Cyber Assured Systems
Engineering at Scale

Darren Cofer, Isaac Amundson, Junaid Babar, David Hardin, Konrad Slind

Collins Aerospace

Perry Alexander
University of Kansas

John Hatcliff, Robby
Kansas State University

Gerwin Klein

Proofcraft and University of New South Wales, Sydney

Corey Lewis
University of New South Wales, Sydney

Eric Mercer
Brigham Young University

John Shackleton
Adventium Labs

Abstract—Formal methods tools that provide mathematical proof of system properties have
improved dramatically in their power and capabilities. Our team has developed a model-based
systems engineering environment that integrates formal methods at all levels of system design.
Our methodology and tools enable systems engineers to address cybersecurity concerns early
in the development of complex high-assurance systems.

Il AEROSPACE SYSTEMS ENGINEERS are cur-
rently given few development tools to understand
and mitigate potential cybersecurity vulnerabil-
ities. Typically, they rely on process-oriented
checklists and guidelines. Cyber vulnerabilities
are often discovered during penetration testing
late in the development process. Worse yet, they
may be discovered only after the product has
been fielded, necessitating extremely expensive
and time-consuming remediation. This is not a
sustainable development model.

Fortunately, formal methods tools have ad-
vanced to the point that they can be used to
address cybersecurity and cyber-resiliency design
challenges on real high-assurance systems at in-
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dustrial scale, and do so much earlier in the devel-
opment cycle. Our application domain is avionics
and aerospace systems in general. This domain
features large, real-time cyber-physical systems
with the added complexities of performing safety-
critical tasks as well as being exposed to a wide
variety of cyber threats. Furthermore, aerospace
systems are subject to intense regulatory scrutiny
due to the certification requirements of this do-
main.

In previous work on the High-Assurance Cy-
ber Military Systems (HACMS) project [1] we
demonstrated that formal methods could be used
to dramatically improve the cyber-resiliency of
real aircraft, including an unmanned military heli-
copter. Our current work is focused on automating
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the capabilities that we prototyped in the HACMS
project and extending the reach and scale of the
formal methods design and verification approach.

To this end, we have developed a model-based
systems engineering (MBSE) environment that
allows engineers to address a range of properties
and manage system complexity through compo-
sitional analysis, integrating formal methods at
all levels of the design process. MBSE processes
utilize models as the primary vehicle for commu-
nication among the parties tasked with designing
the system and as the primary design artifacts for
requirements, verification, and code generation.

Our tools are based on the Architecture Anal-
ysis and Design Language (AADL) and extend
the Open Source AADL Tool Environment (OS-
ATE) [2]. The tools are specifically designed to
bridge the gap between a user-level modeling
language accessible to systems engineers and the
highly specialized, formally verified code that
implements the operating system (OS) kernel and
other high-assurance components.

By using these tools to build real avionics sys-
tems, we show that current formal methods tools
are practical, effective, and scalable to significant
high-assurance applications in the aerospace in-
dustry.

INNOVATIONS

As part of the Cyber Assured Systems Engi-
neering (CASE) project, our team has developed
a MBSE tool environment that integrates de-
sign, verification, and code generation activities,
enabling systems engineers to design-in cyber-
resiliency for complex cyber-physical systems.
The BriefCASE tools capture our vision for how
formal methods can be applied throughout the
design and build process to create high-assurance
cyber-resilient systems.

A fundamental aspect of our approach is the
use of architecture models to provide a framework
for analyzing system behavior and organizing
the assurance evidence produced. AADL allows
engineers to describe the important elements of
distributed, real-time, embedded systems (pro-
cessors, memory, buses, processes, threads, and
data interconnections) with sufficiently rigorous
semantics that can support formal reasoning.

Proofs about models have less value without
some way to ensure that the implementation

retains the properties of the model. The selL4
microkernel [3], used in both HACMS and CASE,
is formally verified from its high-level security
properties down to its binary implementation. By
targeting seLL.4 we ensure that system components
cannot interact in unintended ways and the data
flows in the architecture model are enforced in
the final product.

The main innovations of the BriefCASE tools
and methodology are:

1) We provide automated architectural de-
sign patterns to address cyber-resiliency
requirements, including synthesis of high-
assurance components from formal specifi-
cations.

