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Abstract

Virtual memory is a feature of most operating systems. It presents a level of indi-

rection between the addresses that an application views, and the physical memory

addresses used by the hardware. The benefits of virtual memory include: secu-

rity, reliability, application transparent relocation of physical memory, and cache

partitioning.

The page table is a critical component of a paged virtual memory system. The

page table contains the set of translations that map virtual addresses to physical

addresses. The implementation of a page-table structure affects the cost of virtual

memory to applications. This thesis explores the cost of various page-table struc-

tures to applications in a 64-bit microkernel environment. The primary goal of the

thesis is to identify the page-table structures most suited to a microkernel environ-

ment, i.e. an environment that is expected to efficiently support a diverse range of

applications and operating systems, including single-address-space operating sys-

tems which are expected to feature large sparse address spaces.

This thesis examines the performance of real implementations of multilevel,

hashed, clustered and guarded page tables in a real 64-bit microkernel, on an ar-

chitecture (MIPS R4x00) featuring a software-loaded TLB. Simulation is not used

to estimate performance. We examine page-table performance in terms of TLB-

refill cost, page-table memory consumption, microkernel mapping primitives and

address-space setup and tear-down costs.

The results show that each page-table structure has its strong and weak points.

The results identify the spill-over effect in guarded page tables, and demonstrates

the importance of cache priming in hash-based page tables. In conclusion, the

results show that guarded page tables augmented with a software second-level TLB

is the best choice in a microkernel environment. They do not perform significantly

worse than other page-table structures in the benchmarks undertaken, and perform

significantly better than the other page-table structures when sparse operations are

involved.
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Chapter 1

Introduction

Virtual memory [Den70] is a technique that provides a level of indirection between

program memory addresses and real memory addresses. Programs address memory

using virtual addresses which are translated to real physical addresses upon each

memory access. Virtual memory is ubiquitous. Most processors support the use of

virtual memory; most operating systems make use of virtual memory.

The use of virtual memory is advantageous for many reasons. It supports con-

current programs on a single computer with their own protected virtual address

space. Relocation of programs in physical memory is trivial and transparent to the

application programmer. Portions of programs can also be transparently moved to

disk, which frees physical memory for other programs, and also allows a single

program to use more memory than is physically available.

Modern virtual memory is typically implemented by paging [Mil90, JM98b]. A

paged virtual-memory system divides both the virtual and physical address spaces

into equal-sized blocks of memory. The blocks are usually termed pages in the

virtual space, and frames in the physical space. Virtual memory accesses to pages

are translated to physical memory accesses to frames. The set of translations that

form a mapping between virtual pages and physical frames is stored in the page

table. Given a virtual address, the page table is searched to locate the corresponding

physical address.

The act of searching the page table each memory reference would be pro-

hibitively expensive. Instead, an associative memory is used to cache a subset

of the translations contained in the page table. The associative memory is usually

termed a translation lookaside buffer (TLB) [CP78]. Each virtual memory refer-

1
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ence is translated by the TLB into a physical memory reference. If the required

translation is not present in the TLB, a TLB miss occurs, which loads the miss-

ing entry from the page table into the TLB, after which the translation process is

completed and the memory reference continued.

TLB misses are handled by either software or hardware, or a hybrid of both.

Hardware-based TLB-miss handlers use a state machine inside the processor to

search the page table contained in memory, and subsequently load the missing

translation. The state machine and page-table structure are predetermined when

the processor is designed.

A more flexible approach is software-based TLB-miss handling. In this case,

TLB-misses are handled by the processor taking an exception which invokes a soft-

ware routine. The software routine is responsible for locating the missing entry by

searching the page table, and then loading it into the TLB via special processor

instructions. This scheme gives operating-system designers freedom to implement

any page-table structure of their choosing. Consequently, the page table can be

tuned to match the behaviour of the operating system.

This dissertation focuses on pages-table structures used in conjunction with a

software-loaded TLB. In particular, this dissertation concentrates on their use in a

64-bit microkernel.

The concept of a microkernel (or as originally termed, a nucleus) was first

demonstrated on the RC4000 computer [Han70]. The following quote describing

HYDRA [WCC+74], a later microkernel-based system, also describes the basic

philosophy of microkernels.

. . . at the heart of the system, one should build a collection of facili-

ties of “universal applicability” and “absolute reliability” — a set of

mechanisms from which an arbitrary set of operating system facilities

and polices can be conveniently, flexibly, efficiently, and reliably con-

structed.

Mach [ABB+86] later popularised the microkernel concept, and formed the

base of a significant body of operating-system research. However, microkernels

gained the reputation of being slow, inflexible, and not at all “micro”. This reputa-

tion was later shown to be ill deserved by the L4 microkernel [Lie95b, HHL+97].

L4 boasts fast IPC, flexibility, and is micro both conceptually and in size.
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This thesis explores the effect different page tables have on a 64-bit version

of the L4 microkernel. L4 is minimalistic in design. It features only three major

abstractions: threads, address spaces, and inter-thread communication. These ab-

stractions can be considered fundamental to operating systems in general. Hence,

examining the effect of different page tables on the L4 microkernel can also be con-

sidered an examination of the effect of different page tables on operating system

fundamentals.

1.1 Motivation

The desire to efficiently support the Mungi single-address-space operating system

[HEV+98] is the motivation for studying page-table structures in the L4 microker-

nel. Like similar single-address-space systems [MWO+93, CLFL94], Mungi uses

a single 64-bit address space which contains all data in the system. There is no

traditional file system in Mungi, instead data simply persists in the virtual address

space for as long as it is needed.

Objects are the basic storage abstraction in Mungi. Objects consist of contigu-

ous sets of pages in the virtual address space. The system imposes no structure on

objects. Objects can be contiguous or sparsely populated, or even totally empty.

Objects persist at the virtual address at which they are initially allocated, thus pre-

serving intra- and inter-object pointers.

While the Mungi address space could be contiguously populated with objects,

the set of active objects at any point in time is likely to be a small subset of the total.

Hence, the active address space at any one time is likely to consist of almost ran-

domly scattered objects, with the objects themselves possibly sparsely populated.

It has been pointed out that traditional hierarchical page tables are unsuited

to a single-address-space environment, and that hash-based page tables would be a

good match [CLFL94]. Traditional hierarchical page tables are prone to high mem-

ory overhead in sparse address spaces. However, hierarchical page tables have the

potential advantages of sharing page-table nodes among independent page tables,

and performing hierarchical operations. Hash-based page tables have good mem-

ory consumption characteristics that are reasonably independent of virtual address-

space layout. However, hash-based page tables treat virtual pages individually.

Thus, operations on a group of pages requires probing for each potential page in
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the group.

Given these trade-offs exist, the choice to optimise the page table for Mungi

alone might penalise more conventional operating systems and applications running

on the microkernel. Instead, I chose to take a microkernel approach and “make no

assumptions about the particular strategy needed to optimise a given installation”

[Han70]. The goal of this thesis is to examine, understand, and identify which

page-table structures minimise the overall cost of the microkernel to applications,

and also to examine the limitations of generality: can a single page-table design

efficiently serve all needs? Such an optimised system might efficiently support

both single address space and conventional operating systems alike.

1.2 Thesis Overview

This thesis aims to identify which page tables are most suitable for a 64-bit mi-

crokernel to concurrently support a wide variety of environments, but especially

a single-address-space environment. The strategy taken to achieve this aim is to

take a real implementation of a microkernel and examine its performance, rather

than build a simulated environment. Typically, page-table investigations have used

either trace-driven [HH93] or trap-driven [THK95] simulation. These techniques

suffer from limitations including: only considering short traces, not considering

cache effects completely, ignoring instruction costs in TLB-refill handlers, or ig-

noring kernel TLB misses. Examining a real implementation includes all these

effects, albeit with the disadvantage of only examining a particular processor ar-

chitecture in a particular machine configuration.

A new 64-bit implementation of the L4 microkernel was developed that allows

different page-table implementations to be easily substituted with each other. The

microkernel features an internal, page-table independent, virtual-memory interface.

L4 provides a simple model of virtual memory to applications. As such, the internal

virtual-memory interface mostly mirrors the virtual-memory primitives provided

by the microkernel, and is much simpler than Mach-like virtual-memory systems

[RTY+88].

The facets of microkernel performance that are affected by the underlying page-

table structure are identified. They are TLB-refill performance, page-table memory

consumption, microkernel (un)mapping performance, and address-space setup and
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tear-down costs. A set of benchmarks are developed to test each identified facet

of performance. The benchmarks consist of micro-benchmarking the microkernel

primitives, monitoring performance of various applications, and monitoring syn-

thesised scenarios that are expected to exist in a single-address-space operating

system. Further details of the benchmarks are contained in Chapter 4.

Guarded page tables (GPTs) are one of the page-table types investigated. GPTs

are attractive for use in the microkernel as they are hierarchical and feature satisfac-

tory worst-case memory consumption. GPTs are extremely flexible, but at the same

time complex to implement. Given the flexibility and the complexity of GPTs, it is

not clear from the available theory how they will perform in a real implementation,

or even what is the best implementation strategy. Hence, Chapter 4 is devoted to a

practical evaluation of GPTs.

TLB-refill performance is shown to be a weaker aspect of GPTs. A software

second-level TLB (STLB) is investigated to remedy this problem. A detailed dis-

cussion of implementation issues of STLBs in general is presented, after which

STLBs are evaluated in terms of their effect on TLB-refill performance and in terms

of their effect on other aspects of page-table performance. The results of the evalu-

ation reveal the GPT+STLB hybrid page table to be very attractive for microkernel

use.

The GPT+STLB combination is then compared to other page-table types, in-

cluding multilevel-, hashed-, and clustered page tables. An implementation of each

page table that is suitable for 64-bit address spaces is described. Each page-table

is tested using the developed benchmarks. The benchmark results indicate that the

GPT+STLB combination performs significantly better than the other page tables in

some situations, and not significantly worse in the other situations. Unlike the other

page tables tested, the GPT+STLB combination did not perform poorly in any of

the tests undertaken.

The following is an outline which maps out the rest of the thesis.

Chapter 2 introduces the test bed used for the studies undertaken in this thesis.

The test bed used is the L4 microkernel. It was re-implemented and, to some

extent, internally re-designed for the MIPS R4x00 microprocessor. The chap-

ter briefly describes L4 itself and then focuses on the microkernel’s internal

design pertaining to its use as a test bed.

Chapter 3 surveys the major page-table types. The chapter begins with the origins
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of page tables themselves, and then goes on to review multilevel-, linear-,

inverted-, hashed-, clustered- and guarded page tables.

Chapter 4 is a practical evaluation of guarded page tables. The chapter describes

the guarded page tables used in testing. The benchmarks used for testing are

also described and justified. The benchmarks test TLB-refill performance,

page-table memory consumption, microkernel virtual-memory mapping per-

formance, and task creation-and-deletion overhead. The results of the bench-

marks are then presented and analysed.

Chapter 5 examines the addition of a software second-level TLB to guarded page

tables to improve TLB-refill performance. The issues involved in designing

a software second-level TLB are described in detail. The two designs chosen

are then evaluated in terms of the benchmarks introduced in Chapter 4.

Chapter 6 is a detailed performance comparison of all major page-table types.

The chapter describes the implementation of the page-table types used in

testing. The page tables are benchmarked using mostly the same tests devel-

oped in Chapter 4. The results of testing are then presented and analysed.

Chapter 7 concludes and describes future work.

The main contributions of the thesis are:

1. An in-depth performance study of guarded page tables.

2. A study of a page-table’s effect on microkernel performance outside the usual

focus of TLB refill.

3. A comparative study of most major page-table types in a software-loaded

TLB environment.

Guarded page tables are theoretically well understood. However, there is little

experience and practical understanding of them. To my knowledge, this thesis is

the first practical evaluation of guarded page tables. This thesis studies a real im-

plementation of guarded page tables on a software-loaded TLB architecture, and

provides a practical understanding of them. It identifies that they perform signifi-

cantly better than worst-case predictions, even in really sparse environments.
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In addition to TLB-refill, the studies in this thesis also examine the effect page-

table choice has on microkernel primitives. More specifically, the page table’s

effect on microkernel virtual-memory mapping performance, and task creation-

and-deletion overhead. Page-table selection is shown to have a significant effect on

these over areas of system performance.

This thesis also provides a comparative study of real page-table implementa-

tions on a software-loaded TLB architecture. To my knowledge, all other compar-

ative studies are based on either trace-driven or trap-driven simulation. Hence, this

study includes all influences on page-table performance and uses metrics based

on real time, not average cache-lines accessed or similar metrics which approxi-

mate actual performance. The strength of the cache priming effect is demonstrated.

Cache priming is not visible in metrics such as cache-lines accessed.



Chapter 2

The L4 Microkernel

This chapter describes the L4 microkernel. L4 is the test bed used for experiments

in this thesis. Firstly, this chapter briefly introduces the basic abstractions of the

microkernel. It then moves on to describe the MIPS R4x00 implementation with a

focus on the virtual memory subsystem and other test bed related issues.

2.1 L4 Abstractions

There is a central philosophy in the design of the L4 microkernel. The philosophy

is that a feature or service should only be included as part of the microkernel, if

and only if its exclusion would prevent the implementation of a systems required

functionality. The most common and overwhelming reason dictating inclusion of

a feature is security. A feature can never be moved out of the microkernel if it

compromises security. Following this design philosophy ensures minimality of

features, without restricting flexibility available to system designers.

L4 features three major abstractions: address spaces, threads, and inter-process

communication (IPC). The following sections briefly describe each of the abstrac-

tions. For further details of the microkernel, a concise description can be found in

the reference manual [EHL97].

Address Spaces

An address space at the hardware level is a mapping between virtual pages and

either physical frames or null. This mapping is implemented and enforced by the

hardware TLB, which caches the mapping represented by a page table.

8
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The abstraction of an address space presented by the microkernel is a recur-

sively defined mapping of virtual pages from the current address space, to virtual

pages in other address spaces. The recursion eventually terminates with all address

spaces being composed from one special address space (�
0

), which is a virtual

representation of physical memory.

Figure 2.1 shows an example consisting of five address spaces derived from

�

0

. The address spaces P1 and P2 are composed directly from �

0

, with P1 and P2

having physical memory divided equally between them. P1 and P2 act as pagers

to clients C1, C2, and C3 via the same mechanisms that �
0

acts as a pager to P1

and P2. P1 and P2 are free to present any abstraction of virtual-memory objects

they choose using the virtual pages they have. Example virtual-memory objects are

shared memory, anonymous paged memory, pinned memory, etc.
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Figure 2.1: An example address space composition.

The microkernel provides three primitives for construction and management of

address spaces: map, grant, and flush.

Map The map operation allows a thread in one address space to give access to

its accessible virtual pages to all threads in another address space. This op-

eration is achieved via IPC, and only achieved with the explicit consent of

both the sender and receiver threads. Subsequent to the map operation, the

virtual page appears in both the sender’s and receiver’s address space (at a

potentially different address).

Flush The flush1 operation allows the sender (mapper) of a virtual page to revoke

access to the virtual page. Flushing a virtual page removes access to the page

1The term unmap is used interchangeably with flush to describe the same operation.
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from the receiver’s address space, and from any address spaces to which the

receiver has passed on access to the page.

Grant The grant operation is similar to the map operation in that it is performed

via IPC and gives access to the granted virtual page in the receiver’s address

space. However, the virtual page being granted is removed from the sender’s

address space. The sender thus foregoes its ability to revoke access to the

page from the receiver. A grant operation effectively passes on the sender’s

control of a page to the receiver.

D

Map

Map

Grant

A

B

C

Figure 2.2: Example of L4 virtual memory primitives.

Figure 2.2 shows a simplistic example use of the L4 primitives. Address space

A contains an initial page which it has access to. A maps the page to address space

B, after which B gains access to the page with the same or reduced permissions. In

turn, B maps the same page to C. Subsequently, C grants the page to D. Granting

removes the page from C, consequently C can no longer flush the page from the

address space receiving the grant (D). A can flush the page thus simultaneously

removing access to it from both B and D, and even from A if A chooses. B can flush

the page from D and B itself, D can only flush it from itself.

Threads

Threads are the basic abstraction of execution. Threads have associated with them a

register set (consisting of at least a stack pointer and instruction pointer), an address
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space in which it executes, and a pager thread to which page faults are forwarded

via IPC. Each thread has its own unique system-wide identifier.

A pager thread is simply a thread that agrees to function as a mapper of pages

to satisfy page faults of other threads. Pager threads do not have any extra abilities

or properties when compared to other threads in the system. Indeed, any thread can

become a pager, or cease to function as a pager.

IPC

Inter-thread IPC provides a primitive for: information exchange between threads,

synchronisation, page-fault handling, and interrupt delivery. IPC is synchronous

and allows both by-value (copying), and by-reference (mapping and granting) in-

formation transfer.

Device drivers run in user mode. Device interrupts are transformed into, and

delivered via, IPC. Device registers are accessed via mapped memory.

2.2 MIPS/L4 Implementation

The original L4 microkernel was designed and implemented for the Intel x86 ar-

chitecture. The major abstractions presented by the microkernel are intended to

be general enough to be architecture independent. However, many of the internal

algorithms are specific to the x86 architecture, and some are even specific to par-

ticular processors in the x86 family. Moving the microkernel to the 64-bit MIPS

architecture required a complete re-write and some internal redesign.

The MIPS R4x00 architecture is significantly different to the x86 family. The

MIPS R4x00 family of processors feature 64-bit integer and floating point opera-

tions. They have a larger register set consisting of thirty-two general-purpose 64-bit

integer registers, and thirty-two 64-bit floating-point registers. CPU exceptions (in-

cluding system calls, TLB refills, etc.) are handled mostly in software in contrast

to the x86’s mostly hardware-based approach. Software is responsible for saving

(and restoring) state on exceptions, managing the TLB, and even managing the

cache in some situations. The software control provides operating-system design-

ers with flexibility in managing the hardware, but at the same time it provides a lot

of complexity to manage.
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The particular member of the R4x00 family used throughout this thesis is the

R4700 [R4795]. It features a primary 16KB instruction cache and a 16KB data

cache on chip. Both caches are two-way set associative, use a 32 byte line size, and

FIFO replacement within a set. Both caches are virtually indexed and physically

tagged. Secondary cache is external and optional. The actual machine configura-

tion used for experimentation is described later in Section 4.2.1.

The R4000 architecture has a 64-bit virtual address space, however the R4700

only implements a 1TB (40-bit) user mode virtual address space together with a

64 GB physical address space. It uses a joint translation lookaside buffer (JTLB)

to translate instruction and data virtual memory references to physical memory

references.

The JTLB is a 48-entry fully-associative memory. Each entry maps an even-odd

pair of virtual pages to their corresponding physical frames, giving the potential of

96 concurrently mapped virtual pages. Page size is per entry configurable from

4KB to 16MB in powers of 4.

An 8-bit address-space identifier (ASID) is associated with each entry in the

JTLB. The ASID is used together with the virtual address when checking for a

match, thus allowing multiple address spaces to exist in the JTLB simultaneously,

which reduces the need for JTLB flushing during context switching.

The handling of JTLB misses is via a TLB-refill exception and a software rou-

tine to load a new entry into the JTLB. Other TLB related exceptions are handled

by the processor general-exception mechanism, alleviating the TLB-refill routine

from determining the exception involved, and allowing it to be optimised solely

for refill. Refill software can overwrite selected TLB entries or use a hardware

provided mechanism to overwrite a randomly selected entry.

To use the kernel as a test bed for a page-table investigation, the kernel needs

to be representative, i.e. it should be as efficient as possible (or at least as effi-

cient as other kernels), and not sway the results by being a poor implementation.

L4/MIPS features IPC times of 99 CPU cycles, which is comparable to other L4

implementations [LES+97]. This is the approximate IPC overhead experienced by

applications mapping memory using IPC, i.e. if mapping a page of memory costs

5 microseconds, one microsecond of that time is due to IPC overhead. Hence,

the cost of mapping operations is clearly visible and readily comparable between

different page-table implementations.
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The cost of a null system call (id myself) is 56 cycles. This is the overhead

of entering and exiting the kernel experienced by applications calling kernel prim-

itives, including the unmap system call. Spawning a thread costs 105 cycles, thus

creating a task (which consists of a thread, an address space, and extra bookkeep-

ing) should clearly show address-space creation overhead.

2.2.1 The Mapping Trees

The L4 map primitive allows cooperating threads to securely construct a virtual

address space in terms of other virtual address spaces. The virtual address-space

composition eventually recurses such that all virtual address spaces are defined in

terms of the �
0

address space, i.e. physical memory.

The flush operation allows a thread to remove any mapping derived from an

accessible virtual page in its address space. In order for the kernel to provide this

functionality, it must record the relationship between all accessible virtual pages

in the system. The kernel achieves this by constructing and maintaining mapping

trees during virtual-memory-primitive invocation.

E
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Figure 2.3: Example address-space hierarchy.

For every accessible virtual page in the system, mapping trees record which

page a particular page was derived from, and which pages are subsequently derived

from the page. Referring to Figure 2.3, we see that the dependency relationship

between derived mappings forms a tree-like structure rooted at the a virtual page

in the initial address space (�
0

). �
0

maps each page idempotently and only once2,

2The restriction of mapping pages only once provides simple security to applications. Control

of memory is based on a first-come first-served basis.
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thus forming an initial trunk of the tree. After the initial mapping, a pager is free to

map the page to as many clients as it chooses; in turn, clients can do the same.

In designing a data structure to represent the mapping trees, the following must

be considered.

� A virtual page can have an arbitrary number of mappings derived from it.

� A node in the tree is allocated for each active mapping in the system, hence

the structure must be space efficient.

� A node in the tree is allocated, traversed, or deleted for each map or flush

operation. Tree manipulation must be time efficient.

� The kernel is to be used as a test bed for page table implementations, there-

fore the data structure cannot rely on the structure of, or properties of the

targeted page table.

The data structure chosen to implement the mapping trees was a 24 byte struc-

ture as detailed below as a C type definition, with the fields described afterwards.

typedef struct {

uint64_t vaddr;

uint32_t task;

int32_t parent;

int32_t child;

int32_t sibling;

} mt_node_t;

vaddr is the 64-bit virtual address associated with the node.

task is the address-space number in which the above virtual address is contained.

parent is a pointer to the mapping-tree node, i.e. the virtual address and address

space, from which this node is derived.

child is a pointer to a mapping-tree node derived from this node.

sibling is a linked-list pointer for a linked list starting at a child node that contains

the list of all other nodes derived from the parent node.
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Note the use of 32-bit pointers that rely on sign extension to form valid 64-bit

pointers. The MIPS R4x00 architecture allows this simple optimisation as physical

memory is accessed through a window in the upper 2 gigabytes of the 64-bit kernel

virtual address space.

The most important feature of the above structure is the use of the pair (virtual

address, task). The pair is used to locate page-table entries requiring manipulation,

and in operations to ensure TLB consistency. Another potential implementation

might have been to simply store a pointer to the page-table entry associated with

the mapping-tree node. However, doing this prevents the goal of having a mapping

structure that is independent of the page-table structure. A pointer prevents the

page-table independence goal for two reasons:

1. It forces page-table entries to be at a fixed location once allocated. This un-

fairly disadvantages page-table structures which rely on dynamic movement

of page-table entries to achieve better performance.

2. Given a pointer to a page-table entry in some page-table structures, it is not

always possible to quickly deduce the virtual address and address space as-

sociated with the entry. The virtual address and address space is required

for selective TLB consistency operations. A page table requiring global TLB

flushes would be at a significant disadvantage when compared to a page table

that supports selective flushing of only a single inconsistent TLB entry.

Figure 2.4 shows an example mapping tree for the shaded page in the previous

address-space example (Figure 2.3).

Sigma0

B1

A2

B4 E2 C2

E3 E4D2 D4

1

Figure 2.4: Example Mapping Tree.
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2.3 The Internal Page-Table Interface

The internal page-table interface is a page-table independent interface to the page-

table data structure. The usual motivation for such an interface is portability, i.e.

the desire to encapsulate the machine-dependent page tables into a simple, well

defined module [RTY+88]. In this thesis, the motivation for the interface is to

provide a clean boundary between the page tables and the rest of the kernel, so that

a page-table implementation can be easily substituted with another.

The page-table interface is not machine independent because it exposes the

page-table entries to the rest of the kernel. However, the kernel itself is mostly ma-

chine dependent, and as such, the machine dependence of the interface is irrelevant.

We are, however, unable to measure execution time on a real system

. . . it requires implementing all different page-table organisations in a

commercial operating system. Implementing even a single page-table

organisation is a multi-man-year project . . . [THK95]

Contrary to this quote, this thesis (and Mach [RTY+88]) show that with care-

fully interface design, it is possible to prototype and test competing page-table

implementations in a reasonable amount of time.

The page-table interface is briefly described below.

vm new as Creates an address space for a new task. It initialises a page table if

necessary.

vm delete as Deletes an address space. It garbages collects the memory associ-

ated with the used page table.

vm lookup pte Given a virtual address, this function returns the corresponding

page-table entry, if any.

vm map Given two address spaces and a power-of-2 region, this primitive per-

forms the L4 map operation.

vm fpage unmap Given an address spaces and a power-of-2 region, this primitive

performs the L4 flush operation.
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vm sigz insert pte This function is used to insert a page-table entry in the �0

address space. It initialises the root of the mapping tree for that particular

frame.

vm tcb insert Inserts a page-table entry for a thread control block in kernel space.

It is expected to implement semantics of being globally shared among all

address spaces.

vm tcb unmap Unmaps the thread control block from kernel space, returning all

frames to the kernel frame allocator.



Chapter 3

Page-Table Structures

This chapter provides a review of page tables. It begins with a brief introduction to

page tables, followed by reviews of the basic page-table types.

3.1 Introduction

Demand-paged virtual memory was first demonstrated on the Atlas computer

[Fot61]. The Atlas featured a 20-bit address space of 48-bit words. The Atlas

address space, core memory, and drum backing store was divided into 512-word

blocks. The blocks in the fast core memory acted as a cache of the blocks on the

slower drum memory. Applications were presented with a 20-bit virtual address

space, independent of whether a block of memory was in core or on the drum.

Address translation was used to preserve block (page) location within the virtual

address space while blocks moved into, and out of, differing locations in the core

memory.

Each 512-word block in core memory had an associated page address regis-

ter which contained the current virtual address associated with the block. Address

translation was performed by comparing the virtual page number of the current

virtual memory access with all page address registers in parallel. When a match

occurred, the associated core block was used as the virtual page. When no match

occurred, a page fault was signalled resulting in the supervisor fetching the appro-

priate block from the drum and subsequently replacing a block in core with it.

This address translation via a register per potential translation was typical of

early machines which featured either small core sizes, or small virtual address

18
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spaces, or both. For example the PDP-11 featured 8K pages and two 64K virtual-

address spaces for code and data. A translation register was used per virtual page

giving 16 translation registers on the machine.

The register-per-translation technique did not scale well to newer machines

such as the GE645 [BCD69, Org72], and the IBM 370 [CP78]. These machines

had a larger number of potential translations due to larger physical and/or virtual

memories. To overcome the scaling problem, both these machines possessed two

features that now dominate modern virtual memory implementation: the page ta-

ble, and the translation lookaside buffer (TLB). The page table was a per-segment

array of translations stored in main memory rather than in registers. To avoid ac-

cessing the page table to translate every memory reference, an associative memory

(the TLB) cached a subset of page-table entries. Hits in the TLB resulted in fast

translation; misses resulted in a page-table lookup and loading of the appropriate

page-table entry into the TLB.

Modern microprocessor virtual-memory implementations evolved from these

beginnings. The TLB and page-table structures have been intensively studied re-

sulting in a variety of implementations. Smith provided a bibliography on early

paging-related research [Smi78a]. Milenkovic provides a good survey of micro-

processor memory management in the late 1980s [Mil90]; Jacob provides a more

recent survey [JM98b]. TLBs are not the focus of the thesis so I do not describe

them further.

The following sections survey the major page-table designs. For each page

table, the basic structure and translation mechanism is described. The translation

section is described assuming the absence of a TLB for illustrative purposes. The

advantages and disadvantages of each page table is described. The likely effect of

using the page table to support 64-bit address spaces is also examined.

3.2 Multilevel Page Tables

Early page tables consisted of simple arrays of entries representing address trans-

lations. However, simple arrays do not efficiently represent large, discontiguously

populated, virtual address spaces. For example, a processes’ virtual memory lay-

out typically looks similar to the representation in Figure 3.1. The text and data

sections are located at the bottom of the address space and expand upwards. The
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stack section is located at the top of the address space and expands downwards. A

simple array-based page table representing such an address space layout is space

inefficient. The centre of the array is unused.

stack

n0

datatext

Figure 3.1: Typical user address space layout.

If the architecture supports segmentation with a per-segment page table, seg-

mentation can avoid the problem while segments remain contiguously populated.

A less complex solution, both from a hardware and software perspective, is to use

a multilevel page table.

A multilevel page table consists of two or more levels of array-like nodes form-

ing a tree-like structure. Multilevel page tables are also termed forward-mapped or

top-down page tables. Several examples are reviewed in [Mil90], including the

SPARC reference MMU and the Motorola 68000 series microprocessors. Fig-

ure 3.2 illustrates a two-level MPT. In this example, a selection of upper bits of

the virtual address (I1) is used to index the root of the tree. The root of the tree

contains pointers to nodes in the next level of the tree. The pointer-selected node

is indexed by a selection of middle bits of the virtual address (I2), which selects

the page-table entry to be later combined with the offset bits to form the physical

address.

The MPT efficiently supports the typical split address-space layout with the text

and data at one end, and the stack at the other. The second-level nodes associated

with the unused centre region of the address space are not allocated until needed.

Traditionally, an MPT also allows for part of the page table itself to be paged.

Paging the page table conserves physical memory by storing inactive page-table

nodes on disk. The inactive nodes contain the disk-block addresses of the paged out

memory. However, most systems separate address translation from backing-store

management. Only translation information is stored in the page table, enabling

the encapsulation of page management in a “hardware address translation layer”

[GMS87]. Backing-store management is handled independently. Thus, it no longer

makes sense to page the page table to disk as it is faster to reconstruct a page-table

node from information held elsewhere, rather than paging it in from disk.



CHAPTER 3. PAGE-TABLE STRUCTURES 21

Page table root

Page table
for the top 
4M of
memory.

