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Abstract

Microarchitectural timing channels exploit resource contentions on a shared
hardware platform to cause information leakage through timing variance. These
channels threaten system security by providing unauthorised information flow in
violation of the system’s security policy. Present operating systems lack the means
for systematic prevention of such channels. To address this problem, we propose
time protection as an operating system (OS) abstraction, which provides mandatory
temporal isolation analogous to the spatial isolation provided by the established
memory protection abstraction.

In order to fully understand microarchitectural timing channels, we first study all
published microarchitectural timing attacks, their countermeasures and analyse the
underlying causes. Then we define two application scenarios, a confinement scenario
and a cloud scenario, which between them represent a large class of security-critical
use cases, and aim to develop a solution that supports both.

Our study identifies competition for limited hardware resources as the underlying
cause for microarchitectural timing channels. From this we derive the requirement that
proper isolation requires that all shared resources must be partitioned, either spatially
or temporally (time-shared). We then analyse a number of recent processors across
two instruction-set architectures (ISAs), x86 and Arm, for their support for such parti-
tioning. We discover that all examined processors exhibit hardware state that cannot
be partitioned by architected means, meaning that they all have uncloseable channels.
We define the requirements hardware must satisfy for timing-channel prevention, and
propose an augmented ISA as a new, security-oriented hardware-software contract.

Assuming conforming hardware, we then define the requirements that OS-provided
time protection must satisfy. We propose a concrete design of time protection, con-
sisting of a set of policy-free mechanisms, and present an implementation in the sel.4
microkernel. We evaluate the efficacy and efficiency of the implementation, and show
that it is highly effective at closing timing channels, to the degree supported by the un-
derlying hardware. We also find that the performance overheads are small to negligible.
We can conclude that principled prevention of timing channels is possible though
mandatory, black-box enforcement by the OS, subject to hardware manufacturers
providing mechanisms for scrubbing all shared microarchitectural state.
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Introduction

To achieve contiguous growth of compute power, computer architectures have become
increasingly complicated as a result of consolidating more and more functional features on
hardware. Currently, central processing units (CPUs) are equipped with various functional
units, such as multi-stage pipelines (e.g., commonly more than 10 stages on Intel pro-
cessors [Intel, c]), sophisticated speculative execution engines, on-core caches, or internal
buses [Intel, 2018b].

Meanwhile, both the capacity and complexity of hardware caches have continued to
increase. For example, Intel’s Conroe architecture, which was released in 2006, contains two
levels of caches with a maximum capacity of 4 MiB [Int, 2018a], whereas Intel’s Skylake
architecture which was released in 2015 has three levels of caches offering more than
30 MiB of capacity [Int, 2018c]. Additionally, this trend occurs on all the other hardware
components that cache the execution history, including units that store destinations of
recently taken branch instructions, or buffers that cache the result of recently solved
virtual-to-physical address translation. For the rest of this thesis, we call these components

cache-like hardware components.

Due to the increased processing power of computer hardware, industry has consolidated
more and more software services on a single hardware platform, which are shared by
mutually distrusted programs or virtual machines (VMs). Systems with such sharing range
from cloud computing services to embedded platforms. For instance, infrastructure-as-
a-service (IaaS) [Microsoft, 2018], a cloud computing service, hosts multiple mutually
distrusting VMs on a hardware platform, through the management service provided by
the bottom layer virtual machine monitor (VMM) or hypervisor. Similarly, the embedded
operating system (OS) schedules applications authored by different companies together on

a smartphone platform.

Sharing a hardware platform among mutually distrusting software entities indeed
benefits the economy by offering virtualised machines as a service. However, sharing
requires the system to provide much stronger isolation services to mutually distrusting VMs
or software components, to achieve the same level of protection as if they are executing

on dedicated hardware. Therefore, the software platform has to enforce a security policy



which controls or limits information flow among different software entities (i.e., security

domains), such as VMs, mobile applications, or web pages.

1.1  Microarchitectural Timing Channels

Microarchitectural timing channels threaten security on shared systems, by exploiting
timing variances resulting from the shared use of hardware components, such as caches.
These channels transfer secret information through timing which is affected by the shared
microarchitecture state, such as cached contents of memory or the history of recently
executed branch instructions. To transmit information, a sender program deliberately or
incidentally manipulates hardware state during its execution, which affects the measurable
efficiency of a receiver program.

The cache-based timing channel is a classic microarchitectural timing attack [Acii¢gmez,
2007; Hu, 1992; Osvik et al., 2006; Tromer et al., 2010], which transmits information
between a sender and a receiver through competing shared cache lines. For sending a signal,
the sender modulates its cache footprint during its execution, which then can be detected
by the receiver through measuring its latency by systematically touching those cache lines.
Low latency implies that a line is still cached from a previous access, whereas a high latency
implies that the sender has evicted the line during its execution.

Timing channel attacks are applicable not only to caches, but also to other hardware
components that cache execution histories, such as the branch predictor [Evtyushkin et al.,
2016a], or the translation look-aside buffer (TLB) [Hund et al., 2013]. Recently, researchers
have demonstrated a series of sophisticated microarchitectural timing channel attacks that
exploit side effects of CPU features designed for performance improvement, including
speculative execution [Kocher et al., 2019], and microinstruction scheduling on an out-of-
order execution pipeline [Lipp et al., 2018; Van Bulck et al., 2018].

The cause of microarchitectural timing channels is resource contention on shared
hardware components that have limitations on either capacity or bandwidth, depending on
the type of resource. The above mentioned cache-based timing channel exploits the capacity
limitation on a shared cache. As they hold microarchitectural state, caches and cache-like
components are called stateful resources. In contrast, bandwidth-limited resources, such as
interconnects, are stateless and require truly concurrent access to generate a timing channel.
For example, a sender can transfer information through its bandwidth consumption on a
shared bus, which can be detected by a concurrently executing receiver though sensing its
share of the available bandwidth.

1.2 Research Aims

This research focuses on the open problem of preventing microarchitectural timing channels

through the security enforcement by the OS. Our approach is called time protection, in



analogy to the established memory protection. We focus on providing a system solution for
preventing timing channels on stateful resources, as preventing stateless channels requires
bandwidth partitioning which does not exist on contemporary mainstream hardware.

Understanding the landscape To achieve our research goal, we examine all published
microarchitectural timing attacks and related countermeasures. Through our study, we
discover that all types of stateful resources, including cache and cache-like components,
have been exploited as timing channels in intra-core as well as inter-core attacks. As these
attacks result from sharing, a principled defence must prevent such sharing by partitioning
all resources, either spatially or temporally. Such partitioning should be provided by the OS,
in line with its general responsibility for enforcing security. The former requires resetting all
history-dependent microarchitectural states between time slices, whereas the latter requires
that the OS has control on resource allocation.

Virtualising all time sources can also mitigate timing channels as it removes the shared
time source between the sender and the receiver. However, this mechanism is not only
a very expensive solution [Li et al., 2013] but also impossible to apply to domains that
interact with the physical world, including direct access to networks. Therefore, we focus

on the above mentioned partitioning mechanisms.

Time protection—a core OS duty We propose to provide time protection in the OS,
treating temporal isolation analogously to memory protection used for preventing spatial
interference. This requires that a hardware platform provide options to either partition
or reset related microarchitectural states. Therefore, the OS can provide mechanisms to
create domains as a security container for user-level threads, with the aim of preventing
microarchitectural timing channels between domains through either resetting or partitioning
shared hardware states (Figure 1.1).

Security domain Security domain

Conduct resetting opera-
Non-partitionable hardware resources ¢ tions, e.g. cache flushing

operations, during the
domain switch.

Figure 1.1: An overview of the system solution for mitigating microarchitecture timing channels.



Investigating hardware resetting operations On mainstream hardware, an OS or
a hypervisor can partition caches that are indexed by physical address with a software
technique called cache colouring [Bershad et al., 1994; Kessler and Hill, 1992; Liedtke
et al., 1997]. However, the cache colouring technique is not suitable for core-private caches
or cache-like components that are indexed by virtual address, as the layout of the virtual
address space is out of the OS’s control. Hence, temporal partitioning (time multiplexing)
is the only possible approach. This requires resetting the hardware state with flushing
operations becomes the only option for mitigating timing attacks on virtually-indexed
hardware components.

In order to understand the feasibility of this approach, we investigate the effectiveness
of hardware resetting operations for mitigating those channels. We implement all possible
timing attacks that are based on contending core-private caches or cache-like components.
Then we analyse both original and mitigated channels on multiple generations of x86 and
Arm processors. From this, we discover that selected hardware platforms are effective in
mitigating many of the studied channels. However, there are residual channels on hardware
state used for predicting branch instructions on studied x86 processors, and on states used
for executing branch instructions on the Arm Cortex-A53 processor. The primary cause of
these residual channels is that the current instruction-set architecture (ISA) is not a sufficient
contract for ensuring temporal isolation, as it is completely hides the microarchitectural state
and consequently does not provide the mechanisms required for temporally partitioning.
As such, the ISA is insufficient for letting the OS enforce security. Therefore, we propose
an augmented ISA as a new hardware-software contract to provide sufficient support on

enforcing temporal isolation.

Achieving the proposed system solution We propose OS mechanisms for providing
time protection, through a combination of partitioning and resetting techniques, with the
assumption that the hardware can provide sufficient support for complete temporal isolation.

We implement our prototype on the seL4 microkernel, not only because of its integrity
and confidentiality guarantees [Klein et al., 2014], but also for benefiting from its existing
mechanisms for memory allocation. Additionally, previous work demonstrated that the
kernel does not contain any storage channels [Murray et al., 2013], which gives us strong
confidence in investigating the only possible remaining class of covert channels— timing
channels.

Our solution allows not only partitioning user-level memory (including memory man-
aged by the kernel), but also the kernel image itself with a new kernel mechanism called
kernel cloning. Kernel cloning allows creating an almost complete copy of the kernel image
that can be assigned to corresponding security domains, with an option of also partitioning
hardware interrupts. With existing kernel mechanisms, we implement a system prototype
and demonstrate that time protection effectively mitigates studied channels with a low

impact on system performance.



1.3 Research Contributions and Thesis Outline

1.3.1 Research contributions

Our research produces the following contributions:

* We conduct a systematic study on all published microarchitectural timing attacks and

related countermeasures (Chapter 3);

» we study the effectiveness of hardware-manufacturer provided operations on mitigat-
ing intra-core timing channels, for multiple generations of x86 and Arm processors
(Chapter 5);

¢ we discover that the indirect branch control (IBC) mechanism [Intel, 2018c] intro-
duced by Intel for mitigating the Spectre attack [Kocher et al., 2019] is partially
effective at mitigating intra-core timing channels but leaves residual channels (Sec-
tion 5.4);

* we propose an augmented ISA, a new software-hardware contract, as a solution for
preventing any hidden microarchitectural state being exploited as timing channels.
(Section 5.5);

* we establish the system requirements for enforcing confinement in the presence of

microarchitectural timing channels (Section 6.1);

* we propose the kernel cloning mechanism for constructing dedicated kernel images

that can be assigned to corresponding security domains (Section 6.2);

» we extend the cloning mechanism with an option for partitioning hardware interrupt

sources (Section 6.2);

* we demonstrate the implementation on seL4, supporting both x86 and Arm multicore

platforms (Section 6.4);

* we evaluate our system prototype for mitigating microarchitectural timing channels,
showing that it is effective at closing studied microarchitectural timing channels,

within limitations of present hardware (Section 6.5.2);

* we show that our mechanism introduces very low overhead on system performance
(Section 6.5.3).

1.3.2 Thesis outline

This thesis is structured as follows. In Chapter 2, we provide the necessary background on
timing channels, related microarchitecture, cache colouring, microkernels, and the sel.4
microkernel. In Chapter 3, we define our research scope and examine the existing work on
microarchitectural timing attacks and corresponding countermeasures. In Chapter 4, we

define threat scenarios of this work, as well as hardware requirements for mitigating studied



channels, and propose a system solution for providing time protection. In Chapter 5, we
show our study on the effectiveness of hardware provided operations on providing temporal
isolation for mitigating intra-core timing channels, and our proposed augmented ISA as
a solution for the lack of definition on time protection in the existing ISA. In Chapter 6,
we demonstrate the kernel cloning mechanism which provides the service for assigning
dedicated kernel images and hardware interrupts to security domains. We also evaluate the
effectiveness of our time protection mechanisms and their performance overhead. Finally,
in Chapter 7, we conclude our research with a summary of our work, including a discussion

of the future work.



Background

2.1 Timing Channels

Interest in information leakage and secure data processing historically was centred on
sensitive, and particularly cryptographic, military and government systems [Denning, 1976].
However, many—such as Lampson [1973]- recognised the problems faced by tenants of
an untrusted commercial computing platform of the sort that is now commonplace. The
US government’s “Orange Book™ standard [DoD], for example, collected requirements for
systems operating at various security classification levels. The Orange Book introduced
standards for information leakage in the form of limits on channel bandwidth. While these
were seldom if ever actually achieved, this approach strongly influenced the direction of
later work.

Threat models for information leakage are often classified as either covert channels or
side channels. Covert channels allow colluding programs to transfer information by means
that bypass system security policy. A typical attack scenario includes a Trojan (sender),
who has access to sensitive information, and a spy (receiver), who does not have access
to that sensitive information but is able to communicate easily with the external world. A
side channel is similar to a covert channel, except that instead of relying on a Trojan to
transfer information that is deliberately leaked, an attacker exploits the side channel to
recover sensitive information owned by a victim through existing system services. Side
channel attacks are much harder to implement than covert channel attacks as they steal
information from non-colluding victims. As a result, the implementations of side channel
attacks are normally more complicated and more interesting than covert channels which
leak information through similar attacking mechanisms.

Covert channels are categorized as either storage or timing channels. The common
distinction between the storage and timing channel is whether a shared time source is
required [Schaefer et al., 1977; Wray, 1991]. Storage channels communicate through any
system state affected by the sender that can be directly read from the receiver, such as a
register value, the return value of a system call, or even the existence of a system object
(e.g., a user-level thread). A storage channel exploits something that is directly visible in

software, which can be removed completely as shown by past work [Murray et al., 2013].



By contrast, timing channels, which exploit timing variance for communication, are much
harder to reason about. A classic example of a timing channel is a secret-dependent code
path or data access pattern that directly influences execution time. The usual defence is to
code for deterministic execution by applying constant-time techniques, which is very hard
to achieve [Bernstein, 2005]. Furthermore, the absence of timing channels is rarely formally
specified, due to the difficulty of establishing a reliable model of the timing behaviour of
hardware platforms [Klein et al., 2011].

In this work, we are concerned with microarchitectural timing channels, where inform-
ation leakage is through shared microarchitectural components. The microarchitectural
components implement functionalities of a processor which are abstracted away by the
programming interface, the ISA, of that processor. In other words, the microarchitectural
components contain details of hardware implementation, and are normally not exposed to
software by manufacturers. For example, an attacker can observe the aggregate number of
hardware cache conflicts created by a victim program by measuring the total execution time
of accessing a cache-sized buffer [Osvik et al., 2006; Percival, 2005].

2.2 Virtual-to-physical Address Translation

The OS provides an abstraction of the memory available on a system through a combination
of hardware and software techniques: providing virtual memory to user-level programs
which is translated to physical memory by hardware during execution. From user-level
programs’ point of view, the memory appears as a contiguous address space, even though the
content is sparsely stored in the physical memory. The address used by user-level programs
is called the virtual address, whereas the address used by the hardware for fetching and
storing memory content is called the physical address.

Figure 2.1 presents an overview of virtual-to-physical address translation. To conduct
the translation, the hardware system divides the virtual address space into equal-sized
regions called virtual pages. As a result, a virtual address comprises a virtual page number
and a page offset. Similarly, the hardware system divides memory into frames that are the
same size as virtual pages, and a physical address is formed by a frame number and a frame
offset. The hardware only needs to translate the page number into a frame number as the
offset does not change. While a program executes, the hardware translates the virtual page
number into physical frame number, using the mapping scheme enforced by a hardware
component called the memory management unit (MMU). The hardware also identifies the
address mapping translated from different address spaces (i.e., processes) with an identifier,
the address space ID (ASID).

Contemporary processors use a multi-level page table structure to record the mapping
from virtual to physical address, which is a radix tree indexed by virtual page numbers.
Each valid page table entry contains either a pointer to the next level page table or the

mapped frame number. To conduct a virtual address translation, the MMU first breaks
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Figure 2.1: The virtual-to-physical address translation.

the virtual address into a page number and a page offset. Then, the MMU uses this page
number as an index to walk the multi-level page table radix tree until it finds a leaf node.
A leaf node is either a valid page table entry, pointing to a mapped physical frame, or an
invalid entry. If a valid translation exists, the translated physical address is the is the sum
of the frame number and page offset. It is important to note that traversing the multi-level
page table requires at least one memory access per traversal if all page tables are stored in
memory.

Although the translation process is enforced by the hardware, it is the OS’s responsibility
to provide the mapping, including assigning an ASID for the translated virtual address space.
In other words, the OS manages the memory as a resource by assigning physical frames to
virtual pages in an user-level program’s address space. Because of the virtual-to-physical
address translation, user-level programs control the layout of their virtual address space
(i.e., virtual addresses), whereas the OS manages physical frames (i.e., physical addresses)

used by pages in those virtual address spaces.

2.3 Relevant Microarchitectural Components

A processor provides a programming interface through its ISA, which abstracts over
functionally irrelevant microarchitectural implementation details, such as pipelines, caches,
or memory buses. These microarchitectural components contain the implementation details

of the hardware, which are typically not exposed to software for portability reasons. For



example, a program written for an earlier implementation of the x86 architecture, such as
Intel’s Conroe processor [Int, 2018a], can also execute on a later implementation of the
x86 architecture, such as Intel’s Skylake processor [Int, 2018c], because those processors
modify only the microarchitectural implementation but not the ISA. In other words, the ISA

works as the hardware-software contract for governing the behaviour of a given architecture.

