
Linking Programs in a Single Address Space

Luke Deller, Gernot Heiser

School of Computer Science & Engineering

University of New South Wales

Sydney 2052, Australia

fluked,gernotg@cse.unsw.edu.au, http://www.cse.unsw.edu.au/˜disy

Monterey, CA, USA, June 1999

Abstract

Linking and loading are the final steps in preparing a

program for execution. This paper assesses issues con-

cerning dynamic and static linking in traditional as well

as single-address-space operating systems (SASOS).

Related loading issues are also addressed. We present

the dynamic linking model implemented in the Mungi

SASOS and discuss its strengths and limitations. Bench-

marking shows that dynamic linking in a SASOS car-

ries significantly less overhead than dynamic linking in

SGI’s Irix operating system. The same performance ad-

vantages could be achieved in Unix systems, if they re-

served a portion of the address space for dynamically

linked libraries, and ensured that each library is always

mapped at the same address.

1 Introduction

Single-address-space operating systems (SASOS) make

use of the wide address spaces offered by modern mi-

croprocessor architectures to greatly simplify sharing of

data between processes [WSO+92,CLBHL92,RSE+92,

CLFL94]. This is done by allocating all data in the sys-

tem, whether transient or persistent, at a unique and im-

mutable virtual address. As a result, all data is visible

to every process, and no pointer translations are nec-

essary for sharing arbitrary data structures. While the

global address space makes all data addressable, a pro-

tection system ensures that access only succeeds when

authorised. Protection relies on the fact that a process

can only access a page if it has been mapped to a RAM

frame, by the operating system loading an appropriate

entry into the translation lookaside buffer (TLB). The

operating system thus has full control over which parts

of the single address space are accessible to a given pro-

cess.

As persistent data, i.e., data whose lifetime is indepen-

dent of that of the creating process, is always mapped

into the virtual address space (at an immutable address),

SASOS do not need a file system. For compatibility with

other systems, a file system interface can be provided,

of course, but it represents nothing more than a different

way to access virtual memory. All disk I/O is done by

the virtual memory paging system.

Such a SASOS is rather different from a system like

MacOS, which also shares an address space between all

executing programs. The main difference (other than the

absence of memory protection) is that the latter system

does not ensure that a data item has a unique address for

its lifetime. For example, files can be mapped into mem-

ory, but each time a file is opened, it will be mapped

at a different address. As each object in a SASOS has

an immutable address, pointers are perfect object ref-

erences which do not lose their meaning when passed

between processes or stored in files. This greatly facili-

tates sharing of data between programs in a SASOS, as

any data item can always be uniquely identified by its

virtual memory address.

Besides sharing, the single address space also signifi-

cantly simplifies system implementation [WM96] and

improves performance even for applications which are

not aware of the single address space [HEV+98]. How-

ever, the changed notion of address spaces makes it nec-

essary to rethink a number of issues relating to how the

system is used in practice. These include preparing pro-

grams for execution: how to bind together separately

compiled program components (“linking”), and how to

get an executable program into a state where the CPU

can execute its instructions (“loading”).

In this paper we examine the issues of linking and load-

ing of programs in traditional Unix systems, as well as

in SASOS. We present the model of (dynamic) linking

used in the Mungi SASOS [HEV+98] which is under

development at UNSW. The implementation of dynamic

linking in Mungi is discussed and its performance com-

pared to that of Unix operating systems.

2 Linking in traditional operating systems

Traditional operating systems, such as Unix systems,

generally feature two forms of linkage, static and dy-

namic.

During static linking, all code modules are copied into a

single executable file. The location of the various mod-

ules within that file implies their location in the memory

image (and hence in the address space) during execution,

and therefore target addresses for all cross-module refer-

ences can be determined and inserted into the executable

file by the linker.

A dynamic linker, in contrast, inserts symbolic refer-

ences to (library) modules in the executable file, and

leaves these to be resolved at run time. In operat-

ing systems conforming to the Unix System-V inter-

face [X/O90], such as SGI’s Irix, DEC’s Digital Unix

or Sun’s Solaris-2, this works as follows.

For each library module to be linked, the linker allo-

cates a global offset table (GOT).1 The GOT contains

the addresses of all dynamically linked external sym-

bols (functions and variables) referenced by the mod-

ule.2 When a program referencing such a dynamically

linked module is loaded into memory for execution, the

imported module is loaded (unless already resident) and

a region in the new process’ address space is allocated

in which to map the module. The loader then initialises

the module’s GOT (which may require first loading other

library modules referenced by the module just loaded).

A variant of this is lazy loading, where library modules

are not actually loaded until accessed by the process.

If lazy loading is used, a module’s GOT is initialised

at module load time with pointers to stub code. These

stubs, when called, invoke the dynamic loader, which

loads the referenced module and then replaces the re-

1The “global offset table” is Irix terminology, Digital Unix calls it

global address table.
2A further level of indirection is used when an entry references a

module exporting a large number of symbols, and for efficiency rea-

sons local symbols are also included.

spective entries in the GOT by the addresses of the actual

variables and functions within the newly loaded module.

