
Supporting Persistent Object Systems in a Single Address Space�

Kevin Elphinstone, Stephen Russell, Gernot Heisery

School of Computer Science & Engineering,

The University of New South Wales, Sydney 2052, Australia

Jochen Liedtke

GMD SET-RS, Schloß Birlinghoven, 53757 Sankt Augustin, Germany

Abstract
Single address space systems (SASOS) provide a programming model that is well suited to supporting persistent

object systems. In this paper we show that stability can be implemented in the Mungi SASOS without incurring

overhead in excess of the inherent cost of shadow-paging. Our approach is based on the introduction of a

limited form of aliasing into the SASOS model and makes heavy use of user-level page fault handlers to allow

implementation outside the kernel. We also show how the demands of database systems for control over page

residency and physical I/O can be accommodated. An approach to user-level implementation of distributed

shared memory (DSM) coherency models is outlined.

1 Introduction

Single address space operating systems (SASOS) such as Angel [MSS+93], Opal [CLF+94] and Mungi [VRH93] are based

on the idea that a single, large virtual address space holds all data in a (potentially distributed) computing system. It has been

pointed out before [RSE+92] that this class of operating systems provides a natural solution to an old problem of persistent

programming: How to save arbitrary data structures on secondary storage having to translating them first into a form that

allows reconstruction in memory at a later time. In a SASOS this becomes a non-problem: Secondary store is solely a backing

device for virtual memory (VM) paging, and data are guaranteed to always appear at the VM location at which they were

originally created. Hence internal references continue to work without any need for translation.

The single-level store of a SASOS is, in principle, persistent in the sense that data allocated in memory can outlive the

process that created them, and also survive an orderly system shutdown and restart. However, stability in case of an unplanned

system shutdown, e.g. in the case of a power failure, is a much harder problem. Classical approaches to achieving stability

are logging and shadow paging. It is obviously possible to implement such stability schemes in the kernel, as was done in

Monads [HR93]. However, this dictates a specific stability model to applications, and makes it difficult to adapt to specific

needs of applications. For example, some applications never require stability, and should not have to pay the runtime overhead,

while other applications require stability at certain times, others again require it constantly. It is, therefore, desirable to give

the application maximum control over the stability model. It is not, a priori, clear that this can be done in a SASOS without

incurring overhead in the form of having to keep redundant memory copies or to perform extra copy operations.

Object-oriented database systems, such as ObjectStore [LLO+91] or O
2

[D+91], seem well-suited for implementation

on top of a SASOS, as their data model fits the SASOS model very well. In fact, one of the main difficulties facing the

implementation of these system is the need to construct and efficiently handle system-wide unique object identifiers. A

SASOS provides these for free in the form of VM addresses. However, database management systems (DBMS) tend to be

very demanding customers for an operating system: For efficiency reasons they need to control residency of data in memory,

and they need control over backing store allocation in order to reduce disk seek times. Can such systems be accommodated in

a SASOS, which is characterised by a single-level store and hence the absence of an I/O model, without breaking the SASOS

paradigm?
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We will address these issues in the remainder of this paper. We will demonstrate that by introducing aliasing into the

SASOS model we can, with the help of user-level pagers, implement shadow-paging efficiently in the Mungi system. We will

also show that DBMS demands for control of physical memory (PM) and physical I/O can be met, without creating a need to

integrate the DBMS, or parts of it, into the kernel.

2 Support for Persistent Object Systems in Mungi

2.1 Mungi Overview

In Mungi, virtual memory is allocated in contiguous, page-aligned segments called objects. Objects are also the unit of

protection: Access rights are object-based. The system makes no assumptions about the internal structure of objects.

Access control is based on password capabilities, i.e. (base address, password) pairs. The access rights conferred to a

holder by a capability are a combination of read, write, execute and delete. A capability conferring all these rights is called an

owner capability. A system wide directory called the object table contains information about all objects, including their set of

valid capabilities and corresponding access rights. Capabilities can be added or revoked by a holder of an owner capability.

When an object is first accessed by a thread, a page fault will occur as there exists no virtual to physical memory

(VM!PM) mapping for the thread. The kernel will validate the access by matching the thread’s list of capabilities with

the set recorded for that object in the object table. If the access is valid, the kernel caches the validation information and

invokes the appropriate page fault handler to set up a mapping for the accessed page.