Offset

Bits 10 10 12

I1 I2

Second-level page tables

I1
I2

PA

Virtual Address

Figure 3.2: Example multilevel page table.
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Being a tree-like structure, the MPT supports hierarchical operations. Opera-

tions on regions can be applied at higher levels in the tree, hence encompassing all

nodes contained in subbranches. This provides for fast locking and unlocking of

regions which are aligned appropriately with the page-table structure. A tree-like

structure also allows sharing of branches in the tree. Sharing allows for simplified

and more efficient management of a global memory region [YR93].

An MPT allows basic support of different page sizes by terminating translation

at higher-level nodes. MPTs efficiently support in-order traversal which provides

for operations on groups of pages.

However, the granularity of the node size in an MPT is a disadvantage. As a

consequence of the typical 4K node size of the MPT, hierarchical operations, tree

sharing, and multiple page-size support is only available at a very coarse granular-

ity. The use of these properties is not arbitrary. Operations relying on them, must

take page-table structure into account. Arbitrary sparsity is also not efficiently sup-

ported. For example, assume 32-bit page-table entries, a 4K MPT node size, and

a 4K page size. In this situation, each leaf MPT node stores page-table entries for

4M of virtual address space. If the virtual address space is constructed such that a

single 4K page is place at each 4M boundary, then at least a 4K page-table node is

needed to represent each 4K page.

Supporting a 64-bit virtual address space with an MPT involves a trade-off.

Designing an MPT to accommodate 64-bit translation requires either increasing the

node size to translate more bits at each level, and/or increasing the number of levels.

Increasing the node size has the disadvantage of increasing memory consumption

in sparse environments. Increasing the number of levels has the disadvantage of

increasing the number of memory references required for each page-table lookup.

Therefore, MPTs inefficiently support translation of large sparse address spaces in

either the space or time domain.

3.3 Linear Virtual Arrays

A linear virtual array is an array of page-table entries stored in the virtual address

space. Unlike a simple page-table array stored in physical memory, a linear vir-

tual array efficiently supports the conventional address-space split as the unneeded

centre of the array is not backed by physical memory until it is required.
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TLB misses can be serviced by indexing the array based on the missed virtual

address and loading the appropriate entry. A lookup requires a trivial calculation

based on the virtual address, and a single memory reference. This is, in theory,

both simpler and faster than searching through several levels of an MPT. However,

accessing the array virtually requires a TLB entry to be present for the LVA itself.

If a TLB entry is not present, resulting in a nested TLB miss while servicing the

original TLB miss, then either the nested miss is resolved via a page-table entry

elsewhere in the/another LVA, or the nesting misses eventually resolve as the root

of the LVA is stored in physical memory.

The classic example of an LVA is the VAX [LL82, CE85]. A simplified diagram

is shown in Figure 3.3. The page table for user space is an array in kernel virtual

space. The page table for kernel virtual space is an array in physical memory.

Kernel Virtual MemoryUser Virtual Memory

Physical Memory

Page-table entries
for kernel VM

Page-table entries
for user VM

Figure 3.3: Simplified VAX page table diagram.

The VAX page table can be viewed as a two-level structure with the root node

in the physical address space and the leaf nodes placed consecutively in the virtual

address space. Upon a TLB miss, the leaf nodes are indexed first to lookup a page-

table entry. If the TLB misses again during this lookup, the root node is used to

resolve the second miss, after which the first miss is resolved.

The LVA can be considered an MPT that is searched from the leaf nodes to the

root, rather from the root node to the leaves. To support a 64-bit address space

requires many levels in the tree. For example, assume 32-bit page-table entries

together with a 4K hardware page size. A 64-bit virtual address space needs a 2

54-

byte LVA to store all the page-table entries required to use the entire address space.

A second 2

44-byte array is needed to store the page-table entries for the first level
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of the page table. The second array needs a third 2

34-byte array, the third needs a

fourth 2

24-byte array, the fourth needs a 2

14-byte fifth, and the fifth needs a 2

4-byte

sixth level. The sixth level is placed in physical memory to avoid needing more

page-table entries.

Note that if all the virtual page-table levels are in the one address space, then

the 2

54-byte level-one LVA contains the 2

44-byte level-two array at the appropriate

place to provide entries for the level-one array. Similary, the level-three, level-

four, and level-five arrays are all appropriately located within the level-one array.

Figure 3.4 shows diagramatically how the smaller arrays are structured within the

larger one.

Physical Memory

1 2 3 4

6

54-bit Page Table Array

64-bit Virtual Address Space

5

Figure 3.4: Simplified 64-bit 6-level LVA (not to scale).

A TLB miss generated by accessing user space may subsequently generate a

TLB miss while accessing the first-level LVA. This nested TLB miss may trigger

additional nested TLB misses in the second, third, fourth and fifth levels. Nested

TLB misses are more time consuming to resolve than simple root-to-leaf tree traver-

sal, especially on a software-loaded TLB architecture [NUS+93]. One strategy to

avoid nesting is to partition the TLB into a region for user TLB entries and system

TLB entries. The idea being that only a few system entries are needed to map the

user’s page-table entries, so partitioning results in a small reduction in TLB ca-

pacity, but expensive-to-replace system TLB entries are not displaced by user TLB
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entries.

Partitioning is not likely to be sufficient for a 64-bit address space for two rea-

sons. Firstly, instead of one level of virtual page tables needed in the VAX, 64-

bit addresses in the scenario described above need 5 levels of virtual page tables,

which would require a significant fraction of the TLB to cache even a small virtual-

page-table working set. Secondly, 64-bit address spaces will not be contiguously

populated with the typical text, data, and stack layout. Address spaces can con-

tain regions of shared libraries, memory-mapped files, persistent stores and objects

backed by external pagers (these are described in more detail later in Section 4.3).

The more active regions in user address spaces, the larger a TLB partition required

[NUS+93]. In the case of very sparse accesses (not necessarily as a result of a

sparsely allocated address space), 5 TLB entries per data page would be required.

Hybrid LVA implementations are a more promising approach. Hybrid approach-

es use an LVA for one level of page-table entries, and store the page-table entries

for the LVA itself in physical memory, thus limiting nesting of TLB misses to one

level. Examples of this approach include caching higher-level page-table entries

in a software TLB to reduce nesting [BKW94], or storing higher-level page-table

entries completely physically in an MPT or an IPT (as described in following sec-

tion). However, if the address space is sparsely allocated, the need to allocate page

tables page-wise will lead to high memory overhead independent of nesting.

3.4 Inverted Page Tables

Inverted page tables (IPTs) [Coc81] get their name from inverting the virtual-to-

physical translation map. Instead of a page table, which is indexed by virtual page

number and stores a physical frame number per virtual page; an inverted page table

is indexed by physical frame number and stores a virtual page number per physical

frame. A major advantage of this scheme is that page-table size is approximately

proportional to physical memory size, not virtual address-space size.

Given a virtual page number, virtual-to-physical address translation is achieved

by searching the page table to find a matching virtual page number. The physical

frame number is deduced from the table index to the matching entry. The searching

is usually performed with the aid of a hash table [IBM78, CM88, Lee89]. Such an

IPT is illustrated in Figure 3.5. The IPT consists of two parts, the hash table (or
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hash anchor table) and the page directory1 (or frame table). The page directory

has an entry for each physical frame, and is indexed by physical-frame number.

Each page-directory entry contains the virtual-page number of the page associated

with the entry, together with other attributes such as permissions, overflow link,

etc. Each hash-table entry contains a physical-frame number, which is an index to

the page directory.

i

virtual page number

+

hash

offset

Virtual Address

i

hash table

+

VA

page directory

Physical Address

hash
table
base

Figure 3.5: A diagram of an inverted page table.

To translate a virtual address, the virtual-page number is hashed to form an

index into the hash table. A page-directory index (i) is obtained by loading the

selected entry. If the selected entry in the page directory matches the page number,

the physical frame index (i) is combined with the offset bits to form the physical

address.

Collisions in the hash table are usually resolved by linear chaining. Select-

ing the hash-table size is a trade off between table size (load factor) and average

collision-chain length [Knu73].

The IPT has the desirable property of being able to compactly store sparse

address spaces. Given a reasonable hash function, and a non-pathological address-

space layout, the IPT performance is relatively independent of the virtual-address-

space layout. However the IPT has several drawbacks:

� It lacks aliasing support. Each physical address can have only one virtual

to physical translation associated with it. This prevents sharing memory at

1Note that I use the term page directory, rather than page table, to avoid confusion by overload-

ing the later.
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different addresses unless the page table is continually modified at appropri-

ate times. IPT systems generally partially overcome this by having a global

address space.

� An IPT that is searched via a hash table always requires at least two memory

references each lookup, one to the hash table, and one to the page directory.

� Discontiguities in the physical address space result in unused regions in the

page directory. Discontiguities occur with memory mapped I/O devices, as

they are not necessarily placed contiguously with respect to RAM and each

other.

� IPTs treat virtual memory as a composition of single virtual pages with no

relationship between them. Operations on objects consisting of groups of

pages require either an IPT probe per page in the object, or a scan of the

entire page directory.

Using an IPT for 64-bit address translation is no more (or less) complicated than

using an IPT for 32-bit address translation, except that the page-directory entries

may need to be enlarged to accommodate larger virtual-page numbers. The IPT

advantages and disadvantages remain the same.

3.5 Hashed Page Tables

The hashed page table (HPT) places both the virtual-page number and the physical

frame number in the hash table [HH93]. It is similar to a hardware based translation

scheme used in MONADS [RA85]. The addition of the physical frame number to

the hash table gives the HPT several advantages over the IPT.

� The HPT removes the memory reference to the hash table typically used to

search the IPT. Potentially, TLB-misses can be serviced with a reference to a

single cache line, which improves TLB-refill performance.

� The HPT supports aliasing. Multiple virtual addresses can be translated to

the same physical address via multiple entries in the HPT.

� Since the HPT is not indexed physically, it accommodates holes in the phys-

ical address space efficiently.
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Figure 3.6 illustrates a HPT. To translate a virtual address, the virtual-page num-

ber is hashed to form an index into the HPT. If the selected entry matches the

virtual-page number, the co-located physical-frame number is combined with the

offset bits to form the physical address.

Virtual Address

virtual page number

+ PAVA

HPT base

hash

offset

L

Hashed Page Table

+ Physical Address

Figure 3.6: A diagram of a Hashed Page Table.

Like the IPT, using the HPT to support a 64-bit virtual address space simply

involves enlarging HPT entries to accommodate larger virtual-page numbers.

3.6 Clustered Page Tables

A clustered page table (CPT) is basically a hashed page table with the addition of

subblocking [THK95]. Figure 3.7 shows an example configuration of a CPT. There

are other structural configurations of CPTs which are described in [Tal95], but they

are not detailed here.

Translating a virtual address with a CPT is similar to translating an address with

a HPT. The virtual block number is hashed to form an index into the CPT. If the

index-selected entry matches, the block offset is used to index and select a page-

table entry. The page-table entry is combined with the remaining offset to form the

physical address.

Clustering the page table aims to reduce the space overhead by storing sev-

eral consecutive page-table entries with a single tag and link pointer. Clustering

is effective only if the address-space allocation is “bursty”, i.e. clustering relies on
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VA

virtual block number boff offset

+

+

CPT base

hash
Physical Address

Clustered Page Table

Virtual Address

LPA1 PA3PA2PA0

Figure 3.7: A diagram of a clustered page table with subblock factor 4.

programs mapping objects into their address space in groups of contiguous virtual

pages. Address spaces consisting of isolated virtual pages will result in higher

space overheads when compared to a HPT.

Clustering also aims to efficiently support two different page sizes, i.e. a smaller

base page size, and a larger page size consisting of a subblock-factor number of

base pages. Supporting two different page sizes in a HPT can be achieved by

replicating the larger page’s page-table entry in all potential base-page locations in

the page table, or by using two page tables (one for each page size). In contrast, the

CPT hash function is based on the block size, not the base page size. This makes

it simple to transform a block of base pages to (or from) the larger page size, thus

permitting the CPT to support both page sizes without replication.

3.7 Guarded Page Tables

3.7.1 The Basic Idea

This section contains excerpts from previous work [LE95]. Guarded Page Ta-

bles [Lie95a, Lie96] combine the advantages of tree-structured multilevel page ta-

bles and hashed page tables: unlimited sparsity (2 page table entries per mapped

page are always sufficient), tree structure (subtree sharing, hierarchical operations),

and multiple page sizes. These properties are described in more detail later and

in [Lie96]. What follows is only a short sketch of the basic mechanism.
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The main problem with multilevel page tables is sparsity: they need huge

amounts of page table entries for non-mapped pages. Referring to Figure 3.8,

where the mapping of page 11 10 11 00 in a sparsely occupied address space is

shown. (For demonstration purposes we use very small addresses and small page

tables. Nil pointers are marked by “�”.) The second- and third-level page tables

are extremely sparse page tables: each contains one single non-nil entry. Conse-

quently, there is only one valid path through these two tables: when the leftmost

two bits are “11”, the subsequent address bits must be “10 11”; all other addresses

lead to page faults. As shown in Figure 3.8, we can omit the two page tables and

skip the associated translation steps. Whenever entry 3 of the top-level page table is

reached, we have to check whether “10 11” is a prefix of the remaining address. If

so, this prefix can be stripped off, and the translation process can directly continue

at the level-4 page table.

data page

10 11 00 xxxv

��
��
��
��

�
�
�
�

�
�
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�
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��
��
��
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��
��
��

��
��
��
��

�
�
�

�
�
�

��
10 11 ?

= 11 

Figure 3.8: Guarded page table.

Therefore, each entry is augmented with a bit string g of variable length, which

is referred to as a guard. This is the key idea of guarded page tables.

The translation process works as follows: upon each transformation step, a page

table entry is selected by the highest part of the virtual address in the same way as

in the conventional multilevel page-table method. The selected entry contains not

only a pointer (and perhaps an access attribute), but also the guard g. If g is a prefix

of the remaining virtual address, the translation process either continues with the

remaining postfix, or terminates with the postfix as the page offset.
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As an example, Figure 3.9 presents the transformation of 20 address bits by 3

page tables.

data page

1100101100101100111= 0v 

|v’ = 010110 100111

v’’ = 1| 0 0111

offset = 0011

g = 1100101

g = 0101

g = 0

1

00 01 10 11

0

0 1

|

Figure 3.9: Guarded page table tree.

Note that the length of the guards may vary from entry to entry. Furthermore,

page-table node sizes can be mixed; all powers of 2 are admissible. The same

holds for data pages, i.e., a mixture of 2-, 4-, . . . 1024-, . . . entry page-table nodes

and pages can be used.

Guarded page tables contain conventional page tables as a special case: if a

guard has length zero, a translation step works exactly like in the conventional

mechanism. However in all cases conventionally requiring a table with only one

valid entry, a guard can be used instead. It can even replace a sequence of such

single-entry page tables. This saves both memory capacity and transformation

steps, i.e., guards act as a shortcut.

3.7.2 The Important Properties

Guarded page tables are tree based and feature advantages similar to MPTs, in-

cluding: subtree sharing, hierarchical operations, and multiple page-size support.

However, GPTs are much more general (and flexible) than MPTs. Any power-

of-2 region can be represented by a subtree within the GPT. The subtree can be

shared between independent GPTs, which provides efficient and simplified shared-

memory support. Hierarchical operations, such as marking a region read-only, can

be achieved by simply operating on the root of the subtree. A subtree can also be

replaced entirely by a single region-sized page-table entry, or vice versa.



CHAPTER 3. PAGE-TABLE STRUCTURES 32

GPTs feature satisfactory worst-case memory consumption. Any address space

with k mapped pages can be represented by a GPT containing 2(k�1) GPT entries

[Lie96]. Such a GPT is termed small. For an MPT to perform similarly, it would

have to be a binary tree with n levels (to support a 2

n-byte address space). With

n levels, an MPT requires n translation steps to lookup a page-table entry, both in

the best case and the worst case. In the best case, a GPT can perform a lookup in

a single translation step. The worst-case number of translation steps depends on

many factors. A detailed theoretical analysis of many scenarios can be found in

[Lie96], but major points are outlined below.

� In the worst case, a lookup in a small GPT can be performed in n=2 transla-

tion steps.

� If 4 guards can be checked in parallel, a 4-associative GPT lookup can be

achieved in n=4 steps, with a slight (14%) increase in worst-case page-table

size.

� In the absence of parallel checking, and if worst-case page-table size is al-

lowed to increase significantly, then a lookup can be performed in at most

dn=me steps2, where m is the minimum number of bits decoded in a transla-

tion step. The worst-case page-table size increases to 2

m�1

k, where k is the

number of mapped pages.

Using GPTs to support a 64-bit address space appears to have positive and

negative aspects. Worst-case memory consumption is good. A small GPT needs

only 2(k � 1) GPT entries, for k mapped pages. However, worst-case tree depth

(translation steps) for the same small GPT is 32, a value likely to be prohibitively

expensive if realised. Reducing tree depth via associativity in a software-loaded-

TLB environment does not look feasible as GPT parsing is complex. Sequentially

comparing 4 guards is likely to be expensive, even with some degree of parallelism

afforded by a multi-issue CPU.

Allowing memory consumption to increase creates a trade-off between tree

depth and memory consumption. Exploring this trade-off between space and time

seems to be the most promising approach to supporting 64-bit address spaces with

GPTs. Chapter 4 is devoted to a practical evaluation of GPTs, including exploring

the trade-off between space and time.

2
dxe denotes x rounded up to the nearest integer.



Chapter 4

Guarded Page Table Evaluation

This chapter analyses the performance of several GPT variants. A comparison of

GPTs with other page tables is postponed until Chapter 6.

Liedtke derived many theoretical results predicting the worst-case behaviour of

GPTs; the most relevant results are summarised in Section 3.7. Liedtke’s deriva-

tions focus on predictable and satisfactory worst-case behaviour. There has been

little evaluation, or testing, of actual implementations under real-world conditions.

It is unclear whether GPTs will perform near their predicted worst case, or near

their potential best case. One of the goals of this chapter is to quantify typical GPT

behaviour. The other goal is to gain an understanding of how various GPT design

options affect GPT performance.

To achieve these goals, various implementations from the GPT design space

were constructed (as described later in Section 4.1). To compare the different GPT

implementations a set of benchmarks were developed. The benchmarks are mostly

based on micro-benchmarking the L4 microkernel, rather than instrumenting the

page-table manipulations themselves. The performance of the underlying page-

table manipulations is readily visible at the micro-benchmark level, as L4 has an

extremely low system call and IPC overhead [LES+97]. Micro-benchmarking also

provides an indication of the performance an application might expect when using

the microkernel primitives under test.

The micro-benchmarks test four facets of page-table performance:

1. TLB-refill costs represent the system overhead indirectly experienced by ap-

plications. These costs are independent of whether an application relies heav-

ily on directly invoked system services or not. Minimising TLB-miss penalty

33
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is becoming increasingly important as will be highlighted in Section 4.2.

2. Increasingly innovative address-space usage has brought page-table size into

focus. Page-table size is an indirect memory overhead experienced by appli-

cations. Ideally this overhead should be low and independent of the address-

space layout of the application. Section 4.3 examines this area in greater

detail.

3. Mapping and unmapping1 are the virtual-memory primitives of the L4 mi-

crokernel. These primitives form the basis of both operating-system per-

sonality and application-controlled virtual-memory management. The im-

portance of the performance of these primitives is described further in Sec-

tion 4.4.

4. The cost of task creation and deletion is influenced by setup and tear-down

costs of kernel data. In a highly optimised microkernel, page tables represent

a large proportion of kernel data used to manage a task. Section 4.5 explores

the effect of the various page-table implementations on task creation and

deletion performance.

4.1 GPT Implementation

GPT implementation is quite complex. The data structure used to represent a GPT

aims to reduce the size of the page table, and the time it takes to parse or manipulate

the tree. The exact layout of the structure is dependent on architecture-dependent

optimisations. Previous work [LE95] describes how the representation used was

derived. Relevant excerpts are included in Appendix B.

Figure 4.1 illustrates the representation used for a binary GPT. Nodes contain

a pair of 64-bit guards (G
n

) and 64-bit pointers (P
n

). Leaf GPT entries point to

non-GPT leaf nodes which contain two 32-bit page-table entries (PTE
n

) and two

32-bit mapping-tree pointers (MTP
n

). These shortened 32-bit entries rely on sign

extension to form valid 64-bit quantities.

The leaf nodes store pairs of PTEs instead of storing a single PTE and mapping-

tree pointer in the pointer field of leaf GPT entries. The justification for this is

1Note that the L4 grant virtual memory primitive is not included in these tests. It has no ana-

logue in more conventional systems making it less relevant as a benchmark for comparison.
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to accommodate the R4x00 TLB which contains and consequently loads pairs of

page-table entries. It was determined experimentally that it is was more efficient to

load pairs from specialised leaf nodes than it was to either load half a TLB entry at

a time using a single PTE stored in the pointer field of the GPT, or load the TLB

in pairs by finding the potentially non-existent adjacent PTEs on the fly. Loading

a single page-table entry at a time effectively performs 2 TLB refills for each TLB

miss. Loading pairs stored singly penalised applications by up to 4% of application

runtime, and 1% on average (see Table A.5, in Appendix A). In no case did a

GPT loading pairs stored singly perform faster than a GPT loading pairs stored in

specialised leaf nodes.

G0 P0 G1 P1

+0 +8 +16 +24

G0 P0 G1 P1

+0 +8 +16 +24

G0 P0 G1 P1

+0 +8 +16 +24

+0 +4 +12+8

PTE0 PTE1 MTP0 MTP1

+0 +4 +12+8

PTE0 PTE1 MTP0 MTP1

+0 +4 +12+8

PTE0 PTE1 MTP0 MTP1

Figure 4.1: Diagrammatic representation of binary guarded page table.

GPTs are also flexible with regard to the size of nodes that form the GPT tree.

Node sizes can be freely intermixed at any level of the tree. Larger node sizes

reduce the tree depth at the possible expense of increased tree size if nodes are

sparsely populated.

There are three basic policies for choosing node sizes in a GPT tree: using a

single node size, using multiple node sizes, or using dynamically-variable node

sizes.

The single node-size policy uses a single predetermined node size for all nodes
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within the GPT tree. This has the advantage of simplicity. It removes the com-

plexity of having to manage multiple-sized memory objects which is a low, but

not negligible overhead [PT77, LB89]. It also avoids any complexity associated

with choosing a node size. However, a single-node-size policy has the disadvan-

tage of not adapting to the memory layout of the application, i.e. it could use more

memory for a given tree depth than a scheme using a multiple size policy. Sec-

tion 4.3.1 examines this issue more deeply, deriving the worst-case page-table size

for a single-node-size policy.

A multiple-node-size policy is one that uses different node sizes with the restric-

tion that once a node is created, it remains the same size for the life of the address

space. Having multiple node sizes introduces the complexity of both managing

memory in multiple sizes, and choosing an appropriate node size. Memory man-

agement is best handled by a buddy allocation scheme because nodes are always a

power of two in size.

The choice of node size can be made in many ways. Node size can be based

on the known structure of the application. This takes advantage of contiguous

regions such as text, data, and stack segments, and other regions such as shared

libraries. The choice of node size could also be based on hints from the application,

or heuristics based on typical application behaviour.

A disadvantage of fixed node-size assignment is that the policy prevents the

GPT from adapting to an application’s changes in virtual-memory usage. There is

the possibility for the operating system to monitor an application’s behaviour and

evolve the GPT structure with the application to ensure the best performance. This

is the basic idea of the dynamically-variable node-size policy.

A dynamic node sizing policy could base sizing decisions on the same factors

as the static policy. However, a dynamic policy is free to modify a node’s size based

on other policies. For example, one could apply the constraint of all nodes in the

tree must decode at least 8 bits in each translation step. This constraint would be

satisfied in a binary node, as long as both entries contain a guard which decodes

at least 7 bits. Should a guard decode less than 7 bits (e.g. 6), the node could be

expanded to a larger (4 way) node so that the constraint is still satisfied.

There disadvantages of dynamic node sizing are the extra complexity in choos-

ing when to change node sizes, choosing which node size to change to, and the

copying of entries from the original node to the new node of differing size.
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While these multiple node size schemes have the potential to reduce tree depth

and memory usage, they also complicate GPT management by adding buddy allo-

cation and as-yet-unknown methods for node size selection and adaption. Rather

than focusing on developing methodologies for multiple node sizing, I chose to

evaluate single-node-size policies. The aim of this strategy is to evaluate the per-

formance of such a policy and use the knowledge gained to identify areas where

multiple-sized nodes would be most likely to be advantageous.

To evaluate how GPT node size affects performance, eight GPTs were imple-

mented, each featuring a node sizes of S entries, where S = f2; 4; 8; : : : ; 256g.

These implementations are referred to as G2, G4, G8, : : :, G256 from here on in

the text. The largest node size tested (G256) corresponds to using page-table nodes

of 4K in size which is also the page size on the MIPS R4x00 architecture used as

the test bed. G256 allows direct comparison to standard multilevel page tables at

a later stage, as they would also use this node size. Given the likelihood of granu-

larity being a problem under sparse conditions, it does not make sense to use larger

sizes.

4.2 TLB Refill Performance

It has been estimated that memory sizes are quadrupling every three years [PH90],

which is creating problems for both CPU architects and operating-system designers

[Mog93]. One area receiving much attention is the TLB’s coverage of physical

memory. The TLB aims to hold as many relevant virtual-to-physical translations as

possible to cover as much of physical memory as possible.

TLB coverage is not keeping pace with increasing physical memory sizes. In

the past, TLB-miss handling typically contributed less than 5% [CE85] of overall

runtime. However in recent studies, miss handling is not unknown to contribute

40% of application runtime [HH93].

Various methods have been proposed to combat increasing TLB miss ratios. As-

sociativity trade-offs and changes [NUS+93, CLK97], micro-TLBs [CBJ92], vari-

able page sizes [CBJ92, TKHP92, KTNW93, ROKB95], and subblocking [Tal95]

have been examined and incremental improvements made in effective TLB cover-

age. TLBs have been removed altogether in some experimental systems [WEG+86,

CSD86, JM97] which perform address translation in the cache; however, the tech-
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niques have yet to appeared in a commercial microprocessor. There is little to

suggest that minimising the TLB-refill penalty will be of lower importance in the

future than it is now.

4.2.1 Benchmarks

Before introducing the benchmarks, it makes sense to describe the hardware plat-

form used for testing throughout the thesis. The machine used was designed and

built by the author for use as a teaching platform at the University of New South

Wales. It features a 100 MHz R4700 [R4795] and a GT-64010A memory and PCI

controller from Galileo Technology [Gal96]. The details of the machine relevant to

benchmarking follow:

� The CPU features a 16K data cache and 16K instruction cache, both being

two-way set associative. There is no second level cache in the machine.

� The machine has 64M of RAM on a 50MHz memory bus.

� The CPU has a 48-entry TLB with each entry holding two page-table entries.

The TLB is reloaded by a specialised software exception handler.

Conventional Application Description

To examine performance of GPTs under traditional UNIX applications, a subset

of the SPEC95 benchmarks [SPE95] were chosen. An initial selection was based

on a previous examination of SPEC95’s TLB behaviour [CLK97]. Applications

exhibiting high TLB miss rates were chosen together with their ability to run with

the skeletal UNIX emulation library. Also used were a number of applications ex-

hibiting high TLB miss rates from the collection maintain by Al Aburto [Abu].

Applications exhibiting low TLB miss rates were not considered as their perfor-

mance is independent of the underlying page-table structure. The applications are

collectively termed the conventional applications throughout the rest of the thesis.

The conventional applications are used in several benchmarks which are described

later.

Table 4.1 lists each of the applications used, together with their size, type, and

a brief description. The size refers to the amount of memory consumed (mapped)
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by the application, not the span of the text, data, etc. The type indicates whether

the application is an integer (I), or floating point (F) benchmark.

The applications used were all run unmodified from their original benchmark

specifications, except for gcc and mm. Only a single file (1amptjp.i) was com-

piled in the modified gcc benchmark instead of the usual several files compiled

consecutively, as the skeletal UNIX emulation environment only allowed for a sin-

gle invocation per benchmark run. The mm benchmark was run using only the “nor-

mal” algorithm as smarter algorithms feature lower TLB-miss ratios. The normal

algorithm is a naive (inner product) matrix multiply.

name size (Mb) type remarks

go 0.8 I game of go

swim 14.2 F PDE solver

SPEC gcc 9.3 I GNU C compiler

compress 34.9 I file (un)compression

apsi 2.2 F PDE solver

wave5 40.4 F PDE solver

c4 5.1 I game of connect four

nsieve 4.9 I prime number generator

Alburto heapsort 4.0 I sorting large arrays

mm 7.7 F matrix multiply

tfftdp 4.0 F fast fourier transform

Table 4.1: Conventional applications from SPEC95 and Alburto suites. Size in-

dicates amount of memory used at conclusion of application. Type “I” or “F”

designates either integer or floating point, respectively.

Metrics

To examine the TLB-refill performance of different GPT implementations, the con-

ventional applications were run while monitoring TLB-refill performance. Two

metrics were chosen to evaluate the performance of GPTs with respect to each

other. Elapsed application runtime is one metric, and average TLB-refill time is

the other. Elapsed application runtime is used to quantify the effect TLB-refill has

on each of the applications under test. Average TLB-refill time is used to obtain a

comparative indication of TLB refill performance that is independent of the appli-

cations under test.
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Application runtime is obtained by running the individual UNIX applications

together with a skeletal support library directly on the L4 kernel. The L4 kernel

was a “clean” kernel, i.e. the kernel contained no instrumentation. Applications are

contained completely in physical memory, hence there is no disk I/O component to

the elapsed time.

Average TLB-refill time is obtained by instrumenting the TLB-refill handler to

count cycles spent inside the handler, and the number of TLB refills. The TLB-refill

instrumentation code was carefully constructed as follows:

� The code counts cycles spent in the TLB-refill routine using the CPU count

register which ticks constantly at half the internal clock rate.

� The code avoids, as much as possible, affecting cache misses (or hits) of the

refill routine. For example, memory used for instrumentation is aligned to

appear in different cache-lines to the memory used by the refill routine as

temporary storage.

� The code does not count refill-exception overhead, i.e. the instrumentation

does not record the time taken between the initiation of a TLB-miss and the

execution of the TLB-refill routine, and the time between the exit of the TLB-

refill and the resumption of the faulting instruction. However, the uncounted

component is constant for different page-table implementations, and thus ir-

relevant for comparison purposes.