Although not exposed through the ISA, those microarchitectural components contain
hidden state that can be observed in the timing of program execution as a result of resource
contention. Competition between processes (external contention) or within a process (self-
contention) can both reveal hidden state, which can be exploited as timing channels. An
example of a timing channel due to external contention is where an attacking program
manipulates its footprint on a shared cache, causing slowdown of a victim program due to
cache conflicts generated by the attacking program. Resource competition can also result
from conflicts between different stages of program execution, such as between the start and
the end of a program. These internal competitions create a timing channel if those conflicts
are related to secret information held by the program. We will explain timing channels due
to self-contention in more detail in Section 3.1.2.

This section outlines the background of the most important microarchitectural com-
ponents that have been used to explore microarchitecture-based timing channels due to
contention. In this section, we explain caches (Section 2.3.1), prefetching (Section 2.3.2),
pipelining (Section 2.3.3), in-flight data (Section 2.3.4), buses and interconnects (Sec-
tion 2.3.5), hardware multithreading and multicore (Section 2.3.6), dynamic random-access
memory (DRAM) (Section 2.3.7), and the graphics processing unit (GPU) (Section 2.3.8).

In Chapter 3, we will explain all related attacks as well as the scope for this work.

2.3.1 Caches

The hardware cache is a small quantity of memory that is located closer to processors than
main memory. Because accessing the cache is much faster than accessing main memory, the
CPU always searches relevant caches first before triggering any main memory request. A
cache hit is a state in which a data fetching request from the CPU is contained in the cache.
Conversely, a cache miss is a state in which the cache does not contain the data requested by
the CPU, so main memory must be accessed. In other words, a cache hit is much cheaper
than a cache miss. The effectiveness of cache relies on the hit rate, the fraction of requests
satisfied from the cache.

To balance the design trade-off between complexity and efficiency, there are normally
multiple levels of caches on contemporary hardware—each lower in the hierarchy being
larger and slower than the one above. The size of each level is designed to balance cost
and response time, by maintaining a high hit rate. We use the cache hierarchy on a modern
Intel multi-core processor as an example (Figure 2.2). There are three levels of caches on
this example Intel processor: the first-level data (L1-D) and first-level instruction (L1-I)

10
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Figure 2.2: The hierarchical cache structure on a multicore Intel processor.

caches, a unified second-level (L2) cache that is core-private, and a last-level cache (LLC),
the third-level (L3) cache, that is shared by all cores on a multicore processor (package).

The structure of cache hierarchy is microarchitecture-dependent, and the size of each
cache is processor-dependent. For example, the Arm Cortex-A9 processor [ARM, 2010] on
the Sabre platform [NXP, 2019] has a 32 KiB L1-D cache and a 32 KiB L1-I cache that
are core-private, and a 1024 KiB L2 cache that is shared by all cores in the processor. In
contrast, the Arm Cortex-A53 processor [ARM, 2016] has the same capacity on first-level
(L1) caches, but a smaller L2 cache (512 KiB). The situation is different on Intel’s i7-4770
processor, which is equipped with core-private L1-D (32 KiB), L1-I (32 KiB), and L2
(512 KiB) caches, and a core-shared 8096 KiB L3 cache [Intel, 2019a].

Figure 2.3 shows the internal structure of a hardware cache. The cache consists of lines,
each of which holds one aligned power-of-two-sized block of adjacent bytes loaded from
memory. Each cache line also stores information about the corresponding memory address,
called cache tags. Cache lines are normally grouped into a number of sets, working as a
set-associative cache. The number of cache lines in a set is called the cache’s associativity

(ways).

A cacheline

Cache ways

A
Y

Cache sets

Figure 2.3: The internal structure of a hardware cache.

Caches are indexed by either virtual or physical addresses. As shown in Figure 2.4,

address bits are divided into offset bits, indexing bits, and tagging bits. To locate data
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for a given address, the hardware first maps the address into a cache set with a indexing
function that takes the value contained in the indexing bits as the input. Then, the hardware
matches the value contained in the tagging bits against all tags within that set in parallel, an
associative lookup, to locate the cache line within the set. Lastly, the hardware locates the
data stored in the line by using offset bits.

When a cache miss occurs, the cache loads the corresponding line from memory, and
replaces an existing line from the mapped set if that set reaches its capacity. A 1-way
associative cache is also called a direct-mapped cache, where there is only one possible
way to store any cache line. By contrast, a fully-associative cache, a single-set cache, can

hold a cache line in any location.

A cache set
Tag Data
Tag Data
Tag Data
Tag Data —— A cacheline

Tagging bits for locating the line
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Indexing bits
| >
< > < >
Tagging bits Offset bits

Virtual or physical address

Figure 2.4: The indexing scheme of a hardware cache.

Caches can be classified into four types, based on the type of address used for indexing
or tagging. A virtually-indexed, virtually-tagged (VIVT) cache uses the virtual address for
both indexing and tagging, whereas a virtually-indexed, physically-tagged (VIPT) cache
uses the virtual address for indexing but physical address for tagging. A physically-indexed,
physically-tagged (PIPT) cache indexes and tags cache lines with the physical address,
while a physically-indexed, virtually-tagged (PIVT) cache indexes cache lines with the
physical address but tags them with the virtual address. While indexing bits are within the
page offset, the cache can be regarded as either physically-indexed or virtually-indexed,
because the virtual-to-physical translation does not translate those page offset bits.

The hardware architecture selects the type of address used for indexing and tagging,
depending on the internal structure of a cache and the latency of accessing the cache.
Normally, L1 caches, which have low access latency, are virtually-indexed, avoiding the cost

of waiting for the virtual-to-physical translation. L1 caches are also commonly described
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as physically-indexed, if the size of a cache way is no bigger than the size of a page in L1
caches. Hence, indexing bits are not translated during the virtual-to-physical translation
process. By contrast, L2 or L3 caches are normally physically-indexed, as their higher

latency makes waiting on virtual-to-physical translation more affordable.

The function used for indexing is also a trade-off between cache latency and hardware
complexity. The higher-level (i.e., L1 or L2) caches normally use a one-to-one mapping
function: the value contained in the indexing bits represents the set number for a given
address. As the lower-level caches are slower to access, the hardware can afford more
complicated mapping schemes on physical addresses to reduce conflict misses. For ex-
ample, recent Intel architectures have a two-level hashing function for distributing cache
traffic [Hund et al., 2013; Maurice et al., 2015; Yarom et al., 2015].

There are more than just data or instruction caches available on a processor. The TLB
caches the most recently resolved virtual-to-physical address translations (Section 2.2), in
order to reduce address translation latency. The TLB is a virtually-indexed cache, which is
normally tagged with an ASID to identify the address space which owns a cached translation.
Moreover, hardware manufacturers have developed low-latency caches for caching page
table entries in order to reduce the number of required memory accesses during a page table
traversal (Section 2.2). There are two different designs for this type of cache: the page table
cache, and the translation cache. The page table cache stores page table entries, working as
a conventional PIPT data cache [Barr et al., 2010]. An example implementation of the page
table cache is AMD’s page walk cache, a high-speed read-only cache that stores recently
accessed page table entries [Bhargava et al., 2008]. In contrast, the translation cache works
as a virtually-indexed cache, tagged by the page table indices used for traversing page
tables [Barr et al., 2010]. The translation cache allows the MMU to search cached page table
entries from different levels in parallel. An example implementation of the translation cache
is Intel’s paging-structure cache [Intel, a], which works as a split translation cache—storing

page table entries from different levels separately.

The hardware also contains caches that are used for accelerating the execution of branch
instructions, including the branch target buffer (BTB) and branch history buffer (BHB).
The BTB stores the destination of recently executed branch instructions. Similarly, the
BHB caches the outcome of recent conditional branch executions, assisting the CPU in
predicting the destinations of future conditional branches. The BTB and BHB commonly
work as VIVT caches, located inside a core, as the physical address is not available inside
the core and as their functionality (assisting the CPU pipeline) cannot tolerate the latency

of virtual-to-physical translation that is conducted outside the core.

Additionally, the decoded instruction cache, which works as a VIVT cache, stores
recently fetched and decoded instructions in the form of micro-ops which can be processed
and then executed by execution units in the core. We will explain the models used for

instruction decoding and execution in Section 2.3.2.
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2.3.2 Prefetching

Prefetching is the process by which the CPU fetches instructions or data before they are
requested, loading them from their original storage into local storage, such as L1 caches.
Speculatively prefetching instructions and data into local cache can prevent the CPU from
waiting on cache misses, thus increasing the throughput of the CPU.

The prefetcher triggers fetching requests based on the most recently-executed instruction
or -accessed data streams. If data stored in address v has been visited recently, the data
stored in adjacent addresses is highly likely be used in the near future due to spatial locality.
Therefore, the prefetcher increases cache hit rates by loading such data. Moreover, the
prefetcher observes strides on data accesses, and prefetches the data that is stored a stride
away from the previously accessed address. For example, the Arm Cortex-A9 processor
implements a prefetcher that monitors past caches misses, automatically prefetching data
from two independent data streams [ARM, 2010]. Hence the prefetcher also hold state which
is affected by past history, such as the history generated by recently-executed programs.

The hardware can implement prefetching on multiple cache levels. For example, the
Arm Cortex-A9 processor not only prefetches data and instruction to L1 caches, but
also generates prefetching hints to the external L2 cache that is managed by a separate
controller [ARM, 2010].

2.3.3 Pipelining

Instruction pipelining divides an instruction into a series of sequential steps that are per-
formed by different execution units. To speed up CPU throughput, steps that belong to
different instructions are processed in parallel, as long as there is no bottleneck, such as

instruction dependencies, on any execution units [Healy et al., 1999].

Superscalar execution To increase the throughput of a CPU, the superscalar execution
model manages multiple instruction pipelines in parallel by operating on a number of
execution units concurrently. Here we use the modern Intel architecture as an example. Intel
architecture divides the CPU into three parts [Lipp et al., 2018; van Schaik et al., 2019]: a
front-end engine that preprocesses and decodes instructions into a stream of micro-ops, an
execution engine that schedules micro-ops among multiple execution ports (i.e., dispatches
micro-ops to execution units), and a memory subsystem that conducts memory load and
store operations. In the execution engine, there are multiple channels, called execution
ports, which connect the micro-op scheduler to the execution units where the micro-ops are
executed. The design of the execution port is microarchitectural dependent. For instance,
Intel’s Skylake microarchitecture implemented eight ports: ports zero, one, five and six
are used for executing arithmetic micro-ops, whereas ports two, three, four and seven
are dedicated to memory-based micro-ops (e.g., loads and stores) [Aldaya et al., 2018].

To compare, Intel’s Nehalem microarchitecture implemented six ports: ports zero, one,
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five for conducting arithmetic operations, whereas ports two, three, four for executing

memory-based operations [Intel, c].

Speculative execution Contemporary CPU design uses speculative execution to max-
imise the performance of a CPU by predicting the outcome of branch instructions at the
front-end. In other words, the stream of micro-ops generated by the front-end is not neces-
sarily equivalent to the instructions written in a program due to branch prediction. Whilst
calculating the outcome of a branch instruction is time-consuming, as might happen if the
destination of the branch needs to be loaded from memory, the CPU attempts to execute
instructions after the branch based on a guessed outcome (e.g., the destination address).
Moreover, the CPU conducts those guesses based on the most-recently-executed branch
instructions. That is, the CPU predicts the outcome of currently executing instructions
based on the recent execution history. After the correct result becomes available, the CPU

chooses to either commit or abort the speculatively-executed computation.

Out-of-order execution The out-of-order execution model reorders the instruction
stream in the execution engine, allowing an instruction to be executed before or in par-
allel with preceding instructions [Fog, 2018]. To achieve that, a modern CPU divides an
instruction into several micro-ops and schedules them on the functional units in the pipeline.
An instruction can only be regarded as completed once all of its micro-ops and preceding

instructions are finished.

The above mentioned superscalar execution model typically implements an out-of-order
execution model that executes micro-ops decoded from different instructions in parallel.
Furthermore, the CPU can execute micro-ops speculatively while conditions for making a
correct decision are not immediately available. To fix a faulty speculation, the CPU reissues
the incorrectly executed micro-op. The CPU commits an instruction once all of its micro-
ops and preceding instructions are finished. In contrast, the CPU aborts an instructions if

any of its micro-ops is regarded as faulty (e.g., crossing the privilege boundary).

2.3.4 In-flight data

Modern CPUs have many potential sources of in-flight data which carry information on
currently executing load and store operations. To execute a load or store, the CPU first
translates the source or destination from its virtual address to a mapped physical address,
then acquires permission to access the corresponding location for conducting the actual read
or write. All these steps are potentially time consuming and may cause pipeline stalls. To
optimise, the CPU records ongoing read or write requests in internal buffers, then continues
processing other instructions. In this work, we focus on three internal microarchitectural

components that store in-flight data: load and store buffers, and line fill buffers.
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Load buffers Load-buffer entries store information about dispatched load operations,
such as virtual addresses, ordering constraints due to adjacent loads or stores, and the current
status. The load buffer is normally located between the execution engine (Section 2.3.3)
and the L1-D cache, serving the ongoing loads issued by the load port, a type of port for

load operations, in the execution engine (Section 2.3.3).

Store buffers The store buffer tracks pending store requests sent from the execution
engine (Section 2.3.3), recording information about both address and data. Moreover, the
store buffer can also be involved in pipelining optimizations, such as the store-to-load
forwarding [Abramson et al., 1995; Mekkat et al., 2015] which forwards the recent store
to the load bufter if a pending load is requested from the same physical address. In other
words, the store-to-load forwarding searches for any pending loads that fetch from same
physical addresses as pending stores, and forwards the store values if any matching pairs
are found.

Both store and load requests use virtual addresses which need to be translated into
physical address (Section 2.2), a potentially time consuming process (Section 2.3.1). To
optimize, the store-to-load forwarding can be speculatively executed without waiting on
the virtual-to-physical address translation. For instance, recently released Intel processors
predict whether the physical addresses of a given pair of load and store are identical by
comparing only partial virtual addresses [Minkin et al., 2019; Yoaz et al., 1999]. Thus the
processor can execute the store-to-load forwarding speculatively before translated physical
addresses are available. Later, the processor decides either to commit or revise the load

once the physical addresses are available.

Line fill buffers The line fill buffer records outstanding load or store requests that suffer
from cache latencies, such as L.1-D cache misses. The line fill buffer works as a memory
interface for the pipeline, connecting the pipeline to the cache hierarchy and main memory.
Moreover, the line fill buffer can reduce cache stalls while resolving cache misses or
participate in optimisations performed on load or store buffers. For instance, the line fill
buffer in Intel processors allows non-blocking reads from the L1-D cache while the cache
hierarchy is trying to resolve L.1-D misses [Dundas, 2002; Intel, b]. Moreover, the line fill
buffer in Intel processors assists speculatively executed store-to-load forwarding if stores
are pushed through the line fill buffer to either the L1-D cache or main memory [Abramson
etal.,, 1997, 1999; Bodas et al., 1998].

2.3.5 Buses and interconnects

Buses host traffic generated from the CPU to external memory, including external caches
(e.g., the LLC). Interconnects connect all hardware components on a multicore system,
working as a network router for transferring messages among components. The interconnect

on contemporary hardware works as a sophisticated network with the help from multiple

16



components, including packet buffers, channels, ports, and switches. Due to being shared
by cores on a system, buses and interconnects are vulnerable to saturation [Wassel et al.,

2013], as they are under-provisioned.

2.3.6 Hardware multithreading and multicore

The simultaneous multithreading (SMT) allows multiple execution contexts (i.e., hardware
threads) to execute concurrently, each with its own hardware state. SMT increases CPU
throughput by scheduling hardware threads among the functional units. Intel’s hyperthread-
ing technique is an example of an SMT implementation where multiple hardware threads
are simultaneously scheduled on the CPU pipeline. In SMT, threads compete to access
functional units (e.g., the floating point unit (FPU)), speculation resources (e.g., the BTB
or the BHB), and L1 caches. In this work, we also regard the sources of in-flight data
(Section 2.3.4) as part of the execution engine (Section 2.3.3) shared by hardware threads.

In the superscalar execution model (Section 2.3.3), micro-ops that belong to different
hardware threads (threads in the SMT model) are scheduled together thereby competing for
ports. As ports are designed for different kinds of operations (Section 2.3.3), a hardware
thread can easily create contention on a port by executing operations that can only be
executed on that port. The fine-grained sharing between hardware threads introduces
tremendous threats to system security, in particular by exploiting port contention in real

time.
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Figure 2.5: The shared resources in a multi-core Intel system.

A modern multicore system has complicated resource-sharing hierarchies. Figure 2.5
shows an example of such sharing hierarchy on an Intel multi-core system. The hierarchy
contains hardware threads, cores, and packages. Hardware threads share all the core-private
resources, including speculation resources (e.g., BTB and BHB), TLB, functional units, and

L1 caches. The L2 cache can also be a core-private resource, working as an intermediate
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cache between the L1 and L3 caches. All cores share the L3 on the package, whereas

everything running in the system shares the interconnect and buses.

2.3.7 DRAM

The DRAM typically operates as the main memory in a system. A DRAM consists of
multiple DRAM chips that each contains multiple banks. In each bank, there is a two-
dimensional array of DRAM cells, which are the smallest unit of storage in the DRAM [JE-
DEC, 2012] . The data stored in each cell is decided by the amount of charge stored in its
capacitor: the charged state represents bit one, and the discharged state represents bit zero.
Moreover, every cell is connected by a horizontal wordline and a vertical bitline. All cells
connected by the same wordline form a row, whereas all cells connected by the same bitline
form a column [Kim et al., 2014]. Each bank also has a row buffer that caches the value of
the most recently accessed row.

To access a word, the DRAM controller first opens the corresponding row from the
same bank in all chips, then transfers all data stored on these rows to row buffers in each
bank. Finally, the DRAM controller accesses data stored in row buffers for requested reads
or writes. Before opening another row, the controller must close the currently open row.

Data stored in DRAM cells can be corrupted by losing charge or external events. To
address that, the DRAM controller periodically recharges cells, refreshing the charge stored
in capacitors. This process is called refreshing. Additionally, external events, such as the
exposure to cosmic rays [Hwang et al., 2012], can also corrupt data stored in cells.