In the following subsections we will present the extensions proposed to Mungi for supporting persistent object systems.

These are all concerned with the relationship between physical and virtual memory. They are summarised in Fig. 1 and

explained in the remainder of this section.

InstallPager (Capability obj, Capability pager);

Flush (Address adr, Int length)

Copy (Address from, Address to, Int length)

Map (Address from, Address to, Int length, Mode m)

Unmap (Address to, Int length)

Figure 1: Mungi system calls dealing with the relationship between virtual and physical memory.

2.2 User-level pagers

In Mungi, each object is associated with a pager which will be called by the system to handle page faults. When an object

is first allocated, its pager is the system’s default pager, which performs normal VM paging. A user-level pager (ULP) can

be installed with the InstallPager system call. A null pager capability will re-install the default pager. Owner capability is

required for changing an object’s pager.

Pagers are invoked in three cases: access of a non-resident page (residency fault), write attempt to a read-only page (write

fault), and a Flush call executed on a page (flush event).

The default pager handles a write fault by signalling a protection violation to the offending thread. Default handling of a

residency fault results in allocating a physical frame to it, which is either zero-filled if the virtual page has not been allocated

before, or reloaded from disk. Default pager action on a flush event is explained below.

2.3 Flushing dirty pages

The Flush system call causes invocation of the appropriate pager with a flush event. Both adr and length must be page-aligned,

and all affected pages must be part of the same object.



The default pager handles flush events by writing the pages’ contents to disk if they are dirty and ensures that the kernel’s

mappings of these pages to backing store are flushed as well. The kernel uses a stable logging scheme for storing these

mappings on disk. No write will occur on a clean page.

2.4 Virtual memory mapping primitives

The mapping primitives Map and Unmap are based on similar calls in the L3 operating system [Lie93] (although semantics

differ significantly from the L3 operations). Copy is related to these as it also affects mappings. Address and length parameters

must be page aligned, and if a range of pages is specified, all pages within the range must be part of the same object. The

mode can either be read-only or read/write.

2.4.1 Copy-on-write

The Copy system call performs page-wise memory copy. Page faults will be generated if the source or destination pages are

not resident, or if the destination pages are R/O. The source and destination ranges must not overlap. Read capability on the

source and R/W capability on the destination is required.

If the destination is handled by the default pager, the implementation uses copy-on-write. This not only avoids copying

pages which never get modified, but also avoids zeroing a newly allocated page immediately before overwriting it. If the target

of a Copy is flushed or aliased at a later time, the physical copy will be forced if it has not already been made. If the source is

later unmapped, the destination inherits the source’s physical mappings (including backing store) if the physical copy has not

yet been made. Mapping of the source pages to backing store will not be changed by a Copy operation.

2.4.2 Map

Map(from,to,length,mode) creates an alias in the virtual address-space by mapping VM addresses [to,to+length-1] to the same

physical frames as VM addresses [from,from+length-1]. The destination is implicitly unmapped prior to establishing the alias.

The two address ranges must not overlap, unless they are identical, in which case the call serves to modify the access mode

(R/O or writable) without changing any VM!PM mappings. This call is a no-op on non-resident pages (i.e. will not fault

them into PM).

R/W capability is required on the objects affected by a Map, even in the case of a R/O mapping. The operation will cause

a page fault on the source pages if they are not resident. Fig. 2 shows the effect of a Map operation.

ABC DEF

ABC DEF

PM:

VM:

from to

ABC
PM:

VM:
ABC ABC

from to

Figure 2: Address-space before (left) and after (right) execution of a Map(from,to,length,ro) system call. Dashed arrows

indicate R/O mappings, slanted text indicates R/O data.

An alias established by a Map operation only exists as long as the pages are resident. This implies that the Map operation

is essentially only of use to ULPs, as it needs to be reestablished on any residency fault. For the same reason, a Map operation

whose destination pages are handled by the default pager makes no sense and is therefore invalid.



