
L4 Reference Manual

MIPS R4x00

Version 1.11

Kernel Version 79

Kevin Elphinstone, Gernot Heiser

School of Computer Science and Engineering

The University of New South Wales

Sydney 2052, Australia

fkevine,gernotg@cse.unsw.edu.au

Jochen Liedtke

IBM T. J. Watson Research Center

30 Saw Mill River Road, Hawthorne, NY 10532, USA

jochen@us.ibm.com

May 3, 1999

Change bars indicate modifications relative to UNSW-CSE-TR-9709

(December 1997, Reference Manual Version 1.0, Kernel Version 70)

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Note

This document describes release 1.0 of the L4 microkernel for the MIPS R4x00 microprocessor

family. It is based on the L4/x86 reference manual Version 2.0 by Jochen Liedtke and has been

modified to describe the MIPS implementation. Some material has been added to clarify the L4

message structure. Comments and critiques, as well as proposed additions and alternatives for

future versions are most welcome.

The source code for L4/R4x00 is available free of charge under the terms of the GNU

General Public License. To obtain the source contact disy@cse.unsw.edu.au. Future ver-

sions of this document, as well as related documents and tools, will be available from URL

http://www.cse.unsw.edu.au/˜disy/.

How To Read This Manual

This reference manual consists of two parts, (1) a processor-independent description of the princi-

ples and mechanisms of L4 and (2) a more detailed processor-specific description. Part 2 refers to

the IDT R4x00.

Where L4/MIPS differs from L4/x86 significantly, or something is partially or completely unim-

plemented, then an implementation note appears as below. There is also a summary of various

implementation details in section 2.1.

MIPS Implementation Note: This is what an implementation note looks like.

Acknowledgements

The original L4 reference manual was written by Jochen Liedtke, who would like to thank many

people for their helpful contributions for improving the reference manual and the L4 interface.

Particular thanks go to Bryan Ford, Hermann Härtig, Michael Hohmuth, Sebastian Schönberg and

Jean Wolter. For the MIPS version we would like to thank in particular Jerry Vochteloo for testing

the kernel, Alan Au for contributions to the manual, as well as the 1997 class of UNSW COMP9242

“guinea pigs” who built their operating systems on top of the MIPS version of the kernel.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright

notice, the title of the publication and its date appear, and notice is given that copying is by permission of the

authors. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific

permission and/or a fee.

Copyright c
1997, 1998 by Gernot Heiser, The University of New South Wales.

Contents

1 L4 in General 7

1.1 Basic Concepts . 7

1.1.1 Address Spaces . 7

1.1.2 Threads and IPC . 10

1.1.3 Clans & Chiefs . 11

1.1.4 Unique Identifiers . 12

1.1.5 Flexibility . 13

1.2 Data Types . 15

1.2.1 Unique Ids . 15

1.2.2 User-Level Operations on Uids . 15

1.2.3 Fpages . 15

1.2.4 Messages . 15

1.3 �-Kernel Calls . 18

2 L4/MIPS 21

2.1 Implementation Notes . 21

2.1.1 Cache . 21

2.1.2 IPC . 21

2.1.3 Scheduling . 21

2.1.4 �

0

. 22

2.1.5 Exceptions . 22

2.1.6 Interrupts . 22

2.2 Notational conventions . 22

2.3 Data Types . 22

2.3.1 Unique Ids . 22

2.3.2 Fpages . 23

2.3.3 Messages . 23

2.3.4 Timeouts . 25

2.4 �-Kernel Calls . 27

ipc . 28

id nearest . 38

fpage unmap . 39

thread switch . 40

thread schedule . 41

lthread ex regs . 44

task new . 46

2.5 Exception Handling . 48

2.6 The Kernel-Info Page . 49

5

2.7 Page-Fault and Preemption RPC . 50

2.8 �

0

RPC protocol . 51

2.9 DIT header . 53

A DIT 55

B Serial Port Server 57

B.1 Output . 57

B.2 Input . 57

C Kernel Debugger 59

C.1 assert . 60

D L4 C Library Headers 61

D.1 types.h . 61

D.2 syscalls.h . 67

D.3 ipc.h . 69

D.4 sigma0.h . 74

D.5 u4600.h . 76

D.6 dit.h . 79

Chapter 1

L4 in General

1.1 Basic Concepts

The following section contains excerpts from [Lie93b, Lie93a, Lie95].

We reason about the minimal concepts or “primitives” that a �-kernel should implement.1 The

determining criterion used is functionality, not performance. More precisely, a concept is tolerated

inside the �-kernel only if moving it outside the kernel, i.e. permitting competing implementations,

would prevent the implementation of the system’s required functionality.

We assume that the target system has to support interactive and/or not completely trustworthy

applications, i.e. it has to deal with protection. We further assume that the hardware implements

page-based virtual memory.

One inevitable requirement for such a system is that a programmer must be able to implement

an arbitrary subsystem S in such a way that it cannot be disturbed or corrupted by other subsystems

S

0. This is the principle of independence: S can give guarantees independent of S0. The second

requirement is that other subsystems must be able to rely on these guarantees. This is the principle

of integrity: there must be a way for S
1

to address S
2

and to establish a communication channel

which can neither be corrupted nor eavesdropped by S0.

Provided hardware and kernel are trustworthy, further security services, like those described by

[GGKL89], can be implemented by servers. Their integrity can be ensured by system administration

or by user-level boot servers. For illustration: a key server should deliver public-secret RSA key

pairs on demand. It should guarantee that each pair has the desired RSA property and that each pair

is delivered only once and only to the demander. The key server can only be realized if there are

mechanisms which (a) protect its code and data, (b) ensure that nobody else reads or modifies the

key and (c) enable the demander to check whether the key comes from the key server. Finding the

key server can be done by means of a name server and checked by public key based authentication.

1.1.1 Address Spaces

At the hardware level, an address space is a mapping which associates each virtual page to a physical

page frame or marks it ‘non-accessible’. For the sake of simplicity, we omit access attributes like

read-only and read/write. The mapping is implemented by TLB hardware and page tables.

The �-kernel, the mandatory layer common to all subsystems, has to hide the hardware concept

of address spaces, since otherwise, implementing protection would be impossible. The �-kernel

concept of address spaces must be tamed, but must permit the implementation of arbitrary protection

1Proving minimality, necessarity and completeness would be nice but is impossible, since there is no agreed-upon

metric and all is Turing-equivalent.

7

(and non-protection) schemes on top of the �-kernel. It should be simple and similar to the hardware

concept.

The basic idea is to support recursive construction of address spaces outside the kernel. By

magic, there is one address space �
0

which essentially represents the physical memory and is con-

trolled by the first subsystem S

0

. At system start time, all other address spaces are empty. For

constructing and maintaining further address spaces on top of �
0

, the �-kernel provides three oper-

ations:

Grant. The owner of an address space can grant any of its pages to another space, provided the

recipient agrees. The granted page is removed from the granter’s address space and included into

the grantee’s address space. The important restriction is that instead of physical page frames, the

granter can only grant pages which are already accessible to itself.

Map. The owner of an address space can map any of its pages into another address space, provided

the recipient agrees. Afterwards, the page can be accessed in both address spaces. In contrast to

granting, the page is not removed from the mapper’s address space. Comparable to the granting

case, the mapper can only map pages which itself already can access.

Flush. The owner of an address space can flush any of its pages. The flushed page remains accessi-

ble in the flusher’s address space, but is removed from all other address spaces which had received

the page directly or indirectly from the flusher. Although explicit consent of the affected address-

space owners is not required, the operation is safe, since it is restricted to own pages. The users of

these pages already agreed to accept a potential flushing, when they received the pages by mapping

or granting.

Reasoning

The described address-space concept leaves memory management and paging outside the �-kernel;

only the grant, map and flush operations are retained inside the kernel. Mapping and flushing are

required to implement memory managers and pagers on top of the �-kernel.

The grant operation is required only in very special situations: consider a pager F which com-

bines two underlying file systems (implemented as pagers f
1

and f
2

, operating on top of the standard

pager) into one unified file system (see figure 1.1). In this example, f
1

maps one of its pages to F

user A � � � � � � user X

F

f

1

f

2

std pager

�

�� map

H

H

H

H

HY

grant

H

H

H

H

HY

map

A

A

A

A

A

A

A

A

A

A

��

��

disk

�

�

��

Figure 1.1: A Granting Example.

which grants the received page to user A. By granting, the page disappears from F so that it is

then available only in f

1

and user A; the resulting mappings are denoted by the thin line: the page

is mapped in user A, f
1

and the standard pager. Flushing the page by the standard pager would

affect f
1

and user A, flushing by f

1

only user A. F is not affected by either flush (and cannot flush

itself), since it used the page only transiently. If F had used mapping instead of granting, it would

have needed to replicate most of the bookkeeping which is already done in f
1

and f
2

. Furthermore,

granting avoids a potential address-space overflow of F .

In general, granting is used when page mappings should be passed through a controlling sub-

system without burdening the controller’s address space by all pages mapped through it.

The model can easily be extended to access rights on pages. Mapping and granting copy the

source page’s access right or a subset of them, i.e., can restrict the access but not widen it. Special

flushing operations may remove only specified access rights.

I/O

An address space is the natural abstraction for incorporating device ports. This is obvious for

memory mapped I/O, but I/O ports can also be included. The granularity of control depends on the

given processor. The 386 and its successors permit control per port (one very small page per port)

but no mapping of port addresses (it enforces mappings with v=v0); the PowerPC uses pure memory

mapped I/O, i.e., device ports can be controlled and mapped with 4K granularity. Controlling I/O

rights and device drivers is thus also done by memory managers and pagers on top of the �-kernel.

An Abstract Model of Address Spaces

We describe address spaces as mappings. �
0

: V ! R[f�g is the initial address space, where V is

the set of virtual pages, R the set of available physical (real) pages and � the nilpage which cannot

be accessed. Further address spaces are defined recursively as mappings � : V ! (� � V)[f�g,

where � is the set of address spaces. It is convenient to regard each mapping as a one column table

which contains �(v) for all v2V and can be indexed by v. We denote the elements of this table by

�

v

.

All modifications of address spaces are based on the replacement operation: we write �
v

 x

to describe a change of � at v, precisely:

flush (�; v) ; �

v

:= x :

A page potentially mapped at v in � is flushed, and the new value x is copied into �
v

. This operation

is internal to the �-kernel. We use it only for describing the three exported operations.

A subsystem S with address space � can grant any of its pages v to a subsystem S

0 with address

space �0 provided S

0 agrees:

�

0

v

0

 �

v

; �

v

 � :

Note that S determines which of its pages should be granted, whereas S0 determines at which virtual

address the granted page should be mapped in �0. The granted page is transferred to �0 and removed

from �.

A subsystem S with address space � can map any of its pages v to a subsystem S

0 with address

space �0 provided S

0 agrees:

�

0

v

0

 (�; v) :

In contrast to grant, the mapped page remains in the mapper’s space � and a link to the page in the

mapper’s address space (�; v) is stored in the receiving address space �0, instead of transferring the

existing link from �

v

to �0
v

0

. This operation permits to construct address spaces recursively, i.e. new

spaces based on existing ones.

Flushing, the reverse operation, can be executed without explicit agreement of the mappees,

since they agreed implicitly when accepting the prior map operation. S can flush any of its pages:

8

�

0

v

0

=

(�;v)

: �

0

v

0

 � :

Note that and flush are defined recursively. Flushing recursively affects also all mappings which

are indirectly derived from �

v

.

No cycles can be established by these three operations, since flushes the destination prior to

copying.

Implementing the Model

At a first glance, deriving the physical address of page v in address space � seems to be rather

complicated and expensive:

�(v) =

8

>

<

>

:

�

0

(v

0

) if �

v

=

(�

0

; v

0

)

r if �

v

=

r

� if �

v

=

�

Fortunately, a recursive evaluation of �(v) is never required. The three basic operations guarantee

that the physical address of a virtual page will never change, except by flushing. For implementation,

we therefore complement each � by an additional table P , where P
v

corresponds to �

v

and holds

either the physical address of v or �. Mapping and granting then include

P

0

v

0

:= P

v

and each replacement �
v

 � invoked by a flush operation includes

P

v

:= � :

P

v

can always be used instead of evaluating �(v). In fact, P is equivalent to a hardware page table.

�-kernel address spaces can be implemented straightforward by means of the hardware-address-

translation facilities.

The recommended implementation of � is to use one mapping tree per physical page frame

which describes all actual mappings of the frame. Each node contains (P; v), where v is the accord-

ing virtual page in the address space which is implemented by the page table P .

Assume that a grant-, map- or flush-operation deals with a page v in address space � to which

the page table P is associated. In a first step, the operation selects the according tree by P

v

, the

physical page. In the next step, it selects the node of the tree that contains (P; v). (This selection

can be done by parsing the tree or in a single step, if P
v

is extended by a link to the node.) Granting

then simply replaces the values stored in the node and map creates a new child node for storing

(P 0

; v

0

). Flush lets the selected node unaffected but parses and erases the complete subtree, where

P

0

v

:= � is executed for each node (P

0

; v

0

) in the subtree.

1.1.2 Threads and IPC

A thread is an activity executing inside an address space. A thread � is characterised by a set of

registers, including at least an instruction pointer, a stack pointer and a state information. A thread’s

state also includes the address space �

(�) in which � currently executes. This dynamic or static

association to address spaces is the decisive reason for including the thread concept (or something

equivalent) in the �-kernel. To prevent corruption of address spaces, all changes to a thread’s address

space (�(�) := �

0) must be controlled by the kernel. This implies that the �-kernel includes the

notion of some � that represents the above mentioned activity. In some operating systems, there

may be additional reasons for introducing threads as a basic abstraction, e.g. preemption. Note that

choosing a concrete thread concept remains subject to further OS-specific design decisions.

