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Abstract

System on a chip (SoC) designs penetrate in an in-
creasing rate the embedded systems market. This
affects the consumer market as well as other areas,
like automotive or aerospace. As the computational
power of CPU cores on such SoC increases, the use of
operating systems (OS) as basis for the application
becomes more and more an issue. This paper investi-
gates the specific requirements of SoCs and analyses
to what degree microkernel based OSes have any ad-
vantage over standard embedded real-time operating
systems. It concludes that temporal and functional
verification of OSes are of fundamental importance
and that so far no embedded OS fulfills these crite-
ria. However, it seems microkernels seem to support
this better that other embedded OSes.

1 Introduction

Embedded systems have been widely deployed for
many decades now. While older embedded systems
incorporated processors memory and other peripher-
als all assembled on a PCB board, current progress in
silicon technology and EDA tools has made it possi-
ble to implement such systems on a single die. These
systems on a chip (SoC) allow functional modifica-
tion to what were previously fixed components, thus
enabling the tailoring of systems to application re-
quirements (e.g. data throughput, power consump-
tion, hardware functionality etc.). Typical appli-
cation domains were SoC plays an important role
are automotive (e.g. engine control), communication
(mobile phones, modems, etc.), and multimedia (e.g.
cameras, set-top boxes).

The implementation possibilities provided by SoC
for specific applications are quite extensive. Thus,
for example, an SoC implementation of a digital
video camera on a single die (camera-on-a-chip) may
include CMOS sensors, signal processing for au-
dio/video, control processing for lens adjustment, etc.
Designing the signal processing as custom logic hard-
ware leads to a fast and small implementation [1].
Furthermore, using an embedded digital signal pro-
cessor (DSP) allows algorithm updates, while intro-
ducing image manipulation specific instructions to
this DSP improves its computation abilities [2], [3].
Deciding on which components to implement in hard-
ware and which in software is the domain of hard-
ware/software co-design [4].

An SoC typically consists of CPU cores (e.g. based
on the ARM architecture [5]), or scalable processor
architectures [6], combined with on-chip bus stan-
dards such as AMBA [5] and IP modules (including
peripherals like USB, RS232). The design of an SoC
is usually a network of modules, where each mod-
ule provides a specific functionality and the connec-
tions between these modules consist of communica-
tion links typically provided by a bus or network. FP-
GAs capable of carrying whole SoC designs (called
System on Programmable Chip (SoPC) solutions)
now include DSP accelerators and soft or hard core
CPUs (e.g. Altera [7]). SoPC makes manufacturing
systems in small quantities affordable, while reconfig-
uration in hardware and in software further improve
upgradability.

An operating systems that wishes to take (and pro-
vide applications with) full advantage of the multi-
faceted and modular nature of SoC must fulfill a num-
ber of specific requirements. First, the operating sys-
tem should be modular, reflecting the modular nature



of the hardware. Also, knowledge of whether particu-
lar operating system functionality is implemented in
hardware or software should be abstracted from the
application. Furthermore, because the SoC design
partitioning might change during the development
process it must be possible to adapt the operating
system to reflect these changes without redefining the
abstraction presented to the application layer. This
is important since system and application design are
concurrent processes.

Next, the OS must not prevent an application from
exploiting application specific functionality by defin-
ing too general an abstraction. An overly general
abstraction may negate much of the benefit brought
by application specific hardware in the first place.
The OS must also provide protection and concur-
rency control, meaning that different parts of the OS
and application (e.g., interrupt handlers, drivers, ap-
plication code, etc.) cannot (expect to) interfere with
each other.

Due to the application specific nature of SoC, it
will be necessary to port the OS to many differ-
ent platforms. The OS and application code should,
therefore, be highly portable. This in turn requires
the different functions of the OS to be well encap-
sulated, to avoid cross dependencies. Also, because
most SoC systems have real-time and dependability
requirements [8] verifiable correctness and temporal
analysis of the OS are desirable.

The position taken in this paper is that a mi-
crokernel forms the ideal base for an operating sys-
tem targeted at (reconfigurable) SoC. In the rest of
this paper we will examine the above requirements
in more detail and show how they are fulfilled by a
microkernel-based operating system. We will also dis-
cuss other approaches to the design of operating sys-
tems for SoC and compare these to the microkernel-
based approach.