2.4.3 Unmap

The aliasing in Fig. 2 can be undone with the operation Unmap(to,length); however, Unmap can also be applied to pages

which are not aliased. On return, to does not have any mapping to PM or backing store, as if newly allocated. Hence, if a

page to be unmapped was an alias, the alias is simply removed; if another page was mapped to it, ie more than one level of

aliasing, then both pages will become unmapped. Unmapping also removes any write protection from the specified address

range. Unmapping a page which is neither resident nor backed on disk is a no-op. R/W capability is required for performing

an Unmap operation.

For an object serviced by the default pager unmapping is semantically equivalent to zeroing all memory at addresses

[to,to+length-1], as Mungi’s default pager uses zero-on-read for uninitialised memory. Fig. 3 shows an example of an Unmap

operation.

ABC
PM:

VM:
ABC ABC

from to

ABC
PM:

ABC
VM:

from to

Figure 3: Address-space before (left) and after (right) execution of an Unmap(from,length) system call. Crossed-out

pages are unmapped.

2.5 Recursive address spaces?

Systems like Grasshopper [DdB+94] and L4 [Lie95] use similar mapping operations, but use them in a hierarchical fashion to

recursively construct address spaces. This does not fit the SASOS model, as there can only be one address-space, so mappings

can only operate between different parts of the same address-space. However, pagers can be nested in our model: If a ULP

handles a page fault by mapping another page onto the faulting one, this may trigger a fault on the source page, invoking its

ULP. This will continue until a resident page is mapped to the faulting one, or the default pager is invoked.

3 Implementation of Shadow-Paging

If we ignore stability issues we can checkpoint an object simply by copying it. To roll back, the checkpoint is copied back

onto the object. The copy-on-write semantics of the default pager for the Copy system call ensures that only dirty pages are

actually copied.

A stable version of the checkpointing scheme can be built with the help of a user-level pager using explicit shadow-

paging [Lor77] and an atomic update operation [Cha78]. For the purpose of using Challis’ atomic update algorithm we use

a two-page object st page which is located at a well-known address (e.g. pointed to by the checkpointed object’s entry in the

object table). We can then do atomic updates to stored values as shown in Fig. 4. The basic idea of the algorithm is to alternate

between two pages for writing data to disk, so that in case of a system failure during a write operation there is always a stable

copy left. Pages are written with a timestamp at the beginning and the end. When reading them back, the timestamps are

compared and a page is considered stable if its timestamps agree. If both pages are stable, the timestamp identifies the most

recent copy.

To implement shadow paging for object O
0

, we allocate two additional objects, O
1

and O

2

, of the same size as O
0

. O
1

and O

2

are both handled by the default pager. Note that the allocation of an object only allocates virtual memory. No physical

memory is allocated until the object is actually accessed.



typedef struct St map f

Address a[2];

Bool pm[...];

g

typedef struct St page f

Date d 0;

St map m;

Char fill[...];

Date d 1;

g

St page st page[2];

put stable (Int index, St map m) f

st page[index].d 0 = timestamp();

st page[index].m = m;

st page[index].d 1 = st page[index].d 0;

Flush(st page[index],ps);

g

get stable (Int &index, St map &m) f

if (st page[0].d 0 == st page[0].d 1)

if (st page[1].d 0 == st page[1].d 1)

if (st page[0].d 0 > st page[1].d 0)

index = 0;

else

index = 1;

else

index = 0;

else

index = 1;

m = st page[index].m;

g

Figure 4: Pseudocode implementation of Challis’ algorithm.

The addresses of O
1

and O

2

are held in the stable object st page, as is a bitmap which indicates for each page of O
0

to

which of the two shadow objects it is mapped.

Fig. 5 shows the algorithm (ignoring locking). The variable st index indicates which page of st page holds the bitmap for

the stable copy of O
0

. The variable map holds the bitmap of the dirty copy of O
0

, while dirty identifies pages which have

been modified since the last checkpoint. WriteProtect has been used as an alias for a Map call which only serves to make an

object read-only, and size parameters have been omitted for clarity. The procedures current and other query the page map

while swap current other modifies it (by flipping the appropriate bit).

The Copy, Unmap and Flush system calls in the setup code serve to dissociate the physical backing store from O

0

and

associate it with O

1

. The copy-on-write semantics of the Copy operation ensure that this happens without actual copying. This

sequence is not required if stable checkpointing is used from the time O
0

is allocated.