To protect data, the DRAM design can choose to contain error-correcting code (ECC)
memory that stores extra parity bits for error correction and detection. An ECC implement-
ation can correct up to n bits of errors and detect maximumly m bits of errors, where n and
m are determined by the error correction algorithm as well as the number of parity bits in
the ECC memory. Supporting ECC memory requires the system to enlarge the memory bus
for the extra parity bits. In commodity systems, the memory controller is the only unit that
conducts ECC correction. Once an error is detected, the memory controller corrects the

error and writes back the corrected values.

2.3.8 GPU

The GPU is a type of co-processor that is specialised in image rendering. Comparing to the
CPU, the GPU devotes more computation engines, i.e., arithmetic logic units (ALUs), to
data processing rather than general purpose processing. The fundamental processing unit
in GPU is called stream processor (SP) that each contains multiple ALUs. Furthermore,
the SP executes shaders which are specialized programs designed for conducting graphics
rendering in parallel. Additionally, the GPU has multiple texture processors (TPs) that load
input textures requested by SPs during computation [Frigo et al., 2018].
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The GPU also contains private caches that store recently accessed vertices and textures.
For instance, there are two levels of caches on the Adreno 330, an integrated GPU used by
embedded Android devices: small but efficient L1 caches (1 KiB for each TP) for textures,
and a unified L2 cache (32 KiB) for both vertices and textures [Frigo et al., 2018].

The GPU can either work as a dedicated GPU with its own memory or an integrated
GPU. When working as an integrated co-processor, the GPU shares the system memory

with the processor.

2.4 Cache Colouring

Cache colouring is a software approach to partition physically-indexed set-associative
caches, originally proposed for improving system performance [Bershad et al., 1994;
Kessler and Hill, 1992] or to guarantee performance of real-time tasks [Liedtke et al.,
1997]. There are also other methods for partitioning caches, which will be introduced
in Section 3.3.5. In this section, we focus on the cache colouring technique due to its
importance for this work—conducting spatial partitioning on physically-indexed caches
using the memory management model of the seL.4 microkernel. We will explain the method
for implementing cache colouring in seL4 in Section 2.6.3. Additionally, we will describe
related work that applied cache colouring as a method for mitigating cache-based timing

channels in Section 3.3.5.
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Figure 2.6: The cache colouring mechanism.
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Cache colouring, also called page colouring, takes advantage of overlapping bits in
two mapping schemes: cache-indexing (Section 2.3.1) and virtual-to-physical address
translation (Section 2.2). Figure 2.6 presents an overview of the cache colouring mechanism.
Overlapping bits shown in Figure 2.6 are cache colouring bits, which assign cache sets to
memory frames, regarded as the colour of the frame.

Cache colouring is an OS mechanism, which requires that the OS has complete control
on allocating colours to security domains. Because the virtual address is under the control
of the user-level application, cache colouring is conducted through physical addresses,
which assigns physically-indexed cache sets to memory frames. Hence the cache colouring
has two prerequisites: a physically-indexed cache, and that the indexing bits used by cache
mappings contribute to the frame number. That is, cache colouring requires that frames
with different values in their colouring bits do not map to the same cache set. For an n-way
set-associative cache of size Z bytes, there are Z/nL cache sets if the cache line size is L.
With a frame size of P bytes, there are Z/nP cache colours.

The cache colouring technique cannot be used on virtually-indexed caches, such as the
L1 caches, as virtual address allocation is not under the OS’s control. Similarly, the OS can-
not colour BTBs, BHBs, nor TLBs, as these are all virtually-indexed caches (Section 2.3.1).

Cache colouring can also be used to protect against cache-based timing channels, by
assigning security domains that contain a number of software components and processes
with disjoint frame colours. Our work regards a security domain as a single unit in a
system’s security policy for enforcing time protection. Necessarily, because frames with
different colours will be mapped to different cache sets, cache lines from those coloured
frames cannot reside in the same cache set. Hence, frames with different colours cannot
interfere in the cache. Figure 2.7 demonstrates a simple system scenario where security
domains occupy different coloured cache sets by created with only coloured frames. Due
to the absence of sharing, threads hosted by different security domains cannot transmit
information via cache-based timing channels.

Similarly to other hardware-partitioning techniques, as will be introduced in Sec-
tion 3.3.5, cache colouring can mitigate cache-based timing attacks relying on either
consecutive (Section 3.2.3.1) or concurrent cache accesses (Section 3.2.3.2).

On more recent Intel architectures, the LLC contains multiple cache slices that are
connected by a ring bus [Yarom et al., 2015]. Thus the cache mapping process has two
stages: locating a cache slice, and locating a cache line within a slice. According to previous
work, Sandy Bridge and newer Intel microarchitectures hash the physical address to locate
a cache slice [Hund et al., 2013; Inci et al., 2016; Irazoqui et al., 2015b; Maurice et al.,
2015; Yarom et al., 2015]. Within a cache slice, the hardware uses a simple one-to-one
function for mapping cache sets [Liu et al., 2015].

Knowledge of the hash function used for mapping cache slices can increase the number
of cache colours if the hash function for slice index uses a different input than that used

for mapping cache sets within a cache slice. Consequently, the result of calculating the
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Figure 2.7: Assigning security domains with different cache colours.

slice index does not affect the result of calculating the cache sets. For example, a 4-slice
L3 cache has 128 colours if each of the slices has 32 colours. If the hashing function is
known, the OS can assign frames to cache slices as well as cache sets within a slice based

on physical addresses (frame numbers).

However, reverse engineering the details of hashing functions used by the LLC may not
be possible for future CPUs as the complexity of the hardware design increases. Still, cache
colouring is possible without the knowledge of the hashing function by only colouring cache
sets within a slice [Yarom et al., 2015], paying the expense of using fewer colours than
actually offered by slicing. In this work, we conduct the cache colouring on experimental
Intel processors using colours within a slice, as we do not make any assumptions on the

undocumented hashing function.

One shortcoming of cache colouring is its inability to support huge pages. Huge pages
are large frames designed to alleviate TLB pressure, such as 2 MiB-sized pages on x86.
When large pages are enabled, systems have fewer available colours (often one) as there is
reduced overlapping (frequently none) between memory frame numbers and cache-mapping
bits. Additionally, coloured bits are only a subset of the memory frame numbers; hence
the cache colouring breaks the memory into chunks. Each chunk contains frames with
disjointed colours. As a result, coloured memory is generally not contiguous, as memory

with same colours are located in separate chunks.

The other drawback of cache colouring is that reallocating colours requires copying all
the preempted frames to one of the remaining colors, which can be an expensive task for
taking a color away from a partition. However, a system can regard this task as affordable if

the reallocation is not triggered frequently.
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2.5 The L4 Microkernel Family

A microkernel offers the near-minimum amount of system services that are required to
implement an OS. Compared with the monolithic kernel, a microkernel does not contain
many functions associated with a traditional OS, such as device drivers, process manage-
ment, memory management, or file systems. These OS functions are all implemented by
user-level servers (i.e., applications), using general-purpose system mechanisms provided
by the kernel [Heiser and Elphinstone, 2016; Levin et al., 1975; Liedtke, 1995]. Normally,
the microkernel executes at the most privileged level offered by CPU, which is necessary to
conduct context switching, enforce virtual memory configurations, and handle hardware in-
terrupts. In contrast, everything else, such as user-level device drivers or memory allocators,
are running at lower privilege.

On a microkernel, user-level threads communicate through inter-process communication
(IPC) messages, a message-passing mechanism offered by kernel. The performance of IPC
is critical for microkernel systems, because all system services offered by both user-level
applications and the kernel are obtained through IPC messages. Previously, Liedtke [1993]
demonstrated an efficient IPC message-passing design on his L4 kernel, which is a factor
of 10-20 performance improvement over previous microkernel implementations [Accetta
et al., 1986]. The success of the L4 kernel triggered a revolution in microkernel design,
driven by principles including minimality, generality, efficient IPC, and user-level device
drivers [Hirtig et al., 1997; Heiser and Elphinstone, 2016; Liedtke, 1995].

Minimality and generality Ideally, a microkernel should only contain the minimum
set of mechanisms for implementing user-level services, and there should be no policy in the
kernel. In other words, a service can only be tolerated inside the microkernel if relocating
it to user-level would prevent fulfilling other system required functionalities [Heiser and
Elphinstone, 2016; Liedtke, 1995]. Furthermore, the kernel mechanisms are designed for
general-purpose usage, allowing a broad spectrum of systems to be built, from embedded

systems to cloud platforms.

IPC As mentioned before, an efficient IPC implementation is important for microkernels
as IPC is on the critical path for invoking system services. Synchronous IPC copies message
contents from the sender directly to the receiver, avoiding the cost of buffering the message
in the kernel. For short messages that can be passed in CPU registers, the kernel can further
optimise IPC performance by only conducting a context switch, leaving those message

registers untouched.

User-level device drivers The minimality principle, only containing a minimum set
of mechanisms but not any policies inside a microkernel, motivates relocating device

drivers to user-level. In such a design, hardware interrupts are modeled as IPC messages
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sent by the kernel to user-level drivers. An outstanding benefit of moving device drivers
to user level is to largely decrease the size of the kernel, resulting in a smaller trusted
computing base [Rushby, 1984] that is furthermore verifiable [Klein et al., 2009]. The
kernel still contains a small set of drivers essential for system services, including a timer
driver for enforcing system ticks and an interrupt controller driver for distributing interrupts

to user-level applications (e.g., device drivers).

2.6 The seL4 Microkernel

2.6.1 Overview

selL4 [seL4] is a high-assurance microkernel designed for security- and safety-critical
systems. The implementation of sel.4 is formally proved to be correct against its functional
model [Klein et al., 2009], even to the level of the executable binary [Sewell et al., 2013].
Also, the formal model of the kernel provides integrity and confidentiality guarantees [Klein
et al., 2014], demonstrating the kernel is free from any covert storage channels [Murray
et al., 2013].

In common with other security-focused systems [Bomberger et al., 1992; Shapiro et al.,
1999], seL4 is a capability-oriented microkernel: capabilities [Dennis and Van Horn, 1966;
Karger, 1988] grant authorisation to access objects. A capability represents an object and
associated rights to operate on that object. To perform an operation, such as acknowledging
the receipt of a hardware interrupt, a user-level thread must present its corresponding
capability with sufficient access rights for the invoked kernel service [Data61, 2017b].
Accordingly, all seL.4 system calls operate on capabilities that are managed by the kernel
but created upon request from user-level applications.

With the capability-based access control model, the system can selectively grant rights
to user-level applications in order to isolate those applications from each other. For example,
the system can prohibit communication between applications by not sharing any memory
frames, represented by Frame capabilities, nor endpoints that are used for send and receive
IPC messages, represented by Endpoint capabilities. This system model enables a high
degree of assurance in the isolation provided by seL4, as the kernel only permits operations
that are explicitly approved by corresponding capabilities. We will examine types of kernel
objects that are referenced by capabilities in Section 2.6.2.

There is no concept of a processes on sel4; rather, the kernel uses a lower-level
abstraction, the thread, to represents an executable context on a CPU. User-level processes
are regarded as threads on sel4, as the kernel does not provide any process or thread
management. A user-level application can contain multiple threads which share a virtual
address space. selL4 regards process management as system policy, thus it should be
implemented at user level with kernel-provided mechanisms. Similarly, the kernel does not
manage user-level address spaces, but provides system mechanisms for constructing the

layout of user-level address spaces.
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The multicore implementation of seL.4 uses a big lock to maintain the coherency of the
kernel data [Peters et al., 2015]. The design was chosen for its performance and verifiability
on a small sized microkernel. The kernel acquires the lock before serving a system call and
releases the lock before resuming the next running thread. On a multicore system, threads
can only be scheduled on their core, marking as the affinity of a thread. The kernel maintains

a scheduling queue for each core, collecting the ready-to-run threads on that core.

2.6.2 The memory management model in seL4

Based on the design goal of separating policy from kernel mechanism [Levin et al., 1975]
(Section 2.5), seL4 does not impose any memory-allocation nor thread-management policy;
rather, the memory allocation task is delegated to user level. The kernel has no heap and
uses only a bounded stack. Beyond that, the kernel provides a model for managing kernel
memory at user-level, which is motivated by enabling reasoning about resource usage and
isolation [Elphinstone and Heiser, 2013].

Figure 2.8 gives an overview of the memory model in seL.4. After booting, the kernel
hands over all free memory as Untyped capabilities to the initial thread. Those Untyped
capabilities can be further re-typed into other objects, such as memory frames for user-level
address mappings or thread control blocks (TCBs). In the same vein, all the other types of
kernel memory, including page tables used to create user-level address spaces, capability

management spaces, or inter-process communication endpoints, are created by user-level

processes.
Retyping untyped
objects into other
kernel objects Memory
frames
Untyped
objects — TCBs
Endpoints
/ )
Abstracting free Memory Kernel objects
memory as

untyped objects

Figure 2.8: The memory model in sel.4.

We now explain the memory management model of seL.4 using kernel objects used on

32-bit Arm processors, as listed in Table 2.1.

Untyped Kernel metadata that is designed explicitly as kernel objects and subjected to
capability-based access control. Instead of being dynamically created by the kernel, all
kernel objects must be explicitly created from Untyped memory, application-controlled

memory regions that are created by the kernel during system start-up.
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Kernel object

Description

Untyped Memory from which kernel objects can be created
TCB Thread control block
CNode Capability storage; can be used as the CSpace of a thread

PageDirectory

Top-level page directory used for paging structure; the VSpace

PageTable Second-level page directory used for paging structure
Page A frame of physical memory
ASIDControl Top-level ASID pool used for generating second-level ASID pools
ASIDPool Second-level ASID pool
IRQHandler An interrupt source
IRQControl Master capability for creating other IRQHandler capabilities
Endpoint Port-like object for synchronous IPC messaging
Notification A signalling mechanism
Table 2.1: Kernel objects in seL4 for 32-bit Arm processors.
TCB sel4 offers services to user-level applications through capabilities. A TCB capability

represents a TCB representing a thread, which has an associated capability space (CNode)

and virtual address space (VSpace).

CNode

a capability. A CSpace represents the namespace used by an application for storing its

A CNode has a fixed number of slots. A slot in a CNode can be empty or store

capabilities, and any capability invoked by this application must be valid in its namespace.
A CNode can be configured as the CSpace of a thread by associating that CNode with its
TCB (the TCB object). Performing deletion on capabilities removes those capabilities from
corresponding CSpace. Moreover, deletion resets memory used by kernel objects pointed

by those capabilities if they are the only existing capabilities for those objects.

PageDirectory A PageDirectory capability represents the top-level page directory used
for virtual-to-physical address translation (Section 2.2). In seL4, each virtual address space
is managed as a VSpace. Depending on the requirements of the underlying hardware, a
VSpace can be composed of various objects for managing virtual memory (Section 2.2),
including a top-level page directory (a PageDirectory capability), page tables (PageTable
capabilities), memory frames (Page capabilities), and an ASID that is assigned with the
ASIDPool capability.

ASIDControl

creates the first-level ASIDPool at boot, and the second-level ASIDPool is created and

The seLL4 microkernel uses a two-level ASID mapping: the kernel only

installed by the initial thread using the ASIDControl capability.
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IRQHandler To delegate hardware interrupts an authorised thread can invoke the seL4_-
IRQControl system call on the IRQControl capability, the master capability for managing
interrupts. This allows threads to create IRQHandler capabilities on given hardware interrupt
request (IRQ) sources. Furthermore, a user-level thread can subscribe interrupt notifications
from an IRQ by associating a Notification capability which provides a signalling mechanism
with the corresponding IRQHandler. Once the interrupt is received, the thread acknowledges

the receipt of the interrupt by using the seL4_IRQHandler_Ack system calls.

Endpoint selL4 provides the message-passing mechanism between user-level threads
through Endpoint capabilities. To send an IPC message, a user-level thread invokes the
seL4_Send system call on an Endpoint capability, and the recipient thread receives the

message via the seL4_wait (i.e., listening) on a copy of that Endpoint capability.

2.6.3 Implementing cache colouring in selL4

The following properties of seL.4’s memory management model contribute to resource

isolation:

* The kernel memory is explicitly managed as kernel objects;

* the capability-based access control model simplifies calculating the resource usage

of a given thread;

* kernel objects are created and managed at user-level; and

the kernel does not contain any memory-management policy.

A user-level management thread can easily deploy memory management policies at
user-level using the kernel mechanisms provided by sel4.

Figure 2.9 demonstrates the application of cache colouring to create security domains:
every kernel object used by a coloured domain has the same cache colour. To achieve that,
the management thread first partitions memory into coloured pools, by splitting Untyped
objects into smaller sized Untyped objects according to the colour of their memory frame
(Section 2.4). Then, the management thread creates coloured system objects using the
Untyped memory in each pool, which are later used to create coloured security domains.

By applying cache colouring in this way, the coloured threads belonging to different
domains do not share lines in shared caches, for any uses by user-level address space
(VSpace) or kernel metadata (kernel objects). Critically, those isolated domains are not
able to communicate if there is no Endpoint capability available for IPC. To create a static
system, the management thread can commit suicide after system initialisation, destroying the
possibility of revoking those coloured objects. Thus the system remains strictly partitioned

forever.
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Figure 2.9: Creating coloured security domains using the memory model in sel.4.
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Related Work

This chapter is the subject of the following paper of which I was the primary author:
Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. Journal of Cryptographic
Engineering, 8:1-27, April 2018a. The analysis and classification of all published timing
channel attacks and corresponding countermeasures was performed primarily by myself,

with assistance from Yuval Yarom and David Cock, under the supervision of Gernot Heiser.

3.1 Scope

This work focuses on mitigating microarchitectural timing channels based on resource
contention on both single-core and multicore systems. Hence, we ignore external channels,
such as the DRAM open rows channel [Pessl et al., 2016], in this work. More specifically,

we do not cover timing channels exploiting resource contention in the following methods.

3.1.1 Hardware multithreading

We do not cover timing attacks between hardware threads (Section 2.3.6) that are concur-
rently executing on a core. Hardware threading (i.e., Hyperthreading on Intel platforms)
introduces a tremendous threat to system security [Percival, 2005], due to the concurrent
sharing between hardware threads. For example, the PortSmash attack exploited the conten-
tion on ports in the execution engine (Section 2.3.3) on Intel’s Skylake processors [Aldaya
et al., 2018]. As mentioned in Section 2.3.6, a hardware thread can easily create contention
on a port by continuously executing the corresponding instruction, thereby slowing down
other hardware threads. The PortSmash attack utilised this feature by repeatedly executing
instructions on both double and add ports, which eventually lead to breaking the elliptic
curve digital signature algorithm (ECDSA) algorithm [Aldaya et al., 2018].