2 Operating Systems for SoC

An operating system provides application software
with an abstracted view of the hardware. As part
of the abstraction it provides hardware initialisa-
tion and housekeeping, task management (includ-
ing scheduling of tasks and jobs), general resource
management (memory, peripherals, etc.), interpro-
cess communication, and concurrency control (locks,

semaphores, etc.).
Due to their application specific nature, not all

SoCs [have to/need to/ necessarily] run an operating
system. Instead the application software implements
required OS functionality directly. The reasons for
not running an OS range from performance concerns,
to lack of an OS for the given SoC platform.

The arguments for running an OS on a SoC, on
the other hand, are similar to those for running an
OS on any system. Primarily, using an existing OS
reduces the amount of time spent reimplementing OS
functionality. Furthermore, using an OS with a well
designed and documented API allows programmers
to make efficient use of their time and skills. An OS
also provides abstractions that make using the hard-
ware easier and less error prone for the programmer.
This abstraction also allows application code to be
reused even if the details of the underlying hardware
architecture change. Moreover, using a previously
implemented and deployed OS reduces the number
of bugs in the software. Finally, because there is
a clear separation between the OS-like functionality
(i.e. hardware access, task management, etc) and
the application code, there is a cleaner separation of
concerns, which leads to better structured and po-
tentially less buggy code.

2.1 Modularity

The ability to implement traditional software compo-
nents directly in hardware opens up new possibilities
for SoC operating systems. In particular it becomes
possible to implement OS functionality directly in
hardware. For example, a TCP/IP stack may be im-
plemented in hardware to improve performance and
reliability, and reduce power consumption [9].

In order to support hardware implemented operat-
ing system functionality, the operating system must
have a modular structure that allows parts to be
added, removed, replaced, or modified. For exam-
ple, if the TCP/IP stack is to be moved into hard-
ware, it must be possible to remove the TCP/IP code
from the operating system and replace it with an in-
terface to the hardware implementation. Likewise if
the SoC is originally built with a hardware TCP/IP
stack but this is removed to make place for a differ-
ent component, it must be possible to add a software
implementation of the stack to the OS. In operat-
ing systems without a modular structure interdepen-
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dencies between different parts of the OS make such
modifications difficult and error prone.

Modularity is also required to achieve scalability
of functionality. A scalable operating system is one
that can be configured to include only the function-
ality that is required by the applications using it.
Since SoCs used in embedded systems are typically
resource constrained, scalability is a particularly im-
portant characteristic of SoC operating systems. Re-
lated to the scalability requirement is the requirement
that the OS provide a lightweight interface (API)
that provides only the functionality required by an
application and no more. Heavyweight interfaces in-
troduce unnecessary overhead, which negatively af-
fects the overall system size and performance. For
example, in [10] Colin and Puaut found that many
of the parameters of the POSIX interface where not
used and hence led to a considerable overestimation
of the worst case execution time (WCET) estimate.
Furthermore, heavyweight APIs detract from modu-
larity by defining a large amount of core functionality
that the OS must always provide.

2.2 Minimal Abstraction

As mentioned above, an operating system’s main task
is to provide an abstract view of the hardware that it
runs on. In a traditional operating system the act of
abstraction from the underlying hardware has three
main objectives with respect to access to resources:
protection and security, multiplexing and simplifying
their usage. Virtual memory and multitasking are
the chiefs examples of the first two objective. Device
drivers are chief examples of the latter.

For SoC these three objectives are not necessarily
desiderable. The software running on a SoC lever-
ages application specific hardware present in the chip.
Thus it should not be impeded the access in principle
in the name of protection, or granted arbitrary ac-
cess as privileged, in kernel code, but offered a finer,
possibily hierarchical, tailoring of protection policies,
instead of the binary choice kernel-space/user-space
offered by standard operating systems.

In the end, the type of abstraction performed by
the supporting software of an SoC should supports
the hardware/software codesign of the system. This
means that the operating system cannot abstract all
the hardware, instead it should abstract only the
generic (non application-specific) hardware.

In the case of a processor the OS reflects that the
processor supports address space management, con-
current activities (e.g. programs running in parallel),
information exchange between concurrent activities
(inter process communication, IPC) and the manage-
ment to serialize this virtual concurrency (schedul-
ing). Since these characteristics are independent of
the actual processor hardware architecture, such an
OS abstracts particular hardware realizations. For
example it abstracts how many general purpose regis-
ters a particular processor architecture provides, how
a switch into supervisor mode is executed, etc. This
is reflected by the amount of time or clock cycles
needed to actually perform a certain duty.