After setup, O
1

holds the stable copy of the object. On a write fault a new page is allocated and the corresponding bit in

map is flipped to indicate the location of the dirty page, as shown in Fig. 6. On a checkpoint, all dirty pages are flushed and

the present state recoded as the stable one. After the first checkpoint, some stable pages belong to O

1

, others to O

2

, depending

on how often they have been modified.

While the mappings of VM pages to backing store for the backup pages referenced by O

1

and O

2

need to be persistent

(ensured by Flush calls in Fig. 5), this is not the case for the mappings of O
0

or those of dirty pages in O

1

and O

2

. As a

consequence, no mappings need to be made persistent between checkpoints, hence no Flush calls need to be performed by the

pager.

ObjectsO
1

andO
2

are in the protection domain of the pager, but not necessarily in the protection domain of the application.

Hence, objects O

1

and O

2

can be hidden from the application; all data accesses by application programs go through O

0

,

thereby ensuring that all embedded references work correctly. The algorithm can easily be applied to consistently checkpoint

a set of related objects, the stable object st page then contains object references and bitmaps for all the involved objects.

4 Other Applications of the Model

4.1 Controlling page residency

Certain applications, like DBMS, require the ability to pin pages in memory for efficiency reasons. To support this, we create

a special region, �
0

, in virtual memory to map all of PM. This region is “magical”, i.e. the kernel knows about its special



St map map;

Bool st index;

Bool dirty[...];

setup() f

map = f fO
1

, O
2

g, 0g;

dirty = 0;

st index = 0;

Copy(O
0

, O
1

); /* copy-on-write */

Unmap(O
0

); /* leave mapping to pager */

Flush(O
1

); /* make sure backup is stable */

InstallPager(O
0

, pager);

put stable(st index, map);

put stable(!st index, map);

g

checkpoint() f

WriteProtect(O
0

);

Flush (O
1

); /* only flushes dirty pages */

Flush (O
2

);

st index = !st index;

put stable(st index, map);

dirty = 0;

for (all pages p)

/* unmap old backups: */

Unmap(other (map, p));

g

pager(faulting page) f

current page = current (map, faulting page);

other page = other (map, faulting page);

if (write fault)

/* create dirty page: */

Copy(current page, other page);

Map(other page, faulting page, rw);

swap current other(map);

/* no Flush needed! */

dirty[faulting page] = TRUE;

elsif (not resident) /* re-establish mapping: */

if (dirty[faulting page])

Map(current page, faulting page, read write);

else

Map(current page, faulting page, read only);

/* ignore flushes */

g

rollback() f

get stable(st index, map);

for (all pages p)

/* free dirty blocks: */

Unmap(other (map, p));

dirty = 0;

g

Figure 5: Stable checkpointing of object O
0

.

relationship to PM. Any page in VM is resident if and only if it is aliased to a page in �

0

. No page fault will ever occur in �

0

;

is is essentially a permuted frame table.

The system administrator has the option of allocating an object O
�

in �

0

. Such an object is thereby known to the kernel

to be unpagable. By handing a R/W capability for O
�

to a DBMS, the system administrator thereby enables the DBMS to pin

pages in PM by aliasing them to O

�

. In the example in Fig. 7, page q has been pinned by a

Map(q, O
�

.page[n])

system call. The page can be unpinned and the pinning slot reused to pin page p by executing

Map(p, O
�

.page[n]).

Simply doing

Unmap(O
�

.page[n])

unpins the page without pinning another one in its place.

The advantage of this scheme over introducing special system calls to pin and unpin pages is that it ties in neatly with our

capability-based protection scheme. By handing out a capability to an object of a particular size, the system allows the holder

of the capability to pin a strictly limited number of pages.

4.2 Physical Disk I/O

As the SASOS model presents the user with a single-level store, I/O is not part of the model but is hidden in the operating

system. This has significant advantages in simplifying application code. However, there are cases where applications (like



0O 1O O2

map = f O
1

, O
2

, 01 g

0O 1O O2

*

**

Copy

map = f O
1

, O
2

, 00 g

Figure 6: Copy-on-write operation in the stable checkpointing example. An asterisk indicates a dirty page, the current

page map is shown at the bottom.