Consequently, cross-address-space communication, also called inter-process communication

(IPC), must be supported by the �-kernel. The classical method is transferring messages between

threads by the �-kernel.

IPC always enforces a certain agreement between both parties of a communication: the sender

decides to send information and determines its contents; the receiver determines whether it is willing

to receive information and is free to interpret the received message. Therefore, IPC is not only the

basic concept for communication between subsystems but also, together with address spaces, the

foundation of independence.

Other forms of communication, remote procedure call (RPC) or controlled thread migration

between address spaces, can be constructed from message-transfer based IPC.

Note that the grant and map operations (section 1.1.1) need IPC, since they require an agreement

between granter/mapper and recipient of the mapping.

Interrupts

The natural abstraction for hardware interrupts is the IPC message. The hardware is regarded as

a set of threads which have special thread ids and send empty messages (only consisting of the

sender id) to associated software threads. A receiving thread concludes from the message source id,

whether the message comes from a hardware interrupt and from which interrupt:

driver thread:

do

wait for (msg, sender) ;

if sender = my hardware interrupt

then read/write io ports ;

reset hardware interrupt

else . . .

fi

od .

Transforming the interrupts into messages must be done by the kernel, but the �-kernel is not

involved in device-specific interrupt handling. In particular, it does not know anything about the

interrupt semantics. On some processors, resetting the interrupt is a device specific action which

can be handled by drivers at user level. The iret-instruction then is used solely for popping status

information from the stack and/or switching back to user mode and can be hidden by the kernel.

However, if a processor requires a privileged operation for releasing an interrupt, the kernel executes

this action implicitly when the driver issues the next IPC operation.

1.1.3 Clans & Chiefs

Within all systems based on direct message transfer, protection is essentially a matter of message

control. Using access control lists (acl) this can be done at the server level, but maintenance of large

distributed acls becomes hard when access rights change rapidly. So [HKK93] have proposed that

object (passive entity) protection be complemented by subject (active entity) restrictions. In this

approach the kernel is able to restrict the outgoing messages of a task (the subject) by means of a

list of permitted receivers.

The clan concept [Lie92] is an algorithmic generalisation of this idea:

i

i

i

i

i

i

i

i

P

P

P

Pq

B

BM

-

�

��

?

'

&

$

%

�

�

�

�

'

&

$

%

'

&

$

%

A clan (denoted as an oval) is a set of tasks (denoted as a circle) headed by a chief task. Inside the

clan all messages are transferred freely and the kernel guarantees message integrity. But whenever

a message tries to cross a clan’s borderline, regardless of whether it is outgoing or incoming, it is

redirected to the clan’s chief. This chief may inspect the message (including the sender and receiver

ids as well as the contents) and decide whether or not it should be passed to the destination to which

it was addressed. As demonstrated in the figure above, these rules apply to nested clans as well.

Obviously subject restrictions and local reference monitors can be implemented outside the kernel

by means of clans. Since chiefs are tasks at user level, the clan concept allows more sophisticated

and user definable checks as well as active control. Typical clan structures are

Clan per machine: In this simple model there is only one clan per machine covering all tasks.

Local communication is handled directly by the kernel without incorporating a chief, whereas

cross machine communication involves the chief of the sending and the receiving machine.

Hence, the clan concept is used for implementing remote ipc by user level tasks.

Clan per system version: Sometimes chiefs are used for adapting different versions. The servers

of the old or new versions are encapsulated by a clan so that its chief can translate the mes-

sages.

Clan per user: Surrounding the tasks of each user or user group by a clan is a typical method

when building security systems. Then the chiefs are used to control and enforce the requested

security policy.

Clan per task: In the extreme case there are single tasks each controlled by a specific chief. For

example these one-task-clans are used for debugging and supervising suspicious programs.

In the case of intra-clan communication (no chief involved), the additional costs of the clan con-

cept are negligible (below 1% of minimal ipc time). Inter-clan communication however multiplies

the ipc operations by the number of chiefs involved. This can be tolerated, since (i) L4 ipc is very

fast (see above) and (ii) crossing clan boundaries occurs seldom enough in practice. Note that many

security policies can be implemented simply by checking the client id in the server and do not need

clans.

1.1.4 Unique Identifiers

A �-kernel must supply unique identifiers (uid) for something, either for threads or tasks or commu-

nication channels. Uids are required for reliable and efficient local communication. If S
1

wants to

send a message to S
2

, it needs to specify the destination S
2

(or some channel leading to S
2

). There-

fore, the �-kernel must know which uid relates to S

2

. On the other hand, the receiver S
2

wants to

be sure that the message comes from S

1

. Therefore the identifier must be unique, both in space and

time.

In theory, cryptography could also be used. In practice, however, enciphering messages for local

communication is far too expensive and the kernel must be trusted anyway. S
2

can also not rely on

purely user-supplied capabilities, since S
1

or some other instance could duplicate and pass them to

untrusted subsystems without control of S
2

.

1.1.5 Flexibility

To illustrate the flexibility of the basic concepts, we sketch some applications which typically belong

to the basic operating system but can easily be implemented on top of the �-kernel.

Memory Manager. A server managing the initial address space �

0

is a classical main memory

manager, but outside the �-kernel. Memory managers can easily be stacked: M
0

maps or grants

parts of the physical memory (�
0

) to �

1

, controlled by M

1

, other parts to �

2

, controlled by M

2

.

Now we have two coexisting main memory managers.

Pager. A Pager may be integrated with a memory manager or use a memory managing server.

Pagers use the �-kernel’s grant, map and flush primitives. The remaining interfaces, pager – client,

pager – memory server and pager – device driver, are completely based on IPC and are user-level

defined.

Pagers can be used to implement traditional paged virtual memory and file/database mapping

into user address spaces as well as unpaged resident memory for device drivers and/or real time

systems. Stacked pagers, i.e. multiple layers of pagers, can be used for combining access control

with existing pagers or for combining various pagers (e.g. one per disk) into one composed object.

User-supplied paging strategies [LCC94, CFL94] are handled at the user level and are in no way

restricted by the �-kernel. Stacked file systems [KN93] can be realized accordingly.

Multimedia Resource Allocation. Multimedia and other real-time applications require memory

resources to be allocated in a way that allows predictable execution times. The above mentioned

user-level memory managers and pagers permit e.g. fixed allocation of physical memory for specific

data or locking data in memory for a given time.

Note that resource allocators for multimedia and for timesharing can coexist. Managing alloca-

tion conflicts is part of the servers’ jobs.

Device Driver. A device driver is a process which directly accesses hardware I/O ports mapped

into its address space and receives messages from the hardware (interrupts) through the standard

IPC mechanism. Device-specific memory, e.g. a screen, is handled by means of appropriate memory

managers. Compared to other user-level processes, there is nothing special about a device driver.

No device driver has to be integrated into the �-kernel.2

Second Level Cache and TLB. Improving the hit rates of a secondary cache by means of page

allocation or reallocation [KH92, RLBC94] can be implemented by means of a pager which applies

some cache-dependent (hopefully conflict reducing) policy when allocating virtual pages in physical

memory.

In theory, even a software TLB handler could be implemented like this. In practice, the first-

level TLB handler will be implemented in the hardware or in the �-kernel. However, a second-level

2In general, there is no reason for integrating boot drivers into the kernel. The booter, e.g. located in ROM, simply

loads a bit image into memory that contains the micro-kernel and perhaps some set of initial pagers and drivers (running

in user mode and not linked but simply appended to the kernel). Afterwards, the boot drivers are no longer used.

TLB handler, e.g. handling misses of a hashed page table, might be implemented as a user-level

server.

Remote Communication. Remote IPC is implemented by communication servers which translate

local messages to external communication protocols and vice versa. The communication hardware

is accessed by device drivers. If special sharing of communication buffers and user address space

is required, the communication server will also act as a special pager for the client. The �-kernel is

not involved.

Unix Server. Unix3 system calls are implemented by IPC. The Unix server can act as a pager for

its clients and also use memory sharing for communicating with its clients. The Unix server itself

can be page-able or resident.

Conclusion. A small set of �-kernel concepts lead to abstractions which stress flexibility, provided

they perform well enough. The only thing which cannot be implemented on top of these abstractions

is the processor architecture, registers, first-level caches and first-level TLBs.

3Unix is a registered trademark of UNIX System Laboratories.

1.2 Data Types

1.2.1 Unique Ids

Unique ids identify tasks, threads and hardware interrupts. They are also unique in time. Unique

ids are 64-bit values.

1.2.2 User-Level Operations on Uids

a = b : a = b

task(a) = task (b) : (a AND NOT lthread mask) = (b AND NOT lthread mask)

chief(a) = chief (b) : (a AND NOT chief mask) = (b AND NOT chief mask)

site(a) = site (b) : (a AND NOT site mask) = (b AND NOT site mask)

lthread no(a) : (a AND lthread mask) SHR lthread shift

extract lthread no from thread id a

thread(a,n) : (a AND NOT lthread mask) + (n SHL lthread shift)

construct thread id from task id a and lthread no n

task no(a) : (a AND task mask) SHR task shift

chief no(a) : (a AND chief mask) SHR chief shift

site no(a) : (a AND site mask) SHR site shift

1.2.3 Fpages

Fpages (Flexpages) are regions of the virtual address space. An fpage consists of all pages actually

mapped in this region. The minimal fpage size is the minimal hardware-page size.

An fpage of size 2s has a 2s-aligned base address b, i.e. b mod 2

s

=

0. An fpage with base address

b and size 2

s is denoted by the 64-bit value

b+ 4s:

On R4x00 processors, the smallest possible value for s is 12, since the hardware page size is 4K.

1.2.4 Messages

S :: snd ; EMPTY .

R :: rcv ; EMPTY .

EMPTY :: .

S R message: rcv fpage option ,

size dope ,

S R msg dope ,

S R mwords ,

S R string dopes .

rcv fpage option: rcv fpage:fpage ;

zero:word.

size dope: reserved:byte ,

string dope number:5bits , = S

mwords number:19bits . = W

snd R msg dope: undefined:byte ,

string dope number:5bits , = s s

�

S

mwords number:19bits . = w w

�

W

rcv msg dope: undefined:word .

snd R mwords: w � send receive word ,

(W � w) � receive word ;

m � snd fpage receive double word , 2m

�

w

w � 2m � send receive words ,

(W � w) � receive word .

rcv mwords: W � receive word .

snd R string dopes: s � snd R string dope ,

(S � s) � R string dope .

rcv string dopes: S � rcv string dope .

snd rcv string dope: snd addr:word ,

snd size:word , � 4MB

rcv addr:word ,

rcv size:word . � 4MB

snd string dope: snd addr:word ,

snd size:word , � 4MB

undefined:word ,

undefined:word .

rcv string dope: undefined:word ,

undefined:word ,

rcv addr:word ,

rcv size:word . = s

r

s

r

� 4MB

snd map fpage: grant flag:1bit ,

write flag:1bit ,

snd base:30bits ,

snd fpage:fpage .

1.3 �-Kernel Calls

ipc (dest option, snd descriptor option, rcv descriptor option, timeouts)

! (source option, result code)

CALL
(dest, snd descriptor, closed rcv descriptor, timeouts)

! (dest option, result code)

REPLY&WAIT
(dest, snd descriptor, open rcv descriptor, timeouts)

! (source option, result code)

SEND

(dest, snd descriptor, –nil– , timeouts) ! (�, result code)

RECEIVE FROM
(source, –nil– , closed rcv descriptor, timeouts)

! (source option, result code)

WAIT
(�, –nil– , open rcv descriptor, timeouts)

! (source option, result code)

RECEIVE INTR
(intr, –nil– , closed rcv descriptor, timeouts)

! (source option, result code)

SLEEP

(–nil– , –nil– , closed rcv descriptor, timeouts) ! (�, result code)

id nearest (dest id) ! (nearest id)

�

fpage unmap (fpage, map mask) ! ()

thread switch (dest) ! ()

lthread ex regs (lthread no, SP, IP, excpt, pager)

! (FLAGS, SP, IP, excpt, pager)

MIPS Implementation Note: Added exception handler identifier (see section 2.5), and removed

preempter which is currently not supported in L4/MIPS

thread schedule (dest, prio, timeslice, ext preempter)

! (prio, timeslice, state, ext preempter, partner, time)

task new (dest task id, mcp/new chief, SP, IP, pager id, excpt id)

! (new task id)

MIPS Implementation Note: Added an exception handler identifier (see section 2.5)

Chapter 2

L4/MIPS

L4/R4x00

2.1 Implementation Notes

What follows is a list of implementation details of the current L4/MIPS implementation. It is here

to serve as a quick reference as to what may or may not be implemented for those that are familiar

with L4/x86.

2.1.1 Cache

The R4600 has 16KB data cache and 16KB instruction cache. Both are two-way associative, virtu-

ally indexed with physical tags. The data cache has either a write-through or write-back policy.

To avoid aliasing problems, shared memory regions must lie at the same offset from a 8KB

boundary in the virtual address space.

I envisage adding a MIPS specific system call in the future to perform cache management func-

tions. This will allow write-back caching to once again be re-enabled.

2.1.2 IPC

� Granting is not supported.

� Sending multiple fpages is supported in registers only, i.e. up to 3 valid fpages plus the termi-

nating nil fpage. Sending fpages in memory based messages is not supported.

� Dwords sent in memory based messages are 64-bit, not 32-bit as in L4/x86. This allows

sending direct messages of up to 4MB in size.

� Indirect strings can be up to 4MB in size.

2.1.3 Scheduling

� The current scheduler uses a multi-level round robin scheme with absolute priorities (0-255).

� Internal and external preempters are not supported.

� Constant interrupts will prevent other threads from running.