Moreover, previous work demonstrated timing channels by exploiting contentions not
only on functional units on pipeline (contending ports) [Aciigmez and Seifert, 2007; Aldaya

et al., 2018; Wang and Lee, 2006], but also on various caches or cache-like components

29



(contending cache lines), including the line fill buffer [Schwarz et al., 2019], the TLB [Gras
etal., 2018], the BTB [Aciigcmez et al., 2007a,b], the L1-I cache [Aciicmez, 2007; Aciigmez
et al., 2010], and the L.1-D cache [Brumley and Hakala, 2009; Osvik et al., 2006; Percival,
2005; Tromer et al., 2010]. Attacks that create contention on caches use different techniques
than those that contend ports. We will explain attacking techniques used for generating

cache contention in Section 3.2.1.

Timing channels between hardware threads are inevitable due to the large amount of
concurrently shared microarchitectural states. For preventing those timing channels, the OS
has to prohibit the concurrent sharing by either disabling hardware threading or allocating
all hardware threads of a core to the same security domain. Disabling hyperthreading is
the most effective method for mitigating timing channels between hardware threads, which
is becoming a common practice on public clouds [Marshall et al., 2010]. Furthermore,
OpenBSD has already disabled hardware threads by default on Intel processors [OpenBSD,
2018] in order to mitigate the TLBleed attack [Gras et al., 2018], a side channel attack
that successfully broke the elliptic curve function used for cryptographic multiplication in
libgcrypt [Bernstein, 2006] by causing contention on shared TLBs between hardware
threads.

3.1.2 Timing channels due to self-contention

Moreover, we do not cover timing attacks due to self-contention, where the total execution

time of a victim program is related with the secret.

Such kind of attacks detect the accumulated number of cache hits and misses while the
victim application is processing different input values. This can then be measured as the
total execution time of the victim application. For example, Bernstein [2005] demonstrated a
practical attack against the avanced encryption standard (AES) by measuring the latency of
aremote AES service, representing self contention as an exploitable side channel. Similarly,
Andrysco et al. [2015] discovered that the latency of floating-point operations is related to
types of operands on various floating-point instructions. Those measurable timing variances
can directly lead to a side channel attack on a scalable vector graphics (SVG) filter, revealing
arbitrary pixels from attacked web pages browsing on Firefox.

A common approach to mitigating timing channels due to self-contention is applying
the constant-time approach (Section 3.3.1): eliminating any secret-dependent behaviours
on consuming hardware resources which can directly cause timing difference [Ge et al.,
2018a]. In other words, the sequence of accessing hardware caches or taking branch
instructions does not depend on the sensitive information, such as the encryption key or the
plaintext [Bernstein, 2005; Brickell, 2011]. The constant-time implementation of a given
program (e.g., an AES implementation), is always hardware platform dependent, as the
implementation on one hardware platform may behave differently on another hardware

platform [Cock et al., 2014]. Investigating the constant-time technique is out of the scope
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of this project, as we are focusing on OS-enforced isolation that does not depend on
assumptions on applications.

Software timing channels also belong to this category, as they transmit information by
deliberately altering execution length. A simple example of such channels is a Trojan pro-
gram deliberately yielding the CPU for transmitting information, while time-multiplexing a
core with a spy program. Software timing can be mitigated by padding the execution time
of the Trojan [Askarov et al., 2010; Braun et al., 2015; Cock et al., 2014].

We also regard the attack that exploited the timing of transactional aborts in Intel’s
transactional synchronization extension (TSX) [Intel, a] as a timing channel due to self-
contention. TSX is Intel’s implementation of the hardware transaction memory [Wei et al.,
2015], supporting user-level transactions that can result in either commits or aborts. During a
transaction, TSX triggers the abort if the user-level program tries to access kernel addresses.
Jang et al. [2016] discovered that the timing of raising the abort is different for differently
configured kernel pages. On tested Haswell and Skylake processors, the abort caused by
reading from a mapped kernel page is triggered faster than the one caused by reading from
an unmapped kernel page. Similarly, trying to execute an executable kernel page caused
a faster abort than non-executable ones. The main reason for this timing channel is that
the MMU takes more time to confirm an unmapped or non-executable page before raising
an abort. Using this timing channel, Jang et al. derandomised the address space layout
randomization (ASLR) [Bhatkar et al., 2003] which is designed to prevent code-injection
attacks in kernel. The standard defence against this attack is kernel address space isolation,

which will be introduced in Section 3.3.4.

3.1.3 Buses and interconnects

In addition, we do not cover timing channels based on shared bus or interconnect (Sec-
tion 2.3.5) [Hu, 1991; Wu et al., 2012], as attacks can easily exploit bus-based timing
attacks by maliciously consuming bus traffic [Woo and Lee, 2007; Zhang et al., 2016]. As
mentioned in Section 1.1, the bus and interconnect are bandwidth-limited resources which
require concurrent access for creating any contention. For example, a thread running on a
core can generate a large number of data-fetching requests, saturating the shared bus. Under
such circumstances, threads running on other cores can suffer from a denial-of-service
(DoS) attack if their progress is dependent on the bus bandwidth. Similarly, the interconnect
network is vulnerable to DoS attacks caused by aggressive network traffic generated from
malicious programs [Wassel et al., 2013].

Hu [1991] demonstrated that the system bus can be used as a covert channel, by
modulating the traffic on the shared bus of a multicore system. For example, a thread (the
Trojan) running on a core can generate a huge amount of bus traffic by sweeping a buffer
that is larger than the LLC (hence causing bus traffic), which can be detected by a spy thread
running on another core by monitoring its progress on accessing a similar sized buffer.

Previous work demonstrated that this type of channel is exploitable as a covert channel on
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native machines as well as virtualised environments (e.g., cloud platforms) [Hu, 1991; Wu
etal., 2012].

Similarly, threads running on separate cores suffer performance interference from com-
petition on the interconnect network on multi-core systems. A program can hijack network
traffic by generating memory requests, hence dominating the network bandwidth. Previous
work simulated both covert and side channels that are based on network interference [Wang
and Suh, 2012]. To demonstrate a covert channel, a Trojan program manipulates network
traffic load, encoding bit “1” through high traffic load and bit “0”” though low traffic load.
Meanwhile, a spy receives the signal by measuring the throughput of its own memory
fetches. Wang and Suh simulated a side channel attack on Rivest-Shamir-Adleman (RSA)
encryption, with the assumption that every exponentiation execution generates memory
requests due to cache misses. By monitoring the network traffic, a spy program can conduct
a cryptographic attack, building correlation between the network traffic and exponentiation
executions in RSA that represents the number of bits “1” in the secret key. Wang and Suh
assume an unrealistically small cache and demonstrated the side channel in simulations

only, hence there is no reason to assume this could be reproduced on realistic hardware.

Although buses and interconnects have been used for covert channels, there have
been no side-channel attacks being demonstrated in a realistic setting. Mitigating covert
channels on those resources requires either time-multiplexing all cores by assigning all
cores (hence bus and network traffic) to programs from the same security domain, or
partitioning the shared bandwidth with hardware mechanisms. However, contemporary
mainstream hardware does not support bandwidth partitioning. Intel recently introduced
the memory bandwidth allocation (MBA) mechanism, which imposes an approximate limit
on bandwidth consumption introduced by a core [Intel, e]. The technique is insufficient for

preventing covert timing channels, due to the approximate enforcement.

This means that covert channels through interconnects are unavoidable on contemporary
hardware, and we have to restrict ourselves to scenarios where interconnects cannot be used
as channels. We therefore assume that the system either runs on a single-core platform or
time-multiplexing cores with co-scheduling security domains [Ousterhout, 1982], at least
while the system is processing sensitive information. This assumption is clearly restrictive,
but it is the best we can do on present hardware. Co-scheduling schedules all user-level
processes that belong to the same security domain across all available cores, thus there is

only one domain consuming the cross-core bandwidth.

3.1.4 DRAM attacks

Furthermore, we do not cover attacks based on DRAM contention, including attacks on
row buffers, attacks causing bit-flips (i.e., Rowhammer attacks), or attacks on the ECC

correction time.
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Row buffers As introduced in Section 2.3.7, modern DRAM comprises a hierarchical
structure of chips, banks, and cells. Cells are the smallest unit of storage in DRAM. Cells
connected by the same wordline form a row. In each bank, there is a row buffer that caches
the most recently accessed row. To access data, the DRAM first opens a row then fetches
data stored in that row to the row buffer in that bank. If the row is already opened, the
DRAM directly accesses the data cached in the row buffer (a row hit). Otherwise, the
DRAM closes the opened row before opens the selected row (a row miss).

Pessl et al. [2016] demonstrated that the timing difference between a row miss and a
row hit can be easily identified on x86 and Arm platforms, due to the fact that the row
miss generates a higher memory latency than the row hit. Moreover, Pessl et al. reverse-
engineered the DRAM addressing scheme using the timing channel on row buffer conflicts.
Additionally, they implemented a covert channel based on row buffer conflicts, achieved a
transfer rate of up to 2.1 MiB/s on the Haswell desktop platform (i7-4760) and 1.6 MiB/s
on the Haswell-EP server platform (2x Xeon E5-2630 v3). Lastly, Pessl et al. conducted
a side channel attack which learned keystrokes in the Firefox address bar: a spy process
learnt when a specific memory location was accessed by a victim process running on the
other core through row conflicts.

One possible mitigation of the row buffer attack is to partition the DRAM banks,
prohibiting any contention on the row buffer in the bank. Similarly with PIPT caches
(Section 2.3.1), the DRAM banks are physically indexed. [Kloda et al., 2019] demonstrated
a method to extend the cache colouring technique (partitioning cache sets using physical
frame numbers, Section 2.4) to partition DRAM banks by applying the knowledge of the
DRAM addressing scheme [Pessl et al., 2016].

Rowhammer The continued scaling of the DRAM manufacturing technology increases
the density of cells, resulting in smaller cells and less distance between them. These
high-density DRAMs have a high risk of disturbance error, a phenomenon in which the
interference between cells causes errors [Mandelman et al., 2002].

Although manufacturers have employed mitigations, Kim et al. [2014] discovered
that 110 among 129 tested DRAM modules are vulnerable to disturbance errors. Their
attack, called Rowhammer, induced disturbance errors by accessing a memory address
repeatedly. The Rowhammer attack repeatedly activates a row in order to interfere with
operations in adjacent rows through voltage fluctuations on the wordline of the opened
row. Eventually, the disturbance causes cells in adjacent rows to lose charge before being
restored (Section 2.3.7), inducing bit-flips. Most importantly, the Rowhammer attack
allows an attacker to generate bit-flips in memory frames that belong to a victim process,
bypassing memory protection as these frames are not mapped in the attackers’ address space
(Section 2.2). Later, Seaborn and Dullien [2015] demonstrated a probabilistic corruption
on system page table entries using the Rowhammer attack, which caused the attacker

to gain kernel privileges on x86 platforms. Moreover, Bosman et al. [2016] exploited a
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JavaScript-based Rowhammer attack, a reliable Rowhammer attack on the Microsoft Edge
browser.

The Rowhammer attack can also be launched from the integrated GPU (Section 2.3.8)
on a system on a chip (SoC), as the main memory is shared between the GPU and the
processor. Frigo et al. [2018] demonstrated the Glitch attack on the integrated GPU (Adreno
330), which is a remote end-to-end Rowhammer attack that allows an attacker to fully
compromise the Firefox browser on Android platforms. To build the attack, Frigo et al. first
reverse-engineered the cache architecture of the GPU, as well as its replacement policy.
Then, they created an eviction set that allowed the attacking program, a vertex shader,
to generate aggressive memory accesses that eventually caused the Rowhammer attack—
generating bit-flips to overwrite read or write primitives enforced by the JavaScript sandbox
in Firefox.

To mitigate the Rowhammer attack, Kim et al. [2014] proposed the probabilistic adjacent
row activation (PARA) mechanism which ensures that the activation on a row also opens
its adjacent rows with some low probability. Kim et al. evaluated the PARA on a DRAM
simulator, and demonstrated that the mitigation is effective with negligible performance

impact.

ECC The ECC (Section 2.3.7) stores extra parity bits for error correction and detection
on DRAM chips. Cojocar et al. [2019] discovered that the error correction process contains
measurable latency, which can be used as a timing channel. Cojocar et al. demonstrated
ECCploit, a Rowhammer attack on ECC enabled DRAM chips. To prepare the attack, they
reverse-engineered the ECC algorithm used on the target platform, with help from the ECC
timing channel. Then, they built a memory model for locations of correctable bit flips, and
constructed error patterns that cannot be corrected by the ECC. Lastly, the attack launched
the Rowhammer attack using these uncorrectable patterns, which successfully corrupted
page table entries [Seaborn and Dullien, 2015], RSA public keys [Razavi et al., 2016], and
binary code (instructions stored in memory) [Gruss et al., 2018].

To mitigate the timing channel on the ECC, the system needs to remove any timing
variances on ECC related operations conducted on memory controller. One potential
solution is the in-DRAM ECC which performs ECC operations on die rather than on the
memory controller [Cha et al., 2017].

3.1.5 DoS attacks

Lastly, our work does not involve any DoS attacks—system performance degradation due to
aggressive resource consumption in real time [Woo and Lee, 2007]. The most common DoS
attacks include polluting shared caches, such as the LLC, therefore dramatically slowing
down all the other cores [Allan et al., 2016; Cardenas and Boppana, 2012].

Although the DoS attack is an active concern for ensuring the quality of service (QoS)

of co-tenanted systems, our work focuses on mitigating timing channels due to resource
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contention. We exclude the DoS attacks from our research scope as QoS and system security
are different. Still, the mechanisms introduced in our work can be applied to eliminate DoS

attacks due to sharing.

3.2 Timing Attacks

3.2.1 Attacking techniques

To understand how microarchitectural attacks work, we study attacking techniques that
have been used on modern hardware. Because covert channels and side channels use the
same technique (Section 2.1), we assume a malicious attacker thread uses cache contention
to target a secret held by a victim thread to simplify the description. As discussed in
Section 2.3.1, hardware caches have a limited capacity, and loading a line from a cache is
much cheaper than loading from the main memory. The critical factor of a cache-based
timing attack is exploring the timing differences between cache hits and misses on a shared

hardware cache through resource contention.

Prime+ProOBE This technique times repeated accesses to the attacker’s working set, to
detect an eviction caused by the victim. Firstly, the attacker primes cache sets by filling one
or more sets with its own lines. Then, the attacker waits on the victim to finish an execution.
Lastly, the attacker probes the victim’s cache usage by timing access to previously loaded
cache lines. If a cache line was evicted, the time to access the line is high, implying the
victim visited the address that maps to the same cache sets. The XLATE+PROBE attack is a
variant of PRIME+PROBE, which uses cached page table entries in the LL.C as the probing
set.

Covert channel using PRIME+PROBE A cache-based covert channel involves creating
cache contention between the Trojan and spy. Figure 3.1 demonstrates a covert channel
attack using the PRIME+PROBE technique: the Trojan encodes information in the number
of cache sets accessed, and the spy decodes the message by probing on his colliding cache
sets. The Trojan and spy are scheduled together on the same core, sharing all the on-core
hardware resources, including caches. When scheduled, the Trojan decides on accessing a
buffer (for sending a bit “1”’) or being idle (for sending a bit “0”), whereas the spy detects
Trojan’s activity by measuring the latency on accessing his cache-sized buffer. A longer
latency represents that the Trojan accessed the buffer, as the spy senses cache misses; a
shorter latency represents that the Trojan was idling, as the spy senses no cache miss. The
Trojan’s buffer does not need to be cache-sized: having a partial coverage on the shared
cache is sufficient to create the attack. Moreover, more information can be sent than just a
bit. For example, the Trojan and spy can communicate based on a sophisticated encoding

scheme, hence enlarging the throughput of the channel.
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Figure 3.1: A covert cache-based timing channel using the PRIME+PROBE technique.

PriME+ABORT This technique is similar to the PRIME+PROBE attack as it is also de-
signed to detect cache contention on primed cache sets. Rather than timing the cost of a
probe (i.e., revisiting the primed set), PRIME+ABORT utilises transactional aborts in Intel’s
TSX [Intel, a], Intel’s implementation of hardware transactional memory [Wei et al., 2015],
to detect any cache contention caused by other programs that share the primed cache sets.
Intel’s TSX allows multiple programs to access the shared memory in parallel [Herlihy and
Moss, 1993], and triggers an abort if any suspected conflicts occur during a transaction. All
changes made during a transaction are guaranteed to be executed atomically if no conflict
is detected. To use TSX, a program declares the start and the end of a transaction section
with XBEGIN and XEND instructions. Within a TSX transaction, the hardware tracks the read
and write sets of the current transaction, and raises an abort if either any cache lines in the
write set are evicted from the L1-D cache, or any cache lines in the read set are evicted
from the L3 cache (i.e., the LLC In Intel’s processors). There are also other reasons for a
transactional abort but they are not related to the PRIME+ABORT attack.

There are two versions of PRIME+ABORT: PRIME+ABORT-L1 and PRIME+ABORT-L3.
To conduct a PRIME+ABORT-L1 attack, the attacker first starts a TSX transaction, and
primes single L1-D cache set using write operations (holding the cache set in his write
set). Then, the attacker waits for an abort before detecting any conflicts caused by other
processes on the primed cache set. PRIME+ABORT-L1 can only attack processes running
on the same core, as it relies on the write set being evicted from the core-private L1-D
cache. To address that restriction, the PRIME+ABORT-L3 holds the attacker’s read set in L3
cache sets. Thus a TSX abort can detect cache contentions generated by processes running
on other cores that share the same L3 cache. In Intel processors, the L3 cache is the LLC
that is shared by all cores in the processor. The XLLATE+ABORT attack is a variance of
PRIME+ABORT that constructs probing set with cache page table entries on the LLC.
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Evict+Time This approach measures the execution time of a victim, and evaluates the
time difference before and after the attacker evicts targeted cache lines. A growing execution
time indicates that the victim accessed those lines of interest, which is a reflection of cache

misses.