Dynamic linking has a number of advantages over static

linking:

1. Library code is not duplicated in every exe-

cutable image referencing it. This saves significant

amounts of disk space (by reducing the size of ex-

ecutable files) and physical memory (by sharing li-

brary code between all invocations). These savings

can be very substantial and have significant impact

on the performance of the virtual memory system.

2. New (and presumably improved) versions of li-

braries can be installed and are immediately us-

able by client programs without requiring explicit

relinking.

3. Library code which is already resident can be

linked immediately, thus reducing process startup

latency.

Lazy loading further reduces startup cost, at the expense

of briefly stalling execution when a previously unac-

cessed library module requires loading. For libraries

which are only occasionally used by the program, this

results in an overall speedup for runs which do not ac-

cess the library. However, this comes at a cost: Should

the referenced library be unavailable (e.g., by having

been removed since program link time) this may only

become evident well into the execution of the program.

Many users will prefer finding out about such error con-

ditions at program startup time.

The main drawbacks of dynamic linking are:

1. Extra work needs to be done at process instantiation

to set up the GOT. However, this overhead is easily

amortised by loading much less code in average, as

some libraries will already be resident.

2. If a dynamic library is (re)moved between link and

load time, execution will fail. This is the main rea-

son that Unix systems keep static linking as an op-

tion.

3. The location of a dynamically linked module in

the process’ address space is not known until run

time, and the same module will, in general, re-

side at different locations in different clients’ ad-

dress spaces. This requires that dynamically linked

libraries only contain position-independent code.3

Position independence requires that all jumps must

be PC-relative, relative to an index-register contain-

ing the base address of the module, or indirect (via

the GOT).

The main cost associated with position-

independent code is that of locating the GOT.

Every exported (“public”) function in the module

must first locate the module’s GOT. The GOT is

allocated at a constant offset from the function’s

entry point (determined by the linker) so the

function can access it using PC-relative addressing.

This code must be executed at the beginning of

every exported function. In addition, there is an

overhead (of one cycle) for calling the function,

as an indirect jump must be used, rather than

jumping to an absolute address. These costs will

be examined further in Section 6.

Note that the GOT is an example of private static data,

i.e., data belonging to a module but not shared between

different instantiations of the module. Any variable de-

clared “extern” or “static” in the library and not used

read-only falls into that category.

It is interesting to note that Digital Unix’ quickstart fa-

cility [DEC94] tries to avoid some of the problems of

dynamic linking by reserving a system-wide unique vir-

tual address range for dynamically linked libraries in

the Alpha’s large address space. This reduces process

startup costs by the ability to easily share an already

loaded library without address conflicts. However, ad-

dress clashes cannot be completely avoided, as there is

nothing to enforce unique virtual address for every li-

brary — only a SASOS can give such a guarantee. Con-

sequently, Digital Unix still needs to use position-inde-

pendent code and pay the overhead this implies. How-

ever, Digital’s attempt to simulate a single address space

for libraries is a good indication of some of the advan-

tages a SASOS offers.

3 Linking in single-address-space systems

A single address space simplifies many things and com-

plicates a few; linking is no exception. Generally speak-

ing, the single address space makes it easy to share data,

3This is different from relocatable code normally produced by

compilers. Relocatable code contains addresses which are relative to

some yet unresolved symbols. The linker resolves these and replaces

them by absolute addresses.

and difficult not to share. The latter implies some special

effort to avoid sharing of private static data.

3.1 Static linking in a SASOS

Static linking by copying all libraries into a single exe-

cutable is possible in a SASOS exactly as in Unix sys-

tems. Consequently, standard static linking in Mungi

has the same drawbacks as in Unix: excessive disk and

memory use, as well as the requirement to re-link in or-

der to utilise new library versions. Therefore, alternative

linking schemes are desirable.

Owing to the fact that all objects in the single address

space are at any time fully and uniquely identified by

their unchanging address, copying library modules is

unnecessary when creating an executable program. In-

stead, libraries can be executed in-place, and the linker

only needs to replace references to library modules with

(absolute) addresses. No position-independent code is

needed, avoiding that source of efficiency loss. This

scheme, called global static linking was proposed by

Chase [Cha95] for the Opal SASOS.

Global static linking is fast and has some of the attractive

features of dynamic linking in Unix systems, in partic-

ular automatic code-sharing. However, the scheme has

two significant drawbacks which limit its applicability in

practice:

� As it is a form of static linking, new versions of

libraries cannot be used unless programs are re-

linked. Note that it is not possible to update a li-

brary in-place, as this would break entrypoint ad-

dresses in all programs which linked that library.

While this could be circumvented by accessing all

entrypoints via a jump table, that would not help

with currently executing programs which use the

library — they would have to terminate prior to re-

placing the library. To maintain smooth operation,

a new library version must be created at a different

virtual address, with a naming service pointing to

the latest version to be used by the linker.

� Global static linking does not allow private static

data. Such data needs to reside at an address where

it can be found by the library code, but that address

must be different for different instantiations of the

library (or the data would not be private to the in-

voking process).

Private static data must reside in a separate data segment,

which must be set up separately for each client process.

Similar to dynamic linking in Unix, the problem is how

to tell the library code where to find the data segment.