21

2.1.4 �

0

� Multiple mappings of the same physical frame is not supported.

� The RPC protocol is slightly different, see section 2.8 for details.

2.1.5 Exceptions

Exceptions are handled using IPC. Each thread has it’s own exception handling thread, see sec-

tion 2.5 for details.

2.1.6 Interrupts

Interrupts are handled using IPC. Each level of interrupt may have an associated handler thread, see

the ipc part of section 2.4 for how this is done. When an interrupt occurs, the associate handler (if

any) is notified via ipc.

2.2 Notational conventions

� If this refers to an input parameter, its value is

meaningless. If it refers to an output parame-

ter, its value is undefined.

a0,a1. . . denote the processor’s general registers. Note

that the SGI 64-bit ABI register names are

used.

2.3 Data Types

2.3.1 Unique Ids

Unique ids identify tasks, threads and hardware interrupts. Each unique id is a 64-bit value which

is unique in time. A unique id in R4x00 format consists of a single 64-bit word:

thread id nest
(4)

chief
(11)

site
(17)

ver1
(4)

task
(11)

lthread
(7)

ver0
(10)

task id nest
(4)

chief
(11)

site
(17)

ver1
(4)

task
(11)

0
(7)

ver0
(10)

interrupt id 0
(61)

intr + 1
(3)

nil id 0
(64)

invalid id 0xFFFFFFFFFFFFFFFF
(64)

2.3.2 Fpages

Fpages (Flexpages) are regions of the virtual address space. An fpage designates all pages actually

mapped in this region. The minimal fpage size is 4 K, the minimal hardware-page size.

An fpage of size 2

s has a 2s-aligned base address b, i.e. b mod 2

s

=

0. On the R4x00 processors,

the smallest possible value for s is 12, since hardware pages are at least 4K. The complete user

address space (base address 0, size 2

64

�K , where K is the size of the kernel area) is denoted by

b = 0; s = 64. An fpage with base address b and size 2

s is denoted by a 64-bit word:

fpage(b; 2s) b=4096

(52)

0
(3)

s

(7)

��

fpage(0; 264 �K) 0
(52)

0
(3)

64
(7)

��

MIPS Implementation Note: The user address space on the R4600 is one terabyte (240) be-

ginning at 0x0. Values of s � 40 are equivalent, however if the intention is to specifiy the whole

address space one should of course use s = 64 for future compatibility.

2.3.3 Messages

A message contains between 2

6 and 2

22

+ 2

6 bytes of in-line data (mwords). The first 64 bytes

(eight dwords) are transfered via registers, the (optional) remainder is contained in a dword-aligned

memory buffer pointed to by a message descriptor. Every successful IPC operation will always

copy at least eight dwords to the receiver.

The buffer pointed to by the optional message descriptor contains a 3 dword message header,

followed by a number of mwords, followed by a number of string dopes. The number of mwords

(in 64-bit dwords, excluding those copied in registers) and string dopes is specified in the message

header.

string dopes

mwords

message: msg header

The beginning of the message buffer has the following format:

...

dword 1
(64)

+32

msg dwords: dword 0
(64)

+24

msg snd dope: 0
(32)

dwords
(19)

strings
(5)

�

(8)

+16

msg size dope: 0
(32)

dwords
(19)

strings
(5)

�

(8)

+8

msg rcv fpage option: fpage
(64)

+0

The receive fpage describes the address range in which the caller is willing to accept fpage

mappings or grants in the receive part (if any) of the IPC. The size dope defines the size (in dwords)

of the mword buffer (and hence the offset of the string dopes from the end of the header), and the

number of string dopes.

The send dope specifies how many dwords and strings are actually to be sent. (Specifying send

dope values less than the size dope values makes sense when the caller is willing to receive more

data than sending.)

Strings are out-of-line by-value data. Their size and location is specified by the corresponding

string dopes. The string dope format is:

*rcv string
(64)

+24

rcv string size
(64)

+16

*snd string
(64)

+8

string dope: snd string size
(64)

+0

The first part of the string dope specifies the size and location of the string the caller wants sent

to the destination, while the second part specifies the size and location of a buffer where the caller is

willing to receive a string. Note that strings do not have to be aligned, and that their size is specified

in bytes.

The in-line part of the message consists of the eight dwords passed in registers followed by

any dwords specified by the message descriptor. This part consists of optional fpage descriptors

followed by by-value data. If the receiver of an IPC has specified a valid receive fpage, the kernel

will interpret each pair of dwords of the in-line part as fpage descriptors, until an invalid descriptor

is encountered. This and any further dwords are then passed by value.

MIPS Implementation Note: Presently at most three fpages can be passed on the R4600.

The format of an fpage descriptor is:

snd fpage
(62)

w g +8

snd fpage: snd base
(64)

+0

The first word contains the address of the hot spot, while the second word describes the sender’s

fpage in the format given in Sect. 2.3.2. The g-bit, if set, indicates that the fpage is to be granted

to the receiver, otherwise it is just mapped. The w-bit indicates whether the receiver will be given

write or read-only access to the address-space region.

Each fpage specified by the sender is mapped individually into the address-space window spec-

ified by the receiver’s receive fpage. If the sender and receiver specify different fpage sizes, the

hot-spot specification is used to determine how the mapping between the two different size fpages

occurs: If 2s is the size of the larger, and 2

t the size of the smaller fpage, then the larger fpage can

be thought as being tiled by 2

s�t fpages of the smaller size. One of these is uniquely identified as

containing the hot spot address (mod 2

s). This is the fpage which will actually be mapped.

The kernel refuses to map or grant a page over an existing mapping in the receiver’s address

space; an attempt to perform such a mapping will be treated as a no-op. There is one exception: If

the receiver’s page is already mapped to the same page as the present IPC attempts to map it (i.e. the

mapping operation would not change the association of the receiver’s page with physical memory)

then the write permission on the receiver’s page is set according to the w-bit of the sender’s fpage

descriptor. In other words, such an operation can be used to change a mapping from R/O to writable

or vice versa.

If the sender provides several fpage descriptors which attempt to define conflicting mappings

for one of the receiver’s pages, the result is undefined.

MIPS Implementation Note: The current message headers are not as compact as they could

be. They will be optimised in a future version.

2.3.4 Timeouts

Timeouts are used to control ipc operations. The send timeout determines how long ipc should try

to send a message. If the specified period is exhausted without that message transfer could start,

ipc fails. The receive timeout specifies how long ipc should wait for an incoming message. Both

timouts specify the maximum period of time before message transfer starts. Once started, message

transfer is no longer influenced by send or receive timeout.

Pagefaults occuring during ipc are controlled by send and receive pagefault timeout. A pagefault

is translated to an RPC by the kernel. In the case of a pagefault in the receiver’s address space, the

corresponding RPC to the pager uses send pagefault timeout (specified by the sender) for both send

and receive timeout. In the case of a pagefault in the sender’s address space, receive pagefault

timeout specified by the receiver is taken.

Besides the special timeouts 0 (do not wait at all) and1 (wait forever), periods from 1 �s up to

approximately 19 hours can be specified. The complete quadruple is packed into one 32-bit word:

m

r

(8)

m

s

(8)

p

r

(4)

p

s

(4)

e

s

(4)

e

r

(4)

snd timeout =

8

>

>

<

>

>

:

1 if e

s

=

0

4

15�e

s

m

s

�s if e

s

>

0

0 if m

s

=

0; e

s

6=

0

rcv timeout =

8

>

>

<

>

>

:

1 if e

r

=

0

4

15�e

r

m

r

�s if e

r

>

0

0 if m

r

=

0; e

r

6=

0

snd pagefault timeout =

8

>

>

<

>

>

:

1 if p

s

=

0

4

15�p

s

�s if 0

<

p

s

<

15

0 if p

s

=

15

rcv pagefault timeout =

8

>

>

<

>

>

:

1 if p

r

=

0

4

15�p

r

�s if 0

<

p

r

<

15

0 if p

r

=

15

approximate timeout ranges

e

s

; e

r

; p

s

; p

r

snd/rcv timeout pf timeout

0 1 1

1 256 s . . . 19 h 256 s

2 64 s . . . 55 h 64 s

3 16 s . . . 71 m 16 s

4 4 s . . . 17 m 4 s

5 1 s . . . 4 m 1 s

6 262 ms . . . 67 s 256 ms

7 65 ms . . . 17 s 64 ms

8 16 ms . . . 4 s 16 ms

9 4 ms . . . 1 s 4 ms

10 1 ms . . . 261 ms 1 ms

11 256 �s . . . 65 ms 256 �s

12 64 �s . . . 16 ms 64 �s

13 16 �s . . . 4 ms 16 �s

14 4 �s . . . 1 ms 4 �s

15 1 �s . . . 255 �s 0

m

=

0; e

>

0 0 —

MIPS Implementation Note: Timeouts presently have millisecond granularity. Specified mi-

crosecond timeouts are therefore rounded down (truncated) to the nearest millisecond, say x. Actual

timeout will then occur anywhere in the interval [ct+ x� 1; ct+ x], where ct is the current time in

milliseconds.

�

2.4 �-Kernel Calls

System calls are implemented using the syscall instruction in conjunction with the AT register

which is set to the system call number prior to the call. All registers, unless otherwise stated, are

returned undefined after the system call except for the stack pointer sp.

This section describes the 7 system calls of L4:

� ipc AT 0

� id nearest AT 2

� fpage unmap AT 1

� thread switch AT 4

� thread schedule AT 5

� lthread ex regs AT 6

� task new AT 7

MIPS Implementation Note: The system call numbers will be cleaned up some time in the

future.

ipc

� AT 0x0!

snd descriptor a0 a0 �

rcv descriptor a1 a1 �

timeouts a2 a2 �

dest id a4 a4 real dest id

waiting for id / 0 a5 a5 �

virtual sender id / � a6 a6 �

msg.w0 s0 s0 msg.w0 / �

msg.w1 s1 s1 msg.w1 / �

msg.w2 s2 s2 msg.w2 / �

msg.w3 s3 s3 msg.w3 / �

msg.w4 s4 s4 msg.w4 / �

msg.w5 s5 s5 msg.w5 / �

msg.w6 s6 s6 msg.w6 / �

msg.w7 s7 s7 msg.w7 / �

� v0 v0 msgdope + cc / cc

� v1 v1 source id

This is the basic system call for inter-process communication and synchronisation. It may be

used for intra- as inter-address-space communication. All communication is synchronous and un-

buffered: a message is transferred from the sender to the recipient if and only if the recipient has

invoked a corresponding ipc operation. The sender blocks until this happens or a period specified

by the sender elapsed without that the destination became ready to receive.

Ipc can be used to copy data as well as to map or grant fpages from the sender to the recipient.

For the description of messages see section 2.3.3.

64-byte messages (plus 64-bit sender id) can be transferred solely via the registers and are thus

specially optimised. If possible, short messages should therefore be reduced to 64-byte messages.

A single ipc call combines an optional send operation with an optional receive operation. Whether

it includes a send and/or a receive is determined by the actual parameters. If the send or receive

address is specified as nil (0xFFFFFFFFFFFFFFFF), the corresponding operation is skipped.

No time is required for the transition between send and receive phase of one ipc operation (i.e.,

the destination can reply with a timeout of zero).

Parameters

snd descriptor
“nil” 0xFFFFFFFFFFFFFFFF

(64)

Ipc does not include a send operation.

“mem” *snd msg/4
(62)

md

Ipc includes sending a message to the destination specified by dest

id. *snd msg must point to a valid message. The first 8 64-bit words

of the message (msg.w0 to msg.w7) are not taken from the message

data structure but must be contained in registers s0 through s7.

snd descriptor
“reg” 0

(62)

md

Ipc includes sending a message to the destination specified by dest

id. The message consists solely of the 8 64-bit words msg.w0 to

msg.w7 in registers s0 through s7.

m

=

0 Value-copying send operation; the dwords of the message are sim-

ply copied to the recipient.

m

=

1 Fpage-mapping send operation. The dwords of the message to be

sent are treated as ’send fpages’. The described fpages are mapped

or granted (depending on the g bit in the fpage descriptor) /cbend

into the recipient’s address space. Mapping/granting stops when

either the end of the dwords is reached or when an invalid fpage

denoter is found, in particular 0. The send fpage descriptors and all

potentially following words are also transferred by simple copy to

the recipient. Thus a message may contain some fpages and addi-

tional value parameters. The recipient can use the received fpage

descriptors to determine what has been mapped or granted into its

address space, including location and access rights.

d

=

0 Normal send operation. The recipient gets the true sender id.

d

=

1 Deceiving send operation. A sender can specify the virtual sender

id which the recipient should get instead of the real sender’s id. The

virtual sender id parameter contained in a6 is only required if d=1.

Recall that deceiving is secure, since only direction-preserving de-

ceit is possible, see Section 1.1.3, page 12. (Note that “direction-

preserving” relates to the task structure, not to threads within tasks.

If a message can be sent to or from a particular thread in a task,

it can also be sent to or from any other thread of the same task,

and deceiving is always possible if it only changes the thread num-

ber while leaving the task ID unchanged.) If the specified virtual-

sender id does not fulfil this constraint, the send operation works

like d=0.

rcv descriptor
“nil” 0xFFFFFFFFFFFFFFFF

(64)

Ipc does not include a receive operation.

“mem” *rcv msg/4
(62)

0 o

Ipc includes receiving a message or waiting to receive a message.

*rcv msg must point to a valid message. The 8 64-bit words of the

received message (msg.w0 to msg.w7) are not stored in the message

data structure but are returned in registers s0 through s7.

“reg” 0
(62)

0 o

Ipc includes receiving a message or waiting to receive a message.