FLusH+RELOAD The FLUSH+RELOAD technique requires not only shared virtual
memory between the attacker and the victim (e.g., shared libraries or page de-
duplication [Bugnion et al., 1997; MitoS et al., 2009]) but also the ability to flush cache
lines by virtual address. To implement the attack, the attacker first flushes a cache line of
interest, then reloads the cache line after the victim has executed. A fast reload means
that the victim accessed the cache line, whereas a slow reload shows the opposite. The
advantage of FLUSH+RELOAD over PRIME+PROBE or EVICT+TIME is that the attacker
can accurately detect the usage of a specific cache line, rather than only a cache set. A
variant of the FLUSH+RELOAD attack, called EVICT+RELOAD, does not need a dedicated
cache flushing instruction. Similarly, FLUSH+FLUSH is another variant of FLUSH+RE-
LOAD, which measures the timing variance of a second x86 clflush instruction to detect

whether the targeted cache line was cached or remained flushed.

Transient execution As introduced in Section 2.3.3, the out-of-order execution model
can execute micro-ops speculatively, and decide to either abort or commit an executed micro-
op when all conditions for making a decision are met. Before being aborted or committed,
the execution of a micro-op is called transient execution. The transient execution does not
affect the correctness of the architectural state, however, it can affect the microarchitectural
state of a system. For example, a cache line that is loaded due to speculatively executed
micro-op stays in the cache even though the micro-op is reissued. Likewise, a micro-op can
cause a faulty load even when the CPU later decides to abort the corresponding instruction.

Transient execution attacks exploit microarchitectural states influenced by transient
executions. Typically, the attack first executes a few instructions transiently, which are later
aborted by the CPU. Then the attacker probes any changes to the cache state using other
cache attacking techniques, such as FLUSH+RELOAD.

3.2.2 Timing attacks on core-shared state

Previous work has demonstrated both covert- and side-timing channels on hardware com-
ponents shared by threads time-multiplexing on a core. As shown in Figure 2.5, resources
shared by threads time-multiplexing on a core are functional units (e.g., the FPU), the BTB,
the BHB, the TLB, the L1-D cache, and the L1-I cache. We also regard execution engines
involved in the superscalar execution model (Section 2.3.3) as functional units shared by

threads on a core, including store buffers and line fill buffers.
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FPU The FPU contains a large state that is normally expensive to save and restore during
a context switch. To optimise context switching latency, the OS simply disables FPU access
and lazily switches FPU content if and when a process causes an exception by executing
any floating-point operation. As a result, the latency of floating-point operations indicates
other processes’ activity on the FPU. Hu [1992] demonstrated that a thread can use the
PRIME+PROBE technique on the FPU state to create a covert channel.

Speculative execution The speculative execution feature (Section 2.3.3) has been
proved to be timing-attack prone, as demonstrated by the innovative Spectre attack [Kocher
et al., 2019].

The Spectre attack demonstrates that side effects of a speculatively executed instruction,
such as cache line state, remains even though the mis-predicted instruction was aborted.
In other words, the speculatively loaded cache line remains in the cache even though the
related branch instruction was mis-predicted. The Spectre attack is a transient execution
attack.

As CPU predicts branch instructions based on the recent history, the Spectre attack first
trains the branch predictor with its branch instructions. Then, it executes an instruction
for loading a cache line that is not allowed under system’s permission, such as visiting
an address that is not within its address space. Due to the speculative execution, the CPU
speculatively executes that instruction under the condition that the correct decision cannot
be made immediately [Kocher et al., 2019]. Later, the attacker can detect the cache line

loaded by speculatively executed instructions through a FLUSH+RELOAD attack.

Out-of-order execution The pipelining execution model has been demonstrated as a
source of timing channel attacks. The Meltdown attack reveals the content of the kernel’s
address space by leveraging the out-of-order execution engine (Section 2.3.3) on the CPU
pipeline [Lipp et al., 2018]. All attacks in this section are transient execution attacks.

Lipp et al. [2018] discovered that a hardware page fault exception can only be injected
once the causing instruction is retired. Hence, the content stored in the faulting address has
already been loaded to the cache, even though it violates the memory protection conducted
by the MMU. Based on this, they conducted a side channel attack efficiently revealing the
kernel’s memory content using the FLUSH+RELOAD technique to probe the state of a target
cache line. The attack issues instructions that trigger memory accesses with dependencies
on kernel’s memory content. Even though later aborted, these instructions successfully
loaded cache lines that are indexed by kernel’s memory content, due to the out-of-order
execution engine in the pipeline. Then, the attacking program conducts uses the FLUSH+
RELOAD technique to detect the loaded cache lines, which eventually leads to reverse
engineer the kernel’s memory contents.

Similarly, the Foreshadow [Van Bulck et al., 2018] timing channel attack success-

fully breaks the security protection provided by Intel’s software guard extensions (SGX)
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technology. Intel’s SGX is designed to provide confidentiality and integrity guarantees
to applications hosted in its enclaves [Anati et al., 2013; Intel, a]. However, the Fore-
shadow attack breaks this promise by leaking plaintext enclave secrets from the L1-D
cache. Furthermore, the next generation of the Foreshadow attack, the Foreshadow-NG
attack [Weisse et al., 2018], allows the attacker to break other security boundaries enforced
by the hardware. The Foreshadow-NG attack breaks the boundaries for hosting VMMs,
VMs, OSes, and programs running in the system management mode (SMM), which is a
special operating mode dedicated to handling system-wide hardware functions such as

power management [Intel, c].

Store buffers As introduced in Section 2.3.4, the store buffer records information on
outstanding store requests sent from the pipeline, as well as participates in pipelining

optimisations, such as speculatively executed store-to-load forwarding.

Minkin et al. [2019] discovered that speculatively executed store-to-load forwarding
allows the recently released Intel CPU to incorrectly pass writes to subsequent reads. The
testing CPUs only use partial address bits to match the store address (for writing) against
the load address (for reading), causing the adversary to load from an unrelated write. Even
though later aborted, the faulty load remains in the cache. To exploit this, they invented
the Fallout timing channel attack, which is a transient execution attack. The attacker first
generates a faulty load that results in an incorrect cache line load, then conducts a FLUSH+
RELOAD side channel attack to reveal the loaded cache line. The Fallout attack not only

leaks recently written kernel data at user-level but also derandomises the kernel’s ASLR.

Line fill buffers The line fill buffer (Section 2.3.4) serves ongoing data transmissions
that involve cache hierarchy and main memory. Each entry in the line fill buffer records the

destination, data, and status of this transmission.

According to the research conducted by van Schaik et al. [2019], line fill buffers
in recently released Intel CPUs also participate in speculatively executing store-to-load
forwarding. Similar to the store buffer, the line fill buffer can forward an ongoing store to a
pending load only when their partial addresses match. To exploit that feature, van Schaik
et al. invented a transient execution attack, called the rogue in-flight data load (RIDL)
attack [van Schaik et al., 2019]. The attack utilises speculatively executed load operations
(including the load port introduced in Section 2.3.4) on Haswell, Skylake, Coffee Lake,
and Kaby Lake microarchitectures: the CPU speculatively executes the attacker’s load
operation based on the victim’s previous stored secret that is recorded in the line fill buffer.
Once the faulty cache line is loaded, the attacker performs a FLUSH+RELOAD attack to
extract the secret value. As a result, the RIDL attack allows an attacking program running
in unprivileged mode to leak information owned by another application, the OS, another

VM or even a program protected by Intel’s SGX.

39



Similarly, the ZombieLoad timing attack [Schwarz et al., 2019] exploited the transiently
executed faulty loads on the line fill buffer, stealing data owned by the kernel from a user-
level program. The ZombieLoad attack is also a transient execution attack that uses FLUSH+
RELOAD to detect faulty loaded cache lines. According to Schwarz et al., ZombieLoad can

recover kernel memory at one byte per 10 s with 38% accuracy.

BHB The speculative execution engine predicts subsequent conditional branch instruc-
tions based on the history stored in BHB entries which are indexed by virtual addresses. As
virtual addresses are under the control of user-level programs, a process can easily train the
branch prediction state by polluting the BHB entries with its execution history, which the
goal of manipulating branch predictions for other programs executing on the same core.
This BHB attack uses the PRIME+PROBE technique.

Cock et al. [2014] discovered that the branch mis-predictions from a separate process
could affect the reported cycle counter value on the Arm Cortex A8 processor (AM3358).
This timing variance can be exploited as a side channel by an attacker thread through
corrupting the branch prediction history.

Evtyushkin et al. [2016b] demonstrated a mechanism for exploiting the branch predic-
tion state as a covert timing channel. The attack exploits the branch mis-prediction rate
that is impacted by the Trojan’s execution history, causing measurable timing variations on
the spy’s execution time. As a result, the Trojan and spy create a covert timing channel by
having a protocol on encoding messages into the mis-prediction rate. We will demonstrate
our implementation of this channel in Section 5.3.1.5 for measuring the effectiveness of

manufacturer-provided resetting operations for mitigating intra-core covert timing channels.

BTB Evtyushkin et al. [2016a] implemented a side channel attack using BTB collisions,
which makes ASLR ineffective on Linux. The ASLR technique [Bhatkar et al., 2003] was
initially introduced to prevent code-injection attacks, by randomizing both kernel-level and
user-level virtual address space layout. Evtyushkin et al. discovered that the Intel Haswell
platform only uses partial virtual address bits for both indexing and tagging BTB entries.
Hence, they created collisions on shared BTB entries with the PRIME+PROBE technique.
The prime set was created with virtual addresses in the same address space and the same
virtual address from different address spaces. Based on the revealed partial virtual address

bits they eventually disclosed the virtual address space layout of the targeted system.

RSB The return stack buffer (RSB) is a small buffer that the CPU uses to predict the
return addresses of function-call operations: the function calling instruction causes a stack
push, whereas a return instruction causes a stack pop. In other words, the RSB mirrors the
local stack.

Bulygin [2008] demonstrated a side channel attack on the RSB which can be used to
break RSA [Brumley and Boneh, 2003]: the attacker can detect an end reduction in the
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Montgomery modular multiplication [Montgomery, 1985], by counting the number of RSB
entries that had been used by the RSA encryption. The attack conducted a form of the
PRIME+PROBE attack on RSB entries. The attacking program first primes the RSB entries
with its function calling instructions, then it invokes the RSA encryption process which can
potentially replace the primed RSB entries. Later, the attacker measures its footprint left on
the RSB entries by conducting return instructions, to detect the replacement triggered by

the RSA encryption.

TLB Hund et al. [2013] showed that TLB contention allows an attacker to defeat
ASLR [Bhatkar et al., 2003], with a variant of the FLUSH+RELOAD technique. They
exploited the fact that the latency of segmentation faults reveal TLB mappings cached
by the kernel for servicing system calls: invalid mappings are not cached in the TLB so
any subsequent access triggers an expensive page table walk; valid mappings produce a
much more rapid segmentation fault. They successfully defeated ASLR on both Windows 7
Enterprise and Ubuntu Desktop 11.10 running on three different Intel microarchitectures,

with a worst-case accuracy of 95% on the Intel Sandy Bridge architecture.

L1-D and L1-I caches To evaluate the security of the VAX/VMM system, Hu [1992]
stated that shared caches can lead to timing channels, which can be easily exploited using
the PRIME+PROBE technique, which was confirmed by later work. With knowledge of
AES’s S-boxes, Osvik et al. [2006] and Tromer et al. [2010] attacked AES secret keys
by detecting L1-D cache contention using PRIME+PROBE and EVICT+TIME techniques.
Similarly, Aciicmez [2007] presented an RSA attack using the PRIME+PROBE technique
on the L1-I cache, assuming frequent preemptions on RSA processes. Later, Zhang et al.
[2012b] showed similar key-recovery attacks were even practical on ElGamal [ElGamal,
1985] between virtual machines, by using inter-processor interrupts (IPIs) to preempt the

victim frequently.

3.2.3 Timing attacks on package-shared state

As shown in Figure 2.5, resources shared by threads running on different cores of a package
are the LLC and buses for inter-core traffic. This work does not include timing channels
based on shared buses or interconnects (Section 3.1.3). We focus on the timing channels
based on the LLC shared by cores within a package.

The LLC holds a footprint left by all threads running on a package, which can be used
as either a covert or a side timing channel by threads sharing a core (Section 3.2.3.1) or

concurrently running on multiple cores on the same package (Section 3.2.3.2).

3.2.3.1 Time slicing

Since Hu [1992] demonstrated the possibility of transmitting information through cache

collisions using the PRIME+PROBE technique, many researchers have explored covert
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timing attacks on the shared LLC between normal processes [Percival, 2005] or between
VMs on a public cloud (Amazon EC2) [Ristenpart et al., 2009] on a single core. Moreover,
Ristenpart et al. [2009] detected co-residency on the Amazon EC2 platform with LLC
contention.

With the FLUSH+RELOAD technique, Gullasch et al. [2011] attacked AES in OpenSSL
0.98n with help from the completely fair scheduler on Linux to pre-empt the AES thread fre-
quently. Similarly, Irazoqui et al. [2014] used FLUSH+RELOAD to break AES in OpenSSL
1.0.1f with page sharing offered by the VMware ESXi5.5.0.

Past work also demonstrated applying the EVICT+TIME technique to create cache
contention on the LL.C. Hund et al. [2013] measured the effect of EVICT+TIME on system-
call latencies on Linux, and was able to decode the kernel address space layout.

To conduct a PRIME+PROBE attack on the LLC, the attacker has first to solve the
mapping scheme, which can be as complicated as a two-level hashing function on more
recent Intel platforms [Hund et al., 2013; Inci et al., 2016; Intel, b; Irazoqui et al., 2015b;
Maurice et al., 2015; Yarom et al., 2015]. Irazoqui et al. [2015a] overcame that problem
by building probing buffers on huge pages, and was able to recover an AES key on both
Xen 4.1 and VMware ESXI 5.5. Oren et al. [2015] demonstrated that a PRIME+PROBE
attack was also possible without huge pages. Oren et al. presented schemes for collecting
the cache footprint as a signature of the target’s actions, achieving a covert channel with
320 kb/s throughput and a side channel that identifies mouse or network activities. Lipp
et al. [2016] showed that the Arm architecture is also vulnerable to the PRIME+PROBE with
an AES attack.

The processor can also use the LL.C to store recently accessed page table entries
(Section 2.2). Gras et al. [2017] discovered that the cached page table entries can be detected
by using the EVICT+TIME attack on the LLC, resulting in an attacking program, running
as a JavaScript in Firefox and Chrome, that can derandomise the ASLR implementation in
these browsers. To conduct that attack, Gras et al. first detected cached page table entries
that are loaded due to resolving a TLB miss (Section 2.3.1) through the EVICT+TIME
attack on LLC sets. Then they broke the ASLR implementation through the connection
between page table entries and the virtual-to-physical address translation configured for
ASLR.

3.2.3.2 Multicore

The challenges of building a covert channel between concurrently running threads include
coping with the scheduling uncertainties on the hosting system [Wu et al., 2012], reverse
engineering the virtual-to-physical address mappings [Liu et al., 2015], and solving the
hash table mapping function on the LLC [Hund et al., 2013; Inci et al., 2016; Irazoqui et al.,
2015b; Maurice et al., 2015; Yarom et al., 2015].

Xu et al. [2011] demonstrated a covert timing channel using the PRIME+PROBE
technique: the attack achieved 3.2 b/s throughput on Amazon EC2 [Xu et al., 2011], with an
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improved transmission protocol compared to the initial design by Ristenpart et al. [2009]

on a multicore host (Section 3.2.3.1).

The FLUSH+RELOAD attack is also applicable on multicore between OS hosted pro-
cesses or VMs on public clouds. Yarom and Falkner [2014] successfully attacked RSA
with the FLUSH+RELOAD attack, with the assumption that the attacker has read ac-
cess to the in-memory RSA implementation through either memory mapping or page
de-duplication [Bugnion et al., 1997; Mitos et al., 2009]. Later, Yarom and Benger [2014],
Benger et al. [2014] and van de Pol et al. [2015] conducted an attack on the secret key
used in ECDSA with a similar technique. Additionally, Zhang et al. [2014b] implemented
a FLUSH+RELOAD attack between co-resident VMs on DotCloud [DotCloud], to steal
fine-grained information (e.g., end-user’s shopping activity) on a platform-as-a-service

(PaaS) cloud platform.

Gruss et al. [2015] generalised the FLUSH+RELOAD technique with pre-computed
cache template matrices, allowing attackers to efficiently compute the similarities between
the matrices and online cache-hit profiles for both data and instruction accesses. The cache
template matrices attack is capable of attacking both keystrokes and AES on OpenSSL.
Furthermore, Gruss et al. [2015] conducted the EVICT+RELOAD attack, a variant of the
FLUSH+RELOAD attack as mentioned in Section 3.2.1, which does not need a dedic-
ated cache flushing instruction. Moreover, Gruss et al. [2016b] achieved a bandwidth of
496 Kib/s for a covert channel using FLUSH+FLUSH, another variant of FLUSH+RELOAD,
demonstrating FLUSH+FLUSH is faster than FLUSH+RELOAD.

To build a PRIME+PROBE attack on the LLC, Liu et al. [2015] presented a solution
for constructing a prime buffer for the physically-indexed and -tagged LLC sets. They
implemented not only a high throughput covert channel (1.2 Mb/s), but also a side channel
attack on the square-and-multiply exponentiation algorithm in ElGamal (GnuPG 1.4.13).
Inci et al. [2016] extended the attack to the Amazon EC2 cloud, leaking both cloud co-
location information and ElGamal private keys (GnuPG 1.4.18).