Chase suggests a variation of the GOT used by Unix dy-

namic linkers: Each process allocates a table for each

module containing the addresses of that module’s pri-

vate static data. A dedicated register, the global pointer,

is loaded with the base address of the address table of

the presently executing library module. The difficulty

is in loading the global pointer with the correct address.

Unlike the Unix case, this cannot be done by PC-relative

addressing, as the offset differs between instantiations.

Chase favours (but apparently did not implement) an ap-

proach where the called function looks up the correct

global-pointer value in a process-specific table (accessed

via its thread descriptor, which in Opal is reachable from

the stack pointer). The table is indexed by a slot num-

ber which is statically assigned to the module contain-

ing the function. Given that it is impractical to make this

(per-process) table very big, this imposes serious limi-

tations on the use of modules containing private static

data — each process can only use a small number of

such libraries and even then, clashes between the stati-

cally assigned slot numbers preclude importing certain

combinations of library modules. Furthermore, at least

two memory reads plus some arithmetic is required to

obtain the global pointer value on each call across mod-

ule boundaries.

3.2 Dynamic linking in a SASOS

Even if the problem with private static data is resolved

(or ignored), any form of static linking retains one major

drawback: A new version of a library cannot be incor-

porated without relinking client programs. This can only

be achieved by dynamic linking.

The IBM AS/400, a SASOS which, in its former guise

as System/38 [Ber80], goes back to the mid 1970’s, orig-

inally only supported dynamic linking (“late binding” in

IBM terminology) [Sol96]. Static linking (“early bind-

ing by copy”) was only introduced in 1993 for perfor-

mance reasons resulting from the calling overhead. At

the same time they introduced “early binding by ref-

erence” which essentially is global static linking. Ac-

cording to Soltis, while there is some initialisation over-

head when first accessing a bound-by-reference library

module, performance of subsequent calls are “about the

same” as in the bound-by-copy case. No further infor-

mation could be found on how the AS/400 implements

dynamic linking, but the reference to performance prob-

lems of dynamic linking seems to indicate that it does

not have a particularly good solution.

Roscoe [Ros95] presents a dynamic linking scheme for

Nemesis. Each invocation of a library modules has its

own state buffer, containing private static data. Modules

are accessed via interface references, which are instan-

tiated from module interfaces when resolving the sym-

bolic reference to the module. An interface reference

points to a structure containing a pointer to an opera-

tions table and the state buffer. A function is invoked

by an indirect jump via the operations table, and the in-

terface reference is passed as a parameter. As a result,

three memory reads are required to find the address of

the function to be called.

4 Linking in Mungi

Mungi supports static linking (by copying) as well as a

version of dynamic linking, designed to retain the full

flexibility dynamic linking offers in Unix system while

minimising run-time overheads.

During execution of a program in Mungi, a data segment

containing private static variables is associated with ev-

ery instantiation of a dynamically linked module. While

executing such a module’s code, its data segment’s ad-

dress is held in the data segment register.4 The data

segment also contains module descriptors of imported

modules. A module descriptor contains pointers to all

functions imported from the module, plus a pointer to

the data segment of the exporting module. This is shown

in Figure 1.

4.1 Initialisation of module descriptors

Module descriptors are allocated in the importing mod-

ule’s data segment by the linker. To initialise a module

descriptor at run time, the importing module calls the

exporting module’s constructor, passing the address of

the descriptor as a parameter. In order to avoid multiple

instantiation of modules which are imported by several

other modules (such as libc in Figure 1), the construc-

tor is also passed a pointer to a table of already instan-

tiated modules. This table is held in the main module’s

data segment.

4On the SGI Indy we use the global pointer register which Irix

uses to point to the GOT, hence the number of registers available to the

compiler does not change with respect to Irix.

libc data

libc.data
libc:strlen
libc:atoi
 ...

libz data

libc code

int atoi() { ... }

size_t strlen() { ... }

libz code

void aa() { ... }

int bb() { ... }

libc.data
libc:strlen
libc:atoi
 ...libz.data

libz:aa
libz:bb
 ...

main data

main code

void main() { ... }

Figure 1: Memory objects (bold boxes) and module descriptors (other boxes) during execution of a dynamically

linked Mungi program.

After verifying that its module is not already instanti-

ated, the constructor

� allocates and initialises a new data segment,

� initialises the module descriptor passed by the

caller, and

� updates the table of instantiated modules.

Only the second step needs to be performed for a module

which has already been instantiated, in which case the

address of the module’s data segment is obtained from

the table of instantiated modules.

The constructor is passed a third parameter, the expected

size of the module descriptor. The constructor will only

initialise the descriptor up to this specified size. This

supports evolution of library modules — further entry-

points can be added to a library without breaking ex-

isting applications, provided that new entrypoints are

added at the end.

Initialisation of the main module is somewhat different.

Like a constructor, the startup code needs to allocate and

initialise a data segment. In addition, the startup code

must initialise the table of already instantiated modules.

There is no problem with a module having startup code

as well as a constructor, such a module can then be im-

ported by other modules as well as being executed as a

program.