2.3 Protection

SoC systems, especially those found in mobile phones
and PDAs, are increasingly able to run downloaded,
end-user code. When running such code it is im-
portant to prevent malicious or buggy code from
overriding restrictions or modifying system proper-
ties. A user application that, for example, overrides
a phone’s lock to a particular network, or reprograms
the radio to use different frequencies may have seri-
ous effects on revenue and liability. The ability to
provide protection is, therefore, a main objective in
selecting an OS for these types of systems.

The protection requirements can be summarised
as memory protection (preventing unauthorised ac-
cess to memory), failure confinement (preventing fail-
ure in one part of the OS from affecting other unre-
lated parts) and IP protection (). Note that, because
failure confinement requires an understanding of the
whole system’s semantics, it can only be addressed to
a limited degree within the operating system. Other
aspects (such as, ) may have to be addressed outside
the OS, at the application level.

2.4 Portability

Since SoCs are application specific, every SoC design
will provide a different hardware environment that
the operating system must manage. This means that
the operating system will effectively have to be ported
to a new hardware platfrom for every new SoC that it
is run on. An OS suited for SoC applications should,
therefore, be highly portable, providing encapsula-
tion for the different functions of the OS. This en-
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capsulation is necessary to avoid cross dependencies,
which complicate the porting process.

Not only is it necessary for the code to be portable,
but modifications to the operating system code must
not cause the API or the abstractions provided by the
operating system to change. This is particularly im-
portant when changes is SoC design partitioning dur-
ing the development cause related OS level changes.
Such changes should not affect the application code
unless they affect application functionality directly.

2.5 Verification and Analysability

Since many embedded systems have real-time and/or
dependability requirements it is desirable that the OS
can be shown to be correct and that it is possible to
analyse it’s temporal behaviour. While protection
goes a long way towards fulfilling dependability re-
quirements, only formal verification can provide cer-
tainty about the correctness and dependability of an
application.

Verification of an application requires that the un-
derlying OS and hardware can also be verified. In the
safety critical application domains, OSes are trusted
only on basis of code inspections. These inspections
are underpinned by formal analysis of parts of the OS.
While hardware verification has received wide atten-
tion [11], to our knowledge, no embedded operating
system has yet been successfully verified.

Fulfilling an embedded application’s real time re-
quirements depends largely on knowing the timing
properties of the underlying hardware and OS. In
the area of real-time requirements, most systems
will have soft real-time usability requirements. This
ranges from end-user accepted delays between action
initiation and the action being carried out in standard
UIs, to image and sound quality of mpeg players or
video cameras. While end-to-end measurements cur-
rently used for this kind of analysis provide a good
idea of an operating system’s average timing charac-
teristics, only a complete WCET analysis can provide
strong guarantees.

As with formal verification, to our knowledge no
embedded operating system’s timing characteristics
have been succesfully analysed yet.

3 Embedded and Real-Time

Operating Systems

Existing operating systems for embedded systems
(and therefore SoC) can be divided into two cate-
gories. The first category, which we refer to as em-
bedded operating systems, are traditional desktop and
server operating systems that have been adapted to
embedded systems. These include Unix and Win-
dows derivates such as RT-Linux [12], RTAI [], and
Windows CE.

The other category, which we refer to as real-time
operating systems (RTOS) are operating systems that
have been designed from scratch to be used in embed-
ded systems. They typically have a small footprint,
are scalable, and provide some support for real-time
applications. There are hundreds of RTOS’s on the
market, with a wide range of functionalities [13]. Ex-
amples of widely used RTOS’s include RTEMS [14],
and uC/OSII [15]. Note that there are also a number
of microkernel-based RTOS’s (such as QNX Neutrino
[16], VxWorks [17], etc.) which we will not discuss in
this section.

3.1 Modularity

In the RTOS category of SoC operating systems,
modularity is an important feature as it allows the
OS to scale. Most RTOS’s provide compile time scal-
ability, allowing feature sets to be included or ex-
cluded as needed. The embedded operating systems,
on the other hand, are generally less modular, and
do not scale as well as the RTOS’s. They also have
a larger footprint and require more resources. Some
hybrid systems combine a small RTOS with a large
embedded OS. RT-Linux, for example, consists of an
RTOS that runs Linux as its idle thread. Although
the RTOS part is small, it does depend on Linux for
functionality such as initialisation, memory manage-
ment and drivers.

