
tors in N-space, where each axis is a different re-
source. A given machine configuration becomes
a point in that space. A simple way to visualise
this is the spiderweb diagram — see figure 1.
Each arm is a different resource; distance from
the centre is the amount of that resource avail-
able from the hardware. A particular machine
can be plotted as a line joining points on the arms

1

mailto:peterc@gelato.unsw.edu.au

RAM: pages

CPU Seconds/sec

Disc I/O bandwidth

Network Bandwidth

Memory Bandwidth

Machine

Figure 1: Scalability diagram, showing re-
sources available to a particular machine config-
uration

of the web.

Different workloads use different amounts of
these resources. If the operating system is per-
fectly scalable, then adding more resources will
lead to more resources being made available to
the workloads.

RAM: pages

CPU Seconds/sec

Disc I/O bandwidth

Network Bandwidth

Memory Bandwidth

Workload

Machine

Figure 2:

A workload’s resource needs can be plotted on a
spiderweb too: for example, the workload in fig-
ure 2 is limited by the memory bandwidth avail-
able; by spreading its memory across multiple
nodes in a NUMA machine it may speed up.

Assuming a scalable workload (one that uses all
available resources, so that it will speed up if
more resources are available), one can plot work
achieved against work presented. The expected
graph is in figure 3. As the available work in-
creases, the throughput increases until some re-
source is exhausted, whereupon attempts to do
more work are ineffectual. On a machine with
twice the resource (on the figure, number of pro-

Throughput

Applied load

1 processor

2 processors

3 processors

Figure 3: Ideal scalability: work achieved vs
work presented

cessors) the horizontal ‘resource exhausted’ part
of the graph will be twice as high if the operating
system and hardware is perfectly scalable.

In general, the lines shown as horizontal will
droop a bit, because of increased overheads in
handling the presented load. In extreme cases,
‘livelock’ — shown by the dotted lines — will
result. Livelock occurs where the extra time
taken to process and discard more presented
work takes away from the time given to perform
real work.

Unfortunately, real operating systems, work-
loads and hardware are not perfectly scalable.
Overheads and bottlenecks within the OS itself
usually mean that doubling a resource makes
less than twice that resource available to user
processes.

Our work has concentrated on scaling two re-
sources: processors and memory.

3 Scaling processors

Multiprocessors with small numbers of proces-
sors tend to be fully symmetric (SMP): each pro-
cessor has the same latency to memory as any
other processor. However, some processor pack-
ages have internal multithreading (SMT) — for
example, the Intel XEON — where a single pro-
cessor looks like two or more processors that
share cache.

When the number of processors becomes large,
manufacturers switch to a non-uniform memory
architecture (NUMA). Processors and memory
are distributed into several nodes; each node’s
processors can access both any memory on the
local node, and, at a penalty, memory on more
distant nodes.

2

Thus when scaling the number of processors
there are four different architectures to consider:

1. Single processor

2. SMT processor

3. SMP

4. NUMA

The single processor case is the simplest. There
is only one processor to schedule work onto; and
there is only one thing happening on a processor
at a time, so there is no need for fine-grain lock-
ing in the kernel.

The other cases all require locking. Moreover,
for good performance, the scheduler needs to be
aware of the underlying machine architecture.

For good performance in an SMT system, unre-
lated threads should be scheduled onto the same
processor — so that computational units unused
by one thread can be used by another. For
good performance in an SMP system, related
threads should be scheduled at the same time
on different processors. For good performance
on a NUMA system, related threads should be
scheduled on nearby processors, preferably in a
‘gang’.

Fortunately, many of the issues in rescheduling
a thread are the same for all cases: as a general
rule, a thread should be scheduled onto the same
processor it ran on last time. For SMT and SMP
systems this is because, if a thread ran recently
on a processor, it will still have data in the pro-
cessor’s cache. (On some architectures, such as
ARM, this will not be true, as those processors
have to flush their cache on every context switch;
such systems are normally uniprocessors).

The same is true, of course, for NUMA sys-
tems; but on a NUMA system it is even more
important that processes stay where they were
first put, and that processes be spread appropri-
ately around the system. Linux provides an in-
terface (libnuma.a) to allow manual place-
ment of processes and the memory used by pro-
cesses — the best placement is usually depen-
dent on the workload, and cannot easily be intu-
ited by the kernel.