4.2 Lazy initialisation

The first step above, allocation and initialisation of the

new data segment, involves calling the constructors of

all imported modules. To avoid the obvious recursion

problem with cyclic reference, the constructor must at

this stage mark its module’s entry in the table of instan-

tiated modules as partially initialised.

Alternatively, modules can be instantiated lazily, in anal-

ogy to “lazy loading” of library modules in Unix sys-

tems.5 As lazy loading in Unix, this reduces task startup

cost and reduces total overhead if a module is linked but

5While there is some similarity to lazy loading, it is important to

note that there is no explicit “loading” step in a SASOS — everything

is already in virtual memory, and is made resident by the demand pag-

ing system on access. As far as physical memory is concerned, lazy

loading is normal in a SASOS, but does not have the same drawback

of delaying irrecoverable errors when libraries are removed.

not actually accessed at run time (at the cost of delay-

ing fatal “module not found” errors until well into the

execution).

A lazily initialised module has its descriptor point to ini-

tialisation stubs rather than module entry points. Each

stub calls the lazy initialisation routine (which is stati-

cally linked to the module), passing it an index to its own

position in the module descriptor. On the MIPS R4600,

such a stub looks as follows:

1: li $reg, constIndex

2: b lazyInitialiser

The initialiser, after setting up the module’s data seg-

ment, replaces the pointer to the stub by the address of

the appropriate entrypoint in the library module. The

stubs require an extra 8 bytes of space per entrypoint —

really a negligible space overhead.

4.3 Invoking library functions

To invoke a function called printf imported from the

library module libc, the following code is executed on

the MIPS R4600:

1: ld $temp,libc descr+\

printf index($dseg)

2: sd $dseg,const($sp)

3: ld $dseg,libc descr($dseg)

4: jalr $temp

5: ld $dseg,const($sp)

The first line loads the address of the printf func-

tion into a temporary register. This address (relative to

the beginning of the data segment) is determined by the

linker, and is at a constant offset from the data segment

register. The next line saves the data segment register of

the calling module on the stack, and line 3 sets up the

segment register for the called module. Line 4 invokes

the library function and line 5 restores the data segment

register after its return. This code executes in 5 cycles

on the R4600 (single-issue) CPU.

Note that on the R4600, a jump to a constant immediate

64-bit address (as would be used in a naive implementa-

tion of static linking) takes 7 cycles. Irix reduces this to

2–3 cycles (depending on the ability to make use of load

delay slots) by using a global pointer register pointing to

a table of entry point addresses. Comparing this with the

5 cycles required to call a dynamically linked function in

Mungi indicates that the run-time overhead of dynamic

linking in Mungi is only an additional 2–3 cycles per call

of an imported function. This is a very small overhead.

The above invocation code only works if the printf

entry is less than 64kB from the beginning of the data

segment. This allows for about 8,000 imported func-

tions (actually less, as some space is required for private

static data). If the table becomes bigger, a somewhat

longer code sequence is required, which takes 7 cycles

to execute:

1: ld $temp,libc interf ptr

($dseg)

2: sd $dseg,const($sp)

3: ld $tmp2,printf index($temp)

4: jalr $tmp2

5: ld $dseg,0($temp)

6: ld $dseg,const($sp)

Note that the CPU stalls after line 3, although the com-

piler may be able to schedule some other instruction into

the load delay slot.

We found that the biggest libraries generally used in

Unix systems, libc and libX11, have between 1,000

and 1,500 entry points. (Many of these are actually in-

ternal and would not be exported if the C language pro-

vided better control over export of functions from li-

braries. Mungi’s module descriptors, described in Sec-

tion 5 provide such control and will therefore result in

smaller interfaces for the same functionality.) We there-

fore expect that the shorter code sequence will almost

always suffice.

5 Discussion

One remaining issue is that of modules exporting vari-

ables. For example, POSIX [POS90] specifies that the

global variable errno is used to inform clients of the

reason for the failure of an operation. This cannot be

supported by Mungi’s dynamic linking scheme.

It is, of course, always possible to avoid this problem by

resorting to static linking — a highly unsatisfactory way

out. However, exporting global variables from library

modules is very bad practice, as it is not multi-threading

safe. For that reason, Unix systems must break POSIX

compliance if they want to support multithreaded pro-

cesses. Modern Unix systems inevitably6 use a construct

like

extern int *__errno();

#define errno (*(__errno()))

to declare errno when multithreading is supported.

The same works in Mungi without problems.

Another issue concerns function pointers, which are

used, for example, by the C qsort() utility and to

implement virtual functions in C++. Function pointers

can no longer be simply entrypoint addresses, as invok-

ing a function requires loading the data segment register

prior to branching to the entry point. Hence a “function

pointer” must consist of an (address, global pointer) pair.

This does not cause problems with portability of prop-

erly written application code, as the C standard [ISO90]

makes no assumption about the size of function pointers

and explicitly prohibits casts between function pointers

and other pointers. Unfortunately, most compilers do not

enforce this rule and, consequently, there exists plenty

of non-conforming code. However, “bug-compatibility”

is not a design goal of Mungi, and we therefore do not

consider this a significant problem. The format change

of function pointers is the only change required to stan-

dard Unix compilers to allow them to support Mungi’s

dynamic linking scheme.