However, only messages up to 8 64-bit words msg.w0 to msg.w7 are

accepted. The received message is returned in registers s0 through

s7.

rcv descriptor
“rmap” rcv fpage

(62)

1 o

Ipc includes receiving a message or waiting to receive a message.

However, only send-fpage messages or up to 8 64-bit words msg.w0

to msg.w7 are accepted. The received message is returned in reg-

isters s0 through s7. If a map message is received, “rcv fpage” de-

scribes the receive fpage (instead of “rcv fpage option” in a memory

message buffer). Thus fpages can also be received without a mes-

sage buffer in memory.

o MIPS Implementation Note: o is currently not used in L4/MIPS.

See waiting for id below.

o

=

0 Only messages from the thread specified as dest id are accepted

(“closed wait”). Any send operation from a different thread (or

hardware interrupt) will be handled exactly as if the actual thread

would be busy.

o

=

1 Messages from any thread will be accepted (“open wait”). If the

actual thread is associated to a hardware interrupt, also messages

from this hardware interrupt can arrive.

dest id Sending is directed to the specified thread, if it resides in the

sender’s clan. If the destination is outside the sender’s clan, the

message is sent to the sender’s chief. If the destination is in an inner

clan (a clan whose chief resides in the sender’s clan), it is redirected

to that chief. (See also ‘id nearest’ operation, page 38.)

This parameter is irrelevant if the ipc does not contain a send part.

waiting for id 6=

0;

6=

nil

Closed receive: receiving from the specified thread (in the case of a

hardware interrupt the interrupt id). This parameter is irrelevant if

the ipc does not contain a receive part.

=

0 Open receive: receiving from any sender.

=

nil Although specifying nil as the destination for a send operation is

illegal (error: ‘destination not existent’), it can be legally specified

as the source of a receive-only operation. In this case, ipc will not

receive any message but will wait the specified rcv timeout and then

terminate with error code ‘receive timeout’.

MIPS Implementation Note: “Open” and “closed” waits are not

specified in bit zero of rcv descriptor as in L4/x86. This will likely

change back to the way L4/x86 does it (using o) in the future.

virtual sender id If deceiving (snd descriptor.d = 1) this is the source id delivered to

the receiver.

The parameter is irrelevant if the IPC does not include a deveiving

send part.

real dest id If a message was received, this is the id of the intended recipient

of the message (which is different from the actual recipient if redi-

rection took place). The parameter is undefined if no message was

received.

source id If a message was received this is the id of its sender (or the virtual

sender id if the message received used a deceiving send operation).

If a hardware interrupt was received this is the interrupt id. The

parameter is undefined if no message was received.

msg.w0 . . . w7 “snd” First 8 64-bit words of message to be sent. These message words

are taken directly from registers s0 through s7. They are not read

from the message data structure.

“rcv” First 8 64-bit words of received message, undefined if no message

was received. These message words are available only in registers

s0 through s7. The �-kernel does not store it in the receive mes-

sage buffer. The user program may store it or use it directly in the

registers.

msg.dope + cc
0
(32)

mwords
(19)

strings
(5)

cc

(8)

Message dope describing received message. If no message was re-

ceived, only cc is delivered. The dope word of the received message

is available only in register v0. The �-kernel does not store it in

the receive message buffer. The user program may store it or use it

directly in the register. (Note that the lowermost 8 bits of msg dope

and size dope in the message data structure are undefined. So it is

legal to store v0 in the msg-dope field, even if cc6=0.)

cc
ec

(4)

i r md

d

=

0 The received message is transferred directly (“undeceived”) from

source id.

d

=

1 The received message is “deceived” by a chief. source id is the

virtual source id which was specified by the sending chief.

m

=

0 The received message did not contain fpages.

m

=

1 The sender mapped or granted fpages. The sender’s fpage descrip-

tors were also (besides mapping/granting) transferred as mwords.

r

=

0 The received message was directed to the actual recipient, not redi-

rected to a chief. I.e. sender and receiver a part of the same clan.

The i-bit has no meaning in this case and is zero.

r

=

1 The received message was redirected to the chief which was next

on the path to the true destination. Sender and addressed recipient

belong to different clans.

i

=

0 If r=1: the received message comes from outside the own clan.

i

=

1 If r=1: the received message comes from an inner clan.

ec =

0 ok: the optional send operation was successful, and if a receive

operation was also specified (rcv descriptor 6=

nil) a message was

also received correctly.

6=

0 If ipc fails the completion code is in the range 0x10. . . 0xF0. If

the send operation fails, ipc is terminated without attemtping any

receive operation. s specifies whether the error occurred during the

receive (s

=

0) operation or during the send (s

=

1) operation:

1 Non-existing destination or source.

2 + s Timeout.

4 + s Cancelled by another thread (system call lthread ex regs).

6 + s Map failed due to a shortage of page tables.

8 + s Send pagefault timeout.

A+ s Receive pagefault timeout.

C + s Aborted by another thread (system call lthread ex regs or

task new).

E + s Cut message. Potential reasons are (a) the recipient’s mword buffer

is too small; (b) the recipient does not accept enough strings; (c) at

least one of the recipient’s string buffers is too small.

1. . . 5 The respective operation was terminated before a real message

transfer started. No partner was directly involved.

6. . . F The respective operation was terminated while a message transfer

was running. The message transfer was aborted. The current part-

ner (sender or receiver) was involved and received the correspond-

ing error code. It is not defined which parts of the message are

already transferred and which parts are not yet transferred. The

source id returned to the receiver is also undefined.

timeouts This 32-bit word specifies all 4 timeouts, the quadruple (snd, rcv,

snd pf, rcv pf). For A detailed description see section 2.3.4. Fre-

quently used values are

snd rcv snd pf rcv pf

0x00000000 1 1 1 1

0x00000001 0 1 1 1

0x00000011 0 0 1 1

“snd” If the required send operation cannot start transfer data within the

specified time, ipc is terminated and fails with completion code

‘send timeout’ (0x18). If ipc does not include a send operation,

this parameter is meaningless.

“rcv” If ipc includes a receive operation and no message transfer starts

within the specified time, ipc is terminated and fails with comple-

tion code ‘receive timeout’ (0x20). If ipc does not include a receive

operation, this parameter is meaningless.

“spf” If during sending data a pagefault in the receiver’s address space

occurs, snd pf specified by the sender is used as send and receive

timeout for the pagefault RPC.

“rpf” If during receiving data a pagefault in the sender’s address space

occurs, rcv pf specified by the receiver is used as send and receive

timeout for the pagefault RPC.

Basic Ipc Types

CALL

� AT 0x0!

*snd msg / 0 a0 a0 �

*rcv msg / 0 a1 a1 �

timeouts a2 a2 �

dest id a4 a4 real dest id

dest id a5 a5 �

virt sndr / � a6 a6 �

msg.w0 s0 s0 msg.w0

msg.w1 s1 s1 msg.w1

msg.w2 s2 s2 msg.w2

msg.w3 s3 s3 msg.w3

msg.w4 s4 s4 msg.w4

msg.w5 s5 s5 msg.w5

msg.w6 s6 s6 msg.w6

msg.w7 s7 s7 msg.w7

� v0 v0 msgdope + cc

� v1 v1 dest id

This is the usual blocking RPC. snd msg is sent to dest id and the invoker waits for a reply from dest

id. Messages from other sources are not accepted. Note that since the send/receive transition needs

no time, the destination can reply with snd timeout = 0.

This operation can also be used for a server with one dedicated client. It sends the reply to the

client and waits for the client’s next order.

REPLY&WAIT

� AT 0x0!

*snd msg / 0 a0 a0 �

*rcv msg / 0 a1 a1 �

timeouts a2 a2 �

dest id a4 a4 real dest id

0 a5 a5 �

virt sndr / � a6 a6 �

msg.w0 s0 s0 msg.w0

msg.w1 s1 s1 msg.w1

msg.w2 s2 s2 msg.w2

msg.w3 s3 s3 msg.w3

msg.w4 s4 s4 msg.w4

msg.w5 s5 s5 msg.w5

msg.w6 s6 s6 msg.w6

msg.w7 s7 s7 msg.w7

� v0 v0 msgdope + cc

� v1 v1 source id

snd msg is sent to dest id and the invoker waits for a reply from any source. This is the standard

server operation: it sends a reply to the actual client and waits for the next order which may come

from a different client.

SEND

� AT 0x0!

*snd msg / 0 a0 a0 �

0xFFFFFFFFFFFFFFFF a1 a1 �

timeouts a2 a2 �

dest id a4 a4 �

� a5 a5 �

virt sndr / � a6 a6 �

msg.w0 s0 s0 �

msg.w1 s1 s1 �

msg.w2 s2 s2 �

msg.w3 s3 s3 �

msg.w4 s4 s4 �

msg.w5 s5 s5 �

msg.w6 s6 s6 �

msg.w7 s7 s7 �

� v0 v0 msgdope + cc

snd msg is sent to dest id. There is no receive phase included. The invoker continues working after

sending the message.

RECEIVE FROM

� AT 0x0!

0xFFFFFFFFFFFFFFFF a0 a0 �

*rcv msg / 0 a1 a1 �

timeouts a2 a2 �

� a4 a4 real dest id

source id a5 a5 �

� a6 a6 �

� s0 s0 msg.w0

� s1 s1 msg.w1

� s2 s2 msg.w2

� s3 s3 msg.w3

� s4 s4 msg.w4

� s5 s5 msg.w5

� s6 s6 msg.w6

� s7 s7 msg.w7

� v0 v0 msgdope + cc

� v1 v1 source id

This operation includes no send phase. The invoker waits for a message from source id. Messages

from other sources are not accepted. Note that also a hardware interrupt might be specified as

source.

WAIT

� AT 0x0!

0xFFFFFFFFFFFFFFFF a0 a0 �

*rcv msg / 0 a1 a1 �

timeouts a2 a2 �

� a4 a4 real dest id

0 a5 a5 �

� a6 a6 �

� s0 s0 msg.w0

� s1 s1 msg.w1

� s2 s2 msg.w2

� s3 s3 msg.w3

� s4 s4 msg.w4

� s5 s5 msg.w5

� s6 s6 msg.w6

� s7 s7 msg.w7

� v0 v0 msgdope + cc

� v1 v1 source id

This operation includes no send phase. The invoker waits for a message from any source (including

a hardware interrupt).

RECEIVE INTR

� AT 0x0!

0xFFFFFFFFFFFFFFFF a0 a0 �

*rcv msg / 0 a1 a1 �

timeouts a2 a2 �

� a4 a4 real dest id

intr + 1 a5 a5 �

� a6 a6 �

� s0 s0 �

� s1 s1 �

� s2 s2 �

� s3 s3 �

� s4 s4 �

� s5 s5 �

� s6 s6 �

� s7 s7 �

� v0 v0 msgdope + cc

� v1 v1 intr + 1

This operation includes no send phase. The invoker waits for an interrupt message coming from

interrupt source intr. Note that interrupt messages come only from the interrupt which is currently

associated with this thread and the interrupt is disabled until the next receive by the handles.

The intr parameter is only evaluated if rcv timeout = 0 is specified, see ‘associate intr’.

See the include file <kernel/u4600.h> for a list of the available interrupts.

ASSOCIATE INTR

� AT 0x0!

0xFFFFFFFFFFFFFFFF a0 a0 �

*rcv msg / 0 a1 a1 �

rcv timeout = 0 a2 a2 �

� a4 a4 real dest id

intr + 1 a5 a5 �

� a6 a6 �

� s0 s0 �

� s1 s1 �

� s2 s2 �

� s3 s3 �

� s4 s4 �

� s5 s5 �

� s6 s6 �

� s7 s7 �

� v0 v0 msgdope + cc

� v1 v1 intr + 1

The intr parameter is evaluated if rcv timeout = 0 is specified. If no (currently associated)

interrupt is pending, the current thread is (1) detached from its currently associated interrupt (if

any) and (2) associated to the specified interrupt provided that this one is free, i.e. not associated to

another thread. If the association succeeds, the completion code is receive timeout (0x20) and no

interrupt is received.

If an interrupt from the currently associated interrupt was pending, this one is delivered together

with completion code ok (0x00); the interrupt association is not modified. If the requested new

interrupt is already associated to another thread or is not existing, completion code non existing

(0x10) is delivered and the interrupt association is not modified.

Dissociating an interrupt without associating a new one is done by issuing a receive from

nilthread (0) with rcv timeout = 0.

See the include file <kernel/u4600.h> for a list of available interrupts.

SLEEP

� AT 0x0!

0xFFFFFFFFFFFFFFFF a0 a0 �

0 a1 a1 �

timeouts a2 a2 �

� a4 a4 �

0xFFFFFFFFFFFFFFFF a5 a5 �

� a6 a6 �

� s0 s0 �

� s1 s1 �

� s2 s2 �

� s3 s3 �

� s4 s4 �

� s5 s5 �

� s6 s6 �

� s7 s7 �

� v0 v0 cc = 0x20

� v1 v1 �

This operation includes no send phase. Since invalid (-1) is specified as source, no message can

arrive and the ipc will be terminated with ‘receive timeout’ after the time specified by the rcv-timeout

parameter is elapsed.

id nearest

� AT 0x2!

dest id a0 a0 �

� v0 v0 type

� v1 v1 nearest id

If nil is specified as destination, the system call delivers the uid of the current thread. Otherwise,

it delivers the nearest partner which would be engaged when sending a message to the specified

destination. If the destination does not belong to the invoker’s clan, this call delivers the chief that

is nearest to the invoker on the path from the invoker to the destination.

� If the destination resides outside the invoker’s clan, it delivers the invoker’s own chief.

� If the destination is inside a clan or a clan nesting whose chief C is direct member of the

invoker’s clan, the call delivers C .

� If the destination is a direct member of the invoker’s clan, the call delivers the destination

itself.