2) Our MBSE environment can target different
operating systems including the selL4 mi-
crokernel, making its formal security guar-
antees easily accessible to developers. This
ensures that the implementation produced
is faithful to the modeled system.

3) Our approach is based upon co-evolution
of system design and assurance artifacts,
so that design changes automatically update
the associated certification evidence.

4) Formal methods are integrated through-
out the workflow, including requirements
capture, component synthesis, verification,
code generation, and the sel.4 microkernel
itself.

EXAMPLE

The example in Fig. 1 shows an AADL model
of an unmanned air vehicle (UAV) for surveil-
lance that was built with our BriefCASE tools.
We will use this example to explain how the
tools work together to implement the system and
ensure its cyber-resiliency.

The system includes a ground station com-
puter and the aircraft, consisting of a mission
computer and a flight control computer. The
baseline (unhardened) mission computer included
only four of the software components shown
in Fig. 1: the radio for communication with
the ground station (Radio), the mission planning
service (Planner, provided as legacy software
running on Linux), flight plan waypoint segmen-
tation (WaypointManager), and a serial interface
to communicate with the flight control computer
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Figure 1. Cyber-resilient software architecture for UAV surveillance system with new high-asurance compo-
nents (green) and virtual machine hosting legacy software (red).

(UART).

Cyber-threat analysis tools are used to analyze
the unhardened functional model of the system,
identifying the ground station and the mission
planning service as primary sources of cyber
attacks. Seven new cyber requirements are intro-
duced that address ground station trust, message
integrity, and run-time behavior vulnerabilities.
The existing behavioral contracts in the unhard-
ened system are strengthened to reflect these new
requirements.

Design engineers use BriefCASE to trans-
form the baseline system model to that shown
in Fig. 1. Automated model transformations ad-
dress the cyber requirements by inserting new
high-assurance components (shown in green) and
targeting the sel4 kernel to enforce separa-
tion between components. The AttestationMan-
ager establishes the trustworthiness of ground
stations while the AttestationGate only passes
messages from trusted sources. The three filters
(OR _Filter, LST Filter, and AReq_Filter) only
pass well-formed messages received from the
Radio. Another filter (AResp_Filter) on the output
of the Planner ensures that only well-formed
flight plans are sent to the WaypointManager.
Two run-time monitors alert the system to sus-
picious behaviors from the Planner such as flight
plans that enter keep-out zones or leave keep-in
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zones (Geofence_Monitor), or unresponsiveness
(Response_Monitor). The interface behavior of
these high-assurance components, with the excep-
tion of the AttestationManager, is specified with
assume-guarantee contracts (e.g., a filter makes
no assumptions on input and only passes inputs
that are syntactically well-formed).

The model is further transformed to move
the mission planning service into a Linux virtual
machine hosted on the sel.4 microkernel. This
permits us to run the legacy mission planner
code without modification or porting and iso-
late any unintended behaviors. The target plat-
form requires a static real-time schedule that
is provided in the model. A transformation on
the assume-guarantee contracts incorporates that
schedule into the model for verification of the
cyber requirements.

Finally, cyber-resilient mission computer soft-
ware is automatically generated from the verified
AADL model for execution by a fully verified
version of sel.4 running on an ODROID-XU4
(ARM Cortex-A7 CPU). We successfully demon-
strated the resilience of the system against a
variety of cyber attacks.

BRIEFCASE WORKFLOW
The BriefCASE environment provides sys-
tems engineers with a workflow and tool sup-



port for developing products with inherent cyber-
resiliency.

The workflow starts with the development of
a baseline AADL model of the system architec-
ture focusing on the desired functionality. This
model can be analyzed using any of the existing
AADL tools (e.g., resource usage, information
flow, latency) to determine whether it is accept-
able. BriefCASE integrates additional tools that
analyze the architecture model for cybersecurity
vulnerabilities and generate requirements that,
when addressed, will mitigate those vulnerabil-
ities. These requirements are imported into the
model and may be addressed using a collection
of automated model transforms. As requirements
are addressed in the design, an assurance case is
updated with corresponding evidence, computed
directly from the model or by supporting analysis
tools. Code implementing new high-assurance
components as well as communication and exe-
cution infrastructure is generated from the model
along with associated assurance evidence.

The BriefCASE tools and their interactions
are shown in Fig. 2. The following sections
describe each step of the workflow in more detail,
corresponding to the tools and artifacts shown in
green in the figure.