4 Scaling Memory

Linux in one form or another runs on machines
with from less than ten megabytes of memory up
to machines with terabytes of real memory.

4.1 Memory Amount

On small machines, the amount of memory used
is vitally important. Small machines do not have
memory to waste. Techniques used to reduce
memory consumption include:

• omission of rarely-used features (for exam-
ple, there’s no point in including the PS/2
driver on an embedded machine without a
keyboard)

• packing data structures to remove padding
(for good performance where memory is
plentiful, data items are often aligned on
cache-line boundaries; for memory-short
systems, the alignment padding can be re-
moved)

• reducing the size of integers used to store
data (for example, using a 32-bit integer to
hold the size of a disc instead of a 64-bit
one).

• Scaling data structures by memory size.
For example, there is a utility function,
alloc large system hash() for al-
locating hash tables such as for the
dentry cache, which automatically scales
the size of the hash table to the size of
directly-addressable memory.

On large machines, it is acceptable to waste a
small amount of memory for improved perfor-
mance. The key to good performance on a mul-
tiprocessor is, on one hand, to eliminate unnec-
essary cache-line sharing, and on the other, to try
to fetch several items used together into cache at
once. Linux adds padding to data structures so
that they start on cache line boundaries, which
can lead to performance improvements, as can
packing closely related items into a single cache
line. The exception is the spin lock — moving a
spinlock into a separate cacheline from the data
it protects can lead to a major performance gain
when the lock is contended.

3

Data structure scaling is a separate issue: while
linear scaling works reasonably well for small
memory machines (less than say 16G of mem-
ory), on machines with more memory (and par-
ticularly NUMA machines) this can result in ta-
bles being far too large. Moreover, on a NUMA
machine, although the total amount of memory
may be in the terabytes, the amount on each node
is relatively small. The algorithm for allocating
memory at boot time is fairly simplistic, so in a
NUMA machine, memory in cell 0 can become
exhausted before any user programs even start
running.

4.2 Memory Placement

This is a general problem with NUMA: data
structure placement needs to be thought out care-
fully. Accessing a data structure in local mem-
ory has lower latency than if the data structure
is in another cell’s memory (of course, after the
cache line is fetched, subsequent accesses are
much cheaper).

Linux uses a strategy for memory placement
called ‘first touch’ — when a process first tries
to use a page of memory, the kernel tries to al-
locate it on the same node that the process is
running on. This, combined with a ‘balance-on-
exec’ strategy, works reasonably well for mixed
workloads of many small processes. It is also the
strategy assumed by many MPI programs (and
programmers!) — MPI programs often start by
allocating a large amount of memory, then split
into threads (which, it is hoped, will be spread
around the machine by the scheduler), then each
thread touches part of the large shared mapping
to ensure that it’s local to that thread.

There are, however, a number of problems with
‘first touch’:

• Linux caches pages read from disc. A com-
mon pattern for multithread processes is to
start by reading the data, then many threads
cooperate in working on that data. ‘First
touch’ means that all the data resides on the
node where the read happened; a large file
can easily take up more than the available
node-local memory (see [BBH+04] for de-
tails, and possible solutions).

• Although latency to remote nodes is higher
than latency to local memory, the total

bandwidth available by striping data struc-
tures across multiple nodes is far greater
than one node’s bandwidth. Hence, for
some access patterns it makes sense to
move data to remote nodes, and to use deep
prefetch to hide latency. This is particu-
larly true on Itanium, where the compiler
can easily issue speculative data load in-
structions to fetch data well ahead of where
it is used, hiding the additional latency.

• Heavily multithreaded workloads fork (or
create threads) many times; all the children
remain on the processor their parent was
on until other, idle, processors steal them.
Thus the memory they use all comes from
the first node.

The proposed solution to all these problems is to
make it possible to control memory and process
placement from user space. While this certainly
does solve the problem, it creates new ones: in
particular the programmer has to become aware
of the topology of the machine, and so it be-
comes harder to write portable code. In fact,
it’s common to have to experiment with differ-
ent placements to find out what works best.

In addition, the new libnuma API is Linux-
specific. This of course reduces portability.

4.3 Other Memory Issues

As available real memories continue to increase
in size, there will be new problems.