� If the destination is nil, the call delivers the current thread’s id.

Concluding: id nearest (dest id 6= nil) delivers exactly that partner to which the kernel would physi-

cally send a message which is targeted to dest id. On the other hand, a message from dest id would

physically come from exactly this partner.

Parameters

dest id Id of the destination.

type Note that the type values correspond exactly to the completion

codes of ipc.

=

0 Destination resides in the same clan. dest id is delivered as nearest

id.

=

C Destination is in an inner clan. The chief of this clan or clan nesting

is delivered as nearest id.

=

4 Destination is outside the invoker’s clan. The invoker’s chief is de-

livered as nearest id.

nearest id Either the current thread’s id or the id of the nearest partner towards

dest id.

fpage unmap

� AT 0x1!

fpage a0 a0 �

map mask a1 a1 �

The specified fpage is unmapped in all address spaces into which the invoker mapped it directly or

indirectly.

Parameters

fpage Fpage to be unmapped.

map mask
f 0

(61)

w 0

w

=

0 Fpage will partially unmapped. Already read/write mapped parts

will be set to read only. Read only mapped parts are not affected.

w

=

1 Fpage will be completely unmapped.

f

=

0 Unmapping happens in all address spaces into which pages of the

specified fpage have been mapped directly or indirectly. The origi-

nal pages in the own task remain mapped.

f

=

1 Additionally, also the original pages in the own task are unmapped

(flushing).

thread switch

� AT 0x4!

dest id a0 a0 �

The invoking thread releases the processor (non-preemtively) so that another ready thread can be

processed.

Parameters

dest id =

nil (=0) Processing switches to an undefined ready thread which is se-

lected by the scheduler. (It might be the invoking thread.) Since

this is “ordinary” scheduling, the thread gets a new timeslice.

6=

nil If dest id is ready, processing switches to this thread. In this “ex-

traordinary” scheduling, the invoking thread donates its remaining

timeslice to the destination thread. (This one gets the donation ad-

ditionally to its ordinary scheduled timeslices.)

If the destination thread is not ready, the system call operates as

described for dest id =

nil.

thread schedule

� AT 0x5!

dest id a0 a0 �

param word a1 a1 old param word

ext preempter a2 a2 old ext preempter

� a3 a3 partner

� v0 v0 time

The system call can be used by schedulers to define the priority, timeslice length and external

preempter of other threads. Furthermore, it delivers thread states. Note that due to security reasons,

thread state information must be retrieved through the appropriate scheduler.

The system call is only effective if the current (and the new) priority of the specified destination

is less or equal than the current task’s maximum controlled priority (mcp).

Parameters

dest id Destination thread id. The destination thread must currently exist

and run on a priority level less than or equal to the current thread’s

mcp. Otherwise, the destination thread is not affected by this system

call and all result parameters except old param word are undefined.

param word
valid m

t

(8)

e

t

(4)

0
(4)

small
(8)

prio
(8)

prio New priority for destination thread. Must be less than or equal to

current thread’s mcp.

small (Only effective for Pentium.) Sets the small address space number

for the addressed task. On Pentium, small address spaces from 1

to 127 currently available. A value of 0 or 255 in this field does

not change the current setting for the task. This field is currently

ignored for 486, PPro and R4x00.

m

t

; e

t

New timeslice length for the destination thread. The timeslice quan-

tum is encoded like a timeout: 415�e

t

m

t

�s.

The kernel rounds this value up towards the nearest possible value.

Thus the timeslice granularity can be determined by trying to set

the timeslice to 1 �s. Note, however, that the timeslice granularity

may depend on the priority.

Timeslice length 0 (m
t

=

0; e

t

6=

0) is always a possible value. It

means that the thread will get no ordinary timeslice, i.e. is blocked.

However, even a blocked thread may execute in a timeslice donated

to it by ipc.

“inv” (0xFFFFFFFF) The current priority and timeslice length of the

thread is not modified.

ext preempter valid Defines the external preempter for the destination thread. (Nilthread

is a valid id.)

“inv” (0xFFFFFFFF,�) The current external preempter of the thread is

not changed.

MIPS Implementation Note: External preempters are currently

not implemented in L4/MIPS.

old param word
valid m

t

(8)

e

t

(4)

ts

(4)

�

(8)

prio
(8)

prio Old priority of destination thread.

m

t

; e

t

Old timeslice length of the destination thread: 415�e

t

m

t

�s.

ts

= Thread state:

0 + k Running. The thread is ready to execute at user-level.

4 + k Sending. A user-invoked ipc send operation currently transfers an

outgoing message.

8 + k Receiving. A user-invoked ipc receive operation currently receives

an incoming message.

C Waiting for receive. A user-invoked ipc receive operation currently

waits for an incoming message.

D Pending send. A user-invoked ipc send operation currently waits

for the destination (recipient) to become ready to receive.

E Reserved.

F Dead. The thread is unable to execute.

k

= 0 Kernel inactive. The kernel does not execute an automatic RPC for

the thread.

1 Pager. The kernel executes a pagefault RPC to the thread’s pager.

2 Internal preempter. The kernel executes a preemption RPC to the

thread’s internal preempter.

3 External preempter. The kernel executes a preemption RPC to the

thread’s external preempter.

MIPS Implementation Note: Presently, k is always zero in

L4/MIPS.

“inv” (0xFFFFFFFF) The addressed thread does either not exist or has a

priority which exceeds the current thread’s mcp. All other return

parameters are undefined (�).

old ext preempter
MIPS Implementation Note: External preempters are currently

not implemented in L4/MIPS.

Old external preempter of the destination thread.

partner Partner of an active user-invoked ipc operation. This parameter is

only valid if the thread’s user state is sending, receiving, pending or

waiting (4. . . D). An invalid thread id (0xFFFFFFFF,�) is delivered

if there is no specific partner, i.e. if the thread is in an open receive

state.

time
m

w

(8)

e

w

(4)

e

p

(4)

T

high

(16)

T

low

(32)

T Cpu time (48-bit value) in microseconds which has been consumed

by the destination thread.

m

w

; e

w

Current user-level wakeup of the destination thread, encoded like a

timeout. The value denotes the remaining timeout interval. Valid

only if the user state is waiting (C) or pending (D).

e

p

Effective pagefault wakeup of the destination thread, encoded like

a 4-bit pagefault timeout. The value denotes the remaining timeout

interval. Valid only if the kernel state is pager (k =

1).

lthread ex regs

� AT 0x6!

lthread no a0 a0 �

IP a1 a1 old IP

SP a2 a2 old SP

excpt id a3 a3 old excpt id

pager id a4 a4 old pager id

This function reads and writes some register values of a thread in the current task.

It also creates threads. Conceptually, creating a task includes creating all of its threads. Except

lthread 0, all these threads run an idle loop. Of course, the kernel does neither allocate control

blocks nor time slices etc. to them. Setting stack and instruction pointer of such a thread to valid

values then really generates the thread.

Note that this operation reads and writes the user-level registers (SP and IP). Ongoing kernel

activities are not affected. However an ipc operation is cancelled or aborted. If the thread is either

waiting to send a message or waiting to receive a message, i.e. a message transfer is not yet running,

ipc is cancelled (completion code 0x40 or 0x50). If a message transfer is currently running, ipc is

aborted (completion code 0xC0 or 0xD0).

MIPS Implementation Note: The L4/x86 int preempter is currently not supported in

L4/MIPS and has been removed from the arguments. excpt id has been added to L4/MIPS to specify

the exception handling thread for the thread, see section 2.5 for details.

Parameters

lthread no 0
(57)

lthread
(7)

Number of addressed lthread (0. . . 127) inside the current task.

SP valid New stack pointer (SP) for the thread. It must point into the user-

accessible part of the address space.

“inv” (0xFFFFFFFFFFFFFFFF) The existing stack pointer is not modi-

fied.

IP valid New instruction pointer (IP) for the thread. It must point into the

user-accessible part of the address space.

“inv” (0xFFFFFFFFFFFFFFFF) The existing instruction pointer is not

modified.

excpt id valid Defines the exception handling thread used by the thread.

“inv” (0xFFFFFFFFFFFFFFFF) The existing excpt id is not modified.

pager valid Defines the pager used by the thread.

“inv” (0xFFFFFFFFFFFFFFFF) The existing pager id is not modified.

old SP Old stack pointer (SP) of the thread.

old SP Old instruction pointer (IP) of the thread.

old excpt id Id of the thread’s old exception handler.

old pager Id of the thread’s old pager.

Example

Signalling can be implemented as follows:

signal (lthread) :

sp := receive signal stack ;

ip := receive signal ;

mem [sp – –] := 0 ;

lthread ex regs (lthread, sp, ip, –, –) ;

mem [sp – –] := ip ;

mem [idle stack – wordlength] := sp .

receive signal :

push all regs ;

while mem [sp + 8 � wordlength] = 0 do

thread switch (nilthread)

od ;

pop all regs ;

pop (sp) ;

jmp (signal ip) .

task new

� AT 0x7!

IP a0 a0 �

pager a1 a1 �

SP a2 a2 �

dest task a3 a3 �

mcp / new chief a4 a4 �

excpt id a5 a5 �

� v0 v0 new task id

This function deletes and/or creates a task. Deletion of a task means that the address space of the

task and all threads of the task disappear. The cputime of all deleted threads is added to the cputime

of the deleting thread. If the deleted task was chief of a clan, all tasks of the clan are deleted as well.

Tasks may be created as active or inactive, as defined by the pager attribute. For an active task,

a new address space is created together with 128 threads. Lthread 0 is started, the other ones wait

for a “real” creation by lthread ex regs. An inactive task is empty. It occupies no resources, has no

address space and no threads. Communication with inactive tasks is not possible. Loosely speaking,

inactive tasks are not really existing but represent only the right to create an active task.

A newly created task gets the creator as its chief, i.e. it is created inside the creator’s clan. A

task can only be deleted either directly by its chief (its creator) or indirectly by (a higher-level chief)

deleting the task’s chief.

Parameters

dest task Task id of an existing task (active or inactive) whose chief is the

current task. If one of these preconditions is not fulfilled, the system

call has no effect. Simultaneously, a new task with the same task

number is created. It may be active or inactive (see next parameter).

pager 6= nil The new task is created as active. The specified pager is associated

with lthread 0.

= nil (0) The new task is created as inactive. Lthread 0 is not created.

SP Initial stack pointer for lthread 0 if the new task is created as an

active one. Ignored otherwise.

IP Initial instruction pointer for lthread 0 if the new task is created as

an active one. Ignored otherwise.

mcp Maximum controlled priority (mcp) defines the highest priority

which can be ruled by the new task acting as a scheduler. The new

task’s effective mcp is the minimum of the creator’s mcp and the

specified mcp.

a4 contains this parameter, if the newly generated task is an active

task, i.e. has a pager and at least lthread 0.

new chief Specifies the chief of the new inactive task. This mechanism per-

mits to transfer inactive (“empty”) tasks to other tasks. Transferring

an inactive task to the specified chief means to transfer the related

right to create a task. Note that the task number remains unchanged.

a4 contains this parameter, if the newly generated task is an inactive

task, i.e. has no pager and no threads.

The lthread no of the chief id is ignored, the effective chief (as far

as ipc delivery is concerned) is the chief tasks’ lthread 0.

new task id 6=

nil Task creation succeeded. If the new task is active, the new task id

will have a new version number so that it differs from all task ids

used earlier. Chief and task number are the same as in dest task.

If the new task is created inactive, the chief is taken from the chief

parameter; the task number remains unchanged. The version is un-

defined so that the new task id might be identical with a formerly

(but not currently and not in future) valid task id. This is safe since

communication with inactive tasks is impossible.

=

nil (0) The task creation failed.

excpt id Specifies the default exception handler thread id for new task.

2.5 Exception Handling

Exceptions in L4/MIPS are handled with IPC, unlike L4/x86 which handles exceptions via x86

mirrored exception handling using a per thread IDT.

In L4/MIPS a thread which raises an exception which is caught by L4, has a RPC done on it’s

behalf to an exception handling thread, which can be specified per thread.

The thread that took the exception is left waiting, the exception handling thread can either shut

down the offending thread, or generate a signal, or implement any other model the OS designer

chooses.

When a thread takes an exception, the kernel sends the following to the thread’s exception

handler.

msg.w0 (s0) 0
(32)

Cause
(32)

msg.w1 (s1) EPC
(64)

msg.w2 (s2) BVA
(64)

Cause Contents of the R4000 Cause register. It describes what type of exception was taken.

EPC Contents of the R4000 EPC register. It contains the address of the instruction that caused the

exception, except when the instruction is in the branch delay slot, in which case it contains

the address of the preceding branch instruction.

BVA Contents of the R4000 BVA register. It contains the virtual address that caused the exception.

See the R4600 processor manual[Int95] for more details of these registers including how and

when they are set.

2.6 The Kernel-Info Page

The kernel-info page contains kernel-version data, memory descriptors and the clock. The remain-

der of the page is undefined. The kernel-info page is mapped read-only in the �

0

-address space.

�

0

can use the memory descriptors for its memory management. �
0

can map the page read-only to

other address spaces.

The kernel information page contains information useful for the initial servers to find out about

the environment they were started in. Its layout is as follows.

kernel data
(64)

+40

dit header
(64)

+32

kernel
(64)

+24

memory size
(64)

+16

clock
(64)

+8

build
(16)

version
(16)

“L4uK”
(32)

+0

version L4/R4600 version number.

build L4/R4600 build number of above version

clock Number of 1 milliseconds ticks since L4 booted.

memory size The amount of RAM installed on machine L4 is running on.

kernel The address + 1 of last byte reserved by the kernel of low physical

memory.

dit header The address of the DIT header which maps out what was loaded

with the kernel image.

kernel data The address of the start of kernel reserved memory in the upper

physical memory region.