Requirements Analysis

BriefCASE provides access to two analysis
tools (GearCASE [4] and DCRYPPS [5]) that
can examine AADL models to detect potential
cyber vulnerabilities and suggest requirements
for mitigation. Systems engineers are presented
with a requirements management interface (top
pane in Figure 3) for viewing the generated
requirements and importing them into the model
so they can be addressed. The interface enables
engineers to select the requirements they wish
to import and assign them unique identifiers, or
omit them with rationale. A document listing the
omitted requirements and rationale is maintained
and may be a required development artifact for
some certification domains.

Some requirements can also be formalized as
assume-guarantee contracts added to the AADL
model, enabling formal verification. Such a re-
quirement will be imported into the model with
with an associated formal contract.

A BriefCASE project contains a repository for

requirements. Imported requirements are repre-
sented as assurance case goals to be satisfied. For
example, one of the requirements for well-formed
command messages from the ground station (se-
lected in Fig. 3) is imported as the following goal:

goal Req WellFormed OperatingRegion{comp context : component) <=
** "UxAS component shall only receive well-formed messages" **
context Generated On : "January 29, 2021";
context Req Component : "MC::MissionComputer.Impl.SW.UxAS";
undeveloped

The goal is marked undeveloped initially. Eviden-
tial statements are added to the goal as the design
is updated to address this requirement.

Cyber Transforms

To address the new cyber-resiliency require-
ment, the architecture will need to be transformed
in such a way as to harden the design against the
vulnerability. BriefCASE provides an extendable
library of model transformations for addressing
common cyber vulnerabilities. Currently, the fol-
lowing transformations are supported:

e Filter — Blocks messages that do not conform
to the given specification

e Monitor — Detects violations of a given run-
time condition and generates an alert

e Switch — Used with a Monitor to block mes-
sages when an alert is generated (also referred
to as a gate)

e Attestation — Performs a measurement on non-
local software to assess its trustworthiness

e Virtualization — Isolates software compo-
nent(s) in a virtual machine

e Proxy — Inserts a pair of components to allow
inspection of HTTPS message payloads

e sel4 — Transforms the model to comply with
seL.4 component properties

The transformations are automated by the
BriefCASE tool, resulting in a hardened model
that is correct-by-construction. For example, the
requirement that a component only receives well-
formed messages can be satisfied by the insertion
of a high-assurance filter. A BriefCASE transform
wizard helps to configure the filter component
properties, including the filter behavioral spec-
ification, which is represented as an assume-
guarantee contract.

BriefCASE then inserts a new filter compo-
nent into the model, sets the component proper-
ties, and establishes the appropriate connections
to source and destination components. The filter
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Figure 2. BriefCASE tool architecture. Tools and code/artifacts discussed in the BriefCASE workflow are shown

in green.

behavioral contract is also added to the model,
enabling formal analysis of the model as well
as providing the behavioral specification for a
provably correct synthesis of the filter component
implementation.

The transformation also updates the assurance
case with new evidential statements indicating
that the associated goal has been satisfied, in-
cluding the strategy used and links to context and
associated evidence.

Compositional Analysis

The Assume Guarantee Reasoning Environ-
ment (AGREE) is a compositional, assume-
guarantee-style model checker for AADL models
[6]. AGREE attempts to prove properties about
one layer of the architecture using properties allo-
cated to subcomponents. The composition is per-
formed in terms of assumptions and guarantees
that are provided for each component. Assump-
tions describe the expectations the component has
on the environment, while guarantees describe
bounds on the behavior of the component.

AGREE uses k-induction as the underlying
algorithm for model checking. AADL models
and AGREE contracts are first translated into
the Lustre language [7], including verification
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conditions for consistency and correctness of the
contracts. The model checker then attempts to
find any model execution traces that would violate
these conditions using one of several Satisfiability
Modulo Theories (SMT) solvers. If the model
checker covers all reachable states in the model
without finding a violation then the properties are
proved.

Once the system architecture has been mod-
eled using AADL and the component behavior
is specified using AGREE’s assume-guarantee
contracts, we use the AGREE model checker to
verify the consistency of these contracts.

1) Component interfaces — The output guar-
antees of each component must be strong
enough to satisfy the input assumptions of
downstream components.

2) Correctness of implementations — The input
assumptions of a system along with the
output guarantees of its sub-components
must be strong enough to satisfy its output
guarantees.