Thus the overhead of the refill-routine instrumentation should not significantly

affect results and is equivalent for each page-table configuration tested. This can

be confirmed by considering the following equality,

t

elapsed

= t

tlb

+ t

app

+ t

var

where the elapsed runtime of an application (t
elapsed

) is equal to the sum of con-

tributions from TLB-refill handling (t
tlb

), the application itself (t
app

), and some

varying time (t
var

) which includes TLB-refill instrumentation and cache artifacts.

For each combination of application and page table, t
elapsed

and t

tlb

is known ac-

curately (see Appendix A for the raw results). Table 4.2 shows the average and

normalised standard deviation of t
var

+ t

app

for each application, averaged across

all runs of the eight page tables.
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BENCH Mean STD (%)

go 947:1 0:7

swim 2121:1 0:0

gcc 43:3 0:3

compress 875:7 0:4

apsi 1794:6 0:5

wave5 3024:5 0:1

c4 34:3 2:5

nsieve 150:0 0:2

heapsort 29:1 0:1

mm 54:2 3:1

tfftdp 11:2 0:8

Table 4.2: Mean (in seconds) and normalised standard deviation of t
var

+ t

app

for

each application, averaged across all GPTs.

Given that t
app

is constant for each application, the standard deviation of each

of the times (in Table 4.2) is due to variation in t

var

. Making the pessimistic as-

sumption that t
var

is solely due to TLB instrumentation, we can conclude that the

effect of TLB instrumentation is either negligible, or at least an equal contribution

to most benchmarks. Both mm and c4 feature higher standard deviations than the

other benchmarks as, for some scenarios, TLB-refill overhead is over 60% of ap-

plication runtime. However, this variation is not enough to significantly affect later

results.

4.2.2 Results

The results of the TLB-refill performance experiment are summarised in two ways.

Table 4.3 compares elapsed times of each combination of application and page

table. Results are normalised to the elapsed time of G2 to allow comparison be-

tween applications as well as between page tables. Figure 4.2 shows TLB-refill

time averaged across all benchmarks for each page table. The raw results that these

summaries are based on are contained in Appendix A.1.

With reference to Figure 4.2, the average refill time reduces as the GPT node-

size increases. This corresponds to the reduction in tree depth as node size in-

creases, which is illustrated in Figure 4.3. Initially large improvements in average
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Figure 4.2: Average refill time across conventional benchmarks for each page ta-

ble. Error bars represent standard deviations.

refill time are made in moving from G2 to G4 and then to G8. The move from G8

to G16 and beyond results in smaller incremental improvements as a result of the

smaller reductions in tree depth.

The deviation from the trend at G64 is partially explained by the page table

having the same average depth as G32 which results in similar performance of the

applications with the exception of go. With reference to Table A.1, the application

go contributes disproportionately high average-refill costs which I believe, though

it is difficult to confirm, is due to a pathological page-table layout resulting in a

larger number of cache misses during TLB refill.

Table 4.3 illustrates the effect the TLB-refill cost has on application runtime.

The runtime of the majority of applications behaves in a manor consistent with the

average TLB-refill costs discussed above. More precisely, the runtime improves

significantly in moving from G2 to G4 (11% on average), and then to G8 (a further

3%). There are small incremental improvements (1% or less) in moving to G16 and

onwards. Some applications with lower miss ratios (apsi, swim, heapsort,

go) illustrate this to a lesser extent, while mm with a high miss ratio continues to

improve its performance with any reduction in TLB-refill cost.

Figure 4.4 illustrates elapsed-time results graphically. The figure is intended to

show the trends exhibited by the applications for each page table. It is not intended

to show trends for any application in particular, and as such, it is unlabelled and
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Figure 4.3: Average GPT tree depth averaged across all the conventional applica-

tions. Error bars are standard deviations.
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Figure 4.4: Plot of elapsed times normalised to G2 for each combination of appli-

cation and guarded page table.

4.3 Page Table Size

Page-table size is an issue for several reasons. A small compact page table is more

likely to to retain a greater portion of itself in the cache, which improves lookup



CHAPTER 4. GUARDED PAGE TABLE EVALUATION 44

BENCH G2 G4 G8 G16 G32 G64 G128 G256

go 1:00 0:99 0:98 0:99 0:99 1:00 0:99 0:99

swim 1:00 1:00 1:00 0:99 0:99 0:99 0:99 0:99

gcc 1:00 0:82 0:80 0:79 0:77 0:77 0:76 0:76

compress 1:00 0:94 0:92 0:90 0:89 0:89 0:88 0:88

apsi 1:00 0:98 0:96 0:98 0:97 0:97 0:98 0:97

wave5 1:00 0:93 0:91 0:90 0:89 0:89 0:89 0:89

c4 1:00 0:67 0:58 0:58 0:56 0:56 0:55 0:55

nsieve 1:00 0:94 0:93 0:92 0:92 0:92 0:91 0:91

heapsort 1:00 0:98 0:99 0:98 0:98 0:98 0:98 0:98

mm 1:00 0:62 0:54 0:53 0:51 0:51 0:47 0:46

tfftdp 1:00 0:87 0:85 0:83 0:82 0:81 0:81 0:80

Average 1:00 0:89 0:86 0:85 0:84 0:85 0:84 0:83

Table 4.3: Elapsed times normalised to G2 for each combination of application and

page table.

speed. A compact page table also displaces less application data from the cache,

which reduces the indirect overhead to applications. Displaced application data is

a significant cost of VM to applications [JM98a]. A small overall page-table size

is also important to conserve physical memory consumption. A study of online

transaction processing reported a 17% improvement in transaction throughput di-

rectly attributable to an increase in available physical memory which was achieved

via a reduction in page-table size [YR93]. Task creation and deletion costs are di-

rectly influenced by page-table size. Minimising page-table size reduces the cost of

managing the page table itself. This area is covered in greater detail in Section 4.5.

To compare sizes of the different page tables under various conditions, a met-

ric independent of allocated address-space size is chosen. An independent metric

allows the comparison of page-table memory consumption among different appli-

cations with the same page-table structure. A metric dependent on application size

would only allow comparison between different page tables under the same bench-

mark conditions. The metric chosen was average number of page-table bytes used

per mapped page.

The page-table size examination looks at each page table’s size behaviour from

three perspectives.
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1. The theoretical worst case. I derive a formula to predict the upper bound of

page-table memory consumption given the single node size.

2. The page-table memory consumption as seen under conventional applica-

tions. Conventional applications are run and monitored to examine the mem-

ory overhead that one might expect in a normal system.

3. The page-table memory overhead that might be observed in sparse address

spaces. Two types of sparse address space are synthesised, one consisting of

single pages, and another consisting of objects spanning several consecutive

pages. Each synthesised address space is analysed to compare page-table

memory consumption with that predicted by worst-case analysis, and that

observed under conventional applications

4.3.1 Worst-Case Analysis

To facilitate comparison with later results, I first derive worst-case page-table mem-

ory overhead for GPTs with a single node size.

Lemma 1 All nodes in a guarded page table contain at least two non-nil entries.

Proof : Given an arbitrary guarded page table representing a particular

translation, we colour all nodes in the tree that contain all nil entries

red, and colour all nodes containing one non-nil entry blue. All other

nodes containing two or more non-nil entries are left uncoloured.

We first eliminate all red nodes as they have no effect on the set of

valid translations. We then eliminate all blue nodes by concatenating

guards with the node above which also has no effect on the set of valid

translations.

This results in an uncoloured tree, i.e. a tree with nodes containing two

or more non-nil entries.

q.e.d

Theorem 1 A guarded page table containing k leaf entries with nodes of size S

entries, contains at most S(k � 1) entries.
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Proof : A guarded page table will contain the most entries when each

node contains the minimal number of valid entries. From Lemma 1,

each node in a GPT will minimally contain two non-nil entries. Thus

one can think of a GPT being a binary tree containing two entries and

unused entries in each node. A binary tree with k leaf nodes contains

k � 1 internal nodes [Kin90, page 83].

If internal nodes are of size S entries, k leaf entries are represented by

S(k � 1) entries in the GPT.

q.e.d

Thus we need
S(k�1)+k

k

PTEs per mapped page, i.e. approximately S + 1 PTEs

for large k. The implemented GPTs have 16-byte entries, which results a memory

overhead (normalised to per mapped page) of 16(S+1). Table 4.4 shows the worst-

case memory consumption per mapped page, for each of the GPT implementations.

GPT worst-case

G2 48

G4 80

G8 144

G16 272

G32 528

G64 1040

G128 2064

G256 4112

Table 4.4: Worst-case memory consumption per mapped page (in bytes), for each

of the GPT implementations.

4.3.2 Benchmarks

Conventional Applications

While predictable and satisfactory worst-case page-table size is an important prop-

erty, it becomes less so if normal system behaviour never approaches the bounds

of worst-case behaviour. The examination of page-table size under conventional

applications should provide insights as to what is typical behaviour, and how close

typical behaviour is to worst-case behaviour.
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The experiment is conducted by running each application in turn until com-

pletion. On completion of each application, the page table is analysed to gather

statistics on memory consumed, average depth, and number of leaf, null, and in-

ternal entries. The memory consumed includes both the memory consumed by the

GPT and the memory consumed by the external leaf nodes. Leaf entries are entries

in the page table that point to the external page-table pair. Internal entries are GPT

entries that point to another GPT node. Null entries are entries in the GPT that are

neither leaf nor internal. Average depth of the GPT is calculated by averaging the

depth of each leaf entry. For a more detailed description of the statistics gathered,

and the raw results, see Appendix A. The applications chosen for the experiment

are the same applications described earlier in Section 4.2.1.

Sparse Address Spaces

The conventional applications previously described can be considered a gentle test

of page-table size behaviour. The conventional applications consist of a contiguous

region containing the text-, data-, and heap sections, and another contiguous region

of stack; both regions grow towards each other.

This typical address-space layout is not necessarily the normal case in newer

systems. Modern systems have a more fragmented address space, consisting of

shared libraries, shared memory, memory-mapped files, and memory objects back-

ed by external pagers.

Shared libraries are used to reduce both disk and memory consumption, and al-

low for application library replacement without the need for relinking all user pro-

grams. Shared libraries could be statically linked to fixed addresses in all processes

with each library having its own region in the address space [Arn86]. However,

modern shared libraries are dynamically linked into an applications address space

reducing fragmentation of the address space. See [HCL95] for a list of references

for shared libraries.

Modern operating systems allow user processes share regions of virtual mem-

ory with other processes. These regions can provide for fine grain multiprocessing,

fast IPC, and database support. Typical UNIX systems support shared memory via

the BSD mmap system call [MKL+94]. mmap also allows applications to map a file

into their virtual address space. Memory-mapped files reduce the cost of file I/O

by avoiding copying between the buffer cache and the application, and also allows
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applications sharing files to share the same physical image.

External pagers, such as in Mach [RTY+88], allow user processes to control the

content of memory objects mapped into the address space of other user processes.

Pagers are free to implement the functionality they choose for the memory objects

they control. They can supply zero-filled memory, persistent memory [ABC+83],

memory-mapped files, etc. A memory object could be empty, completely mapped,

or sparsely populated.

Shared memory, memory-mapped files, and memory objects backed by external

pagers all increase the number of distinct regions used in an address space. This

creates a fragmented address space consisting of many regions of varying popu-

lation density. A data structure used to store page-table entries must be able to

efficiently support such an address-space layout.

Moreover, single-address-space systems [CFL93, HEV+98, MWO+93] expect

to have extremely sparse address spaces. Single-address-space systems store all

data in a single large virtual address space. An application’s currently active map-

pings consist of a selection of memory objects scattered throughout the address

space. Ideally, a page table should efficiently support such a scenario with minimal

memory overhead.

To gain an understanding of GPT behaviour in sparse address spaces, we con-

structed two synthetic benchmarks. The benchmarks are synthetic in the sense that

they do no real work other than generate an address-space layout. The two bench-

marks are described below.

sparse page This benchmark randomly allocates single 4KB pages in a 40-bit (1

terabyte) address space. This is a tough benchmark, as such an address-space

layout could be considered pathological in most real systems.

The number of pages allocated is varied from 64 (256KB) to 8192 (32MB)

to expose any dependency on the amount of memory consumed. Each indi-

vidual size is run separately 10 times, each run using a different seed to start

the random number generator. The random number generator is based on a

lagged Fibonacci series generator [Pet].

sparse file To model a more realistic situation, this benchmark allocates randomly

located, within the 1TB address space, randomly sized objects from a file-

size distribution. This model is aimed at approximating what might happen in
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a single-address-space operating system where “files” are objects in memory.

The file distribution used is shown in Figure 4.5. It is from a local study

[Elp93] and is similar to distributions from other file system studies [Sat81,

OCH+85, BHK+91].

Like the SPARSE-PAGE benchmark, the number of objects allocated is varied

from 64 to 2048 in powers of 2, each number of objects is run 100 times with

a different random number generator seed each time. For each set of bench-

mark runs with a constant number of objects, the actual number of pages

allocated in each distinct run varies because randomly sized files are used.

Table 4.5 tabulates the average number of pages allocated (and normalised

standard deviation) for all runs allocating the number of objects indicated.
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Figure 4.5: Cumulative distribution of object size used in SPARSE-FILE bench-

mark.

4.3.3 Results

Results for the conventional applications are presented in Figure 4.6 and Table 4.6.

The results have been normalised to represent the memory overhead per mapped

page, i.e. number of bytes of page table divided by the number of mapped pages in

the address space.

Figure 4.6 displays the memory overhead for each page-table averaged across

all applications, together with the lowest and highest observed overhead. The fig-
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Objects Pages NSTD—

64 505 2

128 989 1

256 1867 0:9

512 3836 0:6

1024 7969 0:5

2048 15826 0:3

Table 4.5: The average number of pages allocated (Pages) and normalised standard

deviation (NSTD), for all runs allocating the number of objects indicated (Objects).

ure reveals that initially for G2 approximately 24 bytes per page is required, with

similar low and high values. In moving from G2 to G4 the overhead is reduced to

approximately 19 bytes per page. Moving to G8 and then G16 results in small in-

cremental improvements. This trend is due to the reduction in tree depth and hence

a reduction in the number of internal tree nodes which do not contribute directly to

the number of mapped pages.

In moving from G16 to G32 and onwards, the average memory overhead in-

creases. This trend is explained by the increase in the number of empty GPT en-

tries in the larger GPT nodes. The higher node sizes are also more susceptible to

exhibiting high overheads due to idiosyncratic address-space layouts, as illustrated

by the highest overhead diverging significantly from the average for G256.

Referring to Table 4.6 and Figure 4.7, one can see the majority of the appli-

cations behave similarly and follow the trend of the mean described previously.

However two applications (apsi and go) only follow the trend from G2 to G16

and then deviate significantly at higher node sizes due to their sparse address-space

usage.

Figures 4.8 and 4.9 summarise the results for the SPARSE-PAGE benchmark.

The average normalised space overhead (over 10 runs) for each combination of the

number of mapped pages and page table is plotted for each page table. Error bars

represent standard deviation over the 10 runs.

As each of the individual runs of the same benchmark uses a different randomly

generated address space, the standard deviation can be viewed as an indicator of

page-table sensitivity to address-space layout. The small node size page tables vary

very little in overhead, as do all page tables when the number of pages increases.
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Figure 4.6: Page table bytes per mapped page for conventional applications. The

three values represent the highest, average, and lowest page table memory overhead

observed in the conventional applications.

BENCH G2 G4 G8 G16 G32 G64 G128 G256

go 25:2 20:9 21:8 21:8 26:3 39:4 49:3 69:9

swim 24:0 18:8 17:3 16:8 16:6 17:1 17:1 18:2

gcc 24:1 18:9 17:6 17:1 17:0 17:9 18:3 20:1

compress 24:0 18:8 17:3 16:8 16:7 16:9 16:7 17:2

apsi 24:5 20:1 19:2 20:3 22:0 26:8 30:3 45:2

wave5 24:1 18:8 17:3 16:7 16:5 16:6 16:6 16:8

c4 24:1 19:0 17:8 17:4 17:5 19:2 20:7 23:9

nsieve 24:1 18:9 17:7 17:2 17:1 18:8 19:6 21:3

heapsort 24:1 19:0 17:8 17:5 17:7 19:3 20:3 24:4

mm 24:1 18:9 17:6 17:2 17:2 18:0 18:5 20:6

tfftdp 24:1 19:0 17:7 17:6 17:5 19:0 20:0 24:0

Average 24:2 19:2 18:1 17:9 18:4 20:8 22:5 27:4

Table 4.6: Normalised page-table memory overhead for each combination of ap-

plication and page table.
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Figure 4.7: Normalised page-table memory overhead for each combination of ap-

plication and page table.

The situation displaying the highest variability is when page tables with high node

sizes combine with small numbers of pages. In this situation, standard deviations

are approximately 10% of the mean. Thus GPTs are reasonably insensitive to ad-

dress space layout, especially GPTs with small nodes sizes.

The two figures also illustrate that for small node sizes, address-space overhead

is independent of the number of pages mapped. However, for medium and large

node sizes there is an interesting dependence on the number of pages mapped that

is not entirely obvious. The dependence can be explained in terms of the spill-

over effect which is described in detail in Section 4.3.3. Spill-over affects many

of the presented results. Consequently, a brief diversion to describe spill-over is

warranted.

The Spill-Over Effect

The peaks in page-table overhead for the SPARSE-PAGE benchmark (Figure 4.8

and 4.9) can be explained as follows.

Firstly, assume we have a GPT that contains the page-table entries for a fully

populated region of equal size to the region under test in the SPARSE-PAGE bench-

mark (1 terabyte). This GPT would have a single long guard from the root of the

page table to the node of the page table which forms the root of page-table tree

spanning the 1-terabyte address-space region.
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Figure 4.8: Normalised page table space overhead for SPARSE-PAGE benchmark

for page table G2 – G16.

0

200

400

600

800

1000

1200

1400

64 128 256 512 1024 2048 4096 8192

p
ag

e 
ta

b
le

 o
v
er

h
ea

d
 [

b
y
te

s]

number of 4K pages

G32
G64

G128
G256

Figure 4.9: Normalised page table space overhead for SPARSE-PAGE benchmark

for page table G32 – G256. Note the much larger y-axis scale in comparison to

Figure 4.8.
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The node that forms the root of the address-space region can either be partially

or fully utilised. More precisely, if the node is partially utilised, then only some of

the entries in the node are required to point to subtrees that map the region. Full

utilisation indicates that all the entries in the node are needed.

The number of entries used in the region root node can be statically determined

if one knows that node sizes are fixed, the size of the nodes, and the page size.

This is achieved by examining the number of bits required to decode the address

space. Given a one terabyte (40-bit) region with 8K (13-bit) page pairs, one needs

to decode 27 bits from the top of the tree to index a pair of page-table entries. The

number of bits needing decoding in the upper node is R = 27 mod S

0

where S
0

is

the number of bits decoded in a node, i.e. S
0

= log

2

S where S is the number of

entries in a node. Assume for simplicity sake that we are dealing with 8K pages,

rather than pairs of 4K pages.

For example, R = 0 for 8-entry nodes and thus the region root node is fully

utilised. R = 3 for 16-entry nodes, hence the region root node is partially utilised,

using 8 entries to cover the 1 terabyte address-space region.

Now assume that a 1 terabyte region is populated such that the region root

node is allocated first, successively followed by nodes closest to the region root.

A distribution of equally spaced nodes within the region will achieve this. For

example, if the region root node has 8 entries, 8 equally spaced pages will ensure

each entry is used. 16 equally spaced pages will ensure the region root node is full,

and that the next level of nodes below the root is allocated and contains 2 entries in

each node.

For each node size (G2 – G256), we can calculate how many pages can be

mapped for a given number of levels in the tree. To elaborate, if nodes contain

4 entries (G4), a 1-level tree can map 4 pages, two levels can map 16 pages, etc.

Now examining the case of populating the tree from the region root node down, a

G16 GPT can map 8 (227 mod 4) pages within the 1 terabyte address space using the

region root node alone. Adding a complete level to the tree below the region root

enables the tree to map 16� 2

27 mod 4

= 128 pages, another level gives 16� 16�

2

27 mod 4

= 2048 pages, etc.

Generalising this to a GS GPT, we can calculate the maximum number of pages

that can be mapped (N ) in a GPT as folows:

N = S

n

2

(A

0

�P

0

) mod S

0

(4.1)
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where A
0

is log
2

of the address space size (40 in our case), P
0

is log
2

of the effective

page size (13), n is the number of levels below the root node. By applying this

equation to G16 – G256 we can calculate N for each of the page tables for a 1-, 2-,

and 3-level tree. The results are tabulated in Table 4.7. One level corresponds to

having only the region root node.

Level (n+ 1) G16 G32 G64 G128 G256

1 8 4 8 64 8

2 128 128 512 8192 2048

3 2048 4096 32768 1048576 524288

Table 4.7: Maximum number mapped pages for a given number of levels in the

tree.

Each entry in the table corresponds to a completely filled tree, and thus is in-

dicative of when each GPT has minimal normalised memory overhead. The sit-

uation that produces maximum memory overhead occurs when one doubles the

number of mapped pages indicated in the table. Doing this requires adding a com-

plete extra level of nodes in the tree, each node in the new level populated by only

2 entries.

In a GS GPT which is used to map equally spaced pages, the points of highest

memory overhead occur when N page pairs are mapped, N being predicted as

follows:

N = 2

nS

0

+1+((A

0

�P

0

) mod S

0

) (4.2)

for n 2 f0; 1; : : :g. Noting that n, the number of levels below the root node in the

tree, is limited by the number of possible levels in tree.

Figure 4.10 is the result of repeating the SPARSE-PAGE benchmark (Section

4.3.2) with equally-spaced pages instead of using a uniform random distribution.

Note that in a sparse environment, allocating a single page effectively corresponds

to allocating a page pair. The figure illustrates the spill-over effect predicted for

the larger node-size GPTs. Equation 4.2 correctly predicts the number of pages at

which each peak occurs.

This expression can be used to explain the results of the SPARSE-PAGE bench-

mark. A property of the uniform random number generator used in the benchmark

is that (obviously) it spreads out allocated pages uniformly in the address space.

This approximates, given enough samples, the situation described above where the
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Figure 4.10: Page table space overhead for various numbers of equally spaced 4K

pages in a 1 Terabyte address space for each page table.

tree is populated from the root node to the leaves. Thus the spill-over effect is vis-

ible when using the uniform random distribution, and points of highest overhead

are predicted using the above expression.

Results Continued

Figures 4.11 and 4.12 summarise the results for the SPARSE-FILE benchmark. The

average normalised memory overhead (over 100 runs) is presented for each page

table and object number combination. Error bars represent standard deviations.

Like the SPARSE-PAGE case, the SPARSE-FILE results show the low and stable

memory overhead of the small node-size GPTs. The larger node sizes exhibit much

higher and less consistent overhead.

The trends in the curves can be explained in terms of two effects. The general

trend, of average overhead reducing slightly as the number of objects increases,

is due to large objects swaying the average overhead. The greater the number of

objects allocated, the higher the probability of a sample object set containing large

efficiently stored objects. The spill-over effect is superimposed on the trend of

gradual reduction in memory overhead. The previous SPARSE-PAGE results show

the spill-over effect in action for single page-size objects. An object in SPARSE-

FILE has a root node topping the GPT branch containing the object’s page-table

entries. From the perspective of spill-over, a pointer to a root node is the same
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as a pointer to a page-table entry. Hence for the SPARSE-FILE benchmark, the

illustrated dependence of memory overhead on number of objects corresponds to

the SPARSE-PAGE benchmark’s dependence on number of pages. For example,

there is a deviation in G256 upwards between 256 and 2048 allocated objects, and

a downward deviation for G128 between 256 and 1024 allocated objects.

As in the previous benchmarks, the standard deviation shows the general stabil-

ity of the smaller node sizes, and the high variability of the larger node sizes.
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Figure 4.11: Normalised page table space overhead for SPARSE-FILE benchmark

for page table G2 – G16.

To compare and give perspective to the results thus far, Figure 4.13 illustrates

the results from all three benchmarks and the theoretical worst case. More specif-

ically, it plots the highest observed overhead for conventional application bench-

marks, the average overhead for the SPARSE-PAGE benchmark, the average over-

head for the SPARSE-FILE benchmark, and the theoretical worst case.

The most noticeable, and somewhat unexpected result, is the SPARSE-PAGE

benchmark’s result being well below that predicted as being the theoretical worst

case. SPARSE-PAGE is a tough benchmark unlikely to occur in practice, hence the

theoretical worst case is also unlikely to occur unless a systematic attack on the

page table is made.

Comparing the SPARSE-PAGE result with the SPARSE-FILE result, the cluster-

ing of pages into objects in the SPARSE-FILE benchmark approximately halves the

overhead per PTE. This is partially explained by the page table storing PTEs in
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Figure 4.12: Normalised page table space overhead for SPARSE-FILE benchmark

for page table G32 – G256.
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the leaves as pairs for efficient TLB refill. Each PTE pair, when both valid, halves

the leaf’s contribution to per-PTE page-table size and halves the number of leaves

when compared to leaf entries containing only a single valid PTE. Noting that in

the size distribution used, 66% of objects are single pages; hence, the rest of the re-

duction can be explained by the occasional larger files (3% > 128KB) being stored

with efficiency comparable to the contiguous conventional applications. A large

object stored efficiently counteracts, to some extent, the effect of many single page

objects stored inefficiently.

The SPARSE-FILE benchmark, while being “easier” on the page table than

SPARSE-PAGE, is still a significantly more difficult benchmark than the conven-

tional applications tested. This is shown by further size improvements when com-

pared to the highest observed overheads for the conventional applications. I believe

it is not unwise to consider the results for SPARSE-FILE to be the practical worst-

case overhead for medium to large applications, with the reservation that a larger

sample of applications is needed for it to taken as a serious estimate. Also, smaller

applications are more likely to have higher overheads (e.g., having only a few sep-

arated pages). However page-table size is not an issue for small applications.

4.4 Kernel (Un)Mapping Performance

Mapping and unmapping are powerful and flexible primitives in the L4 micro-

kernel. Not only do they allow designers of operating-system personalities to im-

plement performance optimisations such as copy-on-write [FR86], they also allow

applications the same degree of control to manipulate their own virtual memory.

Appel and Li [AL91] point out that efficient implementation of virtual-memory

primitives is crucial to performance of some applications using virtual memory

tricks.

4.4.1 Benchmarks

To examine how different GPT implementations affect mapping performance, two

benchmarks based on those used by Appel and Li were constructed. The first

benchmark tests the performance of the combination of taking a protection fault,

mapping, and unmapping virtual memory pages. All the operations are performed
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on single pages at a time. The test consists of a client task and a server task acting

as the client’s pager.

The first benchmark, from here on referred to as MAP1, is described below:

� In the client, access a random page in a 16 megabyte region generating a

protection-fault IPC to the pager.

� In the pager we select some other mapped page and protect it (mark it read-

only via l4 fpage unmap), and unprotect the faulting page (i.e. map it

read-write via mapping IPC).

This is repeated 4096 (16M/4K) times to form the benchmark. The benchmark

itself is repeated 10 times to get a statistical sample. The random number generator

is the same as previously used, a different seed is used for each benchmark run.

The second benchmark is similar to the first except that it protects (makes read-

only) all pages as a region, instead of protecting a single page at time. The bench-

mark is used to compare the performance of protecting (unmapping) memory in a

batch rather than as individual pages. The benchmark, from here on referred to as

MAPN, works as follows:

� Protect all pages in a 16 megabyte page region using a single unmap.

� In the client, access each page in random sequence.

� In the pager, unprotect the faulting page via mapping IPC.

Like before, the benchmark is repeated 10 times to get a statistical sample.

In addition to the two benchmarks based on the Appel and Li benchmarks, a

third benchmark was designed to evaluate a GPT’s ability to perform operations on

sparsely populated regions. A trait of several algorithms using virtual memory is

that they protect regions in large batches, and unprotect them a page at time. Such

algorithms include concurrent garbage collection, concurrent checkpointing (both

described in [AL91]), and exclusivity based virtual-memory mechanisms [Lie94].

These algorithms protect a logical entity which is a region of memory or an entire

address space. However, the physical entity corresponding to the logical entity

may be a subset of the it. The logical entity may be a partially utilised address

space, a fragmented memory region, or only partially present if the region is paged

to external storage. Performing operations on the logical entity is desirable as it
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presents a “clean” abstraction to applications, and may also be necessary in the

case where applications are unaware of the underlying physical state of the logical

entity (for example, if the region is demand paged).

The third benchmark, from here on referred to as MAPS, is described below:

� 16 pages in a region of an aligned XKB in size are randomly accessed, after

which

� the region is protected with a single unmap operation.

The time taken to perform the unmap is the metric used, the size X is varied be-

tween 64KB and 16MB in powers of 4. Thirty runs are made at each size to get a

statistical sample, each run with a different random number generator seed.

4.4.2 Results

Figure 4.14 shows the results for the MAP1 and MAPN benchmarks. The results are

normalised to the per-page cost, more precisely each of the benchmarks protects

and unprotects 4096 pages, the illustrated cost is the elapsed time divided by 4096.

Note that each benchmark was run 10 times, the standard deviations from the mean

where negligible.

The results reveal a general trend of reduced mapping cost as GPT node size

increases. This can be attributed to the reduced tree depth of larger node sizes, and

consequently reduced search time needed to manipulate GPT entries. However,

there are seemingly arbitrary deviations from the trend. These deviations are due

to cache artifacts. The benchmark results are influenced by the cache friendliness

of the page table layout.

To confirm this, a second experiment using custom built kernels with caching

disabled was conducted. The same benchmarks ran previously were run with the

new kernels. The results are displayed in Figure 4.15. The experiment reveals the

expected trend of decreasing (un)mapping costs with reduction in tree depth.

Figure 4.16 shows the results for the MAPS benchmark. The results for G4 and

G8 are not shown for clarity and lie approximately between G2 and G16. Given

the unmapped regions are powers of 2 in size and aligned, it could be expected that

unmapping cost would be constant, as one possible implementation of unmap is

simply marking the region as unmapped at the internal node in the GPT that is the
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Figure 4.14: Normalised mapping speed for MAP1 and MAPN with caching on.
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Figure 4.15: Normalised mapping speed for MAP1 and MAPN with caching off.
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Figure 4.16: Average unmap time for regions of 64K to 512M in size, containing

16 randomly placed pages, for page tables G2 and G16–G256.

root of the region. However, the unmap cost is not constant due to an L4 specific

feature. Since L4 allows revocation of pages mapped from one address space to

another, the unmap code must ensure any pages contained in the region do not

have pages derived from them. If they do, the kernel must also unmap the derived

mappings. The kernel achieves this by scanning all the PTEs in the region.