The physical memory initially available for applications lies between kernel and kernel data.

2.7 Page-Fault and Preemption RPC

Page Fault RPC

kernel sends: w0 (s0) fault address / 4
(62)

w�

w1 (s1) faulting user-level IP
(64)

w

=

0 Read page fault.

w

=

1 Write page fault.

kernel receives: The kernel provides a receive fpage covering the complete user ad-

dress space. The kernel accepts mappings or grants into this region.

Only a short (i.e., register-only) message is accepted, and its con-

tents are ignored.

timeouts PF at PF at ipc in PF at ipc in

used for user receiver’s sender’s

pagefault RPC level space space

snd 1 sender’s snd pf receiver’s rcv pf

rcv 1 sender’s snd pf receiver’s rcv pf

snd pf 1 sender’s snd pf receiver’s rcv pf

rcv pf 1 sender’s snd pf receiver’s rcv pf

Preemption RPC

MIPS Implementation Note: Preemption RPC is yet to be implemented in L4/MIPS.

kernel sends: w0 user-level ESP
(32)

w1 user-level EIP
(32)

ESP and EIP are the R4x00’s exception stack pointer and exception instruction pointer registers,

respectively.

kernel receives: The kernel only accepts a short (in-register) message, whose con-

tents are ignored.

timeouts

used for

preemption RPC

snd 1

rcv 1

snd pf 1

rcv pf 1

�

0

2.8 �

0

RPC protocol

�

0

is the initial address space. Although �
0

may not be part of the kernel its basic protocol is defined

by the �-kernel. Special �
0

implementations may extend this protocol.

The address space �
0

is idempotent, i.e. all virtual addresses in this address space are identical

to the corresponding physical address. Note that pages requested from �

0

continue to be mapped

idempotently if the receiver specifies its complete address space as receive fpage.

�

0

gives pages to the kernel and to arbitrary tasks, but only once. The idea is that all pagers

request the memory they need in the startup phase of the system so that afterwards �
0

has spent all

its memory. Further requests will then automatically denied (by sending a null reply).

MIPS Implementation Note: L4/MIPS �

0

behaves similar to L4/x86 �
0

, however the actual

RPC protocol is slightly modified and defined below. �
0

handles device mappings via a special case

in the page fault protocol only recognised in general by �

0

. This special case when used to map a

page, will map it with “uncacheable” attributes suitable for doing device I/O.

A page mapped as above, when passed on to another task via fpage ipc, will continue to retain

its uncacheable attributes.

General Memory Mapping

Physical memory

msg.w0 (s0) address
(64)

msg.w1 (s1) �

(64)

If address is in the available memory range and not previously mapped, �
0

sends a writable

mapping to the requester.

Unlike L4/x86, multiple mappings of the same physical frame is not supported, any frame is

only mapped once.

Kernel information page

msg.w0 (s0) 0xFFFFFFFFFFFFFFFD
(64)

msg.w1 (s1) �

(64)

Maps the kernel info page to the requester read-only. The requester receives the address of

the info page in s0 assuming a one to one mapping. Multiple mappings to multiple requesters are

supported. Note that the address of the dit header can be found in the kernel information page

(Sect. 2.6).

Dit header page

msg.w0 (s0) dit header address
(64)

msg.w1 (s1) �

(64)

Maps the dit header page read-only. Multiple mappings to multiple requesters are supported.

Devices

msg.w0 (s0) 0xFFFFFFFFFFFFFFFE
(64)

msg.w1 (s1) address
(64)

If address is not in the normal memory range, �
0

maps address writable and uncacheable so as

to enable access to device registers etc. The current implementation supports multiple mappings to

any of the initial servers started (that is anyone in �
0

’s clan).

It is expected that initial servers protect devices from untrusted access via the clans and chiefs

mechanism. Device mappings retain their cacheability attributes if passed on via mapping IPC.

2.9 DIT header

DIT is the tool used to build kernel images for download. Like the L4 kernel itself, it has an infor-

mation page describing the layout of various programs and data that were part of the downloaded

kernel image. It consists of two parts, the initial header followed by zero of more file headers as

specified by the initial header. The initial headers format follows below.

vaddr end
(32)

+20

file end
(32)

+16

phdr num
(32)

+12

phdr size
(32)

+8

phdr off
(32)

+4

“dhdr”
(32)

+0

phdr off The offset from the beginning of this header to where the file head-

ers start.

phdr size The size of each of the file headers.

phdr num The number of file headers that follow.

file end The offset to the end of the kernel image file. For DIT internal use

only.

vaddr end The end of currently used physical memory space. This includes

the L4 kernel and all other programs and data in the downloaded

kernel image.

Each of the file headers is laid out as follows.

flags
(32)

+28

entry
(32)

+24

size
(32)

+20

base
(32)

+16

name string
(32)

+12

name string
(32)

+8

name string
(32)

+4

name string
(32)

+0

name string Null terminated string containing name of program or data file

(truncated to 16 characters).

base The base address of the program or data file .

size The size of the program or data.

entry The start address of the program if it is executable, zero otherwise.

flags Miscellaneous flags defined below.

�

(31)

r

r If set the kernel runs this program as part of the initial servers upon

startup. If not set, the program or data has simply been loaded into

memory and has not been invoked.

Appendix A

DIT

Downloadable Image Tool (DIT) is used to construct downloadable images that contain several

parts. It exists as the boot monitor on several systems we use only supports the download of a single

32-bit ELF file. The L4-kernel is 64-bit ELF and we also needed to append various initial servers,

so dit was created to achieve this.

DIT does this by “massaging” the L4 64-bit elf header into something that fools the boot monitor

into thinking it is 32-bit elf. It also appends an ELF program segment containing the dit header.

Appending arbitrary files to the image is achieved by copying the file into the newly added

program segment and noting it in the dit header.

DIT has the following arguments.

-i l4 kernel kernel image Transforms the initial 64-bit kernel l4 kernel into a 32-bit

downloable image kernel image. Also adds the dit header.

-l kernel image Prints out the next available address in the physical memory space that a

program to be appended should be linked at. This is also the default address that unstructured

data is appended at.

-m kernel image Prints out a map of what is in the current kernel image.

-a file kernel image Appends file to kernel image. If the file is 64-bit elf, 32-bit

elf, or 32-bit ecoff, then dit acts as a program loader laying out the contents of the executable

(.text, .data, .bss etc.) inside the kernel image such that it forms a runnable image once

downloaded.

If the file is not of the above format, it is simply appended as is. Note that dit enforces page

alignment of 4 kbytes and rounds file size up accordingly.

-h addr Used in conjunction with -a. Instead of the image being appended at the default ad-

dress, it is appended at address addr in the physical address space.

-n Used in conjunction with -a, it unsets the run flag for the image being appended so it is not

started by L4 as one of the initial servers. This is default for unstructured data.

-f Used in conjunction with -a. Forces the the file to be appended as unstructured data even if it

is a coff or elf format executable.

-z Does not include the bss section in the image. Expects bss to be allocated and zeroed at load

time.

55

Appendix B

Serial Port Server

This is a description of the simple serial port server we are currently using on L4/MIPS. It could be

described as “focused on fast implementation”, or in other words “a quick hack”.

We use a serial port server, rather than access the hardware directly as it provides reliable output

unaffected by unreliable servers that are under development. Any “real” system would use a more

efficient method than the simple method described below.

B.1 Output

The server waits for IPC (short, 64-byte message only) and upon receiving it, converts the received

message into a string buffer and sends the null terminated string out the serial port. A simple code

fragment to print “hello world” follows.

const l4_threadid_t SERIAL_TID = {0x1002000000060001LL};
l4_ipc_reg_msg_t msg;
l4_msgdope_t result;
char *c;

c = (char *) &msg.reg[0];
sprintf(c,"Hello World\n");
r = l4_mips_ipc_send(SERIAL_TID,

L4_IPC_SHORT_MSG,&msg,
L4_IPC_NEVER, &result);

The maximum string length is 64 bytes, which is the maximum amount of data that can be

transfered in registers. Strings of less than 64 bytes are null-terminated. Also note the threadid

assumes it is the first task loaded after �
0

.

B.2 Input

The simple server also supports receiving input from the serial port. Upon receiving a character

from the serial port, the server will IPC the single character to whoever is registered as the receiver.

To register as the receiver, one should send a message to the server with the first 64-bit word

being zero, and the second word being the thread id of the thread that is to receive the input charac-

ters.

A sample code fragment follows.

57

/* register to receive serial input */
id = l4_myself();
msg.reg[0] = 0;
msg.reg[1] = id.ID;
r = l4_mips_ipc_send(SERIAL_TID, L4_IPC_SHORT_MSG, &msg,

L4_IPC_NEVER, &result);

/* loop receiving input */
while (1)
{
r = l4_mips_ipc_wait(&id, L4_IPC_SHORT_MSG, &msg,

L4_IPC_NEVER, &result);
rcv_buffer[i++] = (char) msg.reg[0];

}

Note that thread 0 is used to receive IPC for output and registration, and thread 1 is used to send

input characters to the registered receiver.

Appendix C

Kernel Debugger

The L4 kernel debugger, as it’s name suggests, is used for debugging the L4 kernel itself. It is not

intended to be used for debugging applications, though it can be used to if one understands enough

of the internals of L4.

The debugger is very primitive in functionality. It allows basic exploration of kernel data (both

global and task specific data), memory, and R4600 registers including co-processor registers.

The kernel debugger is contantly evolving with extra features added when required to assist in

debugging new problems. A description of the current list of commands follows.

? Print out a short help message.

rbt Reboot the system.

bl Print out the current busy list in the scheduler.

ct Change the debuggers “current task control block” to the one specified by the given address.

pm Print out number of 64-bit memory locations starting at address. The number argument is

optional.

pt Print out the state of the “current TCB”.

pr Print out the general register set. If register argument is given, then print only the register

specified.

pk Print out the kernel data.

pc Print out co-processor register specified. Valid register names are bva, epc, ehi, prid,

tlb, xc, st, cs.

pgpt Print out the page table associated with the current TCB.

bon Switch on the compiled in kernel break points.

version Print out the version and build number of the current kernel.

Note when in the debugger, a cntrl-D will exit the debugger and continue L4. This is only

sensible to do when the debugger was invoked via a kernel breakpoint, and application assertion, or

by pressing the interrupt key.

59

C.1 assert

The supplied library libl4.a and header file assert.h, implement the usual assert() func-

tion, i.e. if the assertion fails, the application stops and the file and line number of the failed assertion

is printed. However, unlike a normal assert, after printing the above message the kernel debugger

is called and the whole system is stopped. The system can be continued as mentioned above by

entering cntrl-D.

Appendix D

L4 C Library Headers

The following are the self documented header files for the C library interface to L4 on the MIPS

R4x00 platform. The headers contain useful constants, macros, and function prototypes for pro-

gramming in the L4 environment.

D.1 types.h

#ifndef __L4TYPES_H__
#define __L4TYPES_H__
/**
* $Id: types.h,v 1.13 1998/12/23 02:04:01 gernot Exp $
* Copyright (C) 1997, 1998 Kevin Elphinstone, Univeristy of New South
* Wales.
*
* This file is part of the L4/MIPS micro-kernel distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**/

/**
* Define the basic types upon which to build other types
**/

#if defined(_LANGUAGE_C)

#if _MIPS_SZPTR == 64 /* SGI 64-bit compiler */
typedef unsigned char byte_t; /* 8-bit int */
typedef unsigned short int hword_t; /* 16-bit int */
typedef unsigned int word_t; /* 32-bit int */
typedef unsigned long dword_t; /* 64-bit int */
typedef long cpu_time_t;

61

#else /* gcc or SGI 32-bit compiler */

typedef unsigned char byte_t;
typedef unsigned short int hword_t;
typedef unsigned int word_t;
typedef unsigned long long dword_t;
typedef long long cpu_time_t;

#endif

/* define struct to access upper
and lower 32-bits of 64-bit int */

typedef struct {
word_t high, low;

} l4_low_high_t;

/**
* Structures for accessing L4 thread identifiers
**/

/* the basic layout of a tid */
typedef struct {

unsigned nest:4;
unsigned chief:11;
unsigned site:17;
unsigned version_high:4;
unsigned task:11;
unsigned lthread:7;
unsigned version_low:10;

} l4_threadid_struct_t;

/* the general purpose thread id type giving access as */
typedef union {

dword_t ID; /* 64-bit int */
l4_low_high_t lh; /* two 32-bit ints */
l4_threadid_struct_t id; /* individual fields in struct */

} l4_threadid_t;

typedef l4_threadid_t l4_taskid_t; /* task id is same as thread id */

/* the layout of an interrupt id */
typedef struct {

unsigned _pad:32;
unsigned _pad2:29;
unsigned intr:3;

} l4_intrid_struct_t;

/* the general purpose interrupt id */
typedef union {

dword_t ID;
l4_low_high_t lh;
l4_intrid_struct_t id;

} l4_intrid_t;

/**
* useful thread id constants, macros and functions
**/

#ifdef __GNUC__ /* for gcc */

#if _MIPS_SZPTR == 64

#define L4_NIL_ID ((l4_threadid_t)0UL)
#define L4_INVALID_ID ((l4_threadid_t)0xffffffffffffffffUL)
#define l4_is_nil_id(id) ((id).ID == 0UL)
#define l4_is_invalid_id(id) ((id).ID == 0xffffffffffffffffUL)

#else /* _MIPS_SZ_PTR == 32 */

#define L4_NIL_ID ((l4_threadid_t)0ULL)
#define L4_INVALID_ID ((l4_threadid_t)0xffffffffffffffffULL)
#define l4_is_nil_id(id) ((id).ID == 0ULL)
#define l4_is_invalid_id(id) ((id).ID == 0xffffffffffffffffULL)