As introduced in Section 3.2.1, the PRIME+ABORT attack is similar to the PRIME+
PROBE attack, but replaces the probing stage with a transactional abort in Intel’s TSX.
Disselkoen et al. [2017] demonstrated a PRIME+ABORT-L3 attack which reveals the secret
key used by AES through conflicts on the LLC detected by transactional aborts.

van Schaik et al. [2018] introduced the XLLATE+PROBE attack that builds the probing
set used in the PRIME+PROBE attack with cached page table entries in the LLC. Their attack
allows an attacking program to break the T-table implementation of the AES implementation
in OpenSSL. Moreover, the attack is efficient even though the attacking program and
the victim program (an AES server) are partitioned on the LLC using either set or way
partitioning schemes (Section 3.3.5), due to the fact that cache sets used by page table
entries are still shared. Also, van Schaik et al. extended the attack using the transactional
aborts in Intel’s TSX. Their extended attack uses the XLATE+ABORT attacking technique,
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which detects any conflicts on cached page table entries caused by other processes during a
TSX transaction. The XLATE+ABORT attack breaks AES in OpenSSL 1.0.1e.

3.2.4 Summary

We observe that microarchitectural timing attacks appear on all levels of the resource
hierarchy, from thread- and core-level shared resources to package-shared resources. In
terms of types of explored timing channels these resources have been used for both side

and covert channel attacks.

Attacks are first demonstrated on high-level shared resources, such as those on the FPU
or L1 caches. Attacks on L1 caches are done through exploiting the cache contentions
between processes [Aciigmez, 2007; Aciicmez and Schindler, 2008; Neve and Seifert, 2006;
Osvik et al., 2006; Tromer et al., 2010] or even across VMs [Zhang et al., 2012b]. Further-
more, attacks on L1 caches are also applicable to the L2 cache, if there is a core-private
L2 cache available. Similar attacks are also exploited on intra-core cache-like components,
including the BHB [Cock et al., 2014; Evtyushkin et al., 2016b], the BTB [Evtyushkin
et al., 2016a], and the TLB [Hund et al., 2013]. The attack on the RSB [Bulygin, 2008] is
different to attacks on caches, because the RSB does not contain any indexing scheme but

works as a rolling buffer.

Later, attacks are demonstrated on lower-level shared resources like the LLC. Timing
attacks based on the LLC can be classified into two categories: relying on shared memory
(e.g., page duplication) or no such requirement. Started by FLUSH+RELOAD [Gullasch
et al., 2011], attacks relying on shared memory have been demonstrated between processes
through the shared library code, between programs sharing the same core [Gullasch et al.,
2011; Irazoqui et al., 2014], as well as between programs running on different cores [Benger
et al., 2014; Gruss et al., 2015; van de Pol et al., 2015; Yarom and Benger, 2014; Yarom
and Falkner, 2014]. The cross-core FLUSH+RELOAD attack has also been demonstrated
between co-resident VMs [Zhang et al., 2014b], based on memory shared due to de-
duplication [Bugnion et al., 1997; MitoS et al., 2009].

LLC attacks without relying on shared memory are a recent evolution: they have been
demonstrated by time-multiplexing a core [Gras et al., 2017; Irazoqui et al., 2015a; Lipp
et al., 2016; Oren et al., 2015], or cross-cores [Disselkoen et al., 2017; Inci et al., 2016; Liu
et al., 2015; van Schaik et al., 2018].

A series of innovative attacks have demonstrated exploitation of transitive executions
in CPUs. These attacks abused the transitively executed micro-ops due to the speculative
execution [Kocher et al., 2019], the out-of-order execution [Lipp et al., 2018; Van Bulck
etal., 2018; Weisse et al., 2018], and the store-to-load forwarding on the store buffer [Minkin
et al., 2019] and the line fill buffer [Schwarz et al., 2019; van Schaik et al., 2019].
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3.3 Countermeasures

3.3.1 Constant-time techniques

To protect cryptographic computation, a common technique is to ensure behaviour is never
dependent on a secret (e.g., branch operations do not depend on secrets). This approach has
been applied both to local contention-based channels and remote timing channel attacks.
For example, the design of the NaCl library [Bernstein et al., 2012] implements many

constant-time techniques for avoiding OpenSSL’s vulnerabilities.

Program analysis framework Several research projects presented tools and formal
frameworks for analysing the behaviour of constant-time implementations. Langley [2010]
traced the flow of secret information based on a modified Valgrind [developers] program
analysis tool. Similarly, Kopf et al. [2012] and Doychev et al. [2015] described methods for
estimating an upper bound on information leakage through timing variations. Moreover,
FlowTracker [Silva et al., 2015] conducted analysis on side-channel attacks using a modified
LLVM compiler [Lattner and Adve, 2004].

Hardware support One important approach to avoid secret-dependent table lookups
is to provide hardware operations for cryptographic primitives [Page, 2003]. The x86
architecture provides a set of instructions for AES implementations, assisting encryption,
decryption, key expansion and all modes of operations in AES [Gueron, 2009, 2010], which
is supported by both Intel [Xu, 2010] and AMD [AMD] architectures. Similar support is
also available on other architectures, including Arm [ARM], and SPARC [ORACLE].

Language-based approaches Language-based approaches provides specialised lan-
guage semantics with constant execution latency, together with a corresponding hardware
design [Zhang et al., 2012a]. This type of solution emphasises the importance of coordina-

tion between hardware and software.

Discussion Constant-time techniques are difficult to implement due to their high degree
of complexity [Bernstein, 2005]. For instance, the sequence of cache accesses needs to
be secret-independent for preventing any possible cache-based timing attacks. Previously,
Brickell [2011] noted having secret-dependent memory access within a cache line cannot
leak secret data. However, Bernstein and Schwabe [2013] showed Intel processors can leak
cache-offset bits, which was exploited recently by Yarom et al. [2016] with the CacheBleed
attack on the OpenSSL implementation. Moreover, Coppens et al. [2009] listed several
possible leaks even though the sequence of memory access is secret-independent, such as
instruction timing, or register dependencies. To address these issues, they designed a com-
piler that prohibits control-flow dependencies on secret keys of cryptographic algorithms

on x86.
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Another shortcoming of the constant-time technique is that a constant-time program
may not perform consistently across hardware platforms: Cock et al. [2014] discovered
that the constant-time fix on OpenSSL 1.0.1e for the Lucky 13 remote side-channel timing
attack [AlFardan and Paterson, 2013], does not remove the vulnerability on the Arm
AM3358 platform.

The performance impact of the constant-time technique is application depend-
ent.Applying the constant-time technique to a specific application is generally more afford-
able than applying it to all programs. The NaCl library [Bernstein et al., 2012] outperformed
its peers, with the benefit of promising no secret-dependent behavior on either loads or
branch instructions. In contrast, applying the constant-time technique in the LLVM com-
piler [Lattner and Adve, 2004] introduced up to a 2.4 times slowdown to the openSSL
test [Coppens et al., 2009].

3.3.2 Injecting noise

The noise injection technique prevents a timing channel by corrupting the attacker’s meas-
urement with garbage data (i.e., noise). Previous work suggested injecting noise into both

timing sequence and resource usage patterns.

Noise injection on timing Theoretically, injecting noise into all measurable timing
sequences in a system can prevent timing attacks, as any of the attacker’s timing measure-
ments are useless due to the noise. Fuzzy time is a technique to inject noise into all visible
events in a system, such as system ticks or interrupt delivery [Hu, 1991].

Vattikonda et al. [2011] virtualised the timestamp counter value read by VMs, by
inserting noise into the return value of the rdtsc instruction, the instruction for reading the
timestamp counter on x86. Similarly, Martin et al. [2012] implemented a system solution
for fuzzing any possible timing variance measured through hardware (rdtsc) or software
clocks, with the assumption of no external timing source. They conducted a statistical

analysis on this solution, demonstrating the mitigation on timing channels.

Noise injection on resource consumption Brickell et al. [2006] suggested an altern-
ative AES implementation involving compacting, randomising and preloading lookup tables,
in order to introduce noise to the cache footprint left by AES executions.

Wang and Lee [2007] invented the random permutation cache (RPcache), a cache
containing both randomised indices and protection attributes. With RPcache, each process
owns a permutation table for memory-to-cache mapping. Furthermore, each cache line
contains an owner identification which is used to locate the permutation table owned by
corresponding process. Cache lines belonging to different processes cannot evict each other.
To evict a cache line, RPcache randomly selects a cache set as the victim set. Later, Kong
et al. [2009] proposed an implementation which supports explicitly requested RPcache

functions for sensitive data processing, such as AES table lookups. Kong et al. evaluated
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the solution on simulated hardware, demonstrating the potential for low overhead on real
hardware implementation.

To eliminate reuse-based attacks, Liu and Lee [2014] designed a cache with a random
replacement policy. Their design does not allocate cache lines for serving cache misses.
Instead, the mechanism directly sent requested data to the processor. For generating a ran-
domised footprint on the cache, the mechanism allocates cache lines filled with randomised
fetches within a configurable neighbourhood window of the missing memory line.

Zhang et al. [2014a] introduced a bystander VM hosted on Xen to inject noise into the
cross-VM L2-cache covert channel. They created a continuous-time Markov process for
modeling the PRIME+PROBE-based cache covert channel, and analysed the impact of the
bystander VM on the error-rate of the modeled channel. They draw the conclusion that the
bystander VM cannot significantly impact the cross-VM covert channel by only adjusting
its CPU consumption. Moreover, the bystander VM must modulate its working set and

memory access rates for effectively weaken the channel bandwidth.

Discussion Noise injection is inefficient for system security assurance. Completely
closing the timing channel requires anti-corrected “noise” injection [Cock et al., 2014],
which is impossible to produce in many system circumstances. Most importantly, noise
injection reduces the signal-noise ratio but cannot eliminate the signal, and the amount of
noise needed to reduce this ratio is massive hence severely degrade system performance.

The performance impact introduced by noise injection depends on the scale of the
application. For example, the RPcache only introduced a small performance hit, 1%, in
the SPEC2000 benchmark for injecting noise into a 32 KiB cache [Wang and Lee, 2007].
Similarly, dedicating a small RPcache for processing sensitive data introduced very low
overhead [Kong et al., 2009]. However, the amount of noise required increases significantly
as the system reduces the residual channel further. This dramatically penalises system
performance even though the channel bandwidth can be reduced by no more than about
two orders of magnitude [Cock et al., 2014].

3.3.3 Enforcing determinism

Another line of work attempted to eliminate timing channels by enforcing a deterministic

system sequence with virtual time and black-box techniques.

Virtual time The virtual-time approach provides only virtualised clocks, whose pro-
gress is completely deterministic. Virtualising time implies that the progress of virtual
time is independent of any secret data processing. Aviram et al. [2010a] repurposed De-
terminator [Aviram et al., 2010b], a framework for debugging concurrent programs with
deterministic execution sequences, as a cloud computing environment with only virtual
time. Ford [2012] further extended this model to allow scheduled external I/O events.

Later, Wu et al. [2015] produced a hypervisor-enforced deterministic execution system
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for both internal and external event sequences. Wu et al. also introduced the concept of
mitigation interval, a time interval that bounds any theoretical information leakage. Instead
of providing a deterministic execution environment, StopWatch [Li et al., 2013] hosts three
replicas of a system process, and virtualises the x86 time-stamp counter with the median of
the times obtained from the replicas.

Compared with prohibiting access to any real time source, instruction-based scheduling
(IBS) is a more limited form of deterministic execution that only prevents an attacker
from using the system preemption tick as a clock source. IBS guarantees deterministic
progress of a program in every system tick by generating preemption interrupts after a
fixed number of instructions. Dunlap et al. [2002] proposed IBS as a debugging technique,
which was later integrated into Determinator [Aviram et al., 2010a] with the help from the
CPU’s performance monitoring unit (PMU). Additionally, Stefan et al. [2013] demonstrated
IBS as an approach to mitigate timing channels. Cock et al. [2014] discovered that the
imprecise delivery of PMU’s interrupts have negative impact on the effectiveness of this
technique. To schedule processes after a precise number of instructions being executed, the
system has to configure the PMU to trigger an interrupt earlier than the targeted count, then
single-stepping the CPU until the target is reached [Dunlap, 2006]. According to Wu et al.
[2015], the single-stepping technique introduced 30% overhead to CPU-bound benchmarks

for a 1 ms mitigation interval, and 5% overhead for a 100 ms mitigation interval.

Black-box mitigation The Black-box approach controls the timing of externally visible
events, by achieving determinism for a system as a whole.

Kopf and Diirmuth [2009] proposed a bucketing solution for system response time,
to calculate a theoretic upper-bound on information leakage. Additionally, Askarov et al.
[2010] enhanced Kopf and Diirmuth’s work with an exponential back-off policy to calculate
a hard upper bound on information leakage. Cock et al. [2014] demonstrated that such
a kind of policy can be implemented efficiently on the seL.4 microkernel to mitigate the
Lucky 13 attack on OpenSSL TLS [AlFardan and Paterson, 2013].

Braun et al. [2015] designed a set of compiler directives for automatically generating
fixed-time functions with temporal padding. In addition, the padding masks any possible

timing leaks caused by limited temporal resolution with randomisation.

Discussion Virtualising all types of system time is effective against all types of timing
attacks, because of the non-existence of both internally and externally measurable timing
sequences. However, these systems introduce a heavy performance penalty because they
are fully deterministic. For instance, StopWatch introduced 2.8 times overhead on network-
intensive benchmark and 2.3 times overhead on computation-intensive benchmarks [Li
et al., 2013]. Secondly, fully deterministic systems, such as the Determinator [Aviram et al.,
2010b], rely on custom-written software and cannot support legacy applications that require

real time. Most importantly, preventing any access to real time is often infeasible, as any
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internal (e.g., the progress of a program) or external (e.g., network bandwidth) events can
be used as timing references.

Rather than synchronising all time sources measurable by individual processes, the
black-box technique controls only the timing of externally visible events. Hence, the black-
box technique is only effective against remotely exploitable attacks that exploit system
response latency, as all the other internally visible timing sequences remain unchanged.
Comparing with virtualising all possible timing sources, this approach is not only easier to
implement but also less expensive.

Our work is different compared to the existing black-box approach by regarding a
security domain as a black-box, to prevent information leakage between security domains
through timing. The OS mechanisms introduced in this work conduct security enforcement

for supporting confinement on microarchitectural timing channels.

3.3.4 Partitioning time

Time partitioning mitigates attacks that exploit contention on shared resources by granting

exclusive access within a timeslice and carefully managing the transition between timeslices.

Kernel address space isolation To mitigate the timing attack on prefetch instructions,
Gruss et al. [2016a] proposed to separate kernel and user address spaces with dedicated
kernel address space mappings. The kernel has exclusive access to its address space. As a
result, the kernel updates the page directory setting before starting any kernel executions,
switching the virtual-to-physical address mapping from user space to kernel space. This
technique also mitigates the Meltdown attack [Lipp et al., 2018] which loads cache lines

that are indexed from kernel’s memory content.

Execution leases Tiwari et al. [2009] designed a new hardware mechanism, execu-
tion leases, to share execution resources among threads. When a lease expires, a trusted
entity gains control, and expels any untrusted operations. They prototyped an in-order,
un-pipelined CPU core that contains extra hardware components for maintaining lease con-
texts. The system is inherently slow because its design prohibits performance optmizations,
such as a TLB or branch prediction unit (BPU). Later, Tiwari et al. [2011] extended the
execution lease with their CPU implementation (a Star-CPU), a microkernel, and an I/O

protocol, providing top-to-bottom information flow guarantees.

Minimum timeslice To attain a fine-grained view of the cache footprint, many attacks
require frequently preempting the victim process, such as the PRIME+PROBE attack imple-
mented by Zhang et al. [2012b]. To prevent this type of attack, Varadarajan et al. [2014]
introduced latency on responding to system events, extending the minimum preemptable

period.
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Flushing store buffers Because the store buffer is not shared between hardware threads,
flushing the store buffer while switching between threads from different security domains is
sufficient to mitigate the Fallout attack [Minkin et al., 2019] (Section 3.2.2), the attack that
exploits transient write forwarding as a timing channel. Minkin et al. discovered that the
mfence instruction provided by Intel [Intel, e] can mitigate the Fallout attack. The mfence
instruction not only drains the store buffer but also serialises previously issued load and
store operations [Intel, e]. Additionally, the store buffer is automatically flushed by updating
the CR3 register [Minkin et al., 2019] which points to the top-level page table used for the
virtual-to-physical address translation (Section 2.2 on Intel CPUs [Intel, e].

Cache flushing Flushing system state is an obvious solution to defend against attacks
based on persistent state effects (e.g., cache footprint). For example, a system can mitigate
cache-based attacks by flushing all level of caches [Godfrey and Zulkernine, 2013], includ-
ing mitigating cross-VM side channels on core-private caches [Zhang and Reiter, 2013].
However, cache flushing cannot mitigate cross-core timing channels, where programs

exploit cache contentions concurrently on different cores.

Many architectures provide cache flushing operations. For example, Arm offers oper-
ations for selectively flushing different levels of caches [ARM, 2008]. Intel architecture
recently announced the L1-D cache flushing operation [Int, 2018b], as a defence mechanism
for the Foreshadow and the Foreshadow-NG attacks [Van Bulck et al., 2018; Weisse et al.,
2018]. However, Intel’s L1-D cache flush operation has not been supported by all the

hardware manufacturers, due to the unavoidable latency in the microcode updating process.

To mitigate the Spectre attack [Kocher et al., 2019], Intel recently launched a new
interface between the processor and system software, the IBC mechanism [Intel, 2018c¢],
allowing the OS to prevent an attacker from maliciously polluting the branch prediction
history. The IBC mechanism includes the indirect branch restricted speculation across
privilege modes, the single thread indirect branch predictors for preventing indirect branch
predictions from being controlled by other hardware threads, and the indirect branch
predictor barrier for preventing indirect branch predictions being controlled by previous

history.

Lattice scheduling Initially proposed by Denning [1976], and implemented by Hu
[1992] in the VAX/VMM security kernel, lattice scheduling amortises the cost of flushing
all caches by only triggering those actions when switching from sensitive domains to
untrusted ones. As a result, there is no timing information leakage from those sensitive
domains. Cock [2013] verified the lattice scheduler on the sel.4 microkernel for domain
scheduling. This approach requires the system to have a hierarchical trust model. Therefore,
a system with a mutual distrust model, such as cloud computing, cannot apply lattice

scheduling.
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Discussion Temporal partitioning (i.e., strict time multiplexing) is efficient for elimin-
ating attacks that require the sequential use of shared resources. For a given partitioning
scheme, its performance impact depends on the direct cost of the partitioning (e.g., the
latency of cache flushing) as well as the indirect cost of the partitioning (e.g., the impact on
system performance due to flushing). Here we use the cost of cache flushing as an example.