3.2 Minimal Abstraction

In terms of abstraction RTOS’s provide a wide range
of abstractions. The probably most common abstrac-
tion is the POSIX API. We argue that this is often
too heavy as API for SoCs. As mentioned previously
in this paper, it has been found, that the parameter
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space provided is usually not balanced by require-
ments of an individual application.

Windows CE as embedded OS, for example, ab-
stracts considerably away from the hardware. In RT-
Linux the hardware may be directly accessed, due to
the RT-threads running in kernel space. But this re-
quires a very careful and robust application design
since those applications could harm the whole sys-
tem functionality. The alternative is to work through
Linux device drivers, which once more have a very ab-
stract interface. Thus the current minimal abstrac-
tion leaves it to the designer to choose between fast
execution and reliability.

3.3 Protection

With regards to protection there are, once again,
two categories of OSes: those that provide memory
protection and those that do not. Some OSes like
RTEMS provide only unprotected access to memory
with the rationale that any software running on an
RTOS is trusted. On the other hand, other OSes like
favour a full protection model. The rationale behind
this choice is that memory protection speeds up de-
velopment, testing and bug tracking. There are also
some OSes that offer both models, making the choice
of protected or unprotected model a compile-time op-
tion.

3.4 Portability

Most commercial real-time and embedded OSes pro-
vide a wide range of hardware support. This hard-
ware support is generally provided by the OS vendor
and covers existing CPUs, common buses, etc. Only
few commercial RTOS’s (such as uC/OS-II) provide
the means to adapt them to the very specific envi-
ronment and capabilities of SoCs. Non-commercial
OSes such as maRTE-OS [18] generally do not pro-
vide a wide range of hardware support, however, they
are more accessible and therefore provide the means
to take full advantage of the SoC environment.

3.5 Verification and Analysability

We are not aware of any successful or ongoing at-
tempts to formally prove the functional correctness of
any operating system discussed in this section. Like-
wise, we are not aware of any successful real-time

analysis of these operating systems. With regards to
real-time analysis, there have been attempts to anal-
yse RTEMS and RT-Linux [10, 19], however, none
of these performed a complete analysis, nor did they
provided results that would be usable in an industrial
setting. There have also been attempts to formally
analyse an RTOS specification [20] as well as analyse
individual parts of an OS, such as an analysis of the
scheduler performed by Cofer and Rangarajah [21]

Linux-based embedded systems face additional
challenges. Proving any temporal property is compli-
cated by the fact that any device driver, just as any
other component of the operating system, can arbi-
trarily enable or disable interrupts. While it may do-
ing this without violating the functional correctness
of the systems, it will definitely affect the scheduling
of real-time processes. Thus, a minimal update to
any device driver will require a complete analysis of
the system.

4 Microkernels

In the late 1980’s microkernels were born from the ne-
cessity of taming the complexity of operating systems
development. In a traditional operating system dif-
ferent subsystems, such as device drivers, file systems,
network stacks, etc. coexist in a single address space
and protection domain. Having all its subsystems op-
erate in the same protection domain like that makes
the kernel brittle and vulnerable to bugs. While the
effects of a buffer overflow or following a null pointer
in an application remain confined within the applica-
tion’s address space, the same problem in a driver or
other OS subsystem can crash the kernel and bring
the entire system down.

Furthermore, sharing data structures (e.g. having
global variables), introduces subtle interdependencies
that muddle boundaries between subsystems and hin-
der evolution. Small modifications in one subsystem
may have unexpected results for other subsystems
that access its functionality. For example a new or-
ganization for the page table affects all device drivers
that access it directly to map I/O buffers from and
to user virtual address spaces.

The microkernel itself retains only the control of
the privileged aspects of the CPU, that is memory
protection and address space management, schedul-
ing, and communication between threads. However,
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while a traditional operating system tends to offer the
richest and most complete set of APIs for this pur-
pose, a microkernel strives to expose only the most
basic and minimum set of mechanisms that allow the
implementation of these functionalities without con-
straints.

In the following subsections we will illustrate how
the microkernel approach to operating systems design
fulfills the requirements for SoC discussed earlier.