#endif /* _MIPS_SZPTR == 64 */

#else /* for SGI 64-bit compiler */

extern const l4_threadid_t _l4_nil_tid; /* constants defined in libl4.a */
extern const l4_threadid_t _l4_invalid_tid;

#define L4_NIL_ID _l4_nil_tid
#define L4_INVALID_ID _l4_invalid_tid
#define l4_is_nil_id(id) ((id).ID == 0ul)
#define l4_is_invalid_id(id) ((id).ID == 0xfffffffffffffffful)

#endif /* for SGI 64-bit compiler */

#define thread_equal(t1, t2) ((t1).ID == (t2).ID)

/* test if two threads are in same task */
extern int task_equal(l4_threadid_t t1, l4_threadid_t t2);

/* get the task id of given thread, ie thread id of lthread 0 */
extern l4_threadid_t get_taskid(l4_threadid_t t);

#else /* for 64-bit assembly */

#define L4_NIL_ID 0
#define L4_INVALID_ID 0xffffffffffffffff

#endif /* for 64-bit assembly */

/**
* L4 flex pages
**/

#if defined(_LANGUAGE_C)

/* layout of an fpage */
typedef struct {

unsigned pageh:32; /* upper 32-bits */
unsigned page:20; /* lower 32-bits */
unsigned zero:3;
unsigned size:7;
unsigned write:1;

unsigned grant:1;
} l4_fpage_struct_t;

/* general purpose fpage type allowing access as */
typedef union {

dword_t fpage; /* a 64-bit int */
l4_fpage_struct_t fp; /* fields in struct */

} l4_fpage_t;

/* a send page */
typedef struct {

dword_t snd_base;
l4_fpage_t fpage;

} l4_snd_fpage_t;

#if (_MIPS_SZPTR == 64)
#define L4_PAGESIZE (0x1000uL) /* L4/MIPS page size */
#else /* 32-bit */
#define L4_PAGESIZE (0x1000uLL)
#endif /* 32-bit */
#else /* assembler */
#define L4_PAGESIZE 0x1000
#endif /* assembler */

/**
* useful constants, macros and functions to manipulate fpages
**/

#define L4_PAGEMASK (˜(L4_PAGESIZE - 1))
#define L4_LOG2_PAGESIZE (12)
#define L4_WHOLE_ADDRESS_SPACE (64)
#define L4_FPAGE_RO 0 /* read-only fpage */
#define L4_FPAGE_RW 1 /* read-write fpage */
#define L4_FPAGE_MAP 0 /* map fpage */
#define L4_FPAGE_GRANT 1 /* grant fpage */

#define L4_FPAGE_GRANT_MASK 1 /* masks for manipulations as integer */
#define L4_FPAGE_RW_MASK 2

#if defined(_LANGUAGE_C)

/* function to build fpage descriptors */
extern l4_fpage_t l4_fpage(dword_t address, /* address of fpage */

unsigned int size, /* size of fpage in ’bits’ */
unsigned char write, /* read-only / read-write */
unsigned char grant); /* map or grant */

/**
* L4 message dopes
**/

/* layout of a message dope */
typedef struct {

unsigned pad:32; /* upper 32-bits zero */
unsigned dwords:19;
unsigned strings:5;
unsigned error_code:3;
unsigned snd_error:1;
unsigned src_inside:1;
unsigned msg_redirected:1;

unsigned fpage_received:1;
unsigned msg_deceited:1;

} l4_msgdope_struct_t;

/* general purpose msgdope type allowing access as */
typedef union {

dword_t msgdope; /* 64-bit int */
l4_msgdope_struct_t md; /* fields in struct */

} l4_msgdope_t;

/**
* L4 string dopes
**/

typedef struct {
dword_t snd_size; /* size of string to send */
dword_t snd_str; /* pointer to string to send */
dword_t rcv_size; /* size of receive buffer */
dword_t rcv_str; /* pointer to receive buffer */

} l4_strdope_t;

/**
* L4 message header
**/

typedef struct {
l4_fpage_t rcv_fpage; /* rcv fpage option */
l4_msgdope_t size_dope; /* size dope of message */
l4_msgdope_t snd_dope; /* send dope of message */

} l4_msghdr_t;

/**
* L4 timeouts
**/

/* layout of a timeout */
typedef struct {

unsigned pad:32;
unsigned rcv_man:8; /* receive mantissa */
unsigned snd_man:8; /* send mantissa */
unsigned rcv_pfault:4; /* receive pagefault timeout */
unsigned snd_pfault:4; /* send pagefault timeout */
unsigned snd_exp:4; /* send exponent */
unsigned rcv_exp:4; /* receive exponent */

} l4_timeout_struct_t;

/* general purpose timeout type that allows access as */
typedef union {

dword_t timeout; /* timeout as 64-bit int */
l4_timeout_struct_t to; /* timeout as fields in struct */

} l4_timeout_t;

#endif

/**
* useful constants, macros and functions for manipulating timeouts
**/

/* masks for manipulating timeouts as integers */
#define L4_RCV_EXP_MASK 0x0000000f
#define L4_SND_EXP_MASK 0x000000f0
#define L4_SND_PFLT_MASK 0x00000f00
#define L4_RCV_PFLT_MASK 0x0000f000
#define L4_SND_MAN_MASK 0x00ff0000
#define L4_RCV_MAN_MASK 0xff000000

#if defined(_LANGUAGE_C)

/* function to build timeout descriptor */
extern l4_timeout_t L4_IPC_TIMEOUT(byte_t snd_man, /* send mantissa */

byte_t snd_exp, /* send exponent */
byte_t rcv_man, /* receive mantissa */
byte_t rcv_exp, /* receive exponent */
byte_t snd_pflt, /* send pageflt timeout */
byte_t rcv_pflt); /* rcv pageflt timeout */

/* constant to specify to never timeout during ipc */
#ifdef __GNUC__
#define L4_IPC_NEVER ((l4_timeout_t) {timeout: 0})
#else
#define L4_IPC_NEVER _l4_ipc_never
extern const l4_timeout_t _l4_ipc_never;
#endif
#else /* assembler */
#define L4_IPC_NEVER 0
#endif

/**
* l4_schedule param word: NOT USED in current version
**/

#if defined(_LANGUAGE_C)
typedef struct {

unsigned pad:32;
unsigned time_man:8;
unsigned time_exp:4;
unsigned tstate:4;
unsigned zero:8;
unsigned prio:8;

} l4_sched_param_struct_t;

typedef union {
dword_t sched_param;
l4_sched_param_struct_t sp;

} l4_sched_param_t;

#endif

#endif /* __L4TYPES_H__ */

D.2 syscalls.h

#ifndef __L4_SYSCALLS_H__
#define __L4_SYSCALLS_H__
/**
* $Id: syscalls.h,v 1.12 1998/12/23 02:03:59 gernot Exp $
* Copyright (C) 1997, 1998 Kevin Elphinstone, Univeristy of New South
* Wales.
*
* This file is part of the L4/MIPS micro-kernel distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**/

#include <l4/types.h>

/**
* system call numbers for assembly hackers
**/

#if defined(_LANGUAGE_ASSEMBLY)
#define SYSCALL_IPC 0
#define SYSCALL_FPAGE_UNMAP 1
#define SYSCALL_ID_NEAREST 2
#define SYSCALL_ID_NCHIEF 3
#define SYSCALL_THREAD_SWITCH 4
#define SYSCALL_THREAD_SCHEDULE 5
#define SYSCALL_LTHREAD_EX_REG 6
#define SYSCALL_TASK_CREATE 7
#define MAX_SYSCALL_NUMBER 7
#endif

/**
* prototypes and constants for system calls other than ipc
**/

#ifdef _LANGUAGE_C
extern void l4_fpage_unmap(l4_fpage_t fpage, dword_t map_mask);

/* valid values for mask */
#define L4_FP_REMAP_PAGE 0x00 /* Page is set to read only */
#define L4_FP_FLUSH_PAGE 0x02 /* Page is flushed completely */
#define L4_FP_OTHER_SPACES 0x00 /* Page is flushed in all other */

/* address spaces */
#ifdef __GNUC__
#define L4_FP_ALL_SPACES 0x8000000000000000LL

/* Page is flushed in own address */
/* space too */

#else
#define L4_FP_ALL_SPACES 0x8000000000000000ul
#endif

extern l4_threadid_t l4_myself(void);

extern int l4_id_nearest(l4_threadid_t destination,
l4_threadid_t *next_chief);

#endif

/* return values of l4_id_nearest */
#define L4_NC_SAME_CLAN 0x00 /* destination resides within the */

/* same clan */
#define L4_NC_INNER_CLAN 0x0C /* destination is in an inner clan */
#define L4_NC_OUTER_CLAN 0x04 /* destination is outside the */

/* invoker’s clan */

#if defined(_LANGUAGE_C)
extern void l4_thread_ex_regs(l4_threadid_t destination,

dword_t eip, dword_t esp,
l4_threadid_t *excpt, l4_threadid_t *pager,
dword_t *old_eip, dword_t *old_esp);

extern void l4_thread_switch(l4_threadid_t destination);

extern cpu_time_t
l4_thread_schedule(l4_threadid_t dest, l4_sched_param_t param,

l4_threadid_t *ext_preempter, l4_threadid_t *partner,
l4_sched_param_t *old_param,
l4_threadid_t *old_ext_preempter);

extern l4_taskid_t
l4_task_new(l4_taskid_t destination, dword_t mcp_or_new_chief,

dword_t esp, dword_t eip, l4_threadid_t pager,
l4_threadid_t excpt);

#endif
#endif

D.3 ipc.h

#ifndef __L4_IPC_H__
#define __L4_IPC_H__
/**
* $Id: ipc.h,v 1.12 1998/12/23 02:03:58 gernot Exp $
* Copyright (C) 1997, 1998 Kevin Elphinstone, Univeristy of New South
* Wales.
*
* This file is part of the L4/MIPS micro-kernel distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**/

#include <l4/types.h>

/**
* L4 IPC
**/

#ifdef _LANGUAGE_C

/**
* L4 registered message. Structure used to pass registered message to the
* libl4 C library which loads/stores messages to be sent/received into/from
* registers from/into this structure. If you get my gist :-)
**/

#define L4_IPC_MAX_REG_MSG 8

typedef struct {
dword_t reg[L4_IPC_MAX_REG_MSG];

} l4_ipc_reg_msg_t;

#endif

/**
* Defines used for constructing send and receive descriptors
**/

#define L4_IPC_SHORT_MSG 0 /* register only ipc */

#ifdef _LANGUAGE_C
#define L4_IPC_STRING_SHIFT 8 /* shift amount to get strings

from message dope */
#define L4_IPC_DWORD_SHIFT 13 /* shift ammount to get dwords

from message dope */

#define L4_IPC_SHORT_FPAGE ((void *)2ul) /* register only ipc including
sending fpages in registers */

/* macro for creating receive descriptor that receives register
only ipc that includes fpages */

#define L4_IPC_MAPMSG(address, size) \
((void *)(dword_t)(((address) & L4_PAGEMASK) | ((size) << 2) \

| (unsigned long)L4_IPC_SHORT_FPAGE))
#else /* assembly */

#define L4_IPC_SHORT_FPAGE 2
#define L4_IPC_NIL_DESCRIPTOR (-1)
#define L4_IPC_DECEIT 1
#define L4_IPC_OPEN_IPC 1

#endif

/**
* Some macros to make result checking easier
**/

#define L4_IPC_ERROR_MASK 0xF0
#define L4_IPC_DECEIT_MASK 0x01
#define L4_IPC_FPAGE_MASK 0x02
#define L4_IPC_REDIRECT_MASK 0x04
#define L4_IPC_SRC_MASK 0x08
#define L4_IPC_SND_ERR_MASK 0x10

#ifdef _LANGUAGE_C
#define L4_IPC_IS_ERROR(x) (((x).msgdope) & L4_IPC_ERROR_MASK)
#define L4_IPC_MSG_DECEIVED(x) (((x).msgdope) & L4_IPC_DECEIT_MASK)
#define L4_IPC_MSG_REDIRECTED(x) (((x).msgdope) & L4_IPC_REDIRECT_MASK)
#define L4_IPC_SRC_INSIDE(x) (((x).msgdope) & L4_IPC_SRC_MASK)
#define L4_IPC_SND_ERROR(x) (((x).msgdope) & L4_IPC_SND_ERR_MASK)
#define L4_IPC_MSG_TRANSFER_STARTED(x) \

((((x).msgdope) & L4_IPC_ERROR_MASK) > 0x50)

/**
* Prototypes for IPC calls implemented in libl4.a
**/

extern int
l4_mips_ipc_call(l4_threadid_t dest,

const void *snd_msg,
l4_ipc_reg_msg_t *snd_reg,
void *rcv_msg,
l4_ipc_reg_msg_t *rcv_reg,
l4_timeout_t timeout,
l4_msgdope_t *result);

extern int
l4_mips_ipc_reply_and_wait(l4_threadid_t dest,

const void *snd_msg,
l4_ipc_reg_msg_t *snd_reg,
l4_threadid_t *src,
void *rcv_msg,
l4_ipc_reg_msg_t *rcv_reg,
l4_timeout_t timeout,
l4_msgdope_t *result);

extern int
l4_mips_ipc_reply_deceiving_and_wait(l4_threadid_t dest,

l4_threadid_t vsend,
const void *snd_msg,
l4_ipc_reg_msg_t *snd_reg,
l4_threadid_t *src,
void *rcv_msg,
l4_ipc_reg_msg_t *rcv_reg,
l4_timeout_t timeout,
l4_msgdope_t *result);

extern int
l4_mips_ipc_send(l4_threadid_t dest,

const void *snd_msg,
l4_ipc_reg_msg_t *snd_reg,
l4_timeout_t timeout,
l4_msgdope_t *result);

extern int
l4_mips_ipc_send_deceiving(l4_threadid_t dest,

l4_threadid_t vsend,
const void *snd_msg,
l4_ipc_reg_msg_t *snd_reg,
l4_timeout_t timeout,
l4_msgdope_t *result);

extern int
l4_mips_ipc_wait(l4_threadid_t *src,

void *rcv_msg,
l4_ipc_reg_msg_t *rcv_reg,
l4_timeout_t timeout,
l4_msgdope_t *result);

extern int
l4_mips_ipc_receive(l4_threadid_t src,

void *rcv_msg,
l4_ipc_reg_msg_t *rcv_reg,
l4_timeout_t timeout,
l4_msgdope_t *result);

extern int l4_mips_ipc_sleep(l4_timeout_t t,
l4_msgdope_t *result);