For example, in Fig. 1, the input assumptions
of the Waypoint Manager must be weaker than
the output guarantees of the Geofence monitor
and the output guarantees of the Mission Soft-
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Figure 3. BriefCASE requirements management interface.

ware must be inferrable from its input assump-
tions combined with the output guarantees of its
components.

This hierarchical strategy for reasoning about
contracts, or compositional analysis, reduces the
computational complexity of model checking by
breaking down the larger problem into more
manageable fragments.

High Assurance Component Synthesis

The correctness of the high-assurance com-
ponents inserted by BriefCASE transformations
means that each such component must meet its
AGREE contract. This obligation is addressed by
formal synthesis, using the Semantic Properties
of Language and Automata Theory (SPLAT) tool.
SPLAT generates code to implement the AGREE
contract and then proves that its implementation
exactly preserves the meaning of the contract all
the way down to the binary for the target platform
[8].

SPLAT uses the HOL4 theorem proving sys-
tem to implement the synthesis and prove its
correctness relative to the contract. The synthesis
targets a dialect of Standard ML called CakeML
and uses CakeML’s fully verified compiler to
render the final binary [9]. CakeML is not a

real-time language since it is garbage collected,
and although that has yet to be an issue in our
use cases, it should be considered in applications
where strict predictability is required.

The proof from SPLAT shows equivalence be-
tween the contract and the synthesized CakeML
and then leverages the existing CakeML compiler
proof for the rest. A final step of the proof
reasons about the perpetual re-execution of the
code as scheduled in a real-time environment. The
modeling, relevant properties, and proof of that
step is discussed in [10].

Remote Attestation

Semantic remote attestation is a technique for
establishing trust in software running on a non-
local computer. An appraiser requests an attesta-
tion from a target, receives evidence in response
to the request, and appraises the evidence to
determine trust [11]. Because remote attestation
does not require modification of its measurement
target, we utilize it to establish trust in legacy
software that cannot otherwise be verified. We
construct a verified remote attestation infrastruc-
ture around the legacy target that generates run-
time and boot-time evidence.

In the UAV example, we wish to ensure that
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the aircraft will only accept commands from
trustworthy (non-compromised) ground stations.
Our approach adds three attestation managers
to the selL4-based architecture in Fig. 1. Each
attestation manager executes protocols specified
by Copland [12] phrases. Copland is a formal
specification language designed for writing at-
testation protocols that are both verifiable and
executable. The attestation managers themselves
are written using Coq to verify attestation proto-
cols and protocol interpreters, then synthesizing
models to CakeML.

The AttestationManager on the Mission Com-
puter makes attestation requests and appraises the
results. A protocol request and nonce are sent
to the remote target (in this case, the Ground
Station), evidence is returned, and results ap-
praised to determine trust. If the appraisal is
successful, the identifier for the target is added
to a list of trusted computers whose messages
will be allowed to pass through the Attestation-
Gate. Attestation can be requested periodically if
warranted by the anticipated threats against the
remote system.

Two other attestation managers must be added
on the Ground Station. The Ground Station soft-
ware has been modified to run in a Linux virtual
machined hosted on sel.4. The UserAM runs
as a Linux process on this virtual machine. Its
responsibilities include responding to attestation
requests from the UAV, measuring the Ground
Station application software, and requesting at-
testations from the Ground Station platform (the
Linux kernel). When the UserAM receives an
attestation request it responds by executing an
attestation protocol that measures the application,
requests measurements from the PlatformAM,
signs the result, and generates a nonce from
the request. The resulting evidence package is
returned to the requesting appraiser on the UAV.

Because the UserAM runs as a Linux process,
it cannot be trusted a priori. A PlatformAM
is introduced to perform an attestation of the
Linux kernel (and the UserAM). The Platform-
AM runs as a seL4 component outside of the
Linux virtual machine separated from the Linux
kernel. sel.4’s guaranteed separation properties
provide assurance that the PlatformAM cannot
be compromised by other platform software. The
PlatformAM only responds to requests from the
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UserAM and similarly runs a protocol that pro-
duces signed results.