The cost of the cache flush includes direct cost, the cost of flushing operations, and the
indirect cost, that is, the performance slowdown experienced by user-level programs while
running on a cold cache. Flushing the top-level caches is affordable, as the size of an L1
cache is relatively small (e.g., 32 KiB on x86 platforms), resulting in less direct cost. For
instance, Varadarajan et al. [2014] measured an 8.4 us direct cost on flushing L.1 caches that
is conducted with a software cache flush, on a 6 core Intel Xeon E5645 processor. Moreover,
they measured a 17% increase in the ping latency benchmark using a 1 ms interval.

Furthermore, the indirect cost is also small if the user-level programs are heavyweight,
such as VMs hosted on the cloud, because a newly scheduled VM is unlikely to reuse any
cache lines in the data or instruction cache. Therefore, conducting a L1 cache flush on a VM
switch does not introduce much indirect cost. Lastly, the flushing is even more affordable if
the content switching frequency is low, such as 30 ms on Xen for scheduling VMs [Zhang
et al., 2012b].

By contrast, flushing lower-level caches is much more likely to introduce a significant
performance degradation, because of their large capacity (e.g., 8 MiB on the Intel Core
17-4770). Additionally, flushing the LL.C cannot prevent cross-core cache attacks, as the
cache contention is exploited concurrently.

In summary, flushing top-level caches—caches shared by threads within a core—is an
affordable operation for mitigating intra-core cache channels. However, flushing all levels

of caches is an expensive operation, and cannot prevent cross-core cache attacks.

3.3.5 Partitioning hardware

Partitioning hardware can mitigate not only attacks relying on consecutive access, but also

those relying on concurrent access to hardware resources.

Disable page sharing Disabling page sharing prevents FLUSH+RELOAD and its vari-
ations, because this types of attacks depend on shared memory frames. In practice, VMware
Inc. [2014] recommends turning off the page sharing feature [Waldspurger, 2002] to prevent
FLUSH+RELOAD cross-VM attacks. Similarly, Zhou et al. [2016] proposed the CacheBar,
a copy-on-access mechanism, which duplicates a copy of a page while another security

domain is accessing that page.
Disable speculative store forwarding To mitigate attacks on speculative store-to-load

forwarding [Schwarz et al., 2019; van Schaik et al., 2019], Intel provided a microcode update

for disabling the speculative store forwarding feature [Intel, 2019b]. The microcode update
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prevents the CPU from executing store-to-load forwarding speculatively (Section 2.3.4),
hence can be applied during the context switch process for enhancing the memory protection

boundary across privilege levels.

Hardware cache partitions Hardware-enforced cache partitioning provides a powerful
mechanism against cache-based attacks. Percival [2005] recommended a L1 cache partition-
ing hardware design. Wang and Lee [2007] designed the partition-locked cache, PLcache,

to assign locking attributes on cache lines.

Intel’s cache allocation technology (CAT) provides a cache-way allocation service on
the LLC [Intel, d], that prevents processes from evicting unallocated cache ways. CAT is
designed for enhancing the QoS of a system, rather than security. Using CAT, Liu et al.
[2016] demonstrate a software technique, CATalyst, to defeat the PRIME+PROBE and
EviCcT+TIME attacks on the LLC. Liu et al. created a secure cache partition that stores
protected memory contents, acting as a pinned cache managed by software. To use the
service, a user-level program allocates cache space, and loads protected pages into the
secure partition by simply accessing them. CATalyst is effective in mitigating the PRIME+
PROBE attack on the square-and-multiply algorithm in GnuPG 1.4.13 with insignificant
performance overhead, only 0.7% for the SPEC benchmark and 0.5% for the PARSEC
benchmark.

Arm v7 processors allow cache ways to be locked in L1-I or L1-D caches [ARM, 2008],
which is used by Colp et al. [2015] to provide a small amount of safe on-chip storage for

encryption keys.

Cache colouring As introduced in Section 2.4, cache colouring partitions a physically-
indexed cache according to the memory frame numbers (i.e., physical addresses). Here
we explain the related work that applied cache colouring to mitigate cache-based timing

channels.

Shi et al. [2011] implemented a dynamic cache colouring solution for threads executing
cryptographic algorithms hosted in a hypervisor. STEALTHMEM [Kim et al., 2012] provided
a small amount of coloured memory, called stealth pages, for storing security-sensitive
data without cache contention. The design assigned stealth pages with different colours
to each core, and monitored the usage of memory frames having same colours as stealth
pages through the page table alert mechanism. With help from page fault exceptions,
STEALTHMEM monitors the number of pages being loaded on each cache colour, making
sure none of those stealth pages being evicted. In other words, the STEALTHMEM pinned
the stealth pages in the LLC. The overhead of STEALTHMEM is relatively small for the
SPEC 2006 CPU benchmark: measured as 5.9% for the STEALTHMEM and 7.2% for
handling extra page faults. Furthermore, using stealth pages introduced 2—-5% overhead on
three block ciphers: AES, data encryption standard (DES) and Blowfish.
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Cock et al. [2014] evaluated the effectiveness of cache colouring by evaluating Shannon
capacity [Shannon, 1948], which represents the average amount of information leaked
by a channel assuming the receiver has an unbounded computation power. Cock et al.
discovered that the cache colouring approach is more effective on simpler cores (Arm
iMX.31, AM3358, or DM3730), compared with more complex cores (Arm Exynos4412,
or Intel E6550). The residual channel in the latter cases were caused by TLB contention,

which can be mitigated with TLB flushing.

Quasi-partitioning CacheBar [Zhou et al., 2016] prevents an attacker from monopol-
ising a shared cache by actively evicting cache contents. To ensure each protection domain
only consumes a limited number of cache lines, CacheBar assigns a budget to each domain,
representing its cacheable allowances. The design also maintains a least recently used
queue per domain for monitoring its cache occupancy. The method is essentially a software
implementation of the countermeasure suggested by Domnister et al. [2012]: reserving
cache lines in each L1 cache set for a hardware thread. However, reducing the capacity of
L1 cache by partitioning is highly likely to produce much more overhead than flushing, as
a smaller L1 cache will introduce an increasing number of L1 cache misses causing the

pipeline to slow down.

Migrating VMs Moon et al. [2015] implemented a migration-as-a-service cloud comput-
ing service that periodically runs the VM placement algorithm with both the current and past
VM assignments as inputs, mitigating information leakage across co-resident VMs. The
replacement algorithm designed by Moon et al. achieves near-optimal information leakage

subject to the migration overhead, which is also scalable to large-scale cloud platforms.

Discussion Hardware partitioning (i.e., spatial partitioning) is effective for eliminating
attacks that exploit the use of shared resources both consecutively and concurrently. To
make a fair evaluation, a system should evaluate the performance impact of a partitioning
technique while the system is in a quiescent state (i.e., no other running programs), as well
as while the system hosts other programs (i.e., potential competitors on system resources if
they are shared).

Here we use cache colouring (Section 2.4) as an example, where each program can
only run on its partition of the cache. To simplify the description, we assume that a system
has only two programs, A and B, which each owns half of the cache. In other words,
both A and B can only execute on half of the cache. Running on half of the cache is
highly likely to reduce the performance of A if its working set is larger than its partition.
By contrast, A may not observe any performance impact if its working set can fit into
the partition. To demonstrate, previous work measured the cost of cache colouring in
Xen’s memory management module [Godfrey, 2013], and showed that the overhead is

proportional to the working set given a small cache—a 50% performance cost for an Apache
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[2013] macrobenchmark, and no significant penalty for benchmarks with small working
sets [Godfrey, 2013].

However, the penalty can be different if B is also running. In the non-partitioned
scenario, B can potentially compete for the cache, resulting in the slowdown of A. Thus,
we need to compare the cost of static partitioning, allocating half of the cache to A, with
dynamic partitioning, the cache line allocation performed by the hardware while both
A and B are running. Therefore, a system should evaluate a partitioning scheme against
the dynamic allocation carried by the hardware, before drawing any conclusion on its
performance impact. Additionally, the performance of A can be more predictable with
static partitioning than with dynamic partitioning, as A enjoys a dedicated share of the
cache [Liedtke et al., 1997].

3.3.6 Summary

The constant-time technique (Section 3.3.1) is effective for mitigating timing channels
in a particular program, by ensuring no secret-dependent resource consumption during
program’s execution. However, a constant-time implementation of a program may behave
differently across hardware architectures. Furthermore, the constant-time technique makes
the application responsible for security enforcement, which is only suitable in special
circumstances, such as cryptographical software.

Noise injection (Section 3.3.2) corrupts the timing measured by attackers with noise,
weakening the timing channel. However, achieving a complete closure on timing channels
requires injecting a significant amount of anti-corrected “noise” [Cock et al., 2014], which
can dramatically penalise system performance.

Completely virtualising all time sources (Section 3.3.3) is not suitable for timing
channel mitigation on cloud platforms, as denying any access on real time clock is not
feasible to cloud tenants [Garfinkel et al., 2007]. Hence, the cloud system would require
resource partitioning for defending against timing channels.

Time partitioning (Section 3.3.4) mitigates timing channels based on a time-
multiplexing usage on shared hardware resources. This technique resets related microar-
chitectural state before resuming the next running security domain, hence eliminating
contention on corresponding hardware components. However, reseting microarchitectural
state cannot mitigate cross-core timing channels due to the concurrent access on shared
hardware components, such as the LLC.

Hardware partitioning (Section 3.3.5) distributes hardware components to security do-
mains, eliminating timing channels replying on both consecutive and concurrent execution
sequence. Applying the technique may require hardware assistance, depending on the
feature of corresponding hardware components. For example, cache colouring (Section 2.4)
is suitable for physically-indexed caches, but cannot be applied to virtually-indexed caches

as the layout of virtual address space is outside the OS’s control. For mitigating attacks
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on virtually-indexed caches (e.g., L1 caches or TLBs), the system has to either flush those

caches or partition them with specific hardware support [Wang and Lee, 2007].

3.4 Multikernel

The multikernel [Baumann et al., 2009] system model consists of multiple kernel images
running on a hardware platform without sharing a common knowledge base, such as kernel
data structures, scheduling decisions, or number of available threads in the system. Each
kernel image manages its own memory partition, and executes on separate cores. As a result,
software modules that belong to different kernel images communicate through network
messages. The multikernel model improves the system scalability on many-core platforms
by abstracting any communication between cores as network traffic.

The idea of running multiple kernel images has been also applied on many-core systems.
Corey [Boyd-Wickizer et al., 2008] allows applications to control the sharing of kernel data
structures, enhancing the scalability of the system. Furthermore, Helios [Nightingale et al.,
2009] simplifies the task of deploying applications on heterogenous platforms with satellite
kernels, a kernel design that exports a uniform set of abstractions for providing OS services.

Barrelfish/DS [Zellweger et al., 2014] supports hot-plugging kernel images by providing
kernel image saving and restoring services. Barrelfish/DS benefits the system performance

on energy efficiency as well as supporting heterogeneous many-core systems.

3.5 Exokernel

Traditional monolithic kernels, such as UNIX, offer kernel services through fixed imple-
mentation, which cannot satisfy applications with different needs. To address that problem,
the exokernel OS [Engler et al., 1995] offers low-level interfaces that are designed only to
expose hardware resources. The design goal of the exokernel OS is to provide freedom to
implement customised library OSes at user-level. As a result, the exokernel is responsible
for resource protection but not management.

Engler et al. [1995] implemented a prototype of the exokernel, called Aegis, together
with its library OS, ExOS. In their design, system services that are traditionally implemented
in kernel are now moved to application-level libraries, including services used for virtual
memory management or interprocess communication. Engler et al. demonstrated that these
system primitives offered by the library OS are 540 times faster than their counterparts in
Ultrix which is a mature monolithic UNIX kernel.

Later, Kaashoek et al. [1997] demonstrated that the exokernel architecture can improve
end-to-end application performance compared to 4.4 BSD UNIX systems. Their exokernel,
Xok, allows applications to take advantage of decentralised resource management, and
achieved a high throughput on file systems and a HyperText Transfer Protocol (HTTP)

SErver.
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Threat Scenarios and the Tar-
geted System Solution

The goal of our work is to provide time protection through kernel mechanisms that are
suitable for preventing microarchitecture timing channels. A security domain contains a
number of software components and processes, represented as a single unit in a system’s
security policy. For example, a trusted, secure hardware video compositor [Data61, 2017a]
can support multiple security domains, each of which contains software components
designed for processing video from an isolated network. Another example is a cloud
computing platform in which each mutually distrusting VM is regarded as a security
domain. Additionally, a language runtime environment, such as a web browser used for
executing JavaScript, can be regarded as a security domain together with scripts that it
executes at runtime. A system can choose to run multiple instances of the web browser
in different domains, if its security policy requires isolating JavaScript executed in each
browser.

The system only enforces time protection between domains. Within a domain, there is
no restriction imposed by the security policy, granting flexibility on the internal structure of
the domain. Therefore, the system can arrange processes that work together to deliver a
system service in the same security domain, avoiding on internal context switches overhead
resulting from time protection.

Our solution would be suitable for preventing microarchitectural timing channels on
both single- and multi-core systems. We first define threat scenarios, based on our study of
known microarchitectural timing channels (Section 4.1). Then, we analyse the hardware
requirements for implementing mitigations on commodity hardware platforms (Section 4.2).
Lastly, we define the fargeted system solution—providing time protection as an OS service
(Section 4.3).

4.1 Threat Scenarios

As noted in Section 3.1, our work does not cover the following types of timing channel
attack:

* timing channels between hardware threads (Section 3.1.1),
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* timing channels due to self-contention (Section 3.1.2),
* covert timing channels on bandwidth-limited interconnects (Section 3.1.3), or

* timing channels on DRAM (Section 3.1.4).

We require that the system either disables any hyperthreading (e.g., SMT) features, or
the OS allocates all hardware threads of a core to the same security domain (Section 3.1.1).
Sharing a core through hyperthreading not only prevents spatial partitioning, but also is
vulnerable to timing channel attacks [Aciigmez and Seifert, 2007; Percival, 2005; Yarom
et al., 2016]. Because a core has much state that cannot be spatially partitioned, the
system cannot prevent timing channels between hardware threads while allowing concurrent
access. Hence, preventing these channels requires disabling hyperthreading or co-scheduling
domains on hardware threads. These restrictions do not make the system setting unrealistic.
Disabling the hardware threading feature is also aligned with common practice on public
clouds [Marshall et al., 2010] and the OpenBSD [OpenBSD, 2018].

As our work regards time protection as a mandatory service by the OS, we assume that
timing channels due to self-contention are mitigated by applying specific constant-time
techniques (Section 3.1.2). However, our approach can prevent timing channels based
on self-contention if the system configures a deterministic domain switching latency, a
mechanism provided by time protection (Section 6.4.6).

We assume that the system either executes on one core or co-schedules a single domain
across all cores [Ousterhout, 1982] while processing sensitive information. As stated in
Section 3.1.3, covert channels on bandwidth limited hardware cannot be prevented on
contemporary hardware, while side channels are infeasible. We therefore have to content
ourselves with preventing side-channel attacks cross-core.

Moreover, we assume that attacks on the DRAM, such as the Rowhammer attack
(Section 3.1.4), are mitigated by corresponding hardware or software designs. Lastly, the
system mechanisms introduced by this work can also mitigate DoS attacks on related
hardware components, because temporal isolation has much stronger system requirements
compared to merely providing QoS (Section 3.1.5).

Based on existing microarchitectural attacks (Section 3.2), we define our targeted at-
tacks as those that exploit capacity-limited resources. These attacks have been demonstrated
on cache and cache-like components that contain microarchitectural states generated by
recently executed programs (Section 3.2.4). Within a core, there are attacks (Section 3.2.2)
on core-private data and instruction caches (e.g., L1 caches), caches used by branch predic-
tion (i.e., the BTB and BHB), and caches used for virtual-to-physical address translations
(i.e., the TLB). Between cores, there are attacks (Section 3.2.3) on the core-shared cache
(i.e., the LLC).

We summarise threat scenarios in Figure 4.1, selected from the opposite ends of the

system model spectrum.
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Figure 4.1: Threat scenarios: The arrow from Domaing to Domain;g represents the confinement
scenario of information leakage through intra-core covert channels, while the arrow
from Domaingy to Domain, indicates the cloud scenario of a cross-core side channel
through a shared cache.

4.1.1 Confinement

In the confinement scenario, an untrusted program, such as an unverified library, third-party
application, or web browser plugin, attempts to leak sensitive data which it holds. One
classic example of such a scenario includes a military-grade cross-domain device that
processes information at different classification levels [Denning, 1976]. An underlying
assumption in this scenario is that the untrusted program is potentially malicious. As a
result the OS must prevent information leakage through all possible channels, including
any microarchitectural covert timing channels.

The threat is that Domaing in Figure 4.1, which holds the secret, seeks to leak that
secret to Domainy, which is not entitled to the secret, by using intra-core covert timing

channels, hence violating the system security policy.

4.1.2 Cloud

In the cloud scenario, a cloud provider hosts mutually distrusted guest OSes, i.e., VMs,
that run concurrently on a processor. Because the guest systems can communicate with the
external world, the covert channel is not within the scope of the cloud scenario. Rather,
we focus on preventing side channels where a malicious VM (Domain; in Figure 4.1) is
stealing secrets owned by a victim VM (Domaing), such as cross-core side-channel attacks
through the LLC demonstrated by recent work [inci et al., 2016; Irazoqui et al., 2015a,
2016; Liu et al., 2015].

As stated above, we assume that guest VMs cannot share a core concurrently through
hyperthreading, due to the high level of resource sharing among hardware threads. Hence
the system either disables hyperthreading completely or assigns all hyperthreads on a core

to one guest VM. Nevertheless, we allow guest VMs time-multiplexing a core.
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Cloud platforms are very performance sensitive, as the success of the business model
of cloud is highly dependent on resource utilisation. Therefore, an ideal system solution
must not introduce any significant performance degradation, nor prohibit efficient resource

sharing among guest VMs.