/* IPC bindings for chiefs */

extern int
l4_mips_ipc_chief_wait(l4_threadid_t *src,

l4_threadid_t *real_dst,
void *rcv_msg,
l4_ipc_reg_msg_t *rcv_reg,
l4_timeout_t timeout,
l4_msgdope_t *result);

extern int
l4_mips_ipc_chief_receive(l4_threadid_t src,

l4_threadid_t *real_dst,
void *rcv_msg,
l4_ipc_reg_msg_t *rcv_reg,
l4_timeout_t timeout,

l4_msgdope_t *result);

extern int
l4_mips_ipc_chief_call(l4_threadid_t dest,

l4_threadid_t vsend,
const void *snd_msg,
l4_ipc_reg_msg_t *snd_reg,
l4_threadid_t *real_dst,
void *rcv_msg,
l4_ipc_reg_msg_t *rcv_reg,
l4_timeout_t timeout,
l4_msgdope_t *result);

extern int
l4_mips_ipc_chief_reply_and_wait(l4_threadid_t dest,

l4_threadid_t vsend,
const void *snd_msg,
l4_ipc_reg_msg_t *snd_reg,
l4_threadid_t *src,
l4_threadid_t *real_dst,
void *rcv_msg,
l4_ipc_reg_msg_t *rcv_reg,
l4_timeout_t timeout,
l4_msgdope_t *result);

extern int
l4_mips_ipc_chief_send(l4_threadid_t dest,

l4_threadid_t vsend,
const void *snd_msg,
l4_ipc_reg_msg_t *snd_reg,
l4_timeout_t timeout,
l4_msgdope_t *result);

/**
* some functions to examine fpages
**/

extern int l4_ipc_fpage_received(l4_msgdope_t msgdope); /* test if fpages
received */

extern int l4_ipc_is_fpage_granted(l4_fpage_t fp);
extern int l4_ipc_is_fpage_writable(l4_fpage_t fp);

/**
* Symbolic constants for error codes, see reference manual for details
**/

#define L4_IPC_ERROR(x) (((x).msgdope) & L4_IPC_ERROR_MASK)
#endif
#define L4_IPC_ENOT_EXISTENT 0x10
#define L4_IPC_RETIMEOUT 0x20
#define L4_IPC_SETIMEOUT 0x30
#define L4_IPC_RECANCELED 0x40
#define L4_IPC_SECANCELED 0x50
#define L4_IPC_REMAPFAILED 0x60
#define L4_IPC_SEMAPFAILED 0x70
#define L4_IPC_RESNDPFTO 0x80
#define L4_IPC_SESNDPFTO 0x90
#define L4_IPC_RERCVPFTO 0xA0
#define L4_IPC_SERCVPFTO 0xB0
#define L4_IPC_REABORTED 0xC0

#define L4_IPC_SEABORTED 0xD0
#define L4_IPC_REMSGCUT 0xE0
#define L4_IPC_SEMSGCUT 0xF0

/**
* Size limitations on memory based IPC
**/

#define L4_MAX_DMSG_SIZE (4*1024*1024) /* max direct message size */
#define L4_MAX_STRING_SIZE (4*1024*1024) /* max indirect message size */

#endif /* __L4_IPC__ */

D.4 sigma0.h

#ifndef __L4_SIGMA0_H__
#define __L4_SIGMA0_H__
/**
* $Id: sigma0.h,v 1.4 1998/12/23 02:03:59 gernot Exp $
* Copyright (C) 1997, 1998 Kevin Elphinstone, Univeristy of New South
* Wales.
*
* This file is part of the L4/MIPS micro-kernel distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**/

#include <l4/types.h>

/**
* define some constants relevent to sigma0
**/

#ifdef _LANGUAGE_C
#ifdef __GNUC__
#define SIGMA0_DEV_MAP (0xfffffffffffffffeULL)
#define SIGMA0_KERNEL_INFO_MAP (0xfffffffffffffffdULL)
#define SIGMA0_TID ((l4_threadid_t) {ID: (1 << 17)})
#else
#define SIGMA0_DEV_MAP (0xfffffffffffffffeul)
#define SIGMA0_KERNEL_INFO_MAP (0xfffffffffffffffdul)
#define SIGMA0_TID _l4_sigma0_tid
extern const l4_threadid_t _l4_sigma0_tid;
#endif
#else
#define SIGMA0_DEV_MAP 0xfffffffffffffffe
#define SIGMA0_KERNEL_INFO_MAP 0xfffffffffffffffd
#define SIGMA0_TID (1 << 17)
#endif

/**
* define format of kernel info page
**/

#ifdef _LANGUAGE_C
typedef struct {

word_t magic; /* L4uK */
hword_t version;
hword_t build;
dword_t clock;
dword_t memory_size;

dword_t kernel;
dword_t dit_hdr;
dword_t kernel_data;

} l4_kernel_info;
#else
#define LKI_MAGIC 0
#define LKI_VERSION 4
#define LKI_BUILD 6
#define LKI_CLOCK 8
#define LKI_MEMORY_SIZE 16
#define LKI_KERNEL 24
#define LKI_DIT_HDR 32
#define LKI_KERNEL_DATA 40

#endif
#endif

D.5 u4600.h

#ifndef _UNSWR4600
#define _UNSWR4600
/**
* $Id: u4600.h,v 1.5 1998/01/22 05:46:14 kevine Exp $
* Copyright (C) 1997, 1998 Kevin Elphinstone, Univeristy of New South
* Wales.
*
* This file is part of the L4/MIPS micro-kernel distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**/

/**
* MEMORY MAP for UNSW R4600 Board
**/

/* default DECODE */
/* DRAM banks */

#define DRAM10_BASE 0x00000000
#define DRAM32_BASE 0x01000000
#define DRAM_END 0x02000000

/* Device Banks */
#define CS210_BASE 0x1c000000
#define CS210_END 0x1e200000
#define CS3B_BASE 0x1f000000
#define CS3B_END 0x20000000

/* PCI decode */
#define PCI_IO_BASE 0x10000000
#define PCI_IO_END 0x12000000
#define PCI_MEM_BASE 0x12000000
#define PCI_MEM_END 0x14000000

#define PCI_MEM_SPACE PCI_MEM_BASE
#define PCI_IO_SPACE PCI_IO_BASE
#define PCI_MEM_SPACE_SIZE (32 * 1024 * 1024)
#define PCI_IO_SPACE_SIZE (32 * 1024 * 1024)

/* DRAM and DEVICE ADDRESS MAP */
#define DRAM0_BASE 0x00000000
#define DRAM1_BASE 0x00800000
#define DRAM2_BASE 0x01000000

#define DRAM3_BASE 0x01800000

#define CS0_BASE 0x1c000000
#define CS1_BASE 0x1c800000
#define CS2_BASE 0x1d000000
#define CS3_BASE 0x1f000000
#define BOOT_BASE 0x1fc00000

/* PERIPHERAL Address map */
#define RTCLOCK_BASE CS0_BASE

#define LED_BASE (CS1_BASE)
#define IO_PINS_BASE (CS1_BASE | 0x10)
#define PCI_INT_BASE (CS1_BASE | 0x20)
#define Z85230_BASE (CS1_BASE | 0x30)

/* interrupt controller address map */

#define PCI_INT_IPLO (PCI_INT_BASE | 0)
#define PCI_INT_IPHI (PCI_INT_BASE | 1)
#define PCI_INT_IMLO (PCI_INT_BASE | 2)
#define PCI_INT_IMHI (PCI_INT_BASE | 3)

#if defined(_LANGUAGE_C)
typedef struct {

volatile unsigned char ip_lo;
volatile unsigned char ip_hi;
volatile unsigned char im_lo;
volatile unsigned char im_hi;

} pic_t;

#endif

/* TIMING for BOOT BANK with M27C4002-10 */

#define EPROM_TurnOff 3
#define EPROM_AccToFirst 5
#define EPROM_AccToNext 5

/* TIMING for BANK 0 with M48T02-150 */
#define M48_TurnOff 3 /* GT minimum */
#define M48_AccToFirst 8
#define M48_AccToNext 8
#define M48_ADStoWr 3
#define M48_WrActive 5
#define M48_WrHigh 3

/* nvram layout (to do memory sizing) */
#define NVOFFSET 0 /* use all of NVRAM */
#define NVOFF_BANK0 (NVOFFSET+16) /* 4 size of ram RAM */
#define NVOFF_BANK1 (NVOFFSET+20) /* 4 size of ram RAM */
#define NVOFF_BANK2 (NVOFFSET+24) /* 4 size of ram RAM */
#define NVOFF_BANK3 (NVOFFSET+28) /* 4 size of ram RAM */

/* CPU interrupt assignments in l4 ’intr id + 1’ format */
#define INT_IO_CON 1 /* CPU pin int0 */
#define INT_PIC 2 /* CPU pin int1 */
#define INT_Z85230 3 /* CPU pin int2 */

#define INT_GT64010A 4 /* CPU pin int3 */
#define INT_SW_DEBUG 5 /* CPU pin int4 */

#endif

D.6 dit.h

#ifndef DIT_H
#define DIT_H
/**
* $Id: dit.h,v 1.4 1998/01/22 05:46:03 kevine Exp $
* Copyright (C) 1997, 1998 Kevin Elphinstone, Univeristy of New South
* Wales.
*
* This file is part of the L4/MIPS micro-kernel distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
**/

#define DIT_NIDENT 4
#define DIT_NPNAME 16

#define DHDR_SEG_SIZE 4096
#define DHDR_ALIGN 4096

#define DIT_RUN 1

#if defined(_LANGUAGE_ASSEMBLY)

#define D_D_IDENT 0
#define D_D_PHOFF 4
#define D_D_PHSIZE 8
#define D_D_PHNUM 12
#define D_D_FILEEND 16
#define D_D_VADDREND 20

#define D_P_BASE 0
#define D_P_SIZE 4
#define D_P_ENTRY 8
#define D_P_FLAGS 12
#define D_P_NAME 16

#else /* assume C */

typedef unsigned int Dit_uint;

typedef struct {
unsigned char d_ident[DIT_NIDENT];
Dit_uint d_phoff;
Dit_uint d_phsize;
Dit_uint d_phnum;
Dit_uint d_fileend;

Dit_uint d_vaddrend;
} Dit_Dhdr;

typedef struct {
Dit_uint p_base;
Dit_uint p_size;
Dit_uint p_entry;
Dit_uint p_flags;
unsigned char p_name[DIT_NPNAME];

} Dit_Phdr;

#endif
#endif

Bibliography

[CFL94] P. Cao, E. W. Felton, and K. Li. Implementation and performance of application-

controlled file caching. In 1st USENIX Symposium on Operating Systems Design and

Implementation (OSDI), pages 165–178, Monterey, CA, 1994.

[GGKL89] M. Gasser, A. Goldstein, C. Kaufmann, and B. Lampson. The Digital distributed system

security architecture. In 12th National Computer Security Conference (NIST/NCSC),

pages 305–319, Baltimore, 1989.

[HKK93] H. Härtig, O. Kowalski, and W. Kühnhauser. The Birlix security architecture. Journal

of Computer Security, 2(1):5–21, 1993.

[Int95] Integrated Device Technology. IDT79R4600 and IDT79R4700 RISC Processor Hard-

ware User’s Manual, Rev 2.0, April 1995.

[KH92] R. Kessler and M. D. Hill. Page placement algorithms for large real-indexed caches.

ACM Transactions on Computer Systems, 10(4):11–22, November 1992.

[KN93] Y. A. Khalidi and M. N. Nelson. Extensible file systems in Spring. In 14th ACM

Symposium on Operating System Principles (SOSP), pages 1–14, Asheville, NC, 1993.

[LCC94] C. H. Lee, M. C. Chen, and R. C. Chang. HiPEC: high performance external virtual

memory caching. In 1st USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI), pages 153–164, Monterey, CA, 1994.

[Lie92] J. Liedtke. Clans & chiefs. In 12. GI/ITG-Fachtagung Architektur von Rechensystemen,

pages 294–305, Kiel, 1992. Springer.

[Lie93a] J. Liedtke. Improving IPC by kernel design. In 14th ACM Symposium on Operating

System Principles (SOSP), pages 175–188, Asheville, NC, 1993.

[Lie93b] J. Liedtke. A persistent system in real use – experiences of the first 13 years. In 3rd

International Workshop on Object Orientation in Operating Systems (IWOOOS), pages

2–11, Asheville, NC, 1993.

[Lie95] J. Liedtke. On �-kernel construction. In 15th ACM Symposium on Operating System

Principles (SOSP), pages 237–250, Copper Mountain Resort, CO, 1995.

[RLBC94] T. H. Romer, D. L. Lee, B. N. Bershad, and B. Chen. Dynamic page mapping policies

for cache conflict resolution on standard hardware. In 1st USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI), pages 153–164, Monterey, CA,

1994.

81