The results reveal that for the smaller nodes sizes (G16 and below) unmap cost

is approximately constant, i.e. dependent on the number of pages and not the size

of the region being unmapped.

For larger node sizes, the unmap cost displays a dependency on region size

not obvious. This dependency can be explained in terms of the spill-over effect

described in Section 4.3.3. Peaks in the unmap cost correspond to region sizes

with the highest probability of the maximal number of nodes needed to store the 16

page-table entries. Given the maximal number of nodes, the higher costs are due to

scanning the higher number of nil entries when searching for the 16 valid entries.

The explanation of the unmap cost’s dependency on region size can be con-

firmed by predicting the high-cost points using spill-over theory. Re-arranging the

spill-over equation (4.2) gives the following:

A

0

= log

2

N + P

0

� 1� kS

0

; k 2 N (4.3)

Where A
0

is log
2

of the region size, N is the number pages being unmapped, P
0

is

the effective page size in bits, and S
0

is the number of bits needed to index a GPT
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node. For the MAPS experiment: N = 16; P
0

= 13, as PTEs are stored in pairs.

Taking G64 (i.e. S
0

= 6) as an example, high unmap cost should occur at region

sizes of 222 (4M) and 2

28 (256M). Doing likewise for G256 (S
0

= 6), high unmap

cost should occur at a region size of 224 (16M). Refering to Figure 4.16, we see that

spill-over theory correctly predicts the obtained results.

Being able to predict points of high unmap cost seems to be of little practical

value other than to confirm exactly what effect is causing the variability illustrated.

The important result is that higher GPT node sizes are more likely to suffer the

variability illustrated, while smaller node sizes are relatively immune.

4.5 Task Creation and Deletion

The cost of task creation and deletion is influenced by setup and tear-down costs of

kernel data structures. In a highly optimised microkernel, the page tables form the

dominant part of these costs.

The ability to create tasks quickly is highly desirable in some situations. Be-

sides the vague “efficiency is good” argument, many applications would benefit

from low task overhead. Some examples are:

� Scripting languages that execute helper applications, the UNIX shell being

an example.

� The Common Gateway Interface (CGI) to web servers. Each transaction re-

sults in the executing of a new task which produces a result which is returned

by the web server. The overhead associated with executing a new task and

its subsequent initialisation has proved a bottleneck resulting in proposals to

use persistent tasks [Bro96].

� Protection-Domain eXtensions (PDX) [VERH96] in the Mungi operating

system uses tasks to cache address-space mappings for cross-domain proce-

dure calls. The initial PDX invocation involves creating a new task to contain

the extended protection domain. Task creation costs represent a significant

proportion of the initial invocation costs [Voc99].
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4.5.1 Benchmark

A task benchmark was created to evaluate how much of an influence page tables

have on task creation and deletion, and evaluate the effect of different GPT imple-

mentations. The benchmark aims to measure the cost of creating and destroying a

task. To this end, the benchmark measures the elapsed time of 100 interations of:

� create a child task,

� wait for null IPC from child, and

� delete the child.

The child task is a two-page task2 that simply sends a null IPC to the parent and

waits. The benchmark was run 10 times to gain a statistical sample.

4.5.2 Results

The results for the task creation and destruction benchmark reveal that the page-

table setup and tear-down costs do influence task creation and destruction signifi-

cantly. Figure 4.17 shows that page tables G2–G16 have similar low initialisation

and destruction costs. In moving to G32 and then on to larger node sizes, the page

table management costs increase incrementally, eventually resulting in a more than

twofold (113%) increase in the combined task creation-and-destruction cost for

G256 when compared to G2. The high penalty for initialising and garbage col-

lecting the larger node sizes is due to the complexity of guard manipulation. For

example, the loop that initialises a new node with null guards uses 15 cycles (in-

structions) per entry, assuming no cache misses. The overhead might be reduced

by clever hand-coded assembler, however even halving the overhead still produces

the same conclusion: task setup and tear-down costs are significantly affected by

page-table management.

2Two pages are required to ensure that a GPT node other than the intial root node is required.

As mentioned before, root nodes differ in size compared to the other nodes in the tree and can be

markedly smaller.



CHAPTER 4. GUARDED PAGE TABLE EVALUATION 66

0

50

100

150

200

250

300

350

G2 G4 G8 G16 G32 G64 G128 G256

ti
m

e 
[m

ic
ro

-s
ec

o
n
d
s]

GPT implementation

Figure 4.17: Task creation and destruction cost for each GPT implementation.

4.6 Summary and Conclusions

As expected, TLB-refill performance is dependent on GPT tree depth. The tree

depth for the conventional applications under test reduces as GPT node size in-

creases and thus refill performance improves as node size increases. The results in-

dicate decoding 4-bits (G16) or 5-bits (G32) per translation step is the point where

increasing the node size stops providing a significant pay-back. It is also the point

where the depth of the GPT tree is less than depth required for a normal multilevel

page-table tree, though a direct comparison is left until Chapter 6.

The current GPT depth is rather ominous for future applications as they grow

in size. Larger applications will result in deeper trees requiring decoding more

bits per step to keep the number of memory references at the current level. Larger

applications are more likely to suffer higher TLB miss ratios, increasing the impact

of TLB refill on overall performance.

Page-table size experiments provide several results:

� For the conventional applications, minimal page-table memory overhead is

achieved with medium-sized nodes (G16). Small node sizes result in deeper

trees with higher overhead due to increased numbers of internal nodes. Larger

node sizes result in increased overhead due to higher numbers of empty en-

tries in the page table.

� Page-table overhead for sparse address spaces does not approach the pre-
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dicted worst case. Any degree of clustering in the address space reduces the

memory overhead significantly.

� The memory overhead of small and medium node sizes is quite immune to

variations in address-space layout; they exhibit relatively stable overhead.

The higher node sizes are more susceptible to variations in address-space

layout and exhibit high variability in memory overhead.

The page-table size experiments also identified the spill-over effect. Spill-over-

effect theory is able to explain (and predict) the situations of high memory over-

head.

The tests on (un)mapping performance reveal that for contiguous regions, there

is trend of reduced (un)mapping cost as node size increases, though performance

is significantly affected by the cache friendliness of a particular GPT’s layout. The

tests on manipulating sparsely populated regions show that for node sizes of (G16)

and below, the performance is determined by the number of valid mappings in the

region, and the region size itself has little influence. However, larger node sizes are

susceptible to reduced performance due to excessive processing of null guards.

The page-table setup and tear-down costs influence task creation-and-destruct-

ion costs significantly. Large node sizes feature significantly higher costs. Small

and medium node sizes have little affect on task costs, i.e. they scale with address-

space size, with small tasks having low overheads, and large tasks having propor-

tionately high overheads.

4.6.1 Conclusions

Medium single-size GPT nodes perform well in all examined facets of page-table

performance. They have manipulation costs and memory overhead directly re-

lated to the number of page-table entries involved, not the address-space layout or

size. Small single-size GPT nodes exhibit good manipulation and memory over-

head properties, but suffer from excessive tree depth and thus poor TLB-refill per-

formance. Large single-size nodes have better TLB-refill performance, but leave

manipulation costs and memory overhead susceptible to idiosynchratic address-

space layouts. Medium single-size GPT nodes provide the best compromise in

overall performance.
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4.6.2 Discussion

Two issues that remain unresolved are the effect of future application growth, and

the use of multiple node sizes. The applications used for page-table testing are

modest in size, larger applications will have an effect on the results. Likewise,

multiple node sizes would allow the GPT’s structure to be tuned to the application,

which will also affect the results.

The performance of TLB refill will be adversely affected by application growth.

This is due to the increase in the number of entries in the GPT and the consequent

increase in tree depth. The memory overhead, mapping performance, and task

creation-and-deletion overhead remains largely unaffected as they are respectively

either: independent of application size, not strongly related to tree depth, or ex-

pected to be proportional to application size.

The use of multiple node sizes is a way to reduce tree depth and improve TLB-

refill performance. Node size could be tuned to application layout to reduce the

tree depth by having large populated nodes that decode many address bits in one

translation step, and simultaneously provide low memory overhead.

For example, Figure 4.18 shows how the typical text, data, and stack memory

layout could be supported with at most two levels in the GPT. The root of the page

table divides the address space into two regions. The two child nodes of the root

are sized appropriately to contain all the page-table entries for each region. Each

node can be enlarged as both regions expand.

Second-level GPT nodes

Virtual address space

GPT root node

Figure 4.18: Example two-level GPT tree for typical split address-space layout.

As detailed in Section 4.1, the use of multiple node sizes requires a solution to

several issues, including how to choose, and how to adapt node sizes. It is not clear

what the best methodologies are to choose and adapt node sizes. However, assume
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for the sake of argument that the method for choosing and adapting node sizes is at

least good enough to achieve the theoretical worst-case page-table size predicted by

Liedtke of 2m�1

k entries, for k mapped pages, where m is the minimum number of

bits decoded per translation step. Given such a method, the question arises of how

will it affect the results for TLB refill, mapping performance, memory overhead,

and task creation-and-deletion overhead. The following examines each aspect in

turn and speculates what the effect might be.

The cost of task creation and deletion is proportional to page-table size. A

reduction in page-table sized achieved via multiple node sizes would result in a

proportionate reduction in task costs.

A reduction in tree depth should result in a reduction in mapping costs due to

reduced tree traversal time. However, this expectation makes the unreasonable as-

sumption that the node sizing and adaption scheme adds zero overhead to mapping-

primitive costs. The node adaption schemes would be applied during mapping

primitive invocation and would have some small or large negative impact on map-

ping performance.

The use of multiple node sizes has the potential to reduce the memory overhead

of the page table. Figure 4.19 shows the theoretical worst-case page-table memory

overhead when using multiple node sizes. Note that for the worst-case example,

G

n

on the x-axis represents a page table that decodes at least log
2

n bits per trans-

lation step. The figure also displays the theoretical best-case memory overhead, the

highest observed overhead for the conventional applications, and the results for the

SPARSE-FILE and SPARSE-PAGE benchmarks.

In the figure, it is immediately evident that the worst case for multiple nodes

sizes is better than the result for the SPARSE-PAGE benchmark with a single node

size. The switch to a multiple node size arrangment would result in a significant

improvement in memory overhead for the SPARSE-PAGE benchmark. It is also

likely that using multiple node sizes would result in a modest improvement in the

SPARSE-FILE result. However, the results for the conventional applications are near

the best-case memory overhead; only a small improvement is possible, independent

of how nodes are sized.

Using multiple node sizes also has the potential to improve TLB-refill perfor-

mance. As pointed out previously, a typical memory layout can be supported in two

levels. However, this simplified memory layout becomes more complex with the
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Figure 4.19: Comparison of observed page-table size performance with worst-case

size if multiple node sizes are used.

addition of kernel virtual memory. Kernel virtual memory is used in L4 to manage

thread control blocks [Lie93], and in other operating systems to page kernel data.

On the MIPS R4x00 architecture a minimum of 3 levels is required to support the

3 regions of text-and-data, stack, and kernel virtual memory. This is a result of the

virtual address-space limitations of the architecture. Figure 4.20 shows the minimal

tree required; kernel virtual memory must be located in the top half of the address

space, and text, data, and stack is located in the lower 40-bit user address space.

GPT root node

User VM Kernel VM

1Tb root node

3rd -level nodes

Figure 4.20: Minimum depth GPT for MIPS architecture.

The restriction on user virtual address-space size prevents using a large-sized

root node which could point directly to appropriately aligned text-and-data and
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stack regions. Instead, the root node points to a root of the user address space,

which then points to the two user regions. For the address-space root node to be

able to point to both text-and-data and stack simultaneously, the address-space root

node needs to contain entries for every 0.5 Tb. Such an address space node would

need 2

25 entries, and thus is impractically large.

The TLB-refill performance of a 3-level tree is the same as for the G128 and

G256 GPTs. For the applications used, both these trees were 3 levels deep, and

featured an average TLB-refill time of 82 cycles. This can be viewed as the best-

case TLB-refill time for GPTs on the MIPS architecture; using multiple node sizes

can only improve memory overhead.

Rather than focus on tackling the complexities of using multiple node sizes for

improved memory overhead, I chose to leave this for future work. Instead, I fo-

cussed on adding a software second-level TLB which should have a more dramatic

effect on TLB-refill performance, a fixed memory overhead, and a negligible effect

on mapping performance. A software TLB is the topic of the next chapter.



Chapter 5

GPTs with a Software TLB

As pointed out in the previous chapter, guarded page tables have properties that

make them desirable as a page table. These include low space overhead, low setup

and tear-down costs, and predictable manipulation costs in sparse environments.

However, GPTs feature inherently higher TLB-refill costs than hash-based refill

schemes which often need only a single memory reference. This chapter explores

adding a hashed structure (a software TLB) to GPTs to provide competitive TLB-

refill performance while retaining the desirable properties of GPTs.

5.1 Background

The software TLB, second-level TLB, or TLB cache has developed from work

on inverted and hashed page tables. Software TLBs (STLBs) are fundamentally

hashed page tables with no direct provision for overflow. Collisions in the hash

table are usually resolved via replacing the old entry with the new entry, which

results in the software TLB acting as a cache of recently used entries. A separate

data structure is used to store and retrieve the complete set of TLB entries.

Several variations of the idea exist. One approach taken in the PA-RISC [HH93]

is to support the initial lookup, upon TLB miss, in hardware. If the hardware refill

handler fails to find a matching entry, then a trap to a software routine is taken

which can look up the entry in another page table, or follow an overflow chain if a

hashed page table is used. A similar approach is taken on the PowerPC [Pow97].

A completely software-based approach [BKW94] is also possible. In this par-

ticular approach the general exception handler was modified to detect kernel TLB

72
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misses early in the exception handler, which then used a direct-mapped1 software

TLB to cache entries and reduce the kernel PTE refill costs. To elaborate a little

more, the MIPS R2000 [KH91] uses a virtual array to store page-table entries. User

TLB misses are handled by a specialised software exception handler which indexes

the virtual array and loads the appropriate entry. Kernel-mode misses (which in-

clude TLB misses on kernel-mapped memory and misses on the page-table array)

are handled via the more expensive general exception vector. TLB misses on ker-

nel memory (both mapped memory and user page tables) are handled via a second

virtual page-table array termed a level-2 array, with the user page tables termed

level-1. The level-2 page-table entries are themselves in a virtual array, which upon

access can suffer yet another TLB miss. Page-table entries for this array (level-3

entries) are stored in physical memory to halt this cascading process. The addition

of the STLB improves performance by shortcuting the cascading by caching level-2

and level-3 entries, thus reducing expensive TLB misses via the general exception

vector.

The SPARC Spitfire[You94] takes a hybrid approach, handling refill in soft-

ware, but providing some hardware assistance. Like the MIPS R4x00 [Hei93], a

register is provided by the hardware which, upon a TLB miss, is set to the address

of the appropriate place in the page table for the miss handler to load the required

page-table entry. While the register on the MIPS was designed for linear arrays,

the register on the Spitfire is designed for an STLB, termed a Translation Store

Buffer (TSB). The MMU allows the operating-system designer to vary the size of

the translation store buffer via a second register which modifies the pointer genera-

tion appropriately. This arrangement is quite flexible with regard to size of the TSB,

however no direct support is provided for varying the associativity. Associativity

can be achieved at a cost, by appropriate modification of the hardware-provided

pointer in software during each invocation of the refill handler.

Most of the attention given to software TLBs has been rightly focused on reduc-

ing TLB-refill time, with significant success. Uhlig [UNS+94] discusses the effect

of operating-system design on TLB performance, however I found little attention

has been given in the literature to what parts of the software-TLB design space af-

fects various areas of performance of the operating system. A brief discussion of

a Hashed Resident Page Table (HRPT) and “protection keys” in a single-address-

1“Direct mapped” in software TLB technology refers to using a selection of appropriate low

order bits of the virtual address for the hash function to directly index the STLB.
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space system can be found in Chase’s thesis [Cha95]. Chase proposes a hash-based

structure for single-address-space operating systems. The structure has multiple

tags per virtual-to-physical translation. The tags form protection keys to select

when a translation is active in one of the potentially many protection domains.

Channon [CLK97] discusses general issues of size, tag management, and as-

sociativity in an examination of the applicability of skewed and column-based as-

sociativity in TLBs. Briefly, skewed and column-based associative STLB lookup

uses two or more hash functions for selecting entries in the STLB to provide wider

dispersion of entries and hence reduced conflict misses.

Talluri [Tal95] describes the applicability of clustering to software TLBs in a

more general examination of subblocking in the address-translation hierarchy.

What follows is a discussion of major components of the design space and the

issues that arise in designing a software TLB for the L4 microkernel in particular,

however, the discussion also has general applicability.

5.2 Software-TLB Design Issues

The software TLB is simple in concept. In implementation however, there are sev-

eral parameters to the design space that need to be considered. These parameters are

size, associativity, hash function, and whether to cluster entries. In addition, soft-

ware TLBs can be per address space or can be shared between all address spaces.

5.2.1 Hash Function

The hash function transforms a virtual address into a location in the software TLB.

The aim of a good hash function is to be fast, and to minimise collisions in the hash

table. Ideally, the hash function provides a uniform distribution within the hash

table, which is reasonably independent of the distribution of keys.

Knuth suggests two simple algorithms based on multiplication or division that

exhibit good properties [Knu73], but both use multiplication or division, which are

expensive operations when considered in the light of a cycle-by-cycle optimised

TLB-refill handler.

TLB-refill routines use simpler hash functions that are fast to calculate and rely

somewhat upon the distribution of addresses to provide dispersion, instead of the

properties of the hash function itself.
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The PowerPC [Pow97] and PA-RISC [HH93] use a simple XOR of a selection

of upper and lower address bits of the faulting address. The PA-RISC uses the upper

half of the 64-bit addresses as address-space identifiers. The address-space identi-

fiers are pseudo-randomly allocated to processes, which helps the performance of

the hash function.

Bala reports good performance with a simple bit selection (direct mapped) ar-

rangement, which is achieved simply by masking the appropriate number of least

significant bits [BKW94]. The SPARC Spitfire TSB [You94] also uses a similar

direct-mapped arrangement.

This thesis is not intended to be an investigation into STLB hash functions. The

STLB implementations in this thesis use bit-selection for the hash function. Bit-

selection is the least complex hash function and results in the shortest TLB-refill

routine.

5.2.2 Associativity

Set associativity in cache memories has been studied for a long time, starting with

Smith [Smi78b]. Smith later compiled two large bibliographies on cache memories

which can be consulted for further references, particularly on cache associativity

[Smi86, Smi91].

Recent studies [UNS+94] on associativity in TLBs argues for increasing the

number of entries via reduced associativity to combat increasing TLB miss ratios

in the face of increasing working-set size and physical memory. Another study

[CLK97] proposes applying column and skewed associativity techniques [Sez93].

A column or skewed associative lookup uses more than one hash function to locate

entries in the TLB. Simplifying to some extent, a column associative lookup first

uses one hash function for an intial probe, which if unsuccessful, a second probe

based on a different hash function is performed. Argarwal [AP93] provides further

details.

Skewed associativity [Sez93] divides the TLB into two distinct banks similar

to two-way set associativity. However, instead of using the same hash function to

index each bank, skewed associativity uses a different hash function to index each

bank.

These techniques all have corresponding implementations in a software TLB,

though several factors may preclude their use.
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� Bit-string manipulation in software is time consuming. Calculation of in-

dices in column and skew techniques can be done within the access cycle of

a hardware TLB. A software implementation is likely to consume several cy-

cles forming an index, which in turn, is unlikely to return a sufficiently lower

miss ratio to compensate for the extra expense.

� Hardware lookups are in parallel, software lookups are sequential. A two-

way set associative lookup needs to load two tags to check for a match.

Hardware can do this in parallel, software requires two sequential memory

references and sequential comparison to check for a potential match, at least

on a single issue processor.

� An implementation of n-way associativity would ideally place the n entries

of a set consecutively to minimise the number of cache lines used during a

lookup. Skew and column associativity places entries of a set independently,

and hence accesses more cache lines than the simple n-way scheme.

To investigate the potential for using associativity in a software TLB on the

R4x00 architecture, refill routines for both a one-way (direct mapped) and two-

way STLB were developed. There are several reasons for using this as a starting

point:

� The one-way case, with a high hit rate, provides the best-case refill time. The

one-way has both the shortest refill routine (18 cycles with no cache misses)

and references the least memory. It accesses only half a cache line to refill

the TLB. The routine only requires (saves and restores) a single temporary

register 2.

� Two-way associativity is the next incremental step. It has the least increase

in miss penalty of all associativity schemes. The bit-selection scheme used to

index the STLB is similar to the one-way case. The refill routine is 20 and 22

cycles long, depending on which entry in a set matches (assuming all cache

hits). It references twice as much memory as the one-way case, however the

memory is still contained in the same cache line. It requires two temporary

registers.

2The MIPS R4x00 architecture only provides two registers for use by the TLB refill routine. If

extra registers are required, they must be saved and restored by the refill routine.
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� Higher associativity schemes require references to more than one cache line,

which increases the average number of lines referenced per lookup.

� Column and skewed associativity requires more complex indexing and also

references more than one cache line.

Based on the previous reasoning, I am sceptical as to whether associativity has

a place in a software-based TLB-refill routine. This assertion is re-enforced by

the fact that most implementations of software TLBs are direct mapped [BKW94,

HH93, You94], with the exception of the PowerPC [Pow97] with its hardware-

based initial lookup.

5.2.3 Multiprocessor STLBs

The two main problems that arise for virtual memory management in multiproces-

sors are TLB consistency and safe multi-threading of page-table operations. TLB

consistency can be managed by special hardware or, mostly, by software. Teller

provides a good review of various techniques [Tel90]. The techniques are mostly

independent of page-table type and thus orthogonal to STLBs.

Multiprocessor scalability of page-table operations is examined by Khalidi et

al. [KJW94]. Their examination of the “hardware address translation” (HAT) layer

in Solaris identified the single lock on the entire HAT layer as being barely suffi-

cient for two CPUs, for the applications under test. They undertook an incremental

refinement, multi-threading various parts of the HAT layer to improve scalability

and performance. The techiques used were orthogonal to the page table used in

their implementation.

STLBs can be treated as just another page-table type, and as such, I believe they

neither significantly ease or complicate page-table management in a multiproces-

sor, hence I will not examine this further.

5.2.4 Single or Shared STLBs?

A software TLB can be designed as a cache for a single page table (i.e. each task has

its own STLB), or a STLB can be shared between all running tasks on a machine.

A per-task STLB is not the preferred option as it either requires statically reserv-

ing, or dynamically managing, the physical memory used to store them. Statically
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reserving memory has the problem of a priori predicting the number of STLBs re-

quired. Dynamic management incurrs additional overhead. Given physical mem-

ory is a limited resource, it makes some sense to move the STLB to virtual memory,

however this suffers the penalty of cascading TLB misses.

A single shared STLB can simply be placed in physical memory to avoid cas-

cading TLB misses. It can be sized larger for a better hit ratio, and at the same

time, consume less overall physical memory when compared to a per-task STLB.

To signify which entries are applicable to which task, a shared STLB requires

each entry to be augmented with an address-space identifier (ASID) similar to hard-

ware TLBs [DEC96, Hei93, You94]. Several possibilities for implementation exist

depending on the architecture being used:

� On architectures with a hardware defined ASID used in the TLB, the ASIDs

can be used directly to augment STLB entries. This can reduce the com-

plexity of tag management considerably if the architecture forms a tag in the

hardware suitable for comparison (e.g. SPARC Spitfire [You94]). A com-

plication arises on architectures on which the number of address spaces can

exceed the number of available ASIDs. Potential solutions to this problem

are discussed in Section 5.2.5.

� On architectures without hardware ASIDs, one can synthesize STLB specific

ASIDs in software. A software ASID slows the TLB-refill process as it needs

to be merged in some manner with the faulting address, and compared with

the tag of the appropriate candidate for a match. I do not explore this further

as very few modern CPUs have no support for hardware ASIDs of some type.

Like the TLB, the STLB must be kept consistent after (un)maping operations.

The (un)mapping operations involve page-table traversals that examine page-table

entries, of which the associated virtual address is easily determined. Given a virtual

address, the cost of probing the STLB to ensure consistency should be minimal,

especially as it must be similarly done for the TLB. This is equally applicable to

both shared and per-task STLBs.

Similarly, the shared STLB should have little effect on task setup and tear-

down costs. The STLB need only be initialised upon system startup, after which

it is always in a known state, assuming (un)mapping correctly ensures consistency.

Tear-down costs should be inconsequential as either the address space is large and
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a STLB scan has little effect, or if the address space is small, the STLB can be

probed and invalidated for each valid entry in the page table when the page table is

garbage collected.

The shared STLB has a potential advantage on some software-loaded TLB ar-

chitectures as it can lie at a constant address. If placed appropriately, its base ad-

dress can be loaded by a TLB-refill routine with a single immediate instruction,

which avoids loading the page-table address from memory.

5.2.5 ASID Management

Managing hardware ASIDs only becomes an issue when the number of address

spaces exceeds the number of available ASIDs. Prior to this point, hardware ASIDs

can be used directly within the STLB. Some CPUs, notably the MIPS R4x00

[Hei93] and the SPARC Spitfire [You94], form tags including both the virtual ad-

dress and ASID. These tags are suitable for use as (and subsequent comparison

with) tags within the STLB.

The SPARC Spitfire features a 12-bit ASID which is likely to be sufficient for

the number of concurrent address spaces in most systems. However, current MIPS

and Alpha [DEC96] processors only feature 256 and 128 ASIDs respectively. Most

systems are likely to exceed these numbers at least occasionally.

When the number of tasks exceeds the number of available hardware ASIDs,

a method of fairly and efficiently sharing the available ASIDs amongst competing

tasks is required. Efficient ASID management is an issue as it affects IPC per-

formance. IPC from one task to a second task that is ASID-less could involve

reclaiming an ASID from a third task and reassigning the ASID to the second. This

introduces a level of uncertainty to IPC performance. Table 5.1 lists measured L4

IPC times for various STLB configurations with, and without, an ASID reclama-

tion. The numbers are obtained by restricting the microkernel to a single ASID,

consequently forcing the kernel to reclaim and reassign the ASID for each IPC. It

can be seen that an ASID reclaim involving a large STLB adds greatly to the IPC

cost. However, one would expect ASID reclaims to represent a small proportion

of the overall system overhead, since one expects the set of active tasks in the sys-

tem to exhibit temporal locality, with ASID reclaims happening when the active set

slowly evolves with time.

While ASID reclamation and reassignment in the context of overall system
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Scenario Costs

Normal IPC 0.99 �s

IPC with ASID reclaim (no STLB) 8.5 �s

IPC with ASID reclaim (8K STLB) 46 �s

IPC with ASID reclaim (128K STLB) 1.7 ms

Table 5.1: IPC costs involving ASID reclamation.

overhead is not a huge issue, IPC latency in the context of interrupt handling is.

Device drivers in L4 are user-level tasks which receive hardware interrupts via

IPC. IPC latencies of a millisecond in this context is likely to cause interrupts to be

missed, limit device driver performance, or even result in device driver malfunc-

tion. Device drivers need to be considered as special tasks in the system that require

special ASID handling to avoid excessive interrupt latency.

The ASID management problem is analagous to page replacement in a typical

virtual-memory system: ASIDs can be thought of as physical frames, tasks (or

more precisely, address spaces) as virtual pages, and ASID reclamation as page

faults. Thus ASID management can be divided into three policies having virtual-

memory analogies.

ASID assignment is analogous to fetch policy. ASIDs could be assigned on de-

mand, or pre-fetched in some manner.

ASID selection is analagous to page placement, but while page placement may

affect performance (e.g. improving cache performance via page colouring

[KH92]), all ASIDs perform equally and thus the only selection policy need-

ed for assignment is selection of a free ASID.

ASID replacement is analagous to page replacement. Like a page-replacement

algorithm that attempts to satisfy the demands for virtual memory and simul-

taneously minimize page-fault rate, an ASID replacement algorithm would

attempt to satisfy the demands for address spaces and simultaneously mini-

mize the number of ASID reclaims.

Initially, I planned to investigate the application of virtual-memory management

policies, such as FIFO or clock [CH81], to ASID management. However, I have

left this as future work as current workloads used on the system have not exceeded
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the number of available hardware ASIDs. I also expect the number of available

ASIDs to increase in future processors.

The current kernel is implemented as follows: ASIDs are assigned on-demand

except for device-driver tasks. When a task registers to receive interrupts, its ASID

is “wired” to it for the duration of its registration. All other unwired ASIDs partic-

ipate in a FIFO replacement algorithm.

5.3 Experimental Evaluation

5.3.1 Implementation

To compare associativity and examine the effect of adding an STLB to GPTs, the

following page-table implementations were tested.

No STLB An unmodified, 16-entry per node, guarded page table as described in

the previous chapter. It forms the baseline to which the following STLB

implementations are compared.

1�128K A G16 GPT with the addition of a one-way set-associative 128 kilobyte

STLB. It contains 8192 entries of 16 bytes each. The number of entries is

sufficient to cover all physical memory in ideal conditions.

2�64K A G16 GPT with the addition of a two-way set-associative 128 kilobyte

STLB. It contains 4096 pairs of entries of 16 bytes each. The number of

entries is sufficient to cover all physical memory in ideal conditions.

1�8K A G16 GPT with the addition of a one-way set-associative 8 kilobyte STLB.

It contains 512 entries of 16 bytes each. In ideal conditions, it can covers 4M

of memory, which is one sixteenth (6.25%) of the physical memory in the

test machine.

2�4K A G16 GPT with the addition of a two-way set-associative 8 kilobyte STLB.

It contains 256 pairs of entries of 16 bytes each. It can cover the same amount

of memory as the 1�8K STLB.

The layout of each STLB entry is illustrated in Figure 5.1. The two-way as-

sociative STLB uses pairs of entries placed consecutively in memory and indexed

appropriately.
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Figure 5.1: The layout of the STLB.