4.1 Modularity

A properly designed microkernel-based system is in-
trinsically modular. Functionality is provided by
server modules that are isolated from each other
through memory protection. Clients make requests
and obtain services through IPC. Servers can fulfill
requests directly, or decompose them into lower-level
requests and submit them to other servers, delegating
the work to servers providing the most appropriate
functionality.

With a microkernel-based design the modifications
are confined in the various servers. Not only can
the implementation details of a server be changed
without affecting any other server, but it can also
be substituted on the fly with another server without
side effects, provided that the interface stays the same
and a proper hand-over protocol is established and
followed.

Because all communication is done through well de-
fined interfaces the subtle interdependencies caused
by data structures implicitly shared between differ-
ent modules do not arise. Note that microkernel do
allow memory to be shared between separate address
spaces. This sharing is explicit, and is not prone
to the problems caused when modules share mem-
ory implicitly. Notwithstanding this, microkernels
are sometimes used to guest full-fledged, monolithic
operating systems running as a single task. This is
the case of Apple’s MacOS X. Darwin is a NetBSD
operating systems adapted to run on top of the Mach
2.5/3.0 microkernel as a single Mach task.

4.2 Minimal Abstraction

The key design principle of second-generation micro-
kernels is that the microkernel does not contain any-
thing that other parts of the system may want or need

to modify as the system requirements change. In par-
ticular, the only abstractions of the hardware that a
microkernel provides are a platform-independent in-
terface to virtual address spaces, threads, scheduling,
and IPC.

4.3 Protection

The microkernel approach to protection is to run OS
subsystems as specialized servers executing in sepa-
rate and protected address spaces. Each subsystem
provides its services by running one or more threads
that communicate with user applications and other
subsystems, exchanging messages according to well
defined protocols. While slower than manipulating
directly shared data, this IPC-based interaction is
considerably safer and more flexible. The server’s
key data structures are protected and the server is
free to change its internals as long as it mantains
compatibility with the published interface.

4.4 Portability

The portability of the microkernel ultimately de-
pends on the architectural details of the platform it
manipulates on behalf of its clients. Virtual memory
page table management and context-switch code are
definitely examples of processor-specific features of a
microkernel and are inherently not portable. While
these technical and performance issues mean that a
microkernel itself may be not fully portable, as long
as the microkernel interface is platform independent
the rest of software built on top of it will be portable.
Furthermore, because the microkernel only provides
a minimal abstraction of the hardware, all other OS
services will be fully portable as long as they rely only
on the microkernel interface.

4.5 Verification and Analysability

The feasibility of formal verification of software de-
pends chiefly on its size. A second generation micro-
kernel like L4 [22] is composed by about 10,000 lines
of C++ and assembly code. A first generation mi-
crokernel like Mach or a monolithic kernel like Linux
are, respectively, roughly one and two orders of mag-
nitude larger.

While comparably small, L4 is towards the upper
bound of the typical size of programs being verified.
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Still, a research project being undertaken at NICTA
is tackling the verification of the L4 virtual memory
subsystem and, eventually, the full kernel.

Similarly, the relatively small size of the microker-
nels, and the design style they support that induces
a systematic, modular decomposition in the rest of
the system, makes them more amenable to temporal
analysis than a full fledged monolithic kernel.

5 Conclusion

In this paper we have investigated the suitability of
different operating system classes for SoCs. We have
provided five criteria to compare the available oper-
ating systems: Modularity, abstraction, protection,
portability and analysability. The term analysabil-
ity is currently a weak point for all types of oper-
ating systems. The monolithic real-time operating
systems as a group provided support for almost all
of the required properties, however, individual OS’s
showed a lack in individual points. This is often re-
flected in either a lack of protection or a non minimal
abstraction. This comes quite natural, as these are
subject to trade offs for each individual application.
In terms of effectively facilitating the features of SoC
hardware, when the RTOS is ported, the monolithic
RTOS’s are not doing as well as microkernels. Fur-
thermore we see the advantage of the low abstraction
of a microkernel, which supports an protection level
to be introduced as needed between the application
and the kernel.

Current and Future work within NICTA Ltd. ad-
dresses the issue of providing formal verification of
functional properties and timing analysis of the L4
microkernel and thus is closing the gap remaining in
fulfilling all properties described above.
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