More changes are required for linking. We decided not

much was to be gained by porting a Unix linker, and

instead implemented a Mungi linker from scratch. Its

size is about 4,000 lines of C.

The mechanics of preparing code for execution differs

somewhat between Mungi and Unix. The main reason

for this is the need to generate a different calling se-

quence for functions exported by dynamically linked li-

braries. In order to do this, the assembler must know

which entrypoints will be loaded from a dynamic library.

This is supported by a module description object (MDO)

associated with each library module. The MDO is a sim-

ple text object (which is presently created manually, al-

though tools will automate this in the near future). It

contains a list of entry points exported by the module,

and a list of imported modules. Figure 2 gives examples

of module descriptions.

C source objects are presently compiled to assembly lan-

6We checked Irix, Digital Unix, Solaris and Linux.

libc.mm

[IMPORTS]

[EXPORTS]

strlen

atoi

...

[OBJECTS]

c1.o

c2.o

...

main.mm

[IMPORTS]

libc.mm

libz.mm

[EXPORTS]

[OBJECTS]

main.o

sub.o

...

Figure 2: Sample module descriptions: At the left,

a typical description (libc.md) of a library module

libc.mm is given, while at the right the module de-

scription (main.md) of a program module main.mm

is shown. Names correspond to Figure 3.

guage by an unmodified GNU C compiler.7 The gcc

output is then processed by the GNU assembler, which

we modified to generate the proper calling sequence for

cross-module calls and to access private static data from

the module’s data segment. The assembler reads the

MDO in order to identify cross-module calls and pro-

duces relocatable binary objects.

When creating a library, the Mungi linker is used to (stat-

ically) link all of the library’s relocatable objects into a

single library module object; the linker determines the

exported entry point from the MDO. It also adds the

initialisation code for the library module, as well as the

initialisation stubs which invoke it and the module con-

structor.

When preparing an executable module, the linker reads

the MDOs of all imported libraries and creates the ap-

propriate initialisation stubs for all imported functions,

and (statically) links all remaining relocatable modules

into the new program module, which is then ready for

execution. Unlike Unix, no “run-time linker/loader” is

required, as each module has its own initialisation code.

The mechanics of Mungi linking are shown in Figure 3.

The Macintosh on the PowerPC uses a similar approach

to dynamic linking [App94]. Function references in

MacOS are represented by a “transition vector”, which

consists of the entrypoint address and the address of a

“table of contents” (TOC), essentially the module’s data

segment.8 The TOC contains pointers to imported func-

7As indicated a few paragraphs earlier, this implies that it is

presently not possible to invoke function arguments outside their own

module without modifications to the C source.
8The Macintosh terminology for modules is “fragments” but in or-

c1.s

gas

gcc

c1.o

ml

libc.mm

c1.c

c2.o

libc.md

ml

main.o

gas

main.mdlibc.md main.s

a.out

Figure 3: Dataflow for linking in Mungi. Left: A source object c1.c is compiled and linked with other relocatables

into a dynamically linkable library object libc.mm. Right: A program main.c is compiled and linked into an

executable module a.out.

tions, in the form of transition vector addresses, as well

as pointers to the module’s static data. C language func-

tion pointers are also represented as transition vector ad-

dresses.

The present module’s TOC address is contained in the

“table of contents register” (RTOC, equivalent to our

data segment register). The invocation sequence for im-

ported functions uses a double indirection. The caller

loads the RTOC with the address of the callee’s transi-

tion vector (i.e., the contents of the function pointer).

The callee then loads the RTOC with the new TOC

address by an indirect load through the present RTOC

value. The main difference to our scheme is the extra

indirection.

While the MacOS scheme is similar to ours, this does not

obviate the need for position-independent code (called

“pure executable code”) on the Macintosh. This is be-

cause MacOS is not a SASOS, and can therefore not en-

der to avoid a proliferation of terms we will stick to calling them “mod-

ules”.

sure that a dynamic library module is always linked at

the same address.

6 Performance

Performance figures are shown in Table 1. The table

gives execution times of a benchmark program (OO1

[CS92] run as a single process as in [HEV+98]) for

static and dynamic linking under Irix 6.2 and Mungi. All

runs were performed on the same hardware running ei-

ther Irix or Mungi in single-user mode. Lazy loading

(for Irix) and lazy initialisation (for Mungi) were turned

off to make timings more consistent. (As explained ear-

lier, lazy loading/initialisation does not normally reduce

overall runtime, only start-up latency.) Irix runs used the

Irix 6.2 C compiler, assembler and linker, while Mungi

runs used GCC version 2.8.1, the GNU assembler ver-

sion 2.8.1 (modified to support dynamic linking) and our

linker.