The motivation for the choice of the particular STLB sizes is as follows. The

large STLB should achieve near 100% hit ratio and thus best-case performance

for TLB refill. This allows direct comparison between the raw refill speed of the

two associativity schemes, without the influence of differing miss ratios. The small

STLB will exhibit a more realistic miss ratio allowing comparison of the effect of

associativity on miss ratio and TLB-refill performance. The varying of STLB size

will give an indication of scalability issues with respect to TLB refill and other

areas of microkernel performance.

5.3.2 Benchmarks

The set of benchmarks used to evaluate STLB performance examines the same

areas as the GPT evaluation. The benchmarks examine the STLB’s effect on TLB-

refill performance, microkernel mapping primitives, and task creation-and-deletion

overhead. I do not examine page-table memory overhead as this is mostly deter-

mined by the underlying guarded page table that the STLB is caching.

To investigate TLB-refill performance, I use the metrics and the conventional

applications described in Section 4.2.1. Summarising briefly, the metrics used are

overall application runtime and average TLB-refill time obtained via instrumenta-

tion. The applications are traditional UNIX applications, each application is run in

turn and the results recorded.

The unmap system call is examined to investigate the cost of keeping the STLB

consistent during page-table operations. Unmap is a good candidate as STLB con-

sistency cannot be managed lazily (as it can with map), and it is a simple operation

that only involves system-call argument checking, generation of the boundaries of

the region to be operated on, and a GPT traversal that involves both mapping-tree
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modifications and simple bit manipulation in the page-table entries. Being a simple

operation, unmap is likely to reveal STLB-consistency overheads better than other

operations.

The metric used is elapsed time of the unmap operation normalised to a single

page, i.e. elapsed time divided the number of pages unmapped. The method used is

to map a region of sizeX , and measure its elapsed time using the hardware counter.

The region X is varied from 4K (a single page) to 16M in powers of 2 increments.

At each point, the benchmark is repeated 10 times to obtain a statistical sample.

The task benchmark of Section 4.5 is used to examine the effect of adding an

STLB on task creation and deletion. Briefly, the benchmark measures the elapsed

time of 100 interations of:

� create a child task,

� wait for null IPC from child, and

� delete the child.

5.3.3 Results

TLB Refill

The dramatic reduction in average TLB-refill cost resulting from the STLB can be

seen in Figure 5.2. The large 1�128K STLB performs the best with a reduction in

average TLB-refill cost from 101 cycles to 32 cycles (68%). The similarly sized

two-way associative STLB did not perform as well with a reduction of 57% to

43 cycles. Given that the routines only differ by approximately 3 cycles (if all

memory references hit in the data cache), the large difference between the two can

only be attributed to high data-cache miss ratios during STLB refill, which results

in a larger memory-reference penalty for the two-way case. To elaborate, assume

for the two-way STLB an equal distribution of hits for the two entries in a set.

The two-way STLB references half a cache line 50% of the time and the whole

cache line the other 50%. Comparing this to the one-way STLB which accesses

half a cache line 100% of the time, in the presence of cache misses the two-way

has to wait on average for 1.5 times more memory to load into the cache. For

the R4700, the penalty of using extra memory within a cache line is visible. The

R4700 allows instructions to proceed in parallel with cache refill. Data is available
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to the CPU once it is loaded in the cache. The CPU does not have to wait for

the complete line to refill for the data to be available, this is not necesssarily the

case with cache architectures that stall the processor during refill, or make the first

word loaded into a cache line available, but stall any further access to the cache

line until it is completely refilled. The memory reference penalty on these other

cache architectures would be similar for both one-way and two-way associativity.

Later, Section 5.3.4 discusses associativity more generally, including sensitivity to

changes in the memory reference penalty.
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Figure 5.2: Average TLB refill time (cycles) for G16 with various STLB configu-

rations. Error bars represent standard deviations.

The average refill cost for the smaller 8K STLBs is also significantly reduced

compared to the no STLB case. The cost reduction is 55% (to 46 cycles) for the

one-way case, and 45% (to 55 cycles) for the two-way case. This is still a dramatic

performance improvement given the modest size of the STLB. It also corroborates

that 2-way associativity is more expensive.

The standard deviation (represented by the error bars in the figure) shows the

variation in TLB refill per application run compared to the overall average across

all applications. The small variation for both the 128K STLBs can be attributed

to the near 100% hit ratio in both the STLBs for all applications; the variation

is essentially due to varying hit cost in the STLB. The large variation for the 8K

STLBs is explained by the varying hit ratio (from 42% to 100%) for the differing

applications. The standard deviation of individual benchmark runs normalised to
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the mean are typically less than 0.1%.

Table 5.2 details the effect of adding an STLB on application runtime. The

runtime is normalised to the runtime of the no-STLB case (G16) to directly com-

pare relative performance improvement. Overall application runtime is reduced

by 0 to 34%, with the average reduction being 10% for the 1�128K STLB when

compared to the no STLB case. The difference in performance between larger and

smaller STLBs, and also one-way and two-way associativity, is only marked for

the applications having high TLB miss ratios (mm, c4, gcc). In the case of mm,

which features a high hit ratio for all STLBs (see Table 5.3), we can see the penalty

incurred by the extra memory reference required for the two-way STLB. Other

applications feature small differences of around 1%, always in favour of one-way

associativity.

BENCH No STLB 1�8K 2�4K 1�128K 2�64K

go 1:00 0:98 0:98 0:98 0:98

swim 1:00 1:00 1:00 1:00 1:00

gcc 1:00 0:94 0:95 0:86 0:89

compress 1:00 0:91 0:92 0:91 0:93

apsi 1:00 0:97 0:97 0:97 0:97

wave5 1:00 0:94 0:94 0:93 0:94

c4 1:00 0:80 0:82 0:73 0:76

nsieve 1:00 0:96 0:97 0:96 0:97

heapsort 1:00 0:99 1:00 0:99 1:00

mm 1:00 0:67 0:75 0:66 0:75

tfftdp 1:00 0:89 0:89 0:88 0:89

Average 1:00 0:91 0:90 0:92 0:92

Table 5.2: Elapsed times normalised to G16 for each combination of application

and page table.

Table 5.3 also illustrates that there is no consistent difference in hit ratio be-

tween the one-way and two-way STLBs for the applications under test. In no case

tested was the hit ratio of the two-way STLB large enough above the one-way

STLB to translate into better overall performance.
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BENCH 1�8K 2�4K 1�128K 2�64K

go 1:00 1:00 1:00 1:00

swim 0:46 0:42 1:00 1:00

gcc 0:68 0:72 1:00 1:00

compress 0:99 1:00 1:00 1:00

apsi 0:99 1:00 1:00 1:00

wave5 0:98 1:00 1:00 1:00

c4 0:82 0:81 1:00 1:00

nsieve 1:00 1:00 1:00 1:00

heapsort 1:00 1:00 1:00 1:00

mm 1:00 1:00 1:00 1:00

tfftdp 0:99 0:99 1:00 1:00

Table 5.3: STLB hit ratio for each combination of page table and conventional

benchmark.

Unmapping Performance

Figure 5.3 illustrates the cost of keeping the STLB consistent after unmap opera-

tions. It shows the cost of an umap operation for a G16 without, and with one-way

and two-way STLBs. Different sized STLBs are not shown as they performed

similarly and only clutter the graph. The unmap cost is normalised to a per-page-

unmapped cost, i.e. the unmap cost is divided by the unmapped-region size.

In the worst case, keeping the STLB consistent costs about 9% for the one-

way STLB and approximately 17% for the two-way. Cache effects cause a minor

inconsistency in the results for smaller region sizes, the cost of STLB consistency

“improves” performance. Figure 5.4 shows the results for the same experiment with

the cache turned off, thus removing the cache effects to show the inconsistency in

the previous results was not due to other influences.

This inconsistency can be attributed to cache artifacts that are more likely to

manifest themselves in operations on small regions. The operations on large regions

provide a better indicator of the inherent cost of STLB consistency.

Task Performance

The effect an STLB has on the task benchmark is illustrated in Figure 5.5. Con-

sistency managment of the STLB results in a slight increase (5%) in the cost of
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Figure 5.3: Unmap cost normalised to per page unmapped, for increasing region

size and each page table implementation with cache on.
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size and each page table implementation with cache off.
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creating and deleting a task. This is a negligible increase given that the benckmark

spends very little time in user-mode code.
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Figure 5.5: Task creation-and-destruction cost for G16 with various STLB config-

urations.

5.3.4 Associativity Revisited

From the previous experimental results it is clear that the extra TLB-miss penalty

associated with the two-way STLB is not compensated by a sufficiently improved

STLB hit ratio for the two-way STLB to perform as well, or better than, the one-

way STLB. However, the experiment does not give an idea of how much an im-

provement in two-way STLB hit ratio would be sufficient for it to perform as well

as the one-way STLB, nor does it provide any information as to how sensitive this

sufficient improvement in hit ratio is to changing the TLB-miss penalty associated

with the two-way STLB.

The STLB hit-ratio can vary greatly with the software application. The differ-

ence in hit ratio between STLBs of differing associativity can similarly vary. The

average refill penalty difference between two STLBs can also vary significantly

with a change in cache size or memory bus speed. To provide a more general com-

parison between two STLB implementations, I derive an approximate formula for

required improvement in hit ratio and analyse it.

The following notation is used: R is the STLB average hit ratio of the first

implementation, R + �R the hit ratio of the second implementation; H is the
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average cost of a TLB refill that hits in the STLB for the first implementation,

H + �H is the average cost for the second; M is the average cost of a TLB refill

that misses the STLB for the first implementation,M +�M is the average cost for

the second.

Thus the average TLB-refill cost (C
stlb1

) for the first implementation is,

C

stlb1

= RH + (1� R)M

and the average cost for the second is:

C

stlb2

= R(H +�H) + (1� (R +�R))(M +�M)

For the second implementation to, on average, outperform the first C
stlb2

must

be less than C
stlb1

. This equates to:

R(H +�H) + (1� (R +�R))(M +�M) < RH + (1�R)M

which after expanding and removing common terms is:

�R(H +�H �M ��M) < �R(�H ��M)��M

which after further re-arranging becomes

�R >

R(�H ��M) + �M

M +�M �H ��H

We now make the approximation that the difference between the miss cost (M+

�M ) and the hit cost (H+�H), is equal to the lookup cost of the underlying page

table (P ). Thus, after further re-arrangement, we have the following inequality,

�R >

R�H

P

+

(1�R)�M

P

(5.1)

The inequality (Equation 5.1) specifies the required improvement in hit ratio

(�R) of a second STLB, for the second STLB to perform better than the original

STLB, given the second STLB has an extra hit penalty (�H) and miss penalty

(�M ).

Equation 5.2 optimistically assumes the �M component (in Equation 5.1) is

negligible. Even if it is not, Equation 5.2 must be true when Equation 5.1 holds

true.

�R >

R�H

P

(5.2)
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�R also has the constraint that R+�R < 1, as hit ratio cannot exceed 1. This

leads to the following constraint on the hit ratio of the original STLB:

1�R >

R�H

P

Which when re-arranged is

R <

P

P +�H

(5.3)

Hence, Equation 5.3 specifies the optimistic limit of hit ratio of the original

STLB, for it to be theoretically possible for a second STLB to perform better, given

the second STLB has an increased hit penalty of �H .

Figure 5.6 shows Equation 5.3 graphically. It plots the limit on hit-ratio for the

original STLB against the average TLB-refill cost of the underlying page table (P )

for various second STLB hit penalties (�H). The penalties are 3, 5, 10, 15, and 20

cycles. 3 cycles is the minimum average penalty for using two-way associativity

(given no cache misses) in the STLB designs used in the previous experiments.
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Figure 5.6: Plot of optimistic upper limit of original STLB hit ratio (R), for it to

be theoretically possible for a second STLB to compensate for various additional

refill penalties (�H), versus average underlying page table refill cost.

Figure 5.6 does not reveal whether one STLB configuration is better than an-

other, but it does reveal whether it is theoretically possible for another STLB to bet-

ter a given reference STLB. In the TLB-refill experiments undertaken, the underly-

ing page table’s average TLB-refill cost (P ) was 100 cycles (see Section 4.2.2), and

the difference in hit cost for the large STLBs (�H) was 11 cycles (see Figure 5.2).
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The graph reveals for the experiments undertaken that the limit on hit ratio for the

one-way STLB is 0.9, for it to be theoretically possible for the two-way to perform

better. This point is highlighted in the figure by the plotted experimental value.

If one considers that the modest 8K one-way STLB achieves at least a 98% hit

ratio in 8 out of the 11 benchmarks tested, and that scaling the one-way STLB to

128K (and beyond) to achieve higher hit ratios for other applications is feasible,

there is no scope for adding associativity in pursuit of further performance gains on

this architecture.

5.4 Conclusions

The addition of an STLB acting as a software cache of TLB entries improves the

TLB-refill performance of GPTs dramatically. This translates to significant im-

provements in application runtime. Experimental and theoretical results show that

STLB refill time is critical for performance; a small increase in TLB-refill penalty

may be impossible to compensate. STLB refill-routine designs should be simple

and fast. There is no scope for using associativity in a STLB in the environment

under study. The environmental situation would need to change significantly for

associativity to deserve further consideration.

Adding an STLB had a small detrimental effect on other microkernel primitives.

The need to keep the STLB consistent introduced a small penalty for both mapping

and task creation-and-deletion primitives. However, the improvement in TLB-refill

performance should offset the small penalty.

The GPT+STLB combination appears to be very attractive for use in a micro-

kernel. It features low refill costs, low space overheads, low setup and tear-down

costs, and fast mapping operations. However, one needs to compare the combi-

nation with other page-table structures to prove conclusively that the GPT+STLB

combination does perform better than traditional hashed or hierarchical page-table

structures. The next chapter performs this comparison.



Chapter 6

Comparison with Other Page Tables

The previous chapters examined GPTs both without and with an STLB. The com-

bination of a GPT with 16 entries per node (G16), together with a large one-way

set-associative STLB, was found to perform better in the completed benchmarks

than other structural variations of GPTs and STLBs. However, all quantitative com-

parisons thus far have involved variations of GPTs of one form or another. There

has been no quantitative comparison with more traditional structures.

The goals of this chapter are to quantify the relationship between GPT+STLB

performance and the performance of more traditional page-table structures, and

also to evaluate the traditional page tables in terms of microkernel primitives. To

achieve this goal several page-tables were chosen, implemented, and subsequently

tested. The benchmark results are then compared with the GPT+STLB results.

6.1 Page Table Implementations

Two variants of the GPT+STLB combination are used in this comparison. One

variant is a G16 GPT together with an 8K one-way set-associative STLB contain-

ing 1024 page-table entries(termed G16+S1024 from here on); the other variant is

G16 GPT together with an 128K one-way set-associative STLB containing 16384

entries(termed G16+S16384).

The other page tables chosen for comparison were selected from those reviewed

in Chapter 3. The three basic types implemented were the multilevel page table

(MPT), the hashed page table (HPT), and the clustered page table (CPT). The in-

verted page table (IPT) was not implemented as it is less flexible and performs

92
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worse than the HPT [HH93]. The virtual linear array (VLA) was also not imple-

mented due to the current microkernel’s inability to support cascading TLB-refill

faults, i.e. it cannot handle a TLB-refill fault while servicing a TLB-refill fault,

which is a requirement for implementing a VLA. The consequence of the VLA’s

omission from this page-table study is discussed later in Section 6.4.2. As implied

by the inability to handle cascading TLB faults, all the page-table implementations

are contained in physical memory.

Note that the inability to support cascading TLB refills is merely a limitation of

the current implementation. There is nothing inherent in the microkernel’s design

that prevents adding support for cascading TLB refills in a future version.

6.1.1 Multilevel Page Table

Figure 6.1 illustrates the structure of the implemented MPT. The MPT uses a 4K

node size which corresponds to the hardware page size. This size was chosen as

it is a reasonable trade-off between tree depth and node granularity, and because

it corresponds to the LVA node size, it should provide an estimate of the LVA

memory-consumption characteristics. The 4K node size for leaf and internal nodes

leaves only 4 bits remaining to index the root node, which is 64 bytes in size.

The page table has six levels indexed by the bit selections illustrated (13-20,

21-30, 31-40, 41-50, 51-60, 61-63). The pointers contained in the root and internal

nodes have been shortened to 32 bits, and rely on sign extension to form valid 64-

bit pointers. This technique conserves memory, gives a more compact page-table

structure, and improves the chances of pointer entries remaining in cache.

Figure 6.2 illustrates the format of the MPT leaf nodes. Instead of 32-bit point-

ers, they contain 256 page-table entry pairs (16 bytes per pair). The format of a

PTE pair is illustrated in the shaded section. It contains two page-table entries and

the mapping-tree pointers associated with the page-table entries.

The page-table entries for the kernel-mapped memory (an array of thread con-

trol blocks) are shared between all address spaces by sharing a common branch in

all page tables. This saves memory and avoids the problem of keeping the kernel-

mapped memory consistent in all address spaces.
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Figure 6.1: Multi-level page table implementation.
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Figure 6.2: Multi-level page table leaf node implementation.
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6.1.2 Hashed Page Table

Figure 6.3 illustrates the design of the implemented hashed page table. The HPT

consists of consecutively laid out buckets that form the head of the structure, which

is a power of 2 in size to enable efficient indexing. The format of each bucket

is shown in the shaded section. A bucket contains a tag to check if the bucket

matches the faulting virtual address. The tag is the same format as the ENTRYHI

system-coprocessor register of the R4x00.

There are two page-table entries following the tag. These entries are placed

immediately after the tag to minimise memory latency if the entries are not in the

cache. Collisions in the HPT are resolved by following the link field, which is the

next entry in the bucket. The link field is placed before the mapping-tree pointers to

minimise memory latency when the link is followed in the case of a collision. The

mapping-tree pointers play no part in TLB refill and are placed last in the bucket.

+64

+32

+24

+12

+8

+0

PTE0 PTE1

MT ptr1MT ptr0

63 0

link

tag

Figure 6.3: Hashed page table implementation.

Collisions in the HPT are resolved using external linear chaining, i.e the link

field in the hash bucket forms the head of an external linear linked list. TLB refills

resolved in the external list are promoted to the HPT head by swapping the tag,

PTEs, and mapping-tree pointers between the matching external bucket and the

bucket at the head of the chain in the HPT. This promotion technique is similar to

one proposed for IPT-based page tables [RSD81] and exploits temporal locality of

TLB misses.
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The hash function used to select the initial bucket for a potential match is a

simple bit selection of the faulting virtual address. Bit 13 and above are used1,

with the actual number of bits used depending on the HPT size. The two HPT

sizes that were implemented and tested were an 8K HPT featuring 512 potential

page-table entries (H512) in the hash table, and a 128K HPT with 8192 potential

page-table entries (H8192). The hash tables are indexed with bits 20–13 and 24–13

respectively.

Kernel-mapped memory is handled via a second HPT of the same format that is

shared between all address spaces. It is searched after a miss in the user HPT. This

configuration is a result of the design semantics of sharing kernel PTEs between

all tasks. Implementing the sharing as a second HPT provides a simple way to

achieve sharing semantics. The kernel PTEs do not play a significant role in the

benchmarks as the benchmarks test properties of user-level page tables.

6.1.3 Clustered Page Table

The major design decision to be made when building a clustered page table (CPT)

is choice of the subblock factor. The subblock factor has an effect on memory

consumption, and the average number of cache-lines accessed during page-table

lookup. Increasing the subblock factor decreases memory consumption, assuming

a high percentage of valid entries within a cluster. Table 6.1 shows the page-table

bucket size for various subblock factors, assuming each subblock contains both a

64-bit tag and link, and n page table and mapping-tree entries (n being the subblock

factor). The table shows a dramatic reduction in page-table size with increasing

subblock factor. Subblock factors higher than 16 are not considered as the aim is

to support sparse environments. Subblock factor 2 is considered the normal case

given the MIPS R4x00 TLB is itself subblocked with a factor 2.

Considering memory consumption alone, the table argues for a large subblock

factor. However, further considering caching characteristics limits choice of sub-

block factor. The cache-line size is an important factor in choosing subblock factor.

The STLB experiment in Chapter 5 revealed the prevalence of data-cache misses

during TLB refill. Access to extra memory within a cache line produced a signif-

icant performance penalty. Increasing the average number of cache-lines accessed

will incur a greater penalty.

1Bits 12-0 are the offset within a page pair.



CHAPTER 6. COMPARISON WITH OTHER PAGE TABLES 97

n CS ENCS %SR

2 32 32 0

4 48 64 25

8 80 128 37:5

16 144 256 43:75

Table 6.1: Clustered (CS) and equivalent non-clustered (ENCS) page-table bucket

size, and percentage size reduction (%SR) for various subblock factors (n).

Subblock factor Average cache lines accessed

2 1

4 1.25

8 1.5

16 1.75

Table 6.2: Average number of cache lines accessed per TLB refill for various sub-

block factors.

The MIPS R4x00 has a 32-byte cache-line size. The average number of cache-

lines accessed during TLB refill can be estimated with the assumptions of a hit in

a hash-table bucket, the most compact layout of tag and PTEs, and equal proba-

bility of hitting each entry within a bucket. Note that two buckets need examin-

ing for this calculation. Bucket size is not a multiple of the cache-line size, so

the second bucket in a pair is not aligned as well as the first. Refering to Fig-

ure 6.4, we see the average number of cache lines accessed for a hit (noting that a

hit requires access to both the tag and PTE), for each of the page-table entries is
1+1+1+1+1+1+2+2

8

= 1:25. The second bucket begins in the middle of a cache line

and is not as favourably aligned. The average number of cache line accessed for

the second bucket is 1+1+2+2+2+2+2+2

8

= 1:75. Thus, the overall average number

of cache line accessed is 1.5. Table 6.2 shows the average number of cache lines

accessed per TLB refill for this, and other subblock factors.

Subblocking complicates the TLB-refill routine in two ways. The bucket size is

no longer a power of 2, which complicates the calculation of an index for selecting

a bucket, and an extra calculation is required to select a pair of entries within a

bucket. The extra complexity is equal for subblock-factor 4, 8 and 16, and thus is

not a consideration for subblock-factor selection.

When clustering the page table, an interesting question arises as to whether it
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is worthwhile to promote hits in the collision chains to the hash table. Promotion

from a collision chain to the hash table was relatively cheap for the HPT as both

the overflow and hash-table bucket are in the cache as a result of the search. A CPT

with buckets spread across multiple cache lines incurs a greater penalty as it can

cause extra caches misses, in addition to copying a larger amount of data. There

exists the possibility of thrashing, i.e. constant swapping between collision chains

and the hash table. Clustering may rely not only on clustered allocation, but also

on clustered access patterns.

To determine an appropriate subblock factor and investigate the applicability of

promotion, the following clustered page tables were constructed.

C-4-512 A clustered page table with 128 buckets, each with 4 page-table entries.

Hits in collision resolution chains are promoted to the hash table.

C-8-512 A clustered page table with 64 buckets, each with 8 page-table entries.

Hits in collision resolution chains are promoted to the hash table.

C-16-512 A clustered page table with 32 buckets, each with 16 page-table entries.

Hits in collision resolution chains are promoted to the hash table.

C-4-512-N A clustered page table with 128 buckets, each with 4 page-table entries.

Hits in collision resolution chains are not promoted to the hash table.

C-8-512-N A clustered page table with 64 buckets, each with 8 page-table entries.

Hits in collision resolution chains are not promoted to the hash table.

C-16-512-N A clustered page table with 32 buckets, each with 16 page-table en-

tries. Hits in collision resolution chains are not promoted to the hash table.

The layout of a CPT hash bucket of subblock-factor 8 is shown in Figure 6.4.

The other subblock-factor hash buckets are similar, except for the appropriate

change in the number of page-table entries and mapping-tree entries.

The six page tables were tested using the TLB-refill benchmarks (described in

Section 4.2.1) and compared using the normalised elapsed-time metric. The results

are shown in Table 6.3.

Comparing the three subblock-factors tested, we see that subblock-factor 4 (C-

4-512) performs similar to subblock-factor 8 and 16 (C-8-512 and C-16-512), with

the exception of mm and c4. The C-4-512 CPT, on average, performs 2% better



CHAPTER 6. COMPARISON WITH OTHER PAGE TABLES 99

tag
PTE0,0 PTE0,1

PTE1,0 PTE1,1

PTE2,0 PTE2,1

PTE3,0 PTE3,1

link

MT ptr0,0 MT ptr0,1

MT ptr1,1

MT ptr2,1

MT ptr3,1

MT ptr1,0

MTptr2,0

MT ptr3,0

+0

+8

+16

+24

+32

+40

+48

+56

+64

+72

+80

063

Figure 6.4: Clustered page table implementation for subblock factor 8.

BENCH C-4-512 C-4-512-N C-8-512 C-8-512-N C-16-512 C-16-512-N

go 1:00 1:00 1:00 1:00 1:00 1:00

swim 1:00 1:00 1:00 1:00 1:01 1:00

gcc 1:00 0:96 0:99 0:97 1:00 0:98

compress 1:00 1:27 1:04 1:39 1:09 1:43

apsi 1:00 1:00 1:00 1:00 1:01 1:00

wave5 1:00 1:52 1:02 1:80 1:06 1:88

c4 1:00 0:85 1:16 0:89 1:50 0:92

nsieve 1:00 1:01 1:00 1:01 1:00 1:00

heapsort 1:00 1:00 1:00 1:00 1:00 1:00

mm 1:00 1:06 0:96 1:02 0:93 0:99

tfftdp 1:00 0:92 1:03 0:92 1:09 0:92

Average 1:00 1:05 1:02 1:09 1:06 1:10

Table 6.3: Results of TLB-refill benchmark for various CPT configurations. Re-

sults are normalised to the elapsed time of C-4-512.
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than the subblock-factor-8 CPT, and 6% better than the subblock-factor-16 CPT.

Examining the two notable exceptions, we see that c4 performs significantly worse

with the larger subblock factors, and mm performs significantly better. c4 plays the

game of “connect four” and has a sparse memory access pattern, which results

in significant amounts of thrashing of bucket contents between collision chains

and the hash table. This analysis is confirmed by comparing these results with

c4’s results without promotion (C-4-512-N, C-8-512-N, and C-16-512-N). Without

promotion (i.e. without copying), we see that c4 performs significantly better.

mm performs better with a higher subblock factor. mm is a inner-product matrix

multiply. The higher subblock-factor page tables prefetch more page-table entries

into the hash table that are subsequently used, which results in lower average TLB-

refill cost.

The results reveal, on average, that promotion pays off. In particular, promo-

tion is advantageous for both wave5 and compress, which are the two largest

benchmarks, and thus have the longest collision-resolution chains. It is likely that

promotion will continue to pay off as recent microprocessors feature larger cache

lines, thus reducing the promotion costs.

For comparison with the other page tables, I chose C-4-512 as being representa-

tive of a clustered page table on the MIPS architecture, it is 6K in size. In addition,

a larger clustered page table was constructed (C8192) to compare with the larger

HPT. C8192 features 2048 hash buckets, each containing four page-table entries

and is 96K in size. From here on in the text, the C-4-512 CPT is referred to simply

as C512.

6.2 Benchmarks

The benchmarks used to evaluate the various page-table types are those intro-

duced previously. The benchmarks test TLB-refill performance (Section 4.2.1),

memory overhead (Section 4.3.2), (un)mapping performance (Section 4.4.1), and

task creation-and-deletion performance (Section 4.5.1). A brief summary of each

benchmark follows.

The metrics used to compare TLB-refill performance are application runtime

and average TLB-refill cost obtained via instrumentation. Each of the applications

used for testing are run three times each, both with and without instrumentation.
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Page-table memory overhead is examined in three situations. The first sce-

nario is with the conventional applications, the second with a sparse address space

(SPARSE-PAGE), and the third with a clustered address space (SPARSE-FILE). At

the end of each benchmark run, the page-table size is recorded together with the

number of pages mapped in the address space.

The (un)mapping speed is tested in three scenarios via the MAP1, MAPN, and

MAPS benchmarks. They respectively test individual page, region, and sparsely-

populated-region (un)mapping. These benchmarks are also run with the addition of

a compact 64-megabyte region of mapped memory elsewhere in the address space.

The memory is unrelated to the region undergoing testing. The motivation for this

is to compare page tables under a more realistic scenario. The hash-based page

tables are expected to contain entries from other tasks. The added region increased

the loading in the hash-based page tables to a level approximately equivalent to that

expected with 100% utilisation of physical memory.

The task benchmark measures the cost of creating and destroying a task. The

benchmark measures the elapsed time of 100 iterations of:

� create a child task,

� wait for null IPC from child, and

� delete the child.

6.3 Results

6.3.1 TLB Refill

Before analysing the results, the predicted cost (in cycles) of each of the TLB-refill

routines is shown in Table 6.4. These numbers represent the minimum TLB-refill

cost of each routine, but does not include processor exception and restart costs. It

assumes all loads from memory hit in the cache, and either a 100% hit ratio in the

STLB, or a 100% front-bucket hit ratio in the HPT and CPT.

The average TLB-refill cost results for the conventional applications are shown

in Figure 6.5. The G16+S16384 has the lowest average TLB-refill cost of 31.5

cycles. The second best performer is the H8192 with an average refill cost of 37.3

cycles. This is an interesting result as both page tables are expected to perform near
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Page Table Cycles

STLB 19

HPT 19

CPT 27

MPT 34

Table 6.4: Theoretical minimum TLB-refill cost (in cycles) assuming cache hits,

for each of the TLB-refill routines under test.

their best of 19 cycles each, as both have a high hit ratio in either the STLB or the

hash table. The difference between the 31.5 cycles of the STLB and the theoretical

cost of 19 cycles is attributable to a poor cache hit ratio in the STLB.
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Figure 6.5: Average TLB refill time (cycles) across conventional benchmarks. Er-

ror bars represent standard deviations.

The most interesting result is the difference between the average refill cost of the

HPT and STLB. Both routines have the same best-case refill cost, and are tested in a

near ideal situation. Thus one could expect they perform similarly. The surprisingly

large difference in cost can be explained by considering the data-structure density

and its effect on cache performance. The STLB is a denser structure with two PTE

pairs contained in each cache line. The HPT has a single PTE-pair per cache line,

together with data unrelated to TLB refill (mapping-tree pointers, and a link for

collision resolution). The density difference favours the STLB for two reasons:

� A TLB refill which results in a cache miss will load the required entry into the
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cache together with a neighbouring STLB entry. The hash function used for

the STLB is such that spatial locality in the virtual address space translates

to spatial locality in the STLB. TLB refills for applications exhibiting spatial

locality will pre-fetch and prime the cache for future TLB refills.