Information Flow Analysis

As systems become more complex, it is
essential to have trustworthy methods to pro-
vide a common understanding of dependencies
in the system and the respective responsibilities
of the developers who may be from separate
organizations. The Awas [13] AADL information
flow analyzer and visualizer has been applied
to enable developers and auditors to understand,
reason about, explore, and visualize system de-
pendencies and information flows at scale across
components and subsystems. Awas processes the
AADL system architecture model, specifically
its inter-component connection descriptions and
intra-component flow specifications, to provide
formal system-wide impact and flow analyses.
Such flows include component data/control flows,
security-oriented information flows, and fault/er-
ror propagation specified using the AADL Error
Modeling Annex (EMv2). Awas also provides a
user-friendly Domain Specific Language (DSL) to
query, check, and visualize custom safety/security
system properties.

In our UAV example, Awas can compute and
visualize how the information in Ground Station
messages flows through the system as well as
the components or ports that may directly or
indirectly consume data derived from that in-
formation. Awas supports a number of forms
of forward and backward interactive information
queries. Using the Awas script-based query lan-
guage, one can specify and check more com-
plex properties, e.g., that information must flow
through specific ports or components. These end-
to-end flow specifications are often useful for sup-
porting verification of the effectiveness of cyber-
resiliency components. An Awas specification can
state that information from untrusted components
such as the Ground Station always flows through
the Attestation Gate and filter components before
reaching the Flight Control or other components
that make critical decisions about the flight or
mission of the UAV.

Real-Time Scheduling
In mixed-criticality mission systems, execu-
tion threads often have strict confidentiality, in-



tegrity, and availability requirements. Under cer-
tain conditions, timing channels can be manipu-
lated to violate these security requirements. For
example, temporal interference between timing
channels can reduce availability of time-critical
functionality and weaken the integrity of controls
by inducing selective jitter. As a result, a compro-
mised component could dominate the processor,
preventing other components from completing
their tasks, placing the security of the entire plat-
form in jeopardy. Simple scheduling approaches
that attempt to use priority schemes to miti-
gate this impact only protect the highest priority
threads and leave the other threads vulnerable.

Temporal isolation is a more secure technique
to restrict timing channels and reduce temporal
interference between software threads executing
on the same platform. BriefCASE achieves tem-
poral isolation by leveraging prior work from
safety and security-critical disciplines, such as
avionics, where temporal isolation in real-time
scheduling has been deployed for decades. We
implemented a static cyclic scheduling approach
using the seL4 domain scheduler, where a fixed
schedule defines an ordered sequence of static
execution slots. Each slot has a duration and
a partition identifier. sel.4 guarantees the start
and end times for each temporal domain slice,
according to the compile-time static cyclic sched-
ule. This precisely constrains when each thread
may execute, backed by sel4 verification proofs.
System designers are responsible for the deter-
mining the temporal requirements, such as worst
case execution times (e.g., by test or analysis)
and latency bounds, of each thread, based on
mission requirements. These requirements may
be captured in the AADL model, and offline
tools are available to generate the static cyclic
schedule based on the model. Determining the
mission temporal requirements is not part of the
BriefCASE tools.

BriefCASE generates a start-of-frame syn-
chronization signal for each thread using a special
thread called the Pacer, which sends periodic
signals to each thread. Each application thread
blocks until it receives its signal from the Pacer.
The application thread runs to completion, and
then blocks again on the Pacer signal for the
next iteration. Each thread subsequently executes
exactly once during its statically scheduled time

slice.

The new selL4 Mixed-Criticality Systems
(MCS) variant provides additional capability that
can support temporally isolated real-time systems.
As part of BriefCASE we developed a proof-
of-concept static cyclic scheduler for MCS. It
includes a start-of-frame signal, which eliminates
the need for the Pacer component. It also includes
kernel level support for flexible dynamic schedul-
ing that satisfies some real-time properties, such
as period and execution time.

Infrastructure Code Generation

The High Assurance Modeling and Rapid
engineering for embedded systems tool (HAMR)
[14] is a multi-platform, multi-language AADL
code generation framework. In the CASE project,
HAMR is primarily used to generate code for
deployment for the seL.4 microkernel, but system
and component prototyping is also supported uti-
lizing HAMR’s code generation capability for the
Java Virtual Machine (JVM) and Linux.

Using sel.4 as a foundation, HAMR enables
AADL to be used as a model-based development
and systems engineering framework for sel4-
based applications. One of the primary objectives
is to support system builds that leverage sel.4
separation and information flow guarantees to
achieve the AADL-specified component isolation
and inter-component communication needed for
cyber-resiliency. HAMR ensures that sel.4 is con-
figured to permit the exact inter-component infor-
mation flows analyzed and visualized by Awas at
the model level.