Irix/32-bit/SGI-cc Mungi/64-bit/GCC

static dynamic dyn/stat static dynamic dyn/stat

lookup 7.26(3) 8.02(3) 1.104(10) 7.568(6) 8.199(4) 1.083(3)

forward traverse 4.77(3) 5.17(4) 1.084(15) 6.013(6) 6.040(3) 1.004(6)

backward traverse 5.13(2) 5.68(4) 1.107(12) 6.976(4) 7.011(4) 1.005(1)

insert 4.61(2) 5.02(2) 1.087(10) 4.528(4) 4.755(3) 1.051(1)

total 21.7(1) 23.9(1) 1.097(12) 25.08(1) 26.00(1) 1.037(1)

Table 1: Average execution times in ms of OO1 operations (single-process version, see [HEV+98]). Figures in

parentheses indicate standard deviations in units of the last digit. Irix figures are for 32-bit execution using the SGI C

compiler, while Mungi figures are for 64-bit executing using GCC.

OO1 tests operations which are considered typical for

object-oriented databases: lookup and insertion of ob-

jects, and traversal of inter-object references. The spec-

ification of OO1 requires a database server running on a

machine different from the client, and also specifies that

all updates are to be flushed to disk at certain points. As

we are here only interested in the cost of function invo-

cation, we ignored that part of the specification and ran

everything in memory, without any I/O, and in a single

process. In every other respect we followed the OO1

specification.

We implemented the “server part” of the database in

a library module which is invoked by application code

via normal function calls. In line with the OO1 spec-

ification, server invocations pass a function pointer to

the database which the database invokes to obtain fur-

ther data or pass data back to the client. The lookup

part of the benchmark consists of 1000 server invoca-

tions, each looking up a different object, and each call

invoking a client function passed as a parameter. The

forward traversal operation consists of a single invoca-

tion of the server code, which invokes a client proce-

dure 3,280 times (for different objects directly or indi-

rectly linked to the object referenced in the server in-

vocation). Backward traversal is similar; the actual in-

vocation counts are different but, in average, the same

as for forward traversal. The insert benchmark consists

of 100 calls to the database, each inserting a new object

into the database and in the process calling a client pro-

cedure three times. Hence the total benchmark performs

about 8960 cross-module calls. The lookup and insert

operations mainly exercise the index data structure (a

B+ tree in our implementation) while the traversal op-

erations mostly follow internal links and thus perform

mostly random accesses to the data without much use of

the index structure.

This benchmark was selected as it is “tough” in the

sense that it is dominated by cross-module calls to func-

tions performing very little work. As it is the cross-

module tasks which bear the dynamic linking overhead

in Mungi, this test stresses the overheads of the SASOS

dynamic linking scheme. A benchmark consisting of

the same number of function calls, with a larger frac-

tion of calls being inter-module, would reduce the total

overheads in Mungi while leaving Irix’ overheads un-

changed.

The table shows that on Irix there is an average 10 %

penalty for using dynamically linked libraries, while on

Mungi the penalty is less than 4 %. The average over-

head due to dynamic linking of an inter-module function

invocation in Mungi comes to about 0.1�s or about ten

cycles on the R4600. This is more than the number of

extra instructions required in the calling sequence for dy-

namically linked code. The difference can be explained

with an increased number of cache misses.

The significantly lower overhead of dynamic linking

in Mungi as compared to Irix is mostly due to the

fact that the Mungi scheme does not require position-

independent code. The somewhat higher overhead of

inter-module function invocation in Mungi (2–3 cycles

more than in Irix) is more than compensated by not

requiring position-independent code. Furthermore, the

overhead in the Mungi scheme only applies to inter-

module invocations, where in Irix inter-module calls to

exported functions have the same overhead.

We also attempted to measure the initial overhead of dy-

namic libraries, i.e. the invocation overhead of the con-

structor which initialises the data segment. However,

this overhead is so small that we could not measure it

reliably for either Irix or Mungi. In both cases it is at

most a few tens of microseconds.

While Mungi has a significantly lower penalty for dy-

namic linking than Irix, a seemingly disturbing obser-

vation from Table 1 is that code seems to execute gen-

Irix Mungi Mungi/Irix

good bad good bad

lookup 7.367 7.169 7.452 0.973 1.012

forward traverse 5.904 6.085 6.079 1.031 1.030

backward traverse 6.796 6.992 6.991 1.029 1.029

insert 4.755 4.724 4.801 0.993 1.010

total 24.822 24.970 25.323 1.006 1.020

Table 2: Average execution times in ms of OO1 operations on for 64-bit execution of statically linked code on Irix

and Mungi. Code is compiled with GCC and assembled with the SGI assembler and finally linked with the native

(SGI or Mungi) linker. “Good” vs‘̇‘bad” in the Mungi numbers refers to the cache friendliness of the stack alignment

and the last two column give Mungi execution time normalised to Irix times.

erally slower under Mungi than under Irix. However,

it must be kept in mind that all Mungi executions are

true 64-bit, while Irix only supports 32-bit execution on

the Indy. 32-bit code is inherently faster on the MIPS

R4600 as loading a constant address requires more cy-

cles for 64-bit than for 32-bit addresses. The tests were

also run with different compilers: Mungi benchmarks

could only be compiled with GCC, as SGI’s C com-

piler/assembler/linker toolchain does not support our dy-

namic linking scheme, while the GNU assembler and

linker do not support Irix. Finally, different implemen-

tations of the strcpy() C library functions are used.