� The more compact structure of the STLB allows more entries to fit in a given

cache size, increasing the likelihood of entries being in the cache.

The CPT has a best-case TLB-refill cost of 27 cycles, 8 more cycles than both

the STLB and HPT page table. Recall that the CPT is 25% more compact in terms

of cache lines used, compared to the HPT, but on average accesses 1.25 cache-

lines per refill. The reduction in cache usage is expected to improve TLB-refill

performance. The clustering is also expected to improve TLB-refill performance

via the cache priming effect previously described. The increase in average number

of cache-lines accessed per refill is expected to reduce refill performance.

The C8192 average TLB-refill cost was 45.7 cycles, 8.4 cycles more than the

average cost for H8192. The difference is slightly more than the difference of 8 cy-

cles expected by comparing instruction counts with the HPT. The result indicates

the performance improvements obtained by clustering approximately balances the

penalties of clustering. The performance difference between the HPT and CPT

comes down to the basic difference in number of instruction cycles needed to exe-

cute the refill handler.

The G16+S1024, H512, and C512 all feature higher average TLB-refill costs

(46, 66, and 75 cycles respectively) than their larger counter parts. This is at-

tributable to all three implementations having higher first-probe miss ratios due to

their smaller hash-table span, when compared to the larger page tables. However

for the same hash size, the STLB still performs better than the HPT, which in turn

performs better than the CPT.

The MPT has a basic cost of 41 cycles per refill without cache misses, plus

it consistently makes 6 memory references per refill. The MPT in this compari-

son averaged 124 cycles per refill which is poor TLB-refill performance compared

to the hash-based schemes. The MPT simply accesses too much memory to be

competitive.

Table 6.5 shows the normalised elapsed time for each combination of conven-

tional application and page table. The results are normalised to the elapsed time of

the G16+S16384 page table to enable comparison between runs of different lengths.
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The table shows the varying contribution of page-table TLB-refill overhead to over-

all application runtime. The table re-affirms the previous results that on average,

the G16+S16384 performs the best followed by H8192, C8192, G16+S1024, H512,

C512, and the MPT.

BENCH G16+S128K G16+S8K MPT H512 H8192 C512 C8192

go 1:00 1:00 1:03 1:00 1:00 1:02 1:02

swim 1:00 1:00 1:00 1:00 1:00 1:00 1:00

gcc 1:00 1:08 1:19 1:15 1:02 1:14 1:03

compress 1:00 1:00 1:10 1:04 1:01 1:05 1:01

apsi 1:00 1:00 1:04 1:00 1:00 1:01 1:01

wave5 1:00 1:00 1:10 1:07 1:01 1:06 1:01

c4 1:00 1:10 1:44 1:18 1:02 1:38 1:10

nsieve 1:00 1:00 1:08 1:01 1:00 1:01 1:00

heapsort 1:00 1:00 1:01 1:00 1:00 1:00 1:00

mm 1:00 1:01 1:58 1:06 1:05 1:03 1:03

tfftdp 1:00 1:00 1:26 1:06 1:01 1:14 1:01

Average 1:00 1:02 1:17 1:05 1:01 1:08 1:02

Table 6.5: Elapsed times normalised to G16+S16384 for each combination of ap-

plication and page table.

There are some exceptional individual results worth noting. The CPT has the

best result for the mm application. As described previously, mm is a inner-product

matrix multiply which exhibits high spatial locality. Clustering of page-table en-

tries is especially advantageous in this scenario as loading multiple entries effec-

tively prefetches entries into the cache, which amortises the cache-miss cost over

several TLB refills.

For the small CPT, which has a higher collision ratio than the large CPT, clus-

tering is also advantageous for applications exhibiting spatial locality for another

reason. The promotion of entire blocks of PTEs to the hash table from collision

resolution chains has the effect of pre-fetching entries to less costly position (in

the page table) for refill. This amortises the cost of hash-collision resolution over

multiple TLB refills. This phenomenon only occurred for wave5.

Unexpectedly, gcc also performed better with C512 than with H512. This

result is unexpected because in Table 6.3 gcc was shown to perform better without

promotion than with, which implies sparse access patterns. (Previous TLB studies
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[CBJ92] confirm gcc’s sparse access patterns.) The H512 should perform better

in this situation due to cheaper promotion costs. C512’s better performance can

be attributed to both page tables having high front-bucket miss ratios, and thus the

shorter collision chain lengths of the CPT are an advantage.

As pointed out in Section 6.1.3, the CPT performed poorly for c4 due its very

sparse memory-access patterns, which causes thrashing in the collision chains. In

general, the elapsed-time metric confirms that clustering was disadvantageous com-

pared to the simpler HPT.

6.3.2 Page-Table Size

Figure 6.6 shows the page-table memory overhead for the conventional applica-

tions. The values illustrated are normalised, i.e. they represent the total page-table

size divided by the number of mapped 4K pages. Each page-table configuration has

three values associated with it: the lowest, the average, and the highest observed

overhead for the applications tested. Note that the STLB is considered kernel-

data shared between all tasks, and is not factored into the size overhead for the

G16+STLB.
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Figure 6.6: Page-table bytes per mapped page for conventional applications. The

three values represent the highest, average, and lowest page table size overhead

observed in the conventional applications.

The results show that the small CPT (C512) has the lowest average memory

overhead of 13.8 bytes per mapped page. The low average overhead is explained



CHAPTER 6. COMPARISON WITH OTHER PAGE TABLES 106

by the small initial page-table size. The initial page table only supports a maximum

of 512 page-table entries before overflow (collision resolution) chains are required.

The 512 entries correspond to 2 megabytes of virtual address space, which is a size

all the applications exceed except go. Hence for the conventional applications, the

6K CPT is densely populated and exhibits the least memory overhead.

Similarly, the small HPT (H512) also exhibits a low memory overhead. It too

is densely populated and has an overhead of 18.3 bytes per mapped page.

The GPT-based page table (G16+STLB) has an average overhead of 17.9 bytes

per mapped page, which places the GPT between the CPT and HPT. It also features

the least variation in memory overhead, only varying 5 bytes per mapped page

across all the applications.

The MPT average memory overhead was 33.7 bytes per mapped page. The

MPT has the potential to be the most compact structure if it is densely populated. It

featured the lowest observed overhead of 10.3 bytes per mapped page for one of the

benchmark runs. However, for most of the benchmark runs the population density

was such that the MPT has higher overhead than the G16+STLB, H512, and C512.

The memory overhead for both the H8192 and C8192 page tables varied greatly.

These large structures need a large number of page-table entries to populate them

densely. With a sufficient number of entries they have low overhead as shown

by the lowest observed overhead of 16.1 and 12.1 bytes per mapped page for the

H8192 and C8192 respectively. However, the highest observed overhead of 648.9

and 486.7 bytes per mapped page illustrates what can happen when a large page

table is populated by a low number of valid entries. The average overhead for the

applications tested was 139 and 104.8 bytes per mapped page, which is significantly

higher than the other page table configurations.

Figure 6.7 shows the results for the SPARSE-PAGE benchmark. The figure plots

the normalised memory overhead versus number of pages allocated, for each of the

page-table configurations. The results reveal the HPT as being the most space effi-

cient, using approximately 33-50 bytes per mapped page, but only when the num-

ber of page-table entries is sufficient to populate a good proportion of the available

slots in the hash table (512 for the H512, 8192 for the H8192). The H8192, and to

a lesser extent the H512, become very space inefficient when partially populated.

The SPARSE-PAGE benchmark does not cluster mapped pages in any way, which

is contrary to Talluri’s assumption when he proposed the CPT as a space-efficient
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Figure 6.7: Normalised page-table memory overhead for SPARSE-PAGE bench-

mark for each page-table implementation.

optimisation. When mapping single pages, clustering allocates multiple invalid

PTEs together with a single valid PTE within a hash bucket. The CPT follows a

similar trend to the HPT, except clustering increases the memory overhead when

significant amounts of collision chains are present, i.e. when the number of mapped

pages grows beyond 128 for C512, and 2048 for C8192. Prior to these points, the

smaller initial page-table size gives clustering a slight advantage. When the CPT is

populated, it has an overhead of 50-100 bytes per mapped page. Like the HPT, it

becomes very space inefficient when significants amounts of available hash buckets

are left unused.

The G16+STLB has the same result as when examined in Chapter 4, it exhibits

a relatively stable overhead of 95-115 bytes per mapped page. The spill-over effect

does not influence a G16 GPT significantly, its memory overhead can be considered

independent of the number of entries mapped.

The MPT exhibited a memory overhead of 5–8 kilobytes per mapped page. The

result for the MPT is not shown in the figure to avoid having a scale on the y-axis

which failed to adequately illustrate the results for the other page tables. The MPT

performs extremely poorly in this sparse benchmark.

Figure 6.8 illustrates the results of the SPARSE-FILE benchmark. The figure

plots the normalised memory overhead versus number of objects allocated, for each

of the page-table configurations. The object size is selected randomly from the file-
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size distribution used previously (see Figure 4.5).
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Figure 6.8: Normalised page-table memory overhead for SPARSE-FILE benchmark

for each page-table implementation.

In this scenario, a densely populated HPT exhibits a memory overhead of 17–19

bytes per mapped page. The clustering of pages into objects approximately halves

the overhead due to the hash buckets containing pairs of PTEs. The clustering

also causes a slightly greater reduction in memory overhead of the CPT. When

densely populated, it has an approximate overhead of 16–18 bytes per mapped

page. This is marginally better than the HPT. Both hash-based page-tables (the

HPT and CPT) still exhibit high overheads when partially populated, with the CPT

having the advantage of a smaller initial size.

The G16+STLB configuration has an average memory overhead of 39–52 bytes

per mapped page. This clustered scenario approximately halves the overhead com-

pared to the SPARSE-PAGE benchmark. Once again, the GPT features relatively

constant overhead that is independent of the number of pages mapped.

The MPT also features a reduction in overhead down to 720–1800 bytes per

mapped page. This is still 1–2 orders of magnitude above the other configurations.

To summarise, for conventional applications the GPT exhibited stable memory

overhead competitive with a densely populated HPT, and slightly worse than the

densely populated CPT. Both the HPT and CPT have low memory overhead when

their size is well matched to virtual memory consumption. They perform poorly

when they are not matched. The MPT exhibited approximately twice the overhead
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of the GPT on average. For the sparse benchmarks, the HPT again performed

well when its size was appropriately matched with virtual memory consumption.

The CPT performed similarly except for exhibiting higher memory overhead for

SPARSE-PAGE which maps isolated pages. The memory consumption of the GPT

was approximately twice that of a well matched HPT. The GPT exhibited consistent

and stable memory overhead independent of virtual memory consumption. The

memory overhead of the MPT was 1–2 orders of magnitude worse than the other

structures.

6.3.3 Mapping Performance

The results for the MAP1 and MAPN benchmarks are shown in Figure 6.9. For the

MAP1 benchmark, C8192 performs the best (costing 13.9 microseconds per itera-

tion), closely followed by H8192 (costing 14.3 microseconds per iteration). Both

these large, hashed-based page tables have negligible overflow chaining. Mapping

and unmapping involves a simple hash-table probe and page-table manipulation.

Comparing H8192 (and C8192) with H512 (and C512), we see that the addition

of overflow chaining has a significant detrimental effect on mapping performance.

H512 costs 21.3 microseconds per iteration; C512 costs 19.1 microseconds per it-

eration. An increase of 49% for H512 and 37% for C512. The result shows the

advantage of clustered page tables when hash table overflows, because of the re-

duced search time due to shorter collision chains.
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Figure 6.9: Normalised mapping speed for MAP1 and MAPN.
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The MPT has the highest MAP1 benchmark cost of 26.8 microseconds per iter-

ation. The high cost is due to the MPT needing to traverse the 6 levels of the page

table for each map operation. The G16+S16384 cost is 23.3 microseconds per it-

eration. G16+S16384 performs better than the MPT as it has less levels to traverse

for each map operation. Compared to the hash-based structures, G16+S16384 per-

forms worse due to either the extra lookup complexity (compared to H512 and

C512), or the need to traverse more levels (compared to H8192 and C8192).

The MAPN results show the improvement possible when the unmap operation is

batched into a single system call, rather than unmapping a single page at a time as in

MAP1. All the results improve similarly except for the MPT. The MPT’s dramatic

cost reduction is due to its efficient processing of page-table regions. For the MPT,

processing regions is a simple array scan. Processing regions with the hashed-

based structures involves probing for each potential entry in the region (or each

potential block for the CPT’s case). Theoretically, the GPT-based structure should

also perform operations on regions efficiently. Yet the results show a similar cost

reduction to the hash-based page tables. As pointed out earlier in Section 4.4.2,

the tested GPT implementation performs the operations on regions by page-table

scanning, not by operating on the root node of the region. This is due to both

the need to check for mappings derived from the pages being operated on (i.e. an

L4 specific constraint), and the need to indentify which pages are operated on to

subsequently ensure the STLB is kept consistent. Hence, the advantage of in-order

traversal shown by the MPT is not visible in the GPT in this benchmark. The

software complexity (cost) of traversal in the GPT implementation is similar to that

of traversing the hash-based page tables by probing for each entry in the region.

However, the cost of probing greatly depends on the length of collision chains in

the hash-based page tables. The implications of this are demonstrated next in the

MAPS benchmark.

Figure 6.10 shows the results for the MAPS benchmark. It shows the cost of un-

mapping a region normalised to a per unmapped-page cost, versus the unmapped

region size, for each of the page-table configurations. The results show that opera-

tions on sparsely populated regions have significantly different costs for the differ-

ent page-table configurations.

The results reveal the MPT has the highest cost in sparse environments due

to it needing larger page tables to represent a sparse region, and thus the unmap
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Figure 6.10: Average unmap time for regions of 64K to 16M in size, containing 16

randomly placed pages, for each page table implementation.

code spends more time processing mostly invalid page-table entries in the region.

The GPT, H512 and C512 configurations all show relatively constant unmap cost

as sparsity varies. However, the H8192 and C8192 both show a dependence on

region size. This is a consequence of the unmap algorithm needing to scan a larger

proportion of the page table as the region size increases. The smaller HPT and CPT

does not exhibit this effect as the unmap algorithm is scanning the entire page table

at low sparsity, giving the appearance of constant unmap cost as sparsity increases.

Figure 6.11 shows the results for the same benchmark except that the page table

is populated with entries for 64M of memory that is unrelated to the region under

test. The results for this show that the performance of the two hierarchical page

tables (the GPT and MPT) remains unchanged. The GPT exhibits a constant low

overhead independent of the sparsity of the unmap operation, and the MPT remains

expensive for sparse operations.

The benchmark results for the HPT and CPT shows that their performance de-

grades significantly compared to the previous mapping benchmark which did not

have the additional mapped memory. The degradation is due to the scanning of

the additional memories’ page-table entries, even though they are unrelated to the

memory region undergoing testing. The large configurations are least affected as

the additional page-table entries basically fill-in the invalid entries in the sparsely

populated page table with a low amount of additional collision resolution chaining.
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Figure 6.11: Average unmap time for regions of 64K to 16M in size, containing 16

randomly placed pages and an unrelated 64M segment, for each page table imple-

mentation.

Thus, for H8192 and C8192, the mapping benchmark does not scan dramatically

more page-table entries compared to the previous benchmark. However, H8192

and C8192 remain significantly more expensive than the GPT.

The small hash-based page table (H512 and C512) results are dramatically af-

fected by the additional memory. The page-table entries needed to map the addi-

tional memory produce collision resolution chaining. The chains add to the scan-

ning overhead of both densely and sparsely populated regions. This overhead pro-

duces the dramatic increase in unmap time as the region size increases. The unmap

cost levels off at the point where the entire page table is scanned. This is an im-

portant result as it approximates what one can expect in a real system. A task

can easily have 64M of memory unrelated to mapping operations, and, more im-

portantly, the benchmark approximates what happens when the hash-based page

tables are shared among all tasks, which adds the PTEs of all other tasks to the

page table. The large page tables would exhibit the same effect if the unmapped

region size was increased.

Comparing the HPT and CPT results, we see that for sparsely populated re-

gions, or regions involving scanning page tables containing significant amounts of

unrelated data, the CPT performs better as it compares fewer tags while scanning

the same amount of page-table entries.
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6.3.4 Task Creation and Deletion

The result of the task benchmark is shown in Figure 6.12. The results show the

G16+STLB, H512, and C512 page-table configurations being dramatically faster

than the H8192, C8192 and MPT configurations. The G16+STLB configuration

took 160 microseconds per iteration of the benchmark. This low overhead can be

attributed to several factors: the low GPT initialisation overhead, as a single small

root node is initialised; the low cost of incrementally adding a mapping; and the

cost of tearing down the GPT being directly related to the number of mappings.
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Figure 6.12: Task creation and destruction cost for each page table implementation.

The H512 and C512 took 181 and 176 microseconds per iteration respectively.

These configurations have low overhead as they are of modest size and thus have

modest initialisation overhead, they have low cost of incrementally adding a map-

ping, and they have modest demolition cost. These 512-entry (� 8K) configurations

can be held entirely in the cache, which in this repetitive benchmark favours the

smaller configurations compared to the 8192-entry (� 100K) configurations. One

could expect a significant degradation in these numbers when the page-table size is

increased beyond the 16K cache size. Indeed, the H8192 and C8192 configurations

show proportionally higher overhead with 5 milliseconds and 3.6 milliseconds per

benchmark iteration, respectively.

When comparing the HPT and CPT we see that clustering improves perfor-

mance. Clustering reduces page table overhead by reducing the initialisation and

demolition overhead. A clustered page table has less tags for the same number of
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PTEs. Given initialising a single tag to invalid indirectly initialises the group of

PTEs associated with it, clustering reduces the amount of work needed to put the

page table into a known state. Demolition costs are reduced as tear-down involves

scanning the entire page table, which also involves less operations due to fewer

tags.

The MPT performed a benchmark iteration in 2 milliseconds. This is a much

higher overhead than that exhibited by the GPT, small HPT, and small CPT. The

overhead can be attributed to the cost of initialising and subsequently tearing down

the 6 levels in the page-table tree.

6.4 Discussion

6.4.1 Sharing the HPT or CPT

All of the performed benchmarks primarily consist of a single task. This has the

effect of making the memory overhead of the HPT and CPT sensitive to the bench-

mark size. In a multi-user multi-tasking system, the HPT (or CPT) is shared be-

tween many tasks. This would ensure utilisation of the HPT (or CPT) if it is sized

relative to available physical memory. Under-utilisation (high memory overhead)

only occurs if physical memory is under-utilised; in this case, memory overhead

becomes a non-issue. However, sharing an HPT (or CPT) amongst many tasks will

have an effect on the other examined areas of page-table performance. The follow-

ing is a qualitative look at a sharing the HPT or CPT, describing the expected effect

on the various areas examined.

TLB Refill – The average TLB-refill cost is expected to increase with sharing.

This is a consequence of storing page-table entries of other tasks in the same

data structure. This increases the length of collision resolution chains result-

ing in longer lookup times.

ASID Management – Like the STLB in Section 5.2.5, a shared HPT (or CPT) has

either to maintain its own ASIDs independent of those supplied by the hard-

ware, or use hardware based ASIDs and be encumbered with ASID manage-

ment problems. Using software based ASIDs independent of the hardware

has the advantage of not encountering the problem of what to do when ASIDs



CHAPTER 6. COMPARISON WITH OTHER PAGE TABLES 115

become unavailable and the ensuing address-space switch complexity. Soft-

ware based ASIDs can be designed such that unavailability never eventuates.

However, software based ASIDs complicate TLB refill by requiring some

translation between ASIDs used by the hardware and the ASIDs stored in the

page table. This complexity reduces TLB-refill performance.

Using hardware derived ASIDs in the page table avoids ASID related com-

plexity in the TLB-refill routine, but when the number of address spaces ex-

ceeds available ASIDs, it has a side effect of potentially expensive ASID

management costs. The ASID reclamation costs for a HPT or CPT will be

much higher than a STLB as the HPT contains all page-table entries, the

STLB contains only a subset.

Mapping Performance – Sharing the HPT (or CPT) will have a detrimental effect

on mapping performance. The results in Section 6.3.3 showed the adverse

effect on mapping performance of adding unrelated page-table entries to the

page table. Sharing the HPT will have similar, if not dramatic, effect of

reducing mapping performance.

Task Creation and Deletion – Sharing a single HPT or CPT will also have a detri-

mental effect on task creation-and-deletion overhead compared to a per task

data structure. Sharing adds the PTEs of all unrelated tasks to the data struc-

ture. The scanning of all these additional unrelated PTEs will increase task

creation-and-deletion costs.

6.4.2 Linear Virtual Arrays

As described earlier in this chapter, linear virtual arrays (LVA) were excluded from

this comparison because of implementational limitations. It is not clear how LVAs

would perform in terms of TLB-refill performance when compared to the other

tested page tables. Earlier MIPS processors featured refill times of 10–14 cycles

[DMM86]. The minimum refill cost being 10 cycles if everything needed is in the

cache. These cycle times were for an 8MHz processor, a dramatically slower pro-

cessor than the one used in this thesis, and more importantly a processor with a

lower ratio of CPU speed to memory speed. Translating the above numbers by ap-

plying a similar memory reference penalty to the one observed for the STLB (12.5

cycles) gives an estimated refill time of 22.5 cycles on average. This assumes no
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TLB misses in the LVA itself, which is likely to have a significant impact, espe-

cially in sparse allocated environments or for applications exhibiting sparse access

patterns [NUS+93].

Sparse environments will be a problem for LVAs when one considers memory

consumption. An LVA can be thought of as a multilevel page table searched from

the bottom up instead of top down. An LVA will have the same memory consump-

tion characteristics as the MPT tested. The results for the MPT revealed it was

unusable in sparsely allocated environments.

The LVA will be competitive for traditional contiguous 32-bit environments,

i.e. enviroments encouraging low levels of cascading TLB misses and low memory

overhead. However, the LVA will be unsuitable for large, sparse address spaces.

6.5 Conclusions

6.5.1 TLB Refill

A tagged, shared STLB is the best choice for good TLB-refill performance. It

has been shown to outperform all other page-table implementations in this thesis.

Compared to the HPT, the STLB performs better as it has no collision overflow

link, which leads to a more compact page-table structure. The compact structure

allows more page-table entries to fit in a cache line, thus resulting in more page-

table entries being pre-fetched when the cache line is loaded to service a TLB miss.

The cache priming (pre-fetching) effect is strong, and indicates that neighbour-

ing entries within a cache line should be as closely related as possible in order to

maximise the likelihood that pre-fetched entries will be used. Applications tend to

exhibit spatial locality in their address space, hence the STLB hash function should

translate spatial locality within the virtual address space into spatial locality within

a cache line. The pre-fetching effect will become increasingly important as the gap

widens between CPU and memory speed.

Clustered page tables aim to take advantage of the same cache priming effect.

However, clustered page tables did not perform as well as the STLB. The cache-

line size on the R4700 is only 32 bytes, which means a clustered block of page-

table entries is spread across multiple cache-lines. The spanning of cache lines has

several disadvantages:
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� Spanning increases the average cache-lines referenced per TLB refill.

� Spanning makes promotion of collision-chain blocks to the hash table more

expensive. Promotion is an important performance optimisation. Expensive

promotion makes clustered page tables susceptible to costly thrashing if ac-

cesses are sparse. Thus clustered page tables rely on clustered access patterns

in addition clustered memory allocation.

In a software-loaded TLB, clustering has the additional disadvantage of adding

significant extra complexity to the TLB-refill handler. The advantages of clustered

page tables are more likely to manifest themselves with larger cache-lines. Clus-

tering would be particularly attractive when used in conjunction with multiple page

sizes as proposed by Talluri [Tal95].

The cache priming effect for page tables was alluded to in [Tal95], but not

demonstrated due to the simulation methodology. To my knowledge, this thesis is

the first to demonstrate the strength of the effect on a real system.

For TLB-refill, the MPT performed worse than the other page tables tested due

to the depth of the tree.

6.5.2 Page Table Size

The small clustered page table (C512) featured the lowest average memory over-

head for conventional applications. It shows what is achievable when a clustered

page table is well matched to virtual memory consumption. The small HPT (H512)

and GPT both have slightly worse memory overhead when compared to the C512.

However, the GPT overhead was stable and relatively independent of virtual mem-

ory consumption. Like the CPT, the HPT featured low overhead when well matched

to virtual memory consumption. Both the CPT and HPT featured high memory

overhead when mismatched. The MPT exhibited an average memory overhead of

approximately twice that of C512, G16, and H512.

In sparse environments, the small CPT and HPT feature the lowest overheads

with the HPT more suited to really sparse address spaces, and the CPT more suited

to clustered address spaces. Again, both page tables have to be well matched to

virtual address space consumption, otherwise they exhibit high memory overhead.

The GPT has a memory overhead of approximately twice that of the small CPT and

HPT, with the overhead again being independent of the number of pages mapped.
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The MPT is unusable in sparse environments. It has a memory overhead 1 – 2

orders of magnitude above the hash-based and guarded page tables.

To summarise, if virtual memory consumption is known and consistent, the

CPT features the lowest memory overhead. If virtual memory consumption is un-

known or inconsistent, the GPT is the better choice.

6.5.3 Mapping Performance

For manipulating single pages in contiguous regions, the hash-based page tables

feature the lowest cost of mapping and unmapping, with the CPT performing better

than the HPT due to shorter collision chains. The GPT has higher overhead (ap-

proximately 20%) when compared to the smaller hash-based structures. The MPT

is about 20% more costly than the GPT. The situation is similar when manipulating

contiguous regions, the hash-based structures are fastest, however the MPT shows a

greater improvement in performance when operating on regions due to its efficient

page-table traversal. The MPT performs better than the GPT in this case. Note

that the GPT has the potential to support extremely fast power-of-2 region-based

operations by manipulating internal nodes of the GPT tree, however the structure

of the microkernel prevented such an optimisation.

When operating on sparsely populated regions, the situation changes dramat-

ically. The GPT performs significantly better than all the other page tables. It

features consistently low overhead that is related to the number of manipulations

needed in the region, not the region size itself, nor the page table size. All the other

page tables have much higher costs. The GPTs are the better choice for manipulat-

ing sparse populated regions.

6.5.4 Task Performance

Page table size has a significant effect on setup and tear-down costs of tasks. The

GPT featured the lowest task overhead as it has a small initial structure with low

cost of incrementally adding entries. It also features tear-down costs proportional to

the number of mapping present in the page table. The small hash-based structures

also feature low overhead as they are also small structures, however their tear-down

costs a proportion to the table size, not the number of mappings. When the table

size increases, so do tear-down costs. Tear-down costs also increase when sharing
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the page table among other tasks in the system. Of the two hash-based structures,

the CPT performs better than the HPT. The MPT is also a large structure the has

significant setup and tear-down costs.

6.5.5 Overall Performance

The examination of various facets of page-table performance revealed and con-

firmed that each page table has its own weak and strong points. No page table

was a clear winner in every category, though the MPT was a clear loser in nearly

all cases. Applications with different performance demands would be best served

by different page tables optimised for each application. However, it is not always

possible to tune the page table to the expected demands of all relevant applications.

The goal of this thesis is to find a solution that makes no “hard” assumptions about

application behaviour. With this in mind the GPT+STLB combination is demon-

strably the best choice.

The STLB features the best TLB-refill performance when it achieves a high

hit ratio. The results show that a high hit ratio is achievable, even for modest size

STLBs. Given the STLB, some other data structure is needed to hold the remaining

page table entries. A GPT is the best choice as it performs nearly as well as the

best page table in some of the categories examined, and significantly better in the

remaining categories, especially for operations on sparse regions.
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Conclusion

Virtual memory is an important feature of operating systems. For applications con-

currently sharing a single machine, virtual memory provides them with their own

protected address space, which enhances security and reliability. Virtual memory

also provides for application transparent relocation of programs within physical

memory, and between physical memory and other forms of data storage such as

disk storage.

Virtual memory is not free to applications, it does come with a cost. In typical

virtual memory systems, the page table is a major component that affects the cost

of virtual memory to applications. This thesis has examined the effect page-table

selection has on virtual memory cost to applications in a 64-bit microkernel envi-

ronment. The page table not only affects the usually examined areas of TLB-refill

performance and kernel memory consumption, but also has a significant effect on

kernel mapping primitives, and task creation and destruction overheads.

The 64-bit microkernel environment is particularly challenging for implement-

ing efficient virtual memory. The microkernel only provides the basic virtual-

memory primitives to application servers, which in turn present higher-level virtual-

memory abstractions to their clients. The kernel itself can make very few assump-

tions about the behaviour of applications, and thus, the use of virtual memory. The

microkernel should not make assumptions about application behaviour for it to be

universally applicable. Ideally, the kernel would efficiently support both a con-

ventional system such as Linux, and an unconventional system such as the Mungi

single-address-space system, or even both concurrently.

This thesis examines each facet of a page-tables cost to applications: TLB-

120
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refill performance, kernel memory consumption, kernel mapping primitives, and

task creation and destruction. It uses benchmarks running on real page-table im-

plementations, and uses real time as a metric for comparison. It does not use trace-

or trap-driven simulation which only approximate actual performance. The cache

priming effect, quantified in Section 6.3, would not be visible when using metrics

such as average cache-lines accessed.

Guarded page tables were one of the page tables examined. There is much the-

ory about guarded page tables. However, the theory is mostly concerned with satis-

factory worst-case behaviour. This thesis provides a practical evaluation of guarded

page tables. It shows that guarded page tables generally exhibit much lower size

overhead than worst case, even in extremely sparse address spaces. The spill-over

effect was also identified. Spill-over theory can be used to explain the behaviour of

GPTs in some scenarios. It predicts situations of high memory overhead and high

(un)mapping cost.

A detailed examination of software TLBs is presented. The examination con-

firmed the STLB’s ability to improve TLB-refill performance, and it is shown that

an STLB adds little to the cost of virtual memory to applications in the areas of

memory consumption, (un)mapping performance, and task creation and destruc-

tion overhead.

A comparison of most major page-table types is performed. Guarded page

tables with a software TLB are compared with implementations of clustered, mul-

tilevel, and hashed page tables. The results show that a combination of a medium

node size GPT with a STLB performs significantly better in the areas of TLB-refill,

operations on sparse regions, and task overhead. In the remaining areas examined,

the combination performed satisfactorily.