For each AADL thread component, HAMR
generates a thread code skeleton and application
programming interfaces (APIs) for communicat-
ing over the ports declared on the component. For
components that are implemented manually, the
developer fills out the thread skeleton with appli-
cation code. HAMR supports coding component
application logic in either C, Slang [15] (a high-
assurance subset of Scala that can be translated
to C), or CakeML.

HAMR generates component infrastructure
and integration code implementing the semantics
of AADL-compliant thread scheduling, thread
dispatching, and port-based communication. For
port communication, shared memory communi-
cation (AADL data ports), buffered messaging
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(AADL event data ports), and buffered notifica-
tion (AADL event ports) are supported. HAMR
code generation is staged using a translation
architecture that facilitates adding new backends
for different target platforms. Almost all the in-
frastructure code is implemented in Slang, which
can then be used for JVM deployments or trans-
lated to C for Linux or sel.4 deployments. The
Slang-based implementation of the AADL run-
time framework can be viewed as a high-level
reference implementation of AADL semantics.
Automatic translation of this reference implemen-
tation to C on different platforms helps establish
semantic consistency across those platforms.

The sel4 deployment uses the component
architecture for microkernel-based embedded sys-
tems (CAmkKES) code-generation framework to
configure the microkernel. The HAMR generated
CAmKES directly encodes the AADL model’s
component and communication topology and in-
cludes the AADL run-time infrastructure with its
thread scheduling. HAMR leverages the existing
seL4 domain scheduler to enforce time partition-
ing and provide static cyclic scheduling.

HAMR also supports Linux-based virtual ma-
chine components in the seL4 deployment and
the ability to run the entire system on the QEMU
emulator. HAMR automatically configures virtual
machine based components, and this feature is
used to sandbox the untrusted legacy code for
the Mission Planner in the example UAV system.
The QEMU emulator support facilitates rapid
prototyping for test, debug, and analysis, and it
enables automated regression testing.

As part of its code generation process,
HAMR produces flow graphs reflecting the inter-
component information flow at both the AADL
architecture level and the CAmKES level for
the selL.4 deployment. Visual representations are
provided for manual inspection, and SMT-based
representations are generated for formal reason-
ing. The SMT-based representations are used to
prove the following properties:

1) All AADL modeled flows are in the
CAmKES configuration.

2) No extraneous flows have been added to the
CAmKES configuration.

These properties focus on cyber-resiliency, but
other key semantic properties can be verified as
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well.

Secure Microkernel

The selL4 microkernel [3] is a lightweight,
fast, and secure operating system kernel. Its im-
plementation is fully formally verified, from high-
level security properties down to the binary level.
It was the first OS kernel with this degree of
formal verification, and after more than a decade
of further research and engineering is still not
only the leading formally verified OS kernel, but
also the fastest OS kernel on the Arm architecture.

Its formal verification makes sel.4 the ideal
basis for high-assurance systems. It is in itself a
demonstration of the level of fidelity and scale
formal verification can achieve [16]. seL4 sup-
ports multiple architectures (Arm, x86-64, RISC-
V), provides deep security properties such as in-
tegrity, confidentiality and availability, and comes
with formally verified user-level system initializa-
tion. As one of its multiple available OS person-
alities, sel.4 also offers the user-level CAmKES
component system that provably achieves isola-
tion between statically specified components.

The formal proofs about sel.4 and the cor-
responding user-level components measure over
one million lines of proof script in total. They
constitute one of the largest continually main-
tained formal proof artifacts in existence and
provide a rich target for new techniques in proof
engineering, proof repair, and automation for con-
structing new proofs about software as well as
maintaining existing large-scale proof artifacts.

While it is essential to build a high-assurance
system on a high-assurance OS kernel, this is
not the main feature sel.4 provides for systems
engineering — a simpler real-time OS might be
formally verified, but would not be sufficient for
the engineering method described in this paper.
The true power of sel.4 lies in its ability to scale
formal analysis and verification to the much larger
code bases that make up entire systems. It does so
by providing strong isolation between user-level
components [17].