In order to eliminate the effects of 32-bit vs. 64-bit exe-

cution and differing tool chains and C libraries, we did a

direct comparison, running an identically compiled ver-

sion of the statically linked benchmark code in 64-bit

mode on both systems. This meant compiling and as-

sembling the code, including the C library, using GCC

and the SGI assembler, and then linking it for Irix with

the SGI linker, and for Mungi with our linker. As the

benchmarks only time user code (no system calls are

performed between time stamps, and the timer overhead

is subtracted), this means that identical instructions are

executed on both systems.

As Irix does not support 64-bit code on our platform,

we had to patch the executable to pretend to the loader

that it was a 32-bit image. This approach works under

certain circumstances (as long as only a very limited set

of system calls are used), but only for statically linked

code. One required system call where extra work was

required is gettimeofday(): As the format of the

timeval struct differs between the 32-bit and the 64-

bit Irix APIs, we had to use the 32-bit C library interface

for this call.

In order to verify that these modifications do not affect

performance of the Irix executable, we ran the “proper”

64-bit image as well as the patched one on an SGI ma-

chine supporting 64-bit executions. We found that the

execution times of the two versions were identical.

The results of running the same code in 64-bit mode on

Irix and Mungi are shown in Table 2. Two sets of Mungi

results are presented: “good” and “bad”, which differ

only in the address at which the user stack is allocated.

The stack address affects the results as it affects conflict

misses in the Indy’s data cache. The R4600 features sep-

arate on-chip instruction and data caches, both 2-way set

associative and 16kB big [R4k95]. The Indy does not

have secondary caches and thus has a high cache-miss

penalty. The Mungi execution times recorded as “good”

and “bad” in Table 2 correspond to the most and least

cache friendly stack layout, respectively. They differ by

about 1.5 %, which gives an indication of the impact of

cache effects on the results. Irix runs used the default

layout (which is cache friendly).

Comparing the Irix times with the “good” Mungi times

it can be seen that they are very close. Mungi is be-

tween one and three percent faster on lookup and insert,

and about three percent slower on the traverse bench-

marks. For the total benchmark time these almost av-

erage out, with Mungi being 0.6 % slower. Given the

fact that Mungi is several percent faster on some bench-

marks and Irix on others, that overall difference is negli-

gible and insignificant. They are much smaller than the

performance gain of Mungi’s dynamic linking scheme

compared to the one used in Irix.

It is nevertheless interesting to speculate about the

sources of these remaining differences. We can think

of two possible reasons for the observed discrepancies

in execution times: TLB misses and other cache effects.

The R4600 has a software-loaded, fully associative, 48-

entry tagged TLB; each entry maps a pair of virtual

pages [R4k95]. Hence the TLB can map a maximum of

96 pages, or 384kB. As the total database is about 4MB

in size, and the benchmark is designed to access its con-

tents randomly, a significant number of TLB misses is

expected, particularly in the traverse operations.

Mungi is implemented on top of the L4 microkernel

[EHL97], hence TLB misses are handled by L4. The

microkernel’s TLB miss handler is highly optimised and

loads the TLB from a software cache [BKW94, EHL99]

which is big enough to hold all page table entries re-

quired for the benchmark. However, the need to support

64-bit address spaces makes L4’s TLB miss handler in-

herently slower than what can be achieved in a system

only supporting 32-bit address spaces. Slightly slower

handling of TLB misses in L4, and thus Mungi, is a

likely explanation for the somewhat slower Mungi ex-

ecution in the traverse benchmarks (which particularly

exercise the TLB).

Other cache effects which could impact on the results are

instruction cache conflicts. While we made certain that

the same user-mode instructions are executed in both

benchmarks, the layout of the executable still differs as a

result of linking different system libraries and the linkers

using different strategies for collecting relocatable mod-

ules. These differences can lead to different cache miss

patterns. The traverse benchmarks contain the largest

number of cross-module invocations (and hence non-

local jumps) and are most likely to be affected.

7 Conclusions

In this paper we have reviewed linking in a Unix sys-

tem and examined the issues relating to linking in a sin-

gle address space system. We have presented a dynamic

linking scheme for Mungi and have discussed its mer-

its and limitations. Benchmarking shows that the run-

time overhead of Mungi’s dynamic linking scheme is

less than half of dynamic linking in Irix, in a scenario

which favours Irix.

The performance advantages of the Mungi dynamic

linking scheme could also be obtained in traditional sys-

tems on 64-bit architectures if they used a global address

space for dynamically-linked libraries. As in quickstart,

a region of the address space must be reserved for library

modules, and each participating module must be linked

at the same address in all processes. Such a scheme can

eliminate the need for position independent code even

in traditional systems. It requires a system-wide man-

ager which hands out unique address regions for linking

libraries. Each of a participating library’s clients must

follow the protocol of always linking the library at this

same address. A single-address-space operating system

guarantees this automatically; in such a system every ob-

ject is always mapped to a fixed virtual memory address.

8 Acknowledgements

Luke Deller gratefully acknowledges his School of

Computer Science & Engineering Vacation Scholarship

under which most of the work presented here was per-

formed. The project also received support from the

Australian Research Council under the Small Grants

Scheme.