Oσσ
0

p q r

Figure 7: Locking pages in PM by aliasing to O

�

: Page p is resident and pageable, page q is pinned in memory

(unpagable), page r is not resident. Page p’s alias in �

0

is only known to the kernel.

DBMS) require control over I/O operations for efficiency.

A certain amount of control over I/O is already available through ULPs and the Flush system call. However, in order to

optimise seek times, some applications may want to have control over the actual allocation of pages on the disk.

We can support this in Mungi by mapping all of secondary storage into the virtual address space, as another special region

�

d

. An object O
d

is allocated covering all (or part) of �
d

, and R/W capability to that object is given to the application. The

DBMS can then map virtual pages to specific disk blocks by mapping the appropriate pages of O
d

to its memory objects.

To combine I/O control with control over page residency, the application needs to alias some pages of O
d

twice—once to

the data object and once to �

d

. To pin page p of object O, backed by disk block q, into physical frame r, the DBMS needs to

execute

Map (O
d

.page[q], O.page[p], ...);

Map (O
d

.page[q], O
�

.page[r], ...).

To enable an application to optimise its physical I/O, it needs to be given information on the physical layout of the disk

(number of tracks, cylinders, etc.) This information can be stored in a standard format at a well-known location, e.g. the first

disk block.

Note that, in spite of the large amount of disk storage mapped into VM, this approach does not use up a significant fraction

of VM: Mungi’s total virtual address space is 264 bytes or sixteen billion gigabytes.



4.3 Network I/O and distributed shared memory

Our last example does not directly deal with persistence but is included because it deals with distribution, which is certainly of

great practical importance to persistent systems. We show how a distributed shared memory (DSM) coherency protocol can

be implemented at user level in Mungi.

As above we map all of PM into VM, each node’s PM is mapped to VM at a different location. Node n

i

’s memory is

mapped to VM region �

i

0

, and the kernel on n

i

ensures that no �

j

0

; i 6= j is ever accessed by n

i

. The kernel also needs to

ensure that no thread with access to �

i

0

ever migrates.

Assume a thread executing on node n

0

triggers a residency fault on page p. When the appropriate pager is called, it

requests the page from the network (via broadcast or other appropriate means). Assume the page happens to be resident on

n

1

, i.e. it has been mapped into �

1

0

. Node n
1

sends the contents of the page to n

0

. Depending on the coherency model used,

the pager on n

1

may first unmap or write-protect the page and its aliases (see Fig. 8).

pσ
0
1σ

0
0

PM0 PM1

VM σ
0
0 σ

0
1

PM0 PM1Page transfer

pVM

Figure 8: DSM paging: Page p is originally resident on node n
1

(left) but transferred to node n
0

(right). Broken arrows

indicate VM!PM mappings of node n
0

, while dotted arrows represent mappings of node n
1

.

The default pager implements a default DSM protocol (e.g. multiple reader, single writer). This takes care of such cases

as the user level DSM pager not presently residing in the node’s memory or backing store.

Obviously, we have only sketched the DSM implementation, glossing over most of the details. In particular, a complete

solution will need to integrate disk I/O with network I/O.

5 Conclusions

In this paper we have shown that stability based on shadow paging can be elegantly integrated into a SASOS, without the need

to implement it in the kernel. We have demonstrated that shadow-paging can be implemented at the user level if we introduce

virtual memory aliasing and use user-level page fault handlers. This can be achieved without performance overhead in the

form of extra copying operations or redundant copies being kept on disk or in RAM.

We have shown that the same mechanisms can be used to support database systems by allowing them to pin pages in RAM

and to control physical I/O. A user-level implementation of DSM coherency models was also outlined.

The question arises whether the resulting system is still a proper SASOS. The answer is “yes”, as the basic SASOS

paradigm is still valid: each user thread sees the same1 data at a given address (if they see anything at all); there is still just a

single address space. Furthermore, our mapping operations do not allow users to do anything they could not do by copying,

but they ensure that it can be done efficiently.

We have not addressed stability issues with respect to distribution. However, having shown that we can employ the usual

approach to solve the problem of stability on a single node, there is no reason to believe that schemes providing stability in

other distributed systems cannot be used in ours.

1In a distributed system, the word “same” needs to be taken with a grain of salt, as some threads may see a somewhat newer copy than others. This is not

different from any other distributed shared memory system.
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