As a general rule, memory bandwidth is in-
creasing at around 27% per year, but latencies
are improving by only 7% per year [Pat04].
Larger memories in general have longer la-
tencies, because of higher capacitances on the
buses, and longer data lines. To try to hide la-
tency, manufacturers are increasing the sizes of
on-chip cache (the new Itaniums have 9M of L3
cache, Xeon-MP have 8MB), but this works only
for workloads with good locality-of-reference.
Streaming workloads such as particle physics
data capture or video processing do not benefit
very much from the larger caches alone; how-
ever, by prefetching data in the same way that
can be done in a NUMA system, latency can be
hidden.

Also, RAS (Reliability, Availability, Service-
ability) issues arise: in a machine with a petabyte

4

of real memory, several chips will probably be
broken at any given time.

5 The Power Issue

Much embedded computer equipment is de-
signed also to have low power consumption.
There are several reasons for this:

• If running on batteries, the lower the power
dissipation of the device, the longer the bat-
teries last.

• If placed remotely, one can multiplex a
small amount of power on data cables
(phantom power), and so save cabling
costs. To make this work, the peak current
drawn for the device must be kept low —
typically less than one or two hundred mil-
liamps.

• Equipment embedded into other machinery
may not be able to use fans or similar to
remove excess heat. So it is important not
to generate any.

What is less often recognised, is that efficient
power management is also important at the high
end. Every watt generated by a computer part
first has to be ducted away from the part, then
away from the room the machine is in. Thermal
management in a computer is a major part of the
engineering design effort, and air-conditioning a
major cost of running at the high end.

So far, the power management work in Linux
has been aimed primarily at laptop computers,
where battery life is the main consideration. And
the main area that works in 2.6 is processor fre-
quency scaling.

Interesting areas that could be addressed in fu-
ture include memory hotplug, where banks of
memory can be put offline and into a low-power
state; processor hotplug (the same, but for pro-
cessors), and PCI hotplug. The user space at
present assumes that if something’s plugged in,
it should be powered up and ready to use; but
this could be changed.

6 Scalability Results

Previous work (see [BBH+04]) has shown good
scalability for processor-intensive workloads on

SGI’s ALTIX platform, which is NUMA. When
we repeated the tests on a borrowed 16-way
ALTIX with a mixture of I/O and CPU-bound
workloads, scalability wasn’t so impressive. Un-
fortunately, access to the remote ALTIX ma-
chine was limited, so we could not run profiling
etc., to find the real problems.

6.1 The Benchmark machine

Fortunately, HP lent us access to a 16-way
Olympia. This machine is a 4-cell NUMA ma-
chine, each cell having 4 Itanium-2 processors,
and 8G memory. Unfortunately, one of the cells
died shortly after we started, so the results are
only up to 12-way.

The Olympia is interesting in that it can be con-
figured in one of two modes: memory can be
local to each cell (NUMA) or the memory on
each cell can be interleaved on a cache-line ba-
sis across all the cells, making it look like a pure
SMP machine.

6.2 AIM-7 results

We used the OSDL AIM7 benchmark to see
how throughput scaled with number of proces-
sors. This benchmark attempts to simulate a
large number of users doing different things: it
can be tuned to be either purely compute-bound,
purely I/O bound or mixed. In order to explore
scalability in the filesystems and I/O paths, while
not being bottlenecked on a single spindle (the
machine we had access to was not overly en-
dowed with high-performance disc), we created
a largeish (4G) ram disk, and then put different
filesystems on it.

The benchmark was modified slightly so that
we could plot throughput vs number of clients
(number of clients is proportional to the multi-
programming level), rather than allow the bench-
mark scripts to find a sweet spot and report just
that.

We ran two workloads: a CPU-intensive work-
load to stress the scheduler, and an I/O intensive
workload to stress the file systems. We used a
ram disk to avoid the problem of long disk I/O
latency masking multiprogramming issues.

The I/O intensive benchmark was run with
tmpfs, and xfs on a ram disk. Theoretically

5

tmpfs should perform the best of these, as it
avoids most of the the overheads involved in lay-
ing out data structures on a disc — tmpfs keeps
data in the page cache directly. Unfortunately,
bugs in XFS prevented our getting good results
— see below. We also tried ext3, but the machine
crashed at relatively low levels of multiprogram-
ming.