The comparison between the hash-based page tables shows the importance of

the cache priming effect. The cache priming effect argues strongly for neighbouring

page-table entries in a cache line to be as strongly related as possible.

Clustered page tables failed to live up to expectation in the test environment. A

combination of a software-loaded TLB and a small cache-line size worked against

them. They would be expected to perform better on a processor architecture with

a larger cache-line size, and multiple instructions issued concurrently, especially

if they are used to support multiple page sizes. The value of the promotion of

matching entries in collision resolution chains to the hash table was demonstrated.
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However, the small cache-line size made promotion more expensive than in the

non-clustered case. More expensive promotion revealed that sparse access patterns

can thrash a block between the collision resolution chain and the hash table. Thus,

clustered page tables that span multiple cache lines not only rely on clustered allo-

cation, but on clustered access patterns as well.

The implications of these results are that a hardware-refilled STLB is a good

choice for implementing virtual memory. The results show that the hash function

used to access the STLB should preserve the spatial locality of an address space

among the page-table entries within a cache line. External to the cache line, the

hash function is free to implement whatever function that minimises conflict misses

in the STLB. A clustered STLB could be used to support two page sizes as long as

the block size does not exceed the cache-line size. STLB misses can be handled

in software using whatever page-table structure chosen. Guarded page tables are

ideal for this role.

7.1 Future Work

There are several unresolved issues that warrant further investigation. Guarded

page tables stand to benefit from the use of multiple node sizes that are tuned to

application behaviour in some manner. GPTs would benefit via a reduction in both

memory consumption and tree depth. A reduction in tree depth would improve

both mapping and TLB-refill performance.

GPTs could support operations on large, power-of-2 aligned region via manipu-

lating roots of appropriate subtrees in the GPT. It is not clear how to take advantage

of this potential benefit in the current microkernel as the kernel must also ensure

that individual page-table entries do not have descendents in other address spaces.

Address space identifier (ASID) management is a significant issue in a micro-

kernel that delivers interrupts via IPC to device drivers running in user level. In a

shared page table that relies on the hardware ASIDs to distinguish between address

spaces, the problem of how to deal with more address spaces that ASIDs arises.

Revocation of an ASID from a page-table is expensive enough to cause unsatisfac-

tory IPC latency. Emulating more ASIDs in software penalises TLB refill. A better

solution would take advantage of hardware ASIDs, and at the same time ensure

satisfactory IPC latencies.
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Appendix A

Raw Results

A.1 GPT Evaluation Raw Results

This section contains the raws results for all the experiments carried out in the GPT

evaluation (Chapter 4). It is provided for the reader to confirm the results presented,

or to perform one’s own analysis. The following definitions are required to interpret

the results.

BENCH The name of the benchmark run.

PAGE The number of mapped 4K pages needed by the benchmark to run.

SIZE The size (in bytes) of the GPT (including the extra PTE pair nodes) required

to map the needed pages.

NULL The number of null guards in the GPT.

LF The number of leaf gpt entries, i.e. gpt entries that point to a PTE pair node.

INT The number of internal entries in the GPT, ie entries which point to another

gpt node.

AVD The average depth of leaf entries in the gpt tree. This does not include the

extra load required to access the leaf PTE pair.

NSTD Is the normalised standard deviation relative to the quantity associated with

it.
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BENCH G2 G4 G8 G16

wave5 178:8 111:7 92:4 82:4

apsi 144:4 108:6 87:0 83:1

swim 378:5 233:5 183:5 164:1

tfftdp 172:5 107:1 93:4 82:1

mm 229:6 121:8 103:2 94:4

heapsort 267:6 145:3 114:9 114:5

nsieve 206:8 117:6 100:9 93:8

c4 308:3 140:6 113:4 99:7

gcc 233:8 117:0 101:0 93:2

compress 155:7 109:4 94:5 89:0

go 191:9 141:4 123:9 111:4

BENCH G32 G64 G128 G256

wave5 72:6 74:5 65:8 65:8

apsi 73:3 82:3 79:2 64:7

swim 141:8 143:6 128:0 132:9

tfftdp 76:8 73:6 68:4 64:4

mm 86:3 86:3 78:2 77:9

heapsort 106:1 105:5 84:8 86:3

nsieve 86:1 85:6 77:4 80:1

c4 92:2 91:4 83:1 85:2

gcc 82:3 84:0 74:5 75:8

compress 77:6 78:1 69:7 69:4

go 113:0 156:3 100:0 103:2

Table A.1: Average TLB refill time for conventional application benchmarks (cy-

cles) for each GPT implementation.

BENCH G2 G4 G8 G16

wave5 3691:0 3437:0 3377:1 3331:3

apsi 1902:9 1872:2 1836:2 1856:5

swim 2142:5 2135:1 2133:0 2131:3

tfftdp 16:4 14:4 13:9 13:6

mm 207:1 127:7 110:8 110:5

heapsort 30:2 29:6 29:7 29:5

nsieve 174:6 163:8 162:1 161:4

c4 88:6 59:4 51:8 51:4

gcc 67:0 55:2 53:5 52:7

compress 1117:1 1046:7 1026:0 1007:8

go 969:1 963:9 954:2 960:7

BENCH G32 G64 G128 G256

wave5 3289:9 3294:7 3275:5 3275:2

apsi 1850:7 1850:1 1859:6 1836:6

swim 2129:6 2129:6 2129:2 2129:3

tfftdp 13:5 13:4 13:3 13:1

mm 105:2 105:7 97:1 94:7

heapsort 29:5 29:5 29:5 29:5

nsieve 160:5 160:5 158:9 159:3

c4 49:9 50:0 48:3 48:4

gcc 51:4 51:6 50:9 50:7

compress 995:1 998:6 983:9 983:6

go 960:8 964:7 959:2 959:5

Table A.2: Conventional application elapsed run time (seconds) for each GPT im-

plementation.
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BENCH G2 G4 G8 G16

wave5 663:3 414:1 354:3 309:7

apsi 112:5 76:05 58:26 52:14

swim 22:4 13:92 11:45 9:986

tfftdp 5:272 3:288 2:596 2:26

mm 156:4 71:97 56:1 55:3

heapsort 1:045 0:4858 0:4932 0:4117

nsieve 25:16 13:96 11:92 11:44

c4 53:01 24:19 18:92 16:67

gcc 23:6 11:78 10:26 9:452

compress 239:6 168:6 150:1 141:2

go 17:93 13:23 21:07 18:95

BENCH G32 G64 G128 G256

wave5 267:6 274:7 245:9 245:8

apsi 50:41 56:61 56:14 45:84

swim 8:569 8:678 7:851 8:166

tfftdp 2:354 2:253 2:09 1:971

mm 50:45 50:5 42:45 42:25

heapsort 0:3533 0:3519 0:3494 0:3569

nsieve 10:51 10:46 8:542 8:84

c4 15:78 15:64 14:21 14:59

gcc 8:226 8:394 7:564 7:693

compress 119:4 120:2 107:1 106:7

go 10:55 14:6 9:354 9:645

Table A.3: Time spent in TLB miss handling for conventional applications (sec-

onds) for each GPT implementation.

BENCH G2 G4 G8 G16

wave5 3.709e+008 3.707e+008 3.834e+008 3.76e+008

apsi 7.788e+007 7e+007 6.694e+007 6.273e+007

swim 5.919e+006 5.961e+006 6.24e+006 6.086e+006

tfftdp 3.056e+006 3.069e+006 2.781e+006 2.753e+006

mm 6.81e+007 5.911e+007 5.433e+007 5.857e+007

heapsort 3.905e+005 3.343e+005 4.292e+005 3.597e+005

nsieve 1.217e+007 1.186e+007 1.182e+007 1.219e+007

c4 1.719e+007 1.721e+007 1.668e+007 1.673e+007

gcc 1.01e+007 1.007e+007 1.016e+007 1.015e+007

compress 1.539e+008 1.541e+008 1.588e+008 1.586e+008

go 9.344e+006 9.362e+006 1.701e+007 1.7e+007

BENCH G32 G64 G128 G256

wave5 3.687e+008 3.686e+008 3.735e+008 3.735e+008

apsi 6.878e+007 6.878e+007 7.092e+007 7.087e+007

swim 6.043e+006 6.044e+006 6.134e+006 6.145e+006

tfftdp 3.063e+006 3.062e+006 3.057e+006 3.058e+006

mm 5.848e+007 5.849e+007 5.428e+007 5.425e+007

heapsort 3.33e+005 3.335e+005 4.122e+005 4.135e+005

nsieve 1.221e+007 1.221e+007 1.103e+007 1.103e+007

c4 1.712e+007 1.711e+007 1.711e+007 1.711e+007

gcc 9.993e+006 9.991e+006 1.015e+007 1.015e+007

compress 1.539e+008 1.539e+008 1.538e+008 1.538e+008

go 9.336e+006 9.342e+006 9.353e+006 9.346e+006

Table A.4: Number of TLB misses for conventional applications for each GPT

implementation.
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BENCH G16 Pair G16 Single

wave5 3331:3 3384:2

apsi 1856:5 1862:9

swim 2131:3 2131:3

tfftdp 13:6 14:2

mm 110:5 111:2

heapsort 29:5 29:5

nsieve 161:4 163:2

c4 51:4 53:1

gcc 52:7 54:0

compress 1007:8 1029:2

go 960:6 962:1

Table A.5: Elapsed time (seconds) comparison between a G16 with specialised

pair leaf nodes, and a G16 that loads from leaves with single PTEs.

BENCH PAGE SIZE NULL LF INT AVD

wave5 10330 248592 0 5184 5182 13:9

apsi 557 13632 0 289 287 11:3

swim 3626 87120 0 1820 1818 12:9

tfftdp 1035 24960 0 525 523 11:5

mm 1967 47376 0 992 990 12:3

heapsort 1010 24384 0 513 511 11:6

nsieve 1243 29952 0 629 627 11:5

c4 1299 31344 0 658 656 11:5

gcc 2391 57648 0 1206 1204 12:5

compress 8931 214560 0 4475 4473 13:8

go 202 5088 0 111 109 8:8

Table A.6: Conventional application GPT size statistics for G2.

BENCH PAGE SIZE NULL LF INT AVD

wave5 10330 194064 38 5184 1740 8:0

apsi 557 11168 31 289 106 7:8

swim 3626 68048 18 1820 612 8:0

tfftdp 1035 19616 14 525 179 6:8

mm 1967 37136 18 992 336 7:7

heapsort 1010 19168 14 513 175 6:9

nsieve 1243 23520 15 629 214 7:0

c4 1299 24624 16 658 224 7:0

gcc 2391 45168 20 1206 408 7:8

compress 8931 167488 33 4475 1502 8:0

go 202 4224 17 111 42 5:8

Table A.7: Conventional application GPT size statistics for G4.

BENCH PAGE SIZE NULL LF INT AVD

wave5 10330 179120 87 5192 753 6:0

apsi 557 10672 70 288 50 5:9

swim 3626 62704 43 1820 265 6:0

tfftdp 1035 18304 43 525 80 5:9

mm 1967 34592 60 991 149 6:0

heapsort 1010 17968 49 512 79 5:9

nsieve 1243 22000 52 628 96 6:0

c4 1299 23104 58 657 101 6:0

gcc 2391 42016 61 1207 180 6:0

compress 8931 154448 84 4474 650 6:0

go 202 4400 57 112 23 4:9

Table A.8: Conventional application GPT size statistics for G8.
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BENCH PAGE SIZE NULL LF INT AVD

wave5 10330 172976 111 5192 353 5:0

apsi 557 11312 140 288 28 4:9

swim 3626 60912 78 1820 126 5:0

tfftdp 1035 18176 83 525 40 5:0

mm 1967 33824 97 991 72 5:0

heapsort 1010 17712 81 512 39 5:0

nsieve 1243 21360 70 628 46 5:0

c4 1299 22592 86 657 49 5:0

gcc 2391 40864 91 1207 86 5:0

compress 8931 149712 139 4474 307 5:0

go 202 4400 76 112 12 3:9

Table A.9: Conventional application GPT size statistics for G16.

BENCH PAGE SIZE NULL LF INT AVD

wave5 10330 170960 212 5184 174 4:0

apsi 557 12256 240 289 17 4:0

swim 3626 60304 135 1820 63 4:0

tfftdp 1035 18080 128 525 21 4:0

mm 1967 33744 157 992 37 4:0

heapsort 1010 17888 140 513 21 4:0

nsieve 1243 21280 117 629 24 4:0

c4 1299 22768 150 658 26 4:0

gcc 2391 40752 160 1206 44 4:0

compress 8931 148864 270 4475 153 4:0

go 202 5312 170 111 9 3:9

Table A.10: Conventional application GPT size statistics for G32.

BENCH PAGE SIZE NULL LF INT AVD

wave5 10330 171056 431 5184 89 4:0

apsi 557 14912 538 289 13 4:0

swim 3626 61936 393 1820 35 4:0

tfftdp 1035 19712 365 525 14 4:0

mm 1967 35376 402 992 22 4:0

heapsort 1010 19520 377 513 14 4:0

nsieve 1243 23424 387 629 16 4:0

c4 1299 24912 421 658 17 4:0

gcc 2391 42896 440 1206 26 4:0

compress 8931 150496 573 4475 80 4:0

go 202 7968 464 111 9 3:9

Table A.11: Conventional application GPT size statistics for G64.

BENCH PAGE SIZE NULL LF INT AVD

wave5 10330 170992 662 5184 46 3:0

apsi 557 16896 858 289 9 3:0

swim 3626 61872 597 1820 19 3:0

tfftdp 1035 20672 622 525 9 3:0

mm 1967 36336 663 992 13 3:0

heapsort 1010 20480 634 513 9 3:0

nsieve 1243 24384 645 629 10 3:0

c4 1299 26896 743 658 11 3:0

gcc 2391 43856 703 1206 15 3:0

compress 8931 149408 736 4475 41 3:0

go 202 9952 782 111 7 3:0

Table A.12: Conventional application GPT size statistics for G128.



APPENDIX A. RAW RESULTS 136

BENCH PAGE SIZE NULL LF INT AVD

wave5 10330 173104 944 5184 24 3:0

apsi 557 25152 1504 289 7 3:0

swim 3626 66032 993 1820 11 3:0

tfftdp 1035 24832 1013 525 6 3:0

mm 1967 40496 1056 992 8 3:0

heapsort 1010 24640 1025 513 6 3:0

nsieve 1243 26496 909 629 6 3:0

c4 1299 31056 1135 658 7 3:0

gcc 2391 48016 1097 1206 9 3:0

compress 8931 153568 1143 4475 22 3:0

go 202 14112 1172 111 5 3:0

Table A.13: Conventional application GPT size statistics for G256.

BENCH PAGE SIZE NSTD NULL NSTD LF INT NSTD AVD

64 75 3408 0 0 0 77 75 0 8:4

128 139 6480 0 0 0 141 139 0 9:3

256 267 12624 0 0 0 269 267 0 10:3

512 523 24912 0 0 0 525 523 0 11:3

1024 1035 49488 0 0 0 1037 1035 0 12:3

2048 2059 98640 0 0 0 2061 2059 0 13:3

4096 4107 196944 0 0 0 4109 4107 0 14:3

8192 8202 393537 6e � 005 0 0 8204 8202 6e � 005 15:3

Table A.14: SPARSE-PAGE benchmark GPT size statistics for G2.

BENCH PAGE SIZE NSTD NULL NSTD LF INT NSTD AVD

64 75 3990 0:04 69 0:1 77 48 0:06 6:3

128 139 7632 0:03 128 0:07 141 89 0:04 6:8

256 267 14748 0:03 237 0:08 269 168 0:04 7:2

512 523 29270 0:01 470 0:04 525 331 0:02 7:7

1024 1035 57603 0:007 902 0:02 1037 645 0:01 8:2

2048 2059 115113 0:006 1806 0:02 2061 1288 0:009 8:7

4096 4106 229089 0:005 3565 0:02 4108 2557 0:007 9:2

8192 8202 458265 0:002 7139 0:007 8204 5114 0:003 9:7

Table A.15: SPARSE-PAGE benchmark GPT size statistics for G4.

BENCH PAGE SIZE NSTD NULL NSTD LF INT NSTD AVD

64 75 5260 0:06 175 0:09 78 35 0:07 4:9

128 139 10137 0:04 322 0:07 142 65 0:05 5:1

256 267 19404 0:04 589 0:07 270 121 0:05 5:4

512 523 37734 0:02 1111 0:03 526 232 0:02 5:7

1024 1035 77414 0:01 2321 0:02 1038 478 0:02 6:1

2048 2059 151153 0:01 4434 0:02 2061 926 0:01 6:4

4096 4107 297740 0:006 8610 0:01 4110 1816 0:008 6:7

8192 8202 610505 0:007 18035 0:01 8205 3747 0:009 7:0

Table A.16: SPARSE-PAGE benchmark GPT size statistics for G8.

BENCH PAGE SIZE NSTD NULL NSTD LF INT NSTD AVD

64 75 7142 0:08 303 0:1 78 24 0:09 4:6

128 139 13926 0:06 577 0:08 142 47 0:07 4:7

256 267 29568 0:04 1245 0:05 270 100 0:04 5:0

512 523 54451 0:03 2207 0:04 526 181 0:03 5:2

1024 1035 101529 0:02 3974 0:03 1038 333 0:02 5:4

2048 2059 217420 0:02 8780 0:02 2062 722 0:02 5:7

4096 4106 463918 0:005 19256 0:007 4109 1557 0:006 6:0

8192 8202 865404 0:007 34844 0:01 8205 2869 0:008 6:2

Table A.17: SPARSE-PAGE benchmark GPT size statistics for G16.
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BENCH PAGE SIZE NSTD NULL NSTD LF INT NSTD AVD

64 75 10640 0:06 560 0:07 77 20 0:06 4:5

128 139 23952 0:07 1240 0:08 141 44 0:07 4:7

256 267 50422 0:03 2591 0:03 269 92 0:03 4:9

512 523 87491 0:05 4331 0:06 525 156 0:05 5:1

1024 1035 142121 0:02 6631 0:03 1037 247 0:02 5:2

2048 2059 296028 0:02 13933 0:02 2061 515 0:02 5:4

4096 4107 712438 0:01 35114 0:01 4109 1265 0:01 5:7

8192 8202 1555596 0:008 78101 0:01 8204 2784 0:009 5:9

Table A.18: SPARSE-PAGE benchmark GPT size statistics for G32.

BENCH PAGE SIZE NSTD NULL NSTD LF INT NSTD AVD

64 75 15600 0:1 1065 0:09 77 18 0:08 4:3

128 139 26044 0:08 1580 0:08 141 27 0:08 4:3

256 267 65264 0:07 3739 0:07 269 63 0:07 4:5

512 523 158448 0:03 8964 0:03 525 150 0:03 4:7

1024 1035 354134 0:02 19987 0:02 1037 333 0:02 4:9

2048 2059 582076 0:02 31979 0:02 2061 540 0:02 5:0

4096 4106 839713 0:02 43766 0:02 4108 759 0:02 5:1

8192 8202 1547088 0:02 79159 0:02 8204 1386 0:02 5:2

Table A.19: SPARSE-PAGE benchmark GPT size statistics for G64.

BENCH PAGE SIZE NSTD NULL NSTD LF INT NSTD AVD

64 75 41340 0:1 2924 0:08 77 23 0:08 3:9

128 139 88035 0:05 5692 0:05 141 45 0:05 4:0

256 267 136982 0:03 8472 0:03 269 68 0:03 4:1

512 523 179990 0:07 10629 0:07 525 87 0:07 4:1

1024 1035 270716 0:07 15235 0:08 1037 128 0:07 4:1

2048 2059 598806 0:06 33541 0:06 2061 280 0:06 4:2

4096 4106 1718036 0:03 98866 0:03 4108 810 0:03 4:4

8192 8203 4738016 0:01 277981 0:02 8204 2253 0:02 4:6

Table A.20: SPARSE-PAGE benchmark GPT size statistics for G128.

BENCH PAGE SIZE NSTD NULL NSTD LF INT NSTD AVD

64 75 50416 0:09 3501 0:08 77 14 0:08 4:2

128 139 63318 0:1 4176 0:1 141 16 0:1 4:1

256 267 107964 0:1 6700 0:1 269 27 0:1 4:2

512 523 280816 0:08 16950 0:09 525 68 0:08 4:2

1024 1035 839920 0:05 50736 0:05 1037 203 0:05 4:4

2048 2059 2313659 0:02 140441 0:02 2060 558 0:02 4:6

4096 4107 5109590 0:008 310416 0:008 4109 1233 0:008 4:9

8192 8202 8028412 0:007 483952 0:008 8205 1930 0:008 5:0

Table A.21: SPARSE-PAGE benchmark GPT size statistics for G256.

BENCH PAGE NSTD SIZE NSTD NULL NSTD LF NSTD INT NSTD AVD

64 382 1 10527 0:9 0 0 225 0:9 223 0:9 10:4

128 1327 1 34417 1 0 0 723 1 721 1 12:5

256 1886 0:8 50226 0:7 0 0 1052 0:7 1050 0:7 13:6

512 4051 0:6 107040 0:5 0 0 2236 0:5 2234 0:5 15:3

1024 8438 0:4 221959 0:4 0 0 4630 0:4 4628 0:4 16:9

2048 16122 0:3 425836 0:3 0 0 8877 0:3 8875 0:3 18:0

Table A.22: SPARSE-FILE benchmark GPT size statistics for G2.
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BENCH PAGE NSTD SIZE NSTD NULL NSTD LF NSTD INT NSTD AVD

64 505 2 12768 2 114 0:1 286 2 132 1 7:1

128 1014 1 25384 1 215 0:09 566 1 260 0:9 8:0

256 1893 1 47876 0:7 412 0:06 1056 0:9 488 0:6 8:8

512 3854 0:5 97006 0:4 824 0:05 2137 0:5 986 0:3 9:6

1024 8050 0:5 200017 0:4 1626 0:03 4437 0:4 2020 0:3 10:3

2048 16093 0:3 399852 0:2 3254 0:03 8860 0:3 4037 0:2 11:0

Table A.23: SPARSE-FILE benchmark GPT size statistics for G4.

BENCH PAGE NSTD SIZE NSTD NULL NSTD LF NSTD INT NSTD AVD

64 580 2 15919 1 297 0:1 323 2 87 0:8 5:3

128 906 1 27187 0:7 559 0:09 512 1 152 0:5 5:8

256 1816 0:9 53691 0:5 1060 0:06 1018 0:8 295 0:4 6:3

512 3913 0:6 111321 0:3 2058 0:05 2167 0:5 602 0:3 6:8

1024 8396 0:5 234838 0:3 4235 0:03 4608 0:4 1262 0:2 7:4

2048 16455 0:3 461307 0:2 8307 0:02 9042 0:3 2477 0:2 7:8

Table A.24: SPARSE-FILE benchmark GPT size statistics for G8.

BENCH PAGE NSTD SIZE NSTD NULL NSTD LF NSTD INT NSTD AVD

64 597 2 19985 1 562 0:1 332 2 59 0:7 4:7

128 974 1 36721 0:5 1129 0:08 546 1 111 0:3 5:1

256 1772 0:7 71224 0:3 2279 0:06 996 0:6 217 0:2 5:5

512 3973 0:6 144904 0:3 4270 0:05 2196 0:6 430 0:2 5:9

1024 7415 0:4 272984 0:2 8050 0:04 4118 0:4 810 0:1 6:2

2048 14689 0:3 558725 0:1 16965 0:02 8159 0:3 1674 0:09 6:4

Table A.25: SPARSE-FILE benchmark GPT size statistics for G16.

BENCH PAGE NSTD SIZE NSTD NULL NSTD LF NSTD INT NSTD AVD

64 488 2 25830 0:5 1083 0:1 278 1 43 0:3 4:6

128 1003 1 54321 0:4 2253 0:08 560 1 90 0:2 4:9

256 2039 0:9 110842 0:3 4555 0:07 1129 0:8 183 0:2 5:3

512 4011 0:6 208172 0:2 8309 0:05 2216 0:5 339 0:1 5:6

1024 7888 0:5 383541 0:2 14716 0:03 4354 0:4 615 0:1 5:8

2048 15223 0:3 766765 0:1 29904 0:02 8426 0:3 1236 0:07 5:9

Table A.26: SPARSE-FILE benchmark GPT size statistics for G32.

BENCH PAGE NSTD SIZE NSTD NULL NSTD LF NSTD INT NSTD AVD

64 474 2 38430 0:4 2084 0:1 271 2 37 0:2 4:1

128 752 1 68428 0:2 3605 0:1 434 1 64 0:2 4:3

256 1755 0:9 152335 0:2 7670 0:08 987 0:8 137 0:1 4:6

512 3421 0:5 333858 0:1 16985 0:04 1921 0:5 299 0:06 4:9

1024 8138 0:4 722039 0:08 35785 0:03 4482 0:4 639 0:05 5:2

2048 16157 0:3 1315197 0:07 63527 0:02 8892 0:3 1149 0:04 5:4

Table A.27: SPARSE-FILE benchmark GPT size statistics for G64.
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BENCH PAGE NSTD SIZE NSTD NULL NSTD LF NSTD INT NSTD AVD

64 461 2 81288 0:2 5027 0:1 264 2 41 0:1 3:6

128 969 1 162751 0:2 9521 0:08 544 1 79 0:1 3:9

256 1901 0:8 289762 0:1 16370 0:07 1060 0:8 137 0:08 4:1

512 3777 0:5 474202 0:09 25738 0:06 2099 0:5 219 0:07 4:2

1024 7866 0:5 876683 0:08 46222 0:04 4344 0:4 398 0:06 4:3

2048 15623 0:3 1812764 0:06 95743 0:03 8625 0:3 821 0:04 4:4

Table A.28: SPARSE-FILE benchmark GPT size statistics for G128.

BENCH PAGE NSTD SIZE NSTD NULL NSTD LF NSTD INT NSTD AVD

64 555 2 123801 0:2 7601 0:1 311 2 31 0:1 3:9

128 967 1 203877 0:1 12126 0:1 541 0:9 49 0:1 4:0

256 1875 0:9 374989 0:1 21770 0:08 1047 0:8 89 0:09 4:1

512 3687 0:5 821661 0:07 47569 0:07 2053 0:5 194 0:07 4:2

1024 7563 0:5 1879284 0:05 109141 0:04 4193 0:4 444 0:04 4:4

2048 16246 0:3 4446624 0:03 259503 0:02 8937 0:3 1052 0:03 4:6

Table A.29: SPARSE-FILE benchmark GPT size statistics for G256.

Page Table MAP1 NSTD MAPN NSTD MAP1 NC NSTD MAPN NC NSTD

G1 118:1 0:006 90:3 0:002 1811:5 0:007 1534:7 0:011

G2 97:7 0:001 67:3 0:001 1697:2 0:005 1414:8 0:011

G3 103:8 0:007 72:6 0:010 1664:4 0:010 1377:2 0:005

G4 104:0 0:000 77:0 0:001 1609:6 0:006 1351:0 0:010

G5 73:8 0:002 56:0 0:004 1621:6 0:009 1356:0 0:013

G6 81:0 0:006 56:1 0:009 1562:8 0:003 1320:6 0:008

G7 66:4 0:001 52:5 0:003 1562:8 0:005 1321:5 0:010

G8 75:2 0:001 53:5 0:001 1524:2 0:011 1293:3 0:009

Table A.30: Elapsed time results (in milliseconds) for MAP1 and MAPN benchmark

with and without (NC) caching, for G2 – G256.
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BENCH G2 NSTD G4 NSTD G8 NSTD G16 NSTD

64K 63:8 0:008 57:9 0:009 56:7 0:01 53:0 0:02

128K 73:4 0:04 67:3 0:03 66:5 0:02 59:8 0:03

256K 79:6 0:03 74:5 0:05 75:1 0:04 70:2 0:03

512K 82:0 0:04 78:0 0:03 82:6 0:05 83:0 0:04

1M 83:4 0:03 80:6 0:04 83:4 0:04 88:1 0:07

2M 84:7 0:02 80:4 0:02 87:0 0:05 87:7 0:06

4M 85:0 0:02 81:5 0:03 86:6 0:05 89:5 0:06

8M 85:5 0:01 82:9 0:03 86:5 0:05 94:3 0:08

16M 85:6 0:01 82:9 0:02 87:6 0:04 95:3 0:08

32M 86:1 0:01 82:8 0:03 87:7 0:04 91:8 0:07

64M 86:8 0:01 83:2 0:02 86:2 0:04 93:8 0:08

128M 86:1 0:01 82:2 0:03 88:7 0:03 99:6 0:06

256M 86:1 0:01 81:4 0:02 87:3 0:05 97:4 0:07

512M 87:9 0:01 84:6 0:03 88:9 0:04 93:5 0:08

BENCH G32 NSTD G64 NSTD G128 NSTD G256 NSTD

64K 54:1 0:01 54:2 0:01 54:1 0:01 56:1 0:01

128K 60:5 0:02 60:3 0:02 61:3 0:02 62:9 0:02

256K 67:4 0:03 67:4 0:03 68:4 0:02 69:8 0:03

512K 81:1 0:02 78:1 0:02 78:8 0:02 80:7 0:03

1M 100:9 0:04 101:6 0:01 98:6 0:02 99:5 0:01

2M 112:7 0:08 134:2 0:07 138:7 0:01 136:1 0:009

4M 111:2 0:1 160:5 0:1 212:4 0:07 224:3 0:03

8M 97:8 0:1 149:1 0:1 252:3 0:1 378:6 0:1

16M 97:3 0:09 125:5 0:2 221:9 0:2 479:9 0:2

32M 113:4 0:1 107:5 0:2 182:1 0:2 449:3 0:2

64M 117:5 0:07 118:9 0:2 154:6 0:3 287:6 0:4

128M 115:0 0:1 150:0 0:1 136:1 0:2 218:3 0:3

256M 101:1 0:1 165:0 0:09 154:8 0:2 198:4 0:4

512M 102:2 0:09 153:6 0:1 232:8 0:1 188:3 0:3

Table A.31: Elapsed time results (in microseconds) for MAPS benchmark for vari-

ous region sizes, for G2 – G256.