This isolation means that components can
be analyzed separately from each other and be
composed safely — in this way sel.4 provides
the foundation that the soundness of the highly
automated analysis tools such as AGREE depend
on. It makes it possible to run entire untrusted
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virtual machines and securely monitor their be-
havior on the same hardware. It makes it possible
to provide filter and monitor components and
prove that these components cannot be tampered
with by the components they protect. And it
makes it possible to guarantee that the limited
communication channels that the analysis tools
assume to exist in the AADL model are the only
communication channels that are available to the
components in the system. The combination of
these enables automated high-level analysis with
high assurance.

Assurance Case

Assurance activities for high-integrity systems
in the aerospace domain are currently driven
by industry and government standards such as
DO-178C and MIL-HDBK-516C. The use of
assurance cases to show conformance to stan-
dards (or provide alternate means of assurance)
is being pursued in separate research programs.
In addition, we have found that in assuring the
cyber-resiliency properties of aircraft designs we
need to integrate different kinds of evidence with
varying levels of formality. This has been our mo-
tivation for incorporating assurance case methods
in BriefCASE.

In previous work, we developed the Resolute
language and tool [18] as a way to help engi-
neers create an assurance argument describing the
steps taken during the design process to make
the system safe and secure. The Resolute syn-
tax supports construction of assurance cases that
comply with the Goal Structuring Notation (GSN)
v2 standard. Claims are expressed as goals and
strategies, and can contain attributes such as con-
text, assumptions, and justification. Claims can be
marked undeveloped, which Resolute interprets as
an unsupported claim, or with a solution, which is
an explicit assertion that the claim is supported.
Rather than being a separate document, a Res-
olute assurance case is part of the architecture
model and can refer to elements within the model.
Since it is not a static representation, it can ensure
that the assurance argument remains consistent
with the evolving design.

A partial assurance case for the hardened
UAV surveillance system generated by Resolute is
shown in Fig. 4. The assurance case includes sub-
trees corresponding to the high-assurance com-

ponents used to satisfy cyber-resiliency require-
ments and a subtree associated with HAMR code
generation and traceability to sel.4 separation
guarantees.

BriefCASE includes a library of Resolute
assurance strategies, or patterns, that align with
the CASE workflow. The patterns are instantiated
with context from the AADL model and spec-
ify the evidence required to support the cyber-
resiliency goals of the system. For example, the
add_filter strategy is automatically inserted
into the assurance case when the Filter transfor-
mation is performed, and includes logical rules
that Resolute uses to determine whether the claim
of well-formed messages is supported by evi-
dence. The add_filter definition includes the
following sub-goals (shown in Fig. 4):

e Component property implemented — The filter
has been implemented correctly to meet its
AGREE specification, as shown by the proof
produced by SPLAT.

e Filter is connected — The filter component
is still present at the correct location in the
model and has not been altered or deleted by
subsequent design changes.

e Filter cannot be bypassed — There is no alter-
nate information flow in the model that would
allow the filter to be bypassed and therefore
not perform its function.

o AGREE properties are valid — The filter spec-
ification has been verified by AGREE to meet
its intended purpose in the system.

AIRCRAFT APPLICATION

We have successfully demonstrated our Brief-
CASE methodology and tools to develop proof-
of-concept enhancements for the Common Avion-
ics Architecture System (CAAS), an integrated
cockpit avionics suite developed by Collins
Aerospace. CAAS serves as a prime example
of modern air platform complexity with com-
mon avionics across a variety of Army, Navy,
and Air Force platforms including the CH-47F,
CH-53K, MH-60, and Mission Enhanced Little
Bird (MELB). The CAAS application offered
an opportunity to apply BriefCASE tools across
a variety of mission systems, including legacy
components, flight critical software, as well as
new and evolving systems.
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Figure 4. Resolute assurance case for hardened UAV surveilance system (partial).

Most of the work for this demonstration was
performed by a team of CAAS development
engineers who had no previous experience with
formal methods. Our primary goal was to enable
CAAS product engineers to employ the CASE
tools to create an operational mission scenario
exhibiting cyber threats and mitigations that could
be exercised using the facilities of the Collins CH-
47F System Integration Laboratory.