6.2.1 CPU scalability

As expected, a CPU-bound workload with al-
most no I/O scaled almost linearly with num-
ber of processors (see figure 4). As you can
see, the horizontal sections of the graph are reg-
ularly spaced, and the end point is a little far-
ther to the right for each increment in number
of processors. This benchmark was run with
the machine in SMP mode (memory from the 3
cells interleaved at cache-line granularity). The
8-way case is interesting — it falls off a lot
more rapidly than the other cases. However, we
haven’t yet had time to investigate this case, and
the maximum jobs per minute scales beautifully
— see figure 5 for a different representation of
the same data.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 2 4 6 8 10 12 14

Jo
bs

 P
er

 M
in

ut
e

Number of clients

1 way
2 way
4 way
5 way
7 way
8 way
9 way

11 way
12 way

Figure 4: OSDL AIM-7 results for varying
numbers of on-line processors on a 12-way
HP Olympia: jobs-per-minute against multipro-
gramming level

6.2.2 I/O scalability on tmpfs

The graph in figure 6 shows OSDL AIM-7 re-
sults for an I/O-intensive load, using tmpfs as
the underlying filesystem. The graph shows very
poor scalability. Even at very low levels of mul-
tiprogramming, the graph is curved, showing

Figure 5: OSDL AIM-7 results for varying
numbers of on-line processors on a 12-way HP
Olympia: peak performance against number of
processors

that there is a bottleneck that is independent of
the benchmark. And by the time one gets to 10
to 12 processors, the individual curves overlap,
showing negative scalability.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200 250

Jo
bs

 P
er

 M
in

ut
e

Number of clients

1 way
2 way
4 way
8 way

12 way

Figure 6: OSDL AIM-7 results for an I/O-
intensive workload, using tmpfs.

Profiling at the 100-client point showed that the
problem lies in the VM system, not in the filesys-
tem. Using SGI’s lockmetering patch showed
that one problem was the spinlock in struct
as protecting the radix tree. Replacing this with
a multi-reader lock to allow concurrent read ac-
cess changed the results to look like 7. These
results are still not good. Notice that the slope is
still positive on the right hand end of the graph,
implying that there is still spare capacity that can
be used. In addition, doubling the concurrency
available (by doubling the cpu count) gives lin-
ear improvement in throughput. This effect is
still under investigation.

6

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250 300

Jo
bs

 P
er

 M
in

ut
e

Number of clients

1 way
2 way
4 way
8 way

12 way

Figure 7: OSDL AIM-7 results for an I/O-
intensive workload, using tmpfs, with a rwlock
instead of a spinlock protecting the radix tree.

6.2.3 I/O scalability on ext2

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70 80

Jo
bs

 P
er

 M
in

ut
e

Number of clients

1 way
2 way
4 way
8 way

12 way

Figure 8: OSDL AIM-7 results for an I/O inten-
sive workload, using ext2 on a ram disk

The results for ext2 also show poor scalability
above four processors. Eight and twelve way re-
sults overlap, and are less than twice the four-
way results — see figure 8. Lockmetering shows
contention on inode lock, a spin lock that
protects the lists of dirty and clean inodes in the
system. If I/O happened to real disks, the time
between acquisitions of this lock would be lim-
ited by the speed of the attached storage, so one
would expect the contention to lower.

Even with the contention, the total throughput is
fairly good.

6.2.4 I/O scalability on ext3

The ext3 filesystem had severe bugs causing
lockups when we began to benchmark. When
these were fixed, it became apparent that ext3

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7 8 9 10

Jo
bs

 P
er

 M
in

ut
e

Number of clients

1 way
2 way
4 way
8 way

12 way
16 way

Figure 9: OSDL AIM-7 results for an I/O inten-
sive workload, using ext3 on a ram disk

is single-threaded on kjournald, and doesn’t re-
ally scale well with number of processors (kjour-
nald is a daemon that handles the journal for the
filesystem). The benchmarks that ran in a few
minutes on tmpfs took several hours on ext3 on
a ram disk.

On a real disk, kjournald will be slowed to the
I/O speed of the attached storage, so this is prob-
ably not a problem except for really fast storage
such as a SSD.

6.2.5 I/O scalability on XFS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70 80

Jo
bs

 P
er

 M
in

ut
e

Number of clients

Total Jobs Per Minute
Dynamic increment, using xfs 2m-128m files

Kernel 2.6.11-rc4 Vanilla
Node Local Memory

1 way
2 way
4 way
8 way

12 way

Figure 10: OSDL AIM-7 scalability, on XFS.