Page Table Time NSTD

G1 15:0 0:0007

G2 15:6 0:001

G3 15:2 0:0003

G4 15:2 0:002

G5 16:6 0:001

G6 19:7 0:001

G7 24:6 0:0006

G8 32:0 0:0005

Table A.32: Elapsed time results (in milliseconds) for task benchmark for G2 –

G256.
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A.2 STLB Raw Results

BENCH 1�8K 1�128K 2�4K 2�64K

wave5 26:8 24:8 33:4 33:3

apsi 26:0 25:3 31:5 31:6

swim 144:1 47:6 60:4 60:3

tfftdp 23:0 22:6 29:9 30:0

mm 31:6 31:5 46:3 46:3

heapsort 32:1 32:1 49:1 49:2

nsieve 33:8 33:2 43:9 43:9

c4 52:6 32:3 43:4 43:4

gcc 60:7 26:3 41:7 41:9

compress 29:5 28:7 38:0 38:1

go 42:2 42:2 55:4 55:3

Table A.33: Average TLB refill time (in cycles) for conventional application

benchmarks, for each STLB configuration.

BENCH 1�8K 1�128K 2�4K 2�64K

wave5 3115:2 3108:6 3135:1 3140:1

apsi 1795:3 1793:9 1795:6 1796:2

swim 2130:8 2124:2 2131:6 2125:0

tfftdp 12:0 12:0 12:1 12:2

mm 74:1 73:0 82:8 82:8

heapsort 29:4 29:4 29:4 29:4

nsieve 155:1 155:1 155:8 156:0

c4 41:2 37:4 41:9 38:9

gcc 49:3 45:4 49:9 47:0

compress 921:8 920:5 932:1 932:5

go 938:2 938:2 941:0 941:0

Table A.34: Conventional application elapsed run time (in seconds) for each STLB

configuration.
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BENCH 1�8K 1�128K 2�4K 2�64K

wave5 102:9 95:2 126:6 126:3

apsi 17:12 16:67 21:42 21:4

swim 8:834 2:967 3:648 3:645

tfftdp 0:6346 0:6262 0:8377 0:8382

mm 17:09 17:02 30:77 30:72

heapsort 0:1482 0:1476 0:1746 0:1752

nsieve 3:725 3:662 5:761 5:765

c4 8:761 5:381 7:228 7:232

gcc 6:108 2:672 4:226 4:24

compress 46:75 45:47 60:17 60:36

go 7:173 7:175 9:432 9:42

Table A.35: The time spent in TLB miss handling for conventional applications (in

seconds), for each STLB configuration.

BENCH 1�8K 1�128K 2�4K 2�64K

wave5 3.832e+008 3.831e+008 3.789e+008 3.79e+008

apsi 6.589e+007 6.593e+007 6.795e+007 6.783e+007

swim 6.132e+006 6.23e+006 6.043e+006 6.048e+006

tfftdp 2.763e+006 2.769e+006 2.797e+006 2.795e+006

mm 5.405e+007 5.397e+007 6.645e+007 6.64e+007

heapsort 4.611e+005 4.594e+005 3.56e+005 3.559e+005

nsieve 1.104e+007 1.102e+007 1.313e+007 1.312e+007

c4 1.667e+007 1.667e+007 1.666e+007 1.665e+007

gcc 1.007e+007 1.015e+007 1.013e+007 1.013e+007

compress 1.582e+008 1.582e+008 1.585e+008 1.585e+008

go 1.699e+007 1.7e+007 1.702e+007 1.704e+007

Table A.36: Number of TLB misses for conventional applications for each of the

STLB configurations.

BENCH 1�8K 2�4K 1�128K 2�64K

wave5 6.51e+006 1.43e+006 1.09e+004 1.17e+004

apsi 7.33e+005 614 4.44e+003 587

swim 3.34e+006 3.55e+006 9.25e+003 3.66e+003

tfftdp 1.87e+004 2.15e+004 5.07e+003 1.08e+003

mm 3.29e+004 5.02e+003 1.56e+004 2.02e+003

heapsort 1.53e+003 1.05e+003 1.47e+003 1.04e+003

nsieve 3.49e+004 1.72e+004 1.23e+004 1.27e+003

c4 3.06e+006 3.28e+006 3.39e+004 1.33e+003

gcc 3.23e+006 2.87e+006 5.69e+003 2.43e+003

compress 8.45e+005 2.43e+005 9.97e+003 9.9e+003

go 3.94e+003 2.87e+003 3.03e+003 2.15e+003

Table A.37: Number of STLB misses for conventional applications for each STLB

configuration.
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BENCH No STLB 1�8K 1�128K 2�4K 2�64K

4K 5:5 4:9 5:0 4:6 5:0

8K 10:4 9:7 9:8 9:4 10:0

16K 16:5 16:0 16:3 16:2 16:6

32K 22:2 22:4 22:8 22:7 22:7

64K 35:2 37:0 36:9 38:1 37:5

128K 59:5 61:9 62:1 62:5 63:1

256K 105:7 115:3 116:5 120:0 119:8

512K 202:6 215:2 217:0 229:7 232:0

1M 492:1 539:1 538:3 574:6 575:1

2M 1017:0 1111:9 1111:2 1170:3 1172:0

4M 2030:5 2222:4 2224:4 2330:7 2334:9

8M 4045:0 4436:9 4440:7 4651:2 4669:8

16M 8099:7 8828:0 8825:0 9256:5 9310:0

Table A.38: Elapsed time for unmap benchmark (in microseconds), for each STLB

configuration.

BENCH No STLB 1�8K 1�128K 2�4K 2�64K

4K 49:0 50:3 50:3 51:0 51:0

8K 147:2 149:8 149:8 151:2 151:2

16K 232:0 237:2 237:2 240:0 240:1

32K 355:1 365:4 365:3 371:2 371:2

64K 601:3 621:8 621:8 633:5 633:5

128K 1102:5 1143:6 1143:5 1166:8 1166:8

256K 2134:7 2216:5 2216:6 2262:8 2263:1

512K 4157:7 4321:1 4321:2 4414:3 4414:1

1M 8203:6 8530:4 8530:3 8716:4 8716:5

2M 16304:0 16957:7 16957:5 17330:0 17330:2

4M 32514:1 33822:8 33822:7 34567:0 34566:9

8M 64934:1 67551:7 67551:5 69040:0 69040:1

16M 129786:0 135020:3 135020:2 137998:0 137997:3

Table A.39: Elapsed time for unmap benchmark (in microseconds) without cach-

ing, for each STLB configuration.

Page Table Time NSTD

No STLB 15:20 0:002

1�8K 16:02 0:0004

1�128K 16:08 0:0003

2�4K 15:77 0:001

2�64K 15:96 0:003

Table A.40: Elapsed time for task benchmark (in milliseconds) for each STLB

configuration.



APPENDIX A. RAW RESULTS 144

A.3 Raw results for other page tables

BENCH MPT H512 H8192 C512 C8192

wave5 108:0 77:6 28:3 75:7 36:7

apsi 115:7 28:3 27:6 40:6 37:4

swim 192:7 174:7 54:8 171:9 65:9

tfftdp 117:0 49:8 25:4 77:5 33:7

mm 116:0 41:0 39:8 44:5 43:0

heapsort 128:3 43:9 43:4 52:5 52:0

nsieve 127:0 48:7 38:2 55:4 43:1

c4 119:5 67:6 36:5 98:1 46:5

gcc 111:6 89:9 35:4 84:6 39:6

compress 80:6 53:0 32:4 62:1 40:8

go 148:4 48:8 48:8 64:1 63:8

Table A.41: Average TLB refill time for conventional application benchmarks (cy-

cles) for various page-table implementations.

BENCH MPT H512 H8192 C512 C8192

wave5 3424:7 3317:7 3127:3 3300:0 3152:7

apsi 1867:2 1794:4 1793:2 1815:2 1809:0

swim 2133:4 2132:1 2124:0 2132:5 2124:9

tfftdp 15:1 12:7 12:1 13:7 12:1

mm 115:4 77:1 77:0 75:1 75:0

heapsort 29:6 29:4 29:4 29:3 29:3

nsieve 166:7 156:4 155:5 157:1 155:6

c4 53:9 44:0 38:1 51:4 41:0

gcc 54:2 52:4 46:4 52:0 46:7

compress 1016:1 961:8 926:1 969:8 934:0

go 963:3 939:8 939:8 955:1 955:1

Table A.42: Conventional application elapsed run time (seconds) for for various

page-table implementations.
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BENCH MPT H512 H8192 C512 C8192

wave5 406:7 298:7 109:6 283:4 138:4

apsi 86:9 19:4 18:8 30:8 28:5

swim 12:1 10:6 3:4 10:4 4:0

tfftdp 3:6 1:4 0:7 2:4 1:0

mm 65:4 27:0 26:3 29:7 28:5

heapsort 0:5 0:2 0:2 0:2 0:2

nsieve 14:9 6:5 5:2 7:4 5:8

c4 20:5 11:3 6:1 16:8 8:0

gcc 11:4 9:2 3:6 8:5 4:1

compress 123:9 84:4 51:5 95:5 62:5

go 13:9 8:3 8:3 6:0 6:0

Table A.43: Time spent in TLB miss handling for conventional applications (sec-

onds) for various page-table implementations.

BENCH MPT H512 H8192 C512 C8192

wave5 376504695 384802864 386781167 374208534 376674798

apsi 75044581 68357745 68349728 75927306 76089372

swim 6288219 6085202 6128383 6072149 6068797

tfftdp 3046876 2786379 2804925 3131140 3046739

mm 56430041 65837305 66086084 66683750 66328619

heapsort 389854 353938 352350 330598 330330

nsieve 11700733 13413347 13502236 13368370 13496671

c4 17119212 16698965 16652870 17126672 17145616

gcc 10247805 10261724 10179905 10079733 10240692

compress 153727121 159163064 158939744 153636438 153191722

go 9344026 16995695 17008224 9370528 9370942

Table A.44: Number of TLB misses for conventional applications for various page-

table implementations.

BENCH PAGE SIZE NULL

wave5 10330 106528 5034

apsi 557 32800 5591

swim 3626 53280 5082

tfftdp 1035 32800 5113

mm 1967 40992 5205

heapsort 1010 32800 5138

nsieve 1243 32800 4905

c4 1299 32800 4849

gcc 2391 40992 4781

compress 8931 98336 5409

go 202 24608 4922

Table A.45: Conventional application page-table size statistics for MPT.

BENCH PAGE SIZE NULL

wave5 10330 165984 44

apsi 557 9056 9

swim 3626 58080 4

tfftdp 1035 16640 5

mm 1967 31552 5

heapsort 1010 16224 4

nsieve 1243 19936 3

c4 1299 20864 5

gcc 2391 38464 13

compress 8931 143008 7

go 202 8192 310

Table A.46: Conventional application page-table size statistics for H512.
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BENCH PAGE SIZE NULL

wave5 10330 166048 48

apsi 557 131072 7635

swim 3626 131072 4566

tfftdp 1035 131072 7157

mm 1967 131072 6225

heapsort 1010 131072 7182

nsieve 1243 131072 6949

c4 1299 131072 6893

gcc 2391 131072 5801

compress 8931 146848 247

go 202 131072 7990

Table A.47: Conventional application page-table size statistics for H8192.

BENCH PAGE SIZE NULL

wave5 10330 124752 66

apsi 557 6960 23

swim 3626 43680 14

tfftdp 1035 12576 13

mm 1967 23808 17

heapsort 1010 12288 14

nsieve 1243 15072 13

c4 1299 15792 17

gcc 2391 28992 25

compress 8931 107520 29

go 202 6144 310

Table A.48: Conventional application page-table size statistics for C512.

BENCH PAGE SIZE NULL

wave5 10330 124752 66

apsi 557 98304 7635

swim 3626 98304 4566

tfftdp 1035 98304 7157

mm 1967 98304 6225

heapsort 1010 98304 7182

nsieve 1243 98304 6949

c4 1299 98304 6893

gcc 2391 98304 5801

compress 8931 110304 261

go 202 98304 7990

Table A.49: Conventional application page-table size statistics for C8192.

BENCH PAGE SIZE NULL

64 74 540704 101818

128 138 1064992 200058

256 266 2113568 396538

512 522 4210720 789498

1024 1034 6307872 1051130

2048 2058 10502176 1574394

Table A.50: SPARSE-PAGE benchmark page-table size statistics for MPT.
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BENCH PAGE SIZE NULL

64 74 10176 562

128 138 12224 626

256 266 16320 754

512 522 24512 1010

1024 1034 40896 1522

2048 2058 73664 2546

4096 4106 139200 4594

8192 8202 270272 8690

Table A.51: SPARSE-PAGE benchmark page-table size statistics for H512.

BENCH PAGE SIZE NULL

64 74 133056 8242

128 138 135104 8306

256 266 139200 8434

512 522 147392 8690

1024 1034 163776 9202

2048 2058 196544 10226

4096 4106 262080 12274

8192 8202 393152 16370

Table A.52: SPARSE-PAGE benchmark page-table size statistics for H8192.

BENCH PAGE SIZE NULL

64 74 9120 686

128 138 12192 878

256 266 18336 1262

512 522 30624 2030

1024 1034 55200 3566

2048 2058 104352 6638

4096 4106 202656 12782

8192 8202 399264 25070

Table A.53: SPARSE-PAGE benchmark page-table size statistics for C512.

BENCH PAGE SIZE NULL

64 74 101280 8366

128 138 104352 8558

256 266 110496 8942

512 522 122784 9710

1024 1034 147360 11246

2048 2058 196512 14318

4096 4106 294816 20462

8192 8202 491424 32750

Table A.54: SPARSE-PAGE benchmark page-table size statistics for C8192.

BENCH PAGE SIZE NULL

64 473 535379 99145

128 873 1016618 186066

256 1976 1906064 340857

512 3602 3467009 597146

1024 7755 6074932 980024

2048 15995 10561649 1563323

Table A.55: SPARSE-FILE benchmark page-table size statistics for MPT.
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BENCH PAGE SIZE NULL

64 547 13095 271

128 922 18038 205

256 2036 36268 230

512 3690 65571 407

1024 7680 135838 809

2048 15511 274028 1615

Table A.56: SPARSE-FILE benchmark page-table size statistics for H512.

BENCH PAGE SIZE NULL

64 447 131291 7758

128 761 131720 7471

256 1990 134765 6432

512 4032 147763 5203

1024 7253 176770 3794

2048 15522 290040 2605

Table A.57: SPARSE-FILE benchmark page-table size statistics for H8192.

BENCH PAGE SIZE NULL

64 579 11100 345

128 872 15569 424

256 2070 33555 725

512 3480 58968 1433

1024 8601 137546 2861

2048 16197 262917 5712

Table A.58: SPARSE-FILE benchmark page-table size statistics for C512.

BENCH PAGE SIZE NULL

64 514 98634 7705

128 802 99172 7461

256 1799 102426 6736

512 3980 115722 5663

1024 8590 161124 4836

2048 16186 269355 6260

Table A.59: SPARSE-FILE benchmark page-table size statistics for C8192.

Page Table MAP1 NSTD MAPN NSTD

G16+S8K 97:7 0:001 79:7 0:001

G16+S128K 95:6 0:000 78:0 0:001

MPT 109:6 0:002 67:3 0:002

H512 87:4 0:002 68:8 0:002

H8192 58:6 0:001 46:7 0:001

C512 78:2 0:002 65:4 0:003

C8192 57:0 0:002 45:4 0:001

Table A.60: Elapsed time results (in milliseconds) for MAP1 and MAPN bench-

mark, for various page tables.
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BENCH G16+S128K NSTD MPT NSTD H512 NSTD

64K 61:7 0:01 50:3 0:03 35:5 0:02

128K 70:3 0:02 58:2 0:02 42:5 0:02

256K 80:5 0:04 73:6 0:02 50:1 0:02

512K 92:7 0:05 104:3 0:01 68:6 0:03

1M 102:2 0:06 169:5 0:008 101:3 0:01

2M 100:9 0:08 293:7 0:004 129:8 0:009

4M 98:5 0:06 559:4 0:008 133:9 0:02

8M 102:6 0:05 1100:5 0:06 133:5 0:02

16M 107:6 0:05 1871:3 0:1 136:6 0:02

BENCH H8192 NSTD C512 NSTD C8192 NSTD

64K 36:2 0:03 37:9 0:02 38:3 0:02

128K 44:0 0:03 46:2 0:03 46:6 0:03

256K 53:1 0:02 53:2 0:04 56:9 0:04

512K 74:2 0:02 64:5 0:04 73:0 0:03

1M 111:3 0:01 90:9 0:03 105:7 0:03

2M 185:3 0:007 138:7 0:05 167:5 0:02

4M 346:2 0:01 137:9 0:05 279:1 0:009

8M 579:4 0:002 141:9 0:03 464:6 0:005

16M 1041:5 0:002 155:0 0:01 784:3 0:003

Table A.61: Elapsed time results (in microseconds) for MAPS benchmark for vari-

ous region sizes, for various page tables.

BENCH G16+S128K NSTD MPT NSTD H512 NSTD

64K 63:5 0:01 55:0 0:02 37:9 0:08

128K 70:8 0:03 62:4 0:02 95:5 0:1

256K 84:2 0:02 78:1 0:01 245:9 0:05

512K 96:2 0:04 108:8 0:009 597:0 0:02

1M 104:0 0:06 173:4 0:006 1297:0 0:008

2M 104:3 0:07 296:4 0:004 2702:6 0:001

4M 102:8 0:06 572:9 0:008 2704:0 0:002

8M 105:5 0:06 1119:3 0:005 2705:1 0:002

16M 106:5 0:08 1871:0 0:1 2702:2 0:0006

BENCH H8192 NSTD C512 NSTD C8192 NSTD

64K 38:4 0:02 41:3 0:1 40:2 0:01

128K 47:8 0:02 52:2 0:1 50:5 0:08

256K 65:8 0:02 121:7 0:1 62:6 0:04

512K 111:1 0:07 295:6 0:06 84:5 0:02

1M 186:9 0:008 667:1 0:02 132:8 0:01

2M 336:8 0:02 1577:5 0:003 217:0 0:01

4M 541:9 0:01 1577:5 0:003 391:8 0:004

8M 931:8 0:007 1580:2 0:003 826:6 0:007

16M 1705:8 0:003 1580:8 0:005 1450:6 0:006

Table A.62: Elapsed time results (in microseconds) for MAPS benchmark (with the

extra 64M of mapped memory) for various region sizes, for various page tables.

Page Table Time NSTD

MPT 203:2 0:0002

H512 18:1 0:001

H8192 507:2 0:0001

C512 17:6 0:001

C8192 359:9 0:0001

Table A.63: Elapsed time results (in milliseconds) for task benchmark for various

page tables.



Appendix B

A Detailed Look at GPT

Implementation

The following detailed examination of GPT implementation is an excerpt from

previous work [LE95].

B.1 GPT Parser

At first, we describe a GPT translation step in general, independent of concrete

hardware (see Figure B.1). Here, v is the part of the original virtual address that is

still subject to translation, and the pair (p; s) determines the page table (p: physical

address, s: log

2

of table size) that has to be used for the current translation step.

The result of this step is either a new page table (p

0

; s

0

) and a postfix v0 of v, or the

data page (p

0

; s

0

) and offset v0.

The translations step starts by extracting u, the uppermost s bits of v. u is used

for indexing the page table. The addressed entry specifies a guard g of variable

size, i.e. possibly empty, which is checked against the remaining bits of the virtual

address (w = g). When equal, the remaining v

0 is either used for the next level

translation, or as the offset part. This operates as a shortcut, since not only u, but

both u and w are stripped off the virtual address in one step; no table is necessary

to decode w.

Note that the width of u, (determined by the page table size), may vary from

step to step and that the size of w may differ from entry to entry.

In the following parts, we use jxj to denote the bit length of a flexible bit string

x. For improved clarity, we always use x

0 for an item that belongs to the next

translation step (i.e., refers to the next lower level page table) and x for an item

belonging to the current level. The operator [a℄ refers to the guarded page-table

entry at address a.

Assuming at first 32-byte page table entries (we hope to later reduce this to 16

bytes), one GPT translation step is:

150
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p; s

�

-

v: u w

v

0

�

�

p

0

; s

0

g

?

-

��

��

g = w

�

?

?

Figure B.1: Guarded Translation Step

u := v � (jvj � s) ;

g := [p+ 32u℄.guard ;

if g = ((v � (jvj � s� jgj)) AND (2

jgj

� 1)

then v

0

:= v AND 2

jvj�s�jgj

� 1 ;

s

0

:= [p+ 32u℄.size0 ;

p

0

:= [p+ 32u℄.table0 ;

else page fault

fi .

This algorithm cannot be implemented ‘as is’, because the R4600 processor does

not support flexible bit strings as a basic data type. Therefore, we have to hold jvj

and jgj in additional variables v
len

and g
len

:

u := v � (v

len

� s) ;

g := [p+ 32u℄.guard ;

g

len

:= [p+ 32u℄.guard len ;

if g = (v � (v

len

� s� g

len

)) AND (2

g

len

� 1)

then v

0

len

:= v

len

� s� g

len

;

v

0

:= v AND 2

v

len

� 1 ;

s

0

:= [p+ 32u℄.size0 ;

p

0

:= [p+ 32u℄.table0 ;

else page fault

fi .

After eliminating common subexpressions, this algorithm requires 17 arithmetic

and load operations.

B.1.1 From 17 To 10 Operations

Note that although v is an input variable of the translation process, the length jvj is

a constant which is determined by the depth of the table in the GPT tree. Further-

more, the table size s and the guard length jgj are fixed per page table entry. So the
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values

s

0

= v

len

� s

s

1

= v

len

� s� g

len

g

mask

= 2

g

len

� 1

meaning

v : u

g

v

0

s

0

z }| {

| {z }

s

1

v

0

:
u

0

g

0

v

00

s

0

0

z }| {

| {z }

s

0

1

can be computed when constructing a GPT entry and can be stored per entry. Note

that we have to store the actual level’s s
1

but the next level’s s0
0

in a page table entry:

guard s

1

s

0

0

table0

Fortunately, s0
0

can be as easily determined as s
0

, as s0
0

= v

0

len

� s

0

= v

len

� s �

g

len

� s

0

= s

1

� s

0. The improved algorithm

u := v � s

0

;

g := [p+ 32u℄.guard ;

g

mask

:= [p+ 32u℄:g

mask

;

s

1

:= [p+ 32u℄:s

1

;

if g = (v � s

1

) AND g

mask

then v

0

:= v AND 2

s

1

� 1 ;

s

0

0

:= [p + 32u℄:s

0

0

;

p

0

:= [p+ 32u℄.table0 ;

else page fault

fi .

requires only 14 arithmetic/load operations and no longer needs the variable v
len

.

The next optimisation is based on the idea of adjusting the guard bits in the

GPT entry variable and extending it by the number u of this entry

0 u

g 0

so that XORing v by this field removes u and g in one step and avoids one shift and

one add operation. More precisely, we store the extended guard

G = ((u� jgj) + g)� (jvj � s� jgj)
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in each page table entry instead of the guard g. The resulting algorithm

u := v � s

0

;

G := [p + 32u℄.extended guard ;

s

1

:= [p+ 32u℄:s

1

;

if (v XOR G)� s

1

= 0

then v

0

:= v XOR G ;

s

0

0

:= [p + 32u℄:s

0

0

;

p

0

:= [p+ 32u℄.table ;

else page fault

fi .

requires only 10 arithmetic/load operations and avoids the per entry field g
mask

.

Up to this point, we have looked at only one translation step. For a complete

translation, a loop is required. To approximate an until-loop, we first move the

then-part statements before the if statement. This is possible because these three

statements do not destroy yet required data:

u := v � s

0

;

G := [p + 32u℄.extended guard ;

s

0

0

:= [p+ 32u℄:s

0

0

;

s

1

:= [p+ 32u℄:s

1

;

p

0

:= [p+ 32u℄.table ;

v

0

:= v XOR G ;

if v0 � s

1

6= 0

then page fault

fi .

Unifying p0, v0 and s0
0

with p, v and s
0

, we get a very simple loop:

do

u := v � s

0

;

G := [p+ 32u℄.extended guard ;

s

0

:= [p+ 32u℄:s

0

0

;

s

1

:= [p+ 32u℄:s

1

;

p := [p+ 32u℄.table ;

v := v XOR G ;

until v � s

1

6= 0 od ;

The loop terminates when a page fault, i.e. a guard mismatch, is detected. Of

course, the translation process must also terminate in the positive case, i.e. if the
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translation finishes without page fault. Adding a further termination condition to

the loop would increase our costs per translation step.

A better solution is to introduce a pseudo mismatch at leaf page table entries.

We need an extended guard G, which includes the matching guard g, which in all

cases leads to a mismatch, i.e. (v XOR G)� s

1

6= 0. Now recall that the extended

guard of the uth entry of a page table always contains the index u. Therefore, we

can achieve a pseudo mismatch by using an “incorrect” u for building the extended

guard. G = ((�u� jgj) + g)� s

1

with �u 6= u always leads to a mismatch:

v : 0 u

g

v

0

G :
0 �u

g 0

(v XORG) � s

1

: 0 6= 0

0

The loop terminates either due to detecting a page fault or a leaf entry. In the case

of

(v � s

1

)� (64� jgj) = 0 ;

we have a pseudo mismatch, i.e. a successful translation. For the mentioned check,

we need a field holding the value 64 � jgj. In leaf entries, the s0
0

-field is free and

can be used for this purpose. Then, (v � s

1

) � s

0

0

differentiates between true

mismatch and pseudo mismatch, if the current entry is a leaf entry. We have to

check, whether a mismatch at an higher level entry (which does not hold 64 � jgj

in its s0
0

-field) is also classified as a true mismatch. Fortunately, (v � s

1

) � s

0

0

evaluates always to non zero in this case, since s0
0

is always less than s
1

:

v : 0 u

g

v

0

s

1

z }| {

v

0

:

0
u

0

g

0

v

00

| {z }

s

0

0

Concluding, the loop can be complemented by

if (v � s

1

)� s

0

= 0

then page frame addr := p ;

page frame size := s

1

else page fault

fi .

so that in the case of successful termination, s1 determines the size and p the phys-

ical address of the page.

B.1.2 R4600 Implementation

Before presenting a concrete implementation of GPT parsing, a brief R4600 in-

troduction is necessary. The R4600 is a member of the MIPS R4000 family of
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processors which feature 64-bit integer and floating point operations. They have

thirty-two general purpose 64-bit registers of which two are special. Register r0

ignores writes and always returns zero when read. Register r31 is used to store the

return address of Jump And Link (JAL) instructions.

The R4600 has a primary 16KB instruction cache and a 16KB data cache on

chip. Both caches are two-way set associative, use a 32 byte line size, and FIFO

replacement within a set. Secondary cache is external and optional.

A four (64-bit) word write buffer is used to buffer writes to external memory

arising from cache write-back, cache write-through, and uncached stores. This

enables the processor to proceed in parallel while external memory is updated.

The R4600 has a five stage pipeline which has a one cycle latency for compu-

tational instructions. Computational instructions perform arithmetic, logical, and

shifting operations using register operands or a register operand and a 16-bit signed

immediate.

Load instructions don’t allow the instruction immediately following, termed the

load delay slot, to use the result of the load, thus giving a load latency of two cycles.

Scheduling of instructions in the delay slot is desirable for increased throughput,

though not strictly required, as the pipeline will slip one cycle in the case of a

dependent instruction in the delay slot.

All jump and branch instructions have a latency of 2 cycles. The instruction in

the delay slot following the jump is executed while the target of the jump is being

fetched. The exception being if a conditional branch likely instruction is not taken,

in which case the delay slot instruction is nullified.

B.1.3 From 11 To 8 Instructions

For the R4600 implementation, four 64-bit registers are needed. We name them

r1, r2, v and P. A first compilation of the algorithm leads to 11 instructions per

translation step:
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do:

shr r2,v,r2 u := v � s

0

shl r2,5 32u

add P,r2 p+ 32u

ld r1,[P].ext guard

ld r2,[P].s0

xor v,r1 v := v XOR G

ld r1,[P].s1

ld P,[P].table

shr r1,v,r1 v � s

1

bz r1,do

shl r1,r2 (v � s

1

)� s

0

0

bnz r1,page fault

Note that all load delay slots in this (and the following) versions are filled with

useful operations, i.e. do not cost additional cycles. By using appropriate coding1,

the same holds for the branch delay slot.

Further optimising, we use the fact that the R4600’s minimal page size is 4K

and the range of s0
0

and s
1

is always 0. . . 63. Therefore 2�6 = 12 bits are sufficient

for s0
0

and s

1

and since the 12 lower-most bits of G are never used, we combine

these three fields in one 64-bit word:

G

s

0

0

s

1

52 6 6

The second 64-bit word is used for pointing to the next level table (or data page).

By this, we avoid load instructions and reduce the page table entry size to 16 bytes.

The resulting code

1Use the bzl instruction which nullifies the immediately following instruction if the branch is

not taken:

shr r2,v,r2

do: shl r2,5

...

bzl r1,do

shr r2,v,r2
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do: shr r2,v,r2 u := v � s

0

shl r2,4 16u

add P,r2 p+ 16u

ld r1,[P] r

1

:= (G; s

0

0

; s

1

)

ld p,[P].table

xor2 v,r1 v := v XOR G

shr r2,r1,6 r

2

:= s

0

0

shr r1,v,r1 v � s

1

bz r1,do

requires only 9 instructions per translation step.

The instruction ‘shl r2,4’ is somehow annoying, because it is only used for

setting the 4 lowest bits to zero. Without this requirement, we could have stored

s

0

0

� 4 instead of s0
0

in the s0
0

-fields so that the previous shr instruction already

includes the multiplication with 16. Indeed, it is not necessary that the 4 lowest bits

must be zero. It is sufficient that the 4 lowest bits of p after the addition have a fixed

value which does not depend on the value of the actual v. This can be achieved by

xor p,r2

instead of adding, provided that the 4 lowest bits of p are always 1111. Therefore,

we store p + 15 instead of p in the table-fields and always use P-15 instead of P

for addressing a table or table entry.

do: shr r2,v,r2 r

2

:= v � (s

0

� 4)

or P,r2 p+ 16u+ 15

ld r1,[P-15] r

1

:= (G; s

0

0

� 4; s

1

)

ld P,[P-15].table

xor v,r1 v := v XOR G

shr r2,r1,6 r

2

:= s

0

0

shr r1,v,r1 v � s

1

bz r1,do

The final code requires only 8 instructions per translation step.

2Note that although ‘xor v,r1’ destroys the 12 lowest bits of v (the 12 lowest bits of r1

contain s

0

0

and s

1

), it does not affect the algorithm, since these bits certainly belong to the offset

part of the virtual address and are not required for translation.