The CH-47F demonstration system for CASE
focused on integrating pilot and soldier wire-
less tablet computers for increased situational
awareness and display of Automatic Dependent
Surveillance-Broadcast (ADS-B) data regarding
nearby air traffic (Fig. 5). BriefCASE tools were
used to implement this networking enhancement
while ensuring that no new cybersecurity vul-
nerabilities were introduced. A high-assurance
gateway was added between the existing CAAS
network and the new wireless network, including
new components for monitoring messages to and
from the wireless devices. Remote attestation was
also added to ensure that any devices that attempt
to join the wireless network are running trustwor-
thy software. This also required configuring the
seL4 microkernel to run on an existing CAAS
processing module (the video processing module,
or VPM) that was repurposed to serve as the
secure gateway.

The CAAS engineers first developed an
AADL model of the CH-47F CAAS system.
They added the enhanced capabilities for wire-
less access described above, resulting in a base-
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line architecture. The engineers then analyzed
their baseline AADL architecture utilizing the
GearCASE and DCRYPPS tools, resulting in a
set of cyber requirements. They employed the
BriefCASE AADL tools to add filters, monitors,
attestation gates, and seL4 isolation to satisfy the
cyber requirements. ADS-B anti-spoofing mon-
itors were also developed by the CAAS team
to detect inconsistencies in aircraft position and
velocity trends, bad traffic identifiers, and other
possible indicators of spoofed aircraft.

The specifications for the filters and monitors
were developed by the CAAS engineers using
the AGREE contract language, with assistance
from our research team. The SPLAT tool was
used to synthesize the monitors and filters from
the AGREE specifications with high assurance,
as described above. The HAMR tool was then
used to generate infrastructure code for the overall
system running on sel4.

The tablet operating environment was modi-
fied to run application software in a Linux virtual
machine hosted on seL4. This was done so that
the remote attestation component for platform
measurement could be securely isolated from the
(untrusted) application software.

An additional complication was the need to
add proxy and network adapter components to
allow the encrypted internet messages from de-
vices on the untrusted wireless network to be
examined by the secure gateway. Dedicated pro-
cessing cores were available on the VPM for
the provisioning of these “low-side” and ‘“high-
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Figure 5. Cyber-resilient software architecture adding wireless device access to CH-47 avionics.

side” components separately from the other high-
assurance software. The architecture model was
transformed to add these components but their
implementation code had to be manually written
due to the complexity of dealing with off-the-
shelf networking technologies. Automating the
synthesis of network adapter and proxy compo-
nents is future work.

The commercial board used for development
and the Collins hardware equivalent in the heli-
copter demonstration system (both ARM Cortex-
A53 CPUs) use the same selL.4 code base as the
Fig. 1 example. However, the sel.4 proofs have
not been updated for these hardware platforms
and so they have not been fully verified. We
expect that there would be only minor differences
from the existing proofs for similar platforms.

As initial users of the BriefCASE tools, the
CAAS engineers encountered some limitations in
the specification expressiveness and documenta-
tion, as might be expected for the first use of
research tools by product area developers. This
led to improvements in the tools to add or extend
capabilities. Initial estimates of processing time
required for the complex monitoring components
turned out to be optimistic, requiring an optimiza-
tion effort. Lack of detailed documentation and
hardware instabilities hampered the tablet soft-
ware development effort. But overall the Brief-
CASE tools were able to be productively used by

Collins product engineers to produce the CH-47F
CAAS demonstration system on time and within
budget, providing our research team with valuable
feedback on the strengths and weaknesses of the
current BriefCASE tool environment.

CONCLUSION

We have produced a model-based systems en-
gineering environment called BriefCASE, based
on the Architecture Analysis and Design Lan-
guage. The BriefCASE tools and methodology
provide design, analysis, and code generation
capabilities based on formal methods and targeted
at high-assurance cyberphysical systems.

Key innovations include automated architec-
tural design patterns for cyber-resiliency, co-
evolution of system design and assurance arti-
facts (captured as an assurance case linked to
the architecture model), synthesis of code for
high-assurance components, and code generation
targeting the formally verified seL4 microkernel.

We have demonstrated the effectiveness and
scalability of these tools by using them to add
new cyber-resilient features to a military heli-
copter avionics system. Their successful use by
our product engineers provides evidence that for-
mal methods can be incorporated into industrial
projects.

All of the tools are open-source, with links
and documentation available at http://loonwerks.
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com/projects/case.html. We hope that others will
find value in this approach and extend the tools
with new cyber transforms, expanded system
analysis tools, and code generation for additional
operating systems and computing platforms.
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