XFS scalability also seems poor, although its ab-
solute throughput is far better than ext3. In par-
ticular, there is a race condition somewhere (still
under investigation) that occasionally causes
lockups under heavy write loads. We did man-
age to get a few results, seen in figure 10.
The poor scalability appears at initial analysis
to be because of single threading in the jour-
nalling code when allocating more space for

7

the log, but more analysis is needed. Interest-
ingly enough, the xfs results also show signifi-
cant time spent rebalancing load across the cpus
(in sched migrate task()), so perhaps on
a more realistic workload it would behave better.

7 Future Work

The next steps are firstly to try to find some more
realistic benchmarks (we’re planning on trying
OSDL’s DBT-[123] benchmarks ([OSD]) if we
can get them to perform properly on IA64), and
to do soem measuring with a real disc array.

8 Some conclusions: One size
doesn’t fit all

There are two reasons that Linux scales as well
as it does. Firstly, it is highly configurable. Fea-
tures (such as four-level page tables) that are
not needed for a particular installation can be
compiled out. Unusual features (like a NUMA-
aware scheduler) can be compiled in.

Secondly, a lot of ad-hoc work has been done
benchmarking and working around bottlenecks
in the code, as Linux has advanced from a x86,
single processor only operating system to some-
thing that spans a couple of dozen architec-
tures and three orders of magnitude of processor
count.

However, it can be argued that we’re reaching
the limits of what can be done by tweaking exist-
ing algorithms. Recently, pluggable I/O sched-
ulers have been introduced to the mainline ker-
nel, so that, for example, small systems that have
no disc can use a very simple scheduler; desktop
systems can use a scheduler that minimises la-
tency; and Enterprise systems can use a sched-
uler that provides fairness between competing
users of the underlying storage.

For scalability, it’s likely that pluggable CPU
schedulers and page tables will be next. The ex-
isting 3 (or 4) level pagetable is optimum for pro-
cesses with a small number of dense mappings.
Efforts are currently being made (by Christoph
Lameter at SGI, among other people) to improve
scaling of the existing page tables, but it’s un-
clear how far that can go without either hurting

performance for small machines, or making the
code very convoluted.

There is an out-of-tree patch for a pluggable
scheduler interface (by Con Kolivas). In its cur-
rent form it is unlikely to be merged. How-
ever, the approach is very useful, as it allows
different, streamlined, schedulers for different
expected workloads. For example, a fair-share
scheduler for the enterprise, a multi-level hier-
archical scheduler for HPC, and a low-latency
scheduler for the desktop.

Being able to use different pagetables or sched-
ulers would give the same kinds of flexibility
one can have now with filesystems. However,
to do this would require a major internal inter-
face cleanup. It would also perhaps have one
drawback: one of the reason for the present sys-
tem’s relative stability is that the same core code-
base is used throughout. Scheduler or pagetable
components that are less popular would tend to
be tested less, and so allow bugs to persist for
longer (and have more bugs introduced as nor-
mal kernel development proceeds), just as hap-
pens with filesystems today.

References

[BBH+04] Ray Bryant, Jesse Barnes, John
Hawkes, Jeremy Higdon, and Jack
Steiner. Scaling Linux to the ex-
treme: From 64 to 512 processors.
In Ottawa Linux Symp., pages 133–
148, Jul 2004.

[GK02] Dinakar Guniguntala and Vishal
Kulkarni. IBM’s Linux Watch: The
challenge of miniaturization. IEEE
Comp., pages 33–41, January 2002.

[OSD] Open Source Development
Labs. Database Test Suite.
http://www.osdl.org/lab activities/kernel testing/osdl database test suite.

[OV04] Shigeki Ouchi and Alain Volmat.
Linux porting onto a digital cam-
era. In Linux 2004 Conference.
UKUUG, 2004. .

[Pat04] David A. Patterson. Latency lags
bandwidth. CACM, 47(10):71–75,
Oct 2004.

8

http://www.osdl.org/lab_activities/kernel_testing/osdl_database_test_suite
http://www.ukuug.org/events/linux2004/programme/abstract-SOuchi-1.shtml

	Introduction
	What is scalability anyway?
	Scaling processors
	Scaling Memory
	Memory Amount
	Memory Placement
	Other Memory Issues

	The Power Issue
	Scalability Results
	The Benchmark machine
	AIM-7 results
	CPU scalability
	I/O scalability on tmpfs
	I/O scalability on ext2
	I/O scalability on ext3
	I/O scalability on XFS

	Future Work
	Some conclusions: One size doesn't fit all

