
Position Summary: Secure OS Extensibility Needn’t Cost an Arm and a Leg

Antony Edwards and Gernot Heiser

University of NSW, Sydney 2052, Australia�
antonye,gernot � @cse.unsw.edu.au

Abstract

This position paper makes the claim that secure exten-
sibility of operating systems is not only desirable but also
achievable. We claim that OS extensibility should be done
at user-level to avoid the security problems inherent in other
approaches. We furthermore claim (backed up by some ini-
tial results) that user-level extensibility is possible at a per-
formance that is similar to in-kernel extensions. Finally,
user-level extensions allow the use of modern software en-
gineering techniques.

Extensibility is a way to build operating systems that are
highly adaptable to specific application domains. This al-
lows, for example, the use of subsystems that are highly
tuned to a particular usage patterns, and thus should be able
to outperform more generic systems.

In the past, user-level extensibility in systems like Mach
and Chorus has lead to poor performance. This has trig-
gered approaches like loadable kernel modules in Linux,
which require complete trust in extensions, or secure ex-
tensible systems like Spin or Vino, which use trusted com-
pilers or in-kernel protection domains to achieve security.
We believe that secure extensibility is possible, with good
performance, at user level.

We think that extensibility will only work if they are se-
cure, minimal restrictions are imposed, performance is not
degraded, and modern software engineering techniques are
supported.

We have developed an extension system based on com-
ponents [2] for our Mungi single-address-space operating
system. The component model provides interfaces based
on CORBA, and supports modularisation and reuse to make
is suitable for building large systems. It supports dynamic
binding of extensions, and independent customisation (dif-
ferent users can invoke different, even mutually incompati-
ble extensions).

The single address space helps to achieve performance
goals, as it minimises the payload sizes and the amount of
marshaling required for component invocations (data is usu-
ally passed by reference). In combination with an appropri-

ate protection model, it also makes it easy to expose system
resources, to make them accessible to extensions.

The security of the extension model is ensured by a pro-
tection system that combines discretionary access control
(via password capabilities), with mandatory access con-
trol. The former supports least privilege while the latter is
used to enforce system-wide security policies. These secu-
rity policies are defined by user-level security objects that
are themselves extensions. Both aspects of the protection
model are used to restrict the data the extensions can ac-
cess, as well as who can access the extensions. Mandatory
security supports the confinement of extensions, to prevent
them from leaking data, even between different clients in-
voking the same extension.

Mungi Spin Vino COM omniORB ORBacus
100 101 885 1993 768 9319

The table compares invocation costs (microseconds) var-
ious extensible architectures. These are to be taken with
a grain of salt, as they have been measured on different
hardware and normalised according to SPECint-95 ratings.
However, these results clearly show that Mungi’s perfor-
mance is superior to existing component architectures, and
at least equivalent to existing extensible operating systems.
This is being achieved while providing full protection, and
without relying on type-safe languages.

For more information see [1].

References

[1] A. Edwards and G. Heiser. A component architecture for sys-
tem extensibility. Technical Report UNSW-CSE-TR-0103,
School Comp. Sci. & Engin., University NSW, Sydney 2052,
Australia, Mar 2001. URL ftp://ftp.cse.unsw.edu.au/pub/
doc/papers/UNSW/0103.pdf.

[2] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley/ACM Press, Essex, England,
1997.