We appreciate the helpful suggestions and comments

from our shepherd Chris Small and from anonymous

USENIX reviewers.

9 Availability

Mungi will be freely available in source form

under the GNU General Public License from

http://www.cse.unsw.edu.au/˜disy/Mungi.html.

References

[App94] Apple Computer Inc. Inside Macintosh:

PowerPC System Software. Addison-

Wesley, 1994.

[Ber80] Viktors Berstis. Security and protection in

the IBM System/38. In Proceedings of the

7th Symposium on Computer Architecture,

pages 245–250. ACM/IEEE, May 1980.

[BKW94] Kavita Bala, M. Frans Kaashoek, and

William E. Weihl. Software prefetching

and caching for translation looka-

side buffers. In Proceedings of the

1st Symposium on Operating Systems

Design and Implementation, pages

243–253, Monterey, CA, USA, 1994.

USENIX/ACM/IEEE.

[Cha95] Jeffrey S. Chase. An Operating Sys-

tem Structure for Wide-Address Architec-

tures. PhD thesis, University of Washing-

ton, 1995. URL http://www.cs.duke.edu/-

chase/research/thesis.ps.

[CLBHL92] Jeff S. Chase, Hank M. Levy, Michael

Baker-Harvey, and Edward D. Lazowska.

How to use a 64-bit virtual address space.

Technical Report 92-03-02, Department of

Computer Science and Engineering, Uni-

versity of Washington, Seattle, WA, USA,

1992. URL ftp://ftp.cs.washington.edu/tr/-

1992/03/UW-CSE-92-03-02.PS.Z.

[CLFL94] Jeffrey S. Chase, Henry M. Levy,

Michael J. Feeley, and Edward D. La-

zowska. Sharing and protection in a

single-address-space operating system.

ACM Transactions on Computer Systems,

12:271–307, November 1994.

[CS92] R. G. G. Cattell and J. Skeen. Object oper-

ations benchmark. ACM Transactions on

Database Systems, 17:1–31, 1992.

[DEC94] Digital Equipment Corp. DEC OSF/1 Pro-

grammer’s Guide, 1994. Order No AA-

PS30C-TE.

[EHL97] Kevin Elphinstone, Gernot Heiser, and

Jochen Liedtke. L4 Reference Man-

ual — MIPS R4x00. School of Com-

puter Science and Engineering, Uni-

versity of NSW, Sydney 2052, Aus-

tralia, December 1997. UNSW-CSE-

TR-9709. Latest version available from

http://www.cse.unsw.edu.au/˜disy/.

[EHL99] Kevin Elphinstone, Gernot Heiser, and

Jochen Liedtke. Page tables for 64-

bit computer systems. In Proceedings

of the 4th Australasian Computer Ar-

chitecture Conference, pages 211–226,

Auckland, New Zealand, January 1999.

Springer Verlag. Available from URL

http://www.cse.unsw.edu.au/˜disy/.

[HEV+98] Gernot Heiser, Kevin Elphinstone, Jerry

Vochteloo, Stephen Russell, and Jochen

Liedtke. The Mungi single-address-space

operating system. Software: Practice and

Experience, 28(9):901–928, July 1998.

[ISO90] International Standard, ISO/IEC 9899,

Programming Languages — C, 1990.

[POS90] Portable Operating System Interface

(POSIX)—Part 1: System Application

Program Interface (API) [C Language],

1990. IEEE Std 1003.1-1990, ISO/IEC

9945-1:1990.

[R4k95] Integrated Device Technology.

IDT79R4600 and IDT79R4700 RISC

Processor Hardware User’s Manual,

April 1995.

[Ros95] Timothy Roscoe. The Structure of a

Multi-Service Operating System. Phd

thesis, University of Cambridge Com-

puter Laboratory, April 1995. TR-376,

URL http://www.cl.cam.ac.uk/ftp/papers/-

reports/TR376-tr-multi-service-os.ps.gz.

[RSE+92] Stephen Russell, Alan Skea, Kevin Elphin-

stone, Gernot Heiser, Keith Burston, Ian

Gorton, and Graham Hellestrand. Distri-

bution + persistence = global virtual mem-

ory. In Proceedings of the 2nd Interna-

tional Workshop on Object Orientation in

Operating Systems, pages 96–99, Dour-

dan, France, September 1992. IEEE.

[Sol96] Frank G. Soltis. Inside the AS/400. Duke

Press, Loveland, CO, USA, 1996.

[WM96] Tim Wilkinson and Kevin Murray. Evalu-

ation of a distributed single address space

operating system. In Proceedings of

the 16th International Conference on Dis-

tributed Computing Systems, pages 494–

501, Hong Kong, May 1996. IEEE.

[WSO+92] Tim Wilkinson, Tom Stiemerling, Peter E.

Osmon, Ashley Saulsbury, and Paul Kelly.

Angel: A proposed multiprocessor oper-

ating system kernel. In European Work-

shop on Parallel Computing, pages 316–

319, Barcelona, Spain, 1992.

[X/O90] X/Open. System V Application Binary In-

terface, 3.1 edition, 1990.