4.2 Hardware Requirements

As we discussed in Section 3.3, mitigating timing channels requires preventing interference
caused by competition on microarchitectural resources, which can be achieved by preventing
any observable resource contention. A system can eliminate any resource contention either
by temporal partitioning through resetting the microarchitectural state (Section 3.3.4) or by
spatial partitioning of the hardware resources (Section 3.3.5).

Another possible solution is preventing any observation of timing channels by removing
all possible time sources, for example the virtual time approach (Section 3.3.3). However,
virtualising all kinds of system time is not only expensive [Li et al., 2013], but also has
difficulties supporting cloud tenants [Garfinkel et al., 2007] and applications that require
real time [Aviram et al., 2010b].

Coloured security domains
time-multiplexing on a core.

Security domain Security domain

<«
—

Components that cannot be partitioned

Conduct resetting opera-
- - - <«— tions, e.g. cache flushing
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cache sets to coloured
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Figure 4.2: An overview of mitigating covert timing channels between two security domains execut-
ing on a core.

4.2.1 Resetting on-core state

The only generally available spatial partitioning mechanism on caches is cache colouring
(Section 2.4), which requires the OS to have control of address allocation. The OS cannot

partition on-core resources that are indexed by virtual addresses, including L1 caches,
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the TLB, the BTB, and the BHB, as virtual addresses are under application control (Sec-
tion 2.3.1). L1 caches are typically only have a single colour as they are typically very
small. Hence L1 caches could not be coloured even if they are physically indexed. As a
result, resetting stateful on-core resources is the only solution if resources cannot be easily
partitioned without new hardware support. While such support, such as cache line locking,
has been demonstrated [Wang and Lee, 2007], the technology is not available on commodity
processors. Also, reducing the available L1 cache size can have a high performance impact.

The hardware must provide flushing operations for resetting those on-core resources
that cannot be partitioned (Section 3.3.4), to allow the OS to reset state when switching
between security domains, as shown in Figure 4.2. Theoretically, resetting on-core state is
affordable, as those caches are relatively small, presenting a lower direct cost and indirect
cost (Section 3.3.4).

Coloured security domains
executing on different cores.

Security domain Security domain
Core Core

Cache colouring partitions

cache sets to coloured
security domains.

Last-level cache

Figure 4.3: An overview of mitigating timing side channels between two security domains executing
on different cores.

4.2.2 Partitioning

Partitioning is feasible where the OS has complete control over how shared infrastructure is
distributed to security domains. The mechanism is effective at mitigating timing channels
that require either time multiplexing (Section 3.2.3.1) or concurrent access (Section 3.2.3.2)
to shared resources, such as the LLC.

Some hardware manufacturers provide assistance for locking a limited amount of secure
data in cache ways (Section 3.3.5), which can effectively mitigate cache-based side channels
on the protected data section. However, the efficient use of those secure cache ways requires
the user-level application to identify secret data. We argue that time protection should be a
black-box mechanism enforced by the OS, rather than a service relying on cooperation of

applications. Hence, locking secure data in cache ways does not suit our targeted solution.
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Partitioning physically-indexed caches using cache colouring [Kessler and Hill, 1992;
Liedtke et al., 1997] (Section 2.4) can eliminate the PRIME+PROBE attack on single-
core [Irazoqui et al., 2015a], as well as on multicore processors [Inci et al., 2016; Liu
et al., 2015]. The cache colouring technique requires only that the OS controls the memory
allocation of the system, assigning coloured memory frames to security domains.

For the example Intel processor given in Figure 2.2, cache colouring can partition both
core-private L2 cache and core-shared LLC, as they are physically-indexed caches.

As demonstrated in Figure 2.7, cache colouring is a suitable technique for mitigating
cache-based timing channel through partitioning physically-indexed caches. The system can
construct security domains with frames of disjoint colours. As a result, each security domain
can only occupy its partition on physically-indexed cache sets, as shown in Figure 4.2. Those
coloured domains cannot create covert channels on partitioned caches by time-multiplexing
on a core.

For resource sharing that is truly concurrent (e.g., accessing package-shared LLC),
spatial partitioning is the only option, as resetting system state between time slices cannot
mitigate channels based on concurrent accesses (Section 3.3.6). Figure 4.3 demonstrates a
mitigation scenario for cross-core side channels on the package-shared LLC. In this case,
security domains are executing on different cores and are built with coloured memory
frames. Thus, both cores and the LLC are partitioned. As a result, the system is susceptible
neither to the intra-core timing channel attacks of Section 4.1.1, nor the cross-core side
channel threat of Section 4.1.2.

To summarise, our solution requires resetting on-core microarchitectural states with
cache-flushing operations, mitigating intra-core timing channels on those components that
cannot be partitioned (Section 3.3.4), and partitioning cache sets with the cache colouring
technique (Section 2.4), mitigating timing channels on physically-indexed caches, including
the package-shared LLC.

4.3 The System Solution — Providing Time Protection in the
oS

We aim to achieve the goal of preventing intra-core covert channels (Section 4.1.1), as well
as cross-core side channels (Section 4.1.2). We require that mitigation must not introduce
significant system overhead. Additionally, the system needs to remain practical and capable
of providing the service that applications expect of an OS. Our proposed solution can
address many other system cases, if we can address the opposite ends of the system model
spectrum demonstrated in Figure 4.1.

We argue that security enforcement is a core duty of the OS, as user-level applications
cannot be trusted and the hardware cannot distinguish between a context switch (address-
space enforcement) and a security domain switch (security enforcement). Hence, the most

privileged system software, the OS, must provide time protection between security domains,
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as a black-box form of timing isolation, similarly to memory separation enforcement. Note
that we use the term “OS” in a generic sense, referring to the most privileged software level
that is responsible for security enforcement; it can represent a hypervisor, a microkernel, or
a monolithic kernel such as Linux or Windows. Our targeted system offers time protection

as a mandatory enforcement feature of the OS, a service provided by the kernel.

We propose time protection to target the threats shown in (Figure 4.1).

Definition: Time protection
A collection of OS mechanisms which jointly prevent interference between secur-
ity domains that would make execution speed in one domain dependent on the

activities of another.

Our ultimate goal is to obtain temporal isolation guarantees comparable to the spatial
isolation proofs of the sel.4 microkernel, but currently we focus on a system design that
is suitable for any verifiable microkernel with minimal, general purpose, and policy-free
mechanisms. One distinct advantage of policy-free mechanisms is that they can be used to
prevent other timing channels even though these channels are not contention based, such
as channels that exploit a non-constant time implementation (i.e., the execution time of an

implementation is secret dependent) as introduced in Section 3.1.2.

Security domain abstraction To achieve our design goal, we require the kernel to
provide an abstraction for security domains. In other words, the kernel must be able to build
a connection between security domains and microarchitectural states used by them while
executing, conducting any operations during domain switches necessary to mitigate related
timing channels. Because selL4 abstracts system resources as kernel objects, our targeted
system solution should be able to provide the same level of abstraction for representing
security domains. In other words, the kernel regards domains as kernel objects—the unit
for enforcing time protection schemes (e.g., conducting cache flushing operations during a

domain switch (Figure 4.2).

Security domain creation and deletion The kernel should provide mechanisms for
creating and destroying security domains. Importantly, a security domain can have more
than one user-level thread executing inside their own address spaces (regarded as a user-
level application in seL.4 Section 2.6). Therefore, the kernel has to provide a method for
consolidating threads into security domains. In a multi-level secure (MLS) system [DoD],
a security domain represents a security classification level, each with a different security
clearance. The time protection introduced by our work prevents domains with a different
security clearance from obtaining unauthorised information through intra-core covert timing
channels (Section 4.1.1). Once the security domain is deleted, the kernel has to offer a

mechanism to release any memory used by that domain.
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Figure 4.4: Coloured security domains share an un-coloured kernel image.

Deploying the cache colouring technique To partition shared physically-indexed
caches (Section 2.3.1), the existing kernel mechanisms are sufficient for colouring user
memory and kernel objects (the kernel metadata), as explained in Section 2.6.3. However,
all user-level threads are still supported by a single kernel image that is created at boot
(Figure 4.4). In other words, the kernel image is not coloured and is shared by all the
domains, which can potentially cause a covert timing channel. For example, one coloured
domain can probe cache sets used by the other domain by invoking kernel services (e.g.,
system calls), similarly to shared library code (Section 3.2.3). As cache sets used by the
kernel image cross two partitions, the signal sent by the previously executed domain can be
learnt by the other domain though a PRIME+PROBE attack (Section 3.2.1). To address that,
the kernel has to provide mechanisms to both partition cache sets used by the kernel image
(i.e., colour the kernel image) and make the execution time of the kernel deterministic

enough to prohibit any timing channels.

Identifying domain switches While time-multiplexing a core, the kernel must be
able to identify domain switches and conduct cache flushing operations (Figure 4.3) for
mitigating intra-core covert timing channels. Domain switching is different than context
switching because a domain can have multiple address spaces, and time protection is only
necessary for a domain switch to prevent any information leakage between domains. It is
important to identify the difference, and only conduct cache flushing operations during a
domain switch to preserve system performance. Also, the domain switching latency must

be irrelevant to activities generated by the previous running domain.

64



Combating  Microarchitec-
tural Timing Channels by
Resetting Hardware States

This chapter is the subject of the following paper of which I was the primary author:
Qian Ge, Yuval Yarom, and Gernot Heiser. No security without time protection: We need
a new hardware-software contract. In Asia-Pacific Workshop on Systems (APSys), Korea,
August 2018b. ACM SIGOPS. The analysis and experimentation of all published timing
channel attacks and countermeasures was performed primarily by myself, with assistance

from Yuval Yarom, under the supervision of Gernot Heiser.

The channel matrix measurement shown in this chapter were primarily done by myself.
The original implementation of the tool chain is due to David Cock, as published in Cock
et al. [2014]. I maintained the tool chain after David Cock finished his PhD in August 2014.
We use this tool chain to analyse the correlation between resource contention created by the

sender and timing measured by the receiver.

The tool chain for quantifying the information leakage of studied channels was primarily
contributed by Tom Chothia, as published in Chothia et al. [2013]. The merging of the
above mentioned two tool chains was performed by myself. We use this tool chain for

calculating the mutual information (MI), as a measure of the size of the channel.

In this chapter, we present our investigation on the effectiveness of mainstream hardware
for mitigating intra-core timing channels though temporal partitioning. We conduct our
study on four popular processors and discover that modern hardware does not provide
sufficient mechanisms to allow the OS to enforce full temporal isolation. To address
that, we propose a new software-hardware contract, an augmented ISA, for providing

mechanisms for supporting time protection.
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5.1 Mitigating Intra-core Timing Channels with Resetting

Operations

As discussed in Section 4.2.1, resetting the on-core state is the only method to mitigate
timing channels created on microarchitectural components that cannot be spatially parti-
tioned, except from virtualising all available time sources which has distinct drawbacks
(Section 3.3.6). Therefore, the effectiveness of hardware resetting operations on mitigating
those channels becomes important.

Hardware resetting operations, such as cache flushing operations, are provided by
hardware manufacturers as part of the ISA, the hardware-software contract. Similar to the
rest of the ISA, resetting operations are designed to enforce functional correctness rather
than temporal partitioning.

Previous work demonstrated the use of cache flushing operations to mitigate cache-
based side channels [Godfrey and Zulkernine, 2013; Zhang and Reiter, 2013]. However,
there is no existing study on mitigating timing channels on other core-private resources,
including TLB, BHB, nor BTB channels. To address this shortcoming, we conduct a
systematic study on examining the effectiveness of hardware resetting operations on mit-
igating intra-core timing channels. In particular, we select four popular processors, two
x86 processors (Haswell and Skylake) and two Arm processors (Arm Cortex-A9 and Arm
Cortex-A53), to conduct a study on the effectiveness of manufacturer provided resetting
operations on the mitigation of timing channels based on on-core cache and cache-like

components.

5.2 Threat Model and Scope

This chapter focuses on a specific threat scenario, which is depicted in Figure 5.1: one secur-
ity domain (high) leaks information to the other security domain (low) through intra-core
covert timing channels. More specifically, the channels are based on resource contentions
on components that cannot be partitioned without specific hardware support [Wang and
Lee, 2007]. Based on our studies on known attacks (Section 3.2.4), these covert channels
are based on core-private cache and cache-like components, including the L1-D cache, the
L1-I cache, the TLB, the BTB, and the BHB.

We assume that an adversary tries to steal sensitive data, such as classified information
owned by the security domain with high security clearance, through the above listed covert
timing channels. The adversary manages to inject a Trojan program into a restricted security
domain, possibly by compromising some system services first. Due to security policies
enforced by the OS, the Trojan cannot directly leak any secret to the adversary from the
confined secure environment, even though it has access to sensitive data.

To acquire the secret, the adversary controls a spy program that shares the same CPU

core as the Trojan. The spy executes outside the restricted security domain. As they are
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Figure 5.1: Covert timing channels on core-private cache and cache-like components.

executing in a security domain with low clearance, the spy program has more freedom to
communicate with the external adversary. The adversary’s aim is to exploit a covert timing
channel, allowing the Trojan to send sensitive data to the spy through resource contention
on the shared CPU core. Eventually, the adversary receives the sensitive data from the spy.

In this chapter, we investigate the degree to which the system can prevent the adversary

from exploiting such covert channels by resetting hardware states during a domain switch.

5.3 Methodology

We investigate the hardware flush operations provided by manufacturers for their ability to
contribute to closing intra-core timing channels. We perform this investigation by imple-
menting all timing channels on core-private resources listed in Section 5.2 (Section 5.3.1),
identify available hardware operations for closing those channels (Section 5.3.2), and

analyse the channel leakage (Section 5.3.3) with and without mitigation techniques.

5.3.1 Implementing Intra-core Timing Channels

Similarly to previous work done by Cock et al. [2014], we consider a timing channel to
have a set of inputs (I) that is selected by a sender (e.g., Trojan) and a set of outputs (O)
that is observed by a receiver (e.g., spy). The specific input and output set depend on the
channel and attack model.

We implement all the channels using the PRIME+PROBE technique on both x86 and
Arm platforms, without any assumption about the virtual-address-space layouts, except the
BHB channel which will be explained in Section 5.3.1.5. In other words, the Trojan and

spy can allocate the probing buffer from anywhere in the virtual-address space for building
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the PRIME+PROBE attack. The main purposes of our implementations are to demonstrate
the existence of a channel and to investigate the efficiency of mitigation techniques. We

therefore do not design sophisticated encoding schemes to increase the channel throughput.

5.3.1.1 L1-D cache

To build the L1-D cache channel, we use the PRIME+PROBE attack from the Mastik
toolkit [ Yarom, 2016], which is a similar attack to that demonstrated by previous work [Os-
vik et al., 2006; Percival, 2005].

Figure 5.2 demonstrates the attack. Both Trojan and spy have a buffer that has the same
size as the L1-D cache. By covering a contiguous range in virtual-address space, the buffer
can cover all sets in the virtually-indexed L1-D cache (Section 2.3.1). Assuming each cache
line has [ bytes, the size of the buffer would be [ x s x w bytes, for covering a L1-D cache
that has s sets and w ways. In that L.1-D cache, each cache set contains / x s bytes.

To send a symbol S, the Trojan fills all ways on cache sets 0, 1, ..., s by reading lines
0,1,....S=1,s;,s+1,....s48S—1, ..., sx(w=1)....,s x (w—1)+ 85— 1, the first S
number of cache lines in every cache ways. For example, to send a symbol 3, the Trojan
reads the first 3 cache lines in every s cache lines, repeated w times in order to fill all cache
ways.

To receive the symbol, the spy first primes all the cache sets by reading the entire buffer,
then waits to be preempted by the system tick, and finally measures the time it takes to

revisit its previously loaded cache lines, using the probing time as the output symbol.

5.3.1.2 L1-I cache

The L1-I cache channel is identical to the L1-D cache channel, except that the PRIME+
PROBE fills cache sets by executing code (jump instructions) rather than by reading data.
Along with the L1-D cache channel, the Mastik toolkit [ Yarom, 2016] contains the prototype
of the L1-I cache channel, which is inspired by previous work [Aciigmez, 2007].

The implementation probes the L1-I cache sets with a series of jumps, as shown in
Figure 5.3. For probing the L1-I cache which has w ways, the first w — 1 cache lines contain
a jump instruction, to the next cache line in the same set. To exit, the last cache line in a set
contains a return instruction. Hence, probing a cache set becomes calling the first cache

line in a set, which returns at the last line in that set.

5.3.1.3 TLB

The TLB works as a virtually-indexed cache (Section 2.3.1), which contains most recently
resolved virtual-to-physical mappings. Unlike previous work [Gras et al., 2018; Hund et al.,
2013], we do not tailor our attack to target any individual associative TLB sets, but focus

on the contentions created by simply probing TLB entries.
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Figure 5.2: The covert timing channel on the L1-D cache.

To conduct the PRIME+PROBE, the Trojan and spy probe TLB entries by reading a
single integer from a number of consecutive pages (Section 2.2). After the read, TLB
entries are filled by the virtual-to-physical mappings triggered either by the Trojan or spy.
For an n-entry TLB, the Trojan sends a symbol S by probing on 0,1,...,n entries. To
receive a symbol, the spy measures the cost to access half of the TLB entries, to avoid any

self-contention while executing the probe.

5.3.1.4 BTB

The BTB is a virtually-indexed cache, storing the destination of the recently executed
branch (i.e., jump) instructions. To build the BTB channel, we chain jump instructions into
a probing buffer. Here we focus on demonstrating a timing channel by contending on a set
of BTB entries, rather than contending on few specific BTB entries as done by previous
work [Evtyushkin et al., 2016a].

All jump instructions are cache-line aligned. The Trojan executes s jumps to send an
input symbol S; the spy measures the cost of executing the entire buffer. On Arm platforms,
the size of the buffer equals the known size of the BTB. On x86 platforms, however, the
manufacturer does not publish the details of the BTB. We configure the Trojan to probe
from 3,584 to 3,713 jmp instructions and the spy to probe on 4,096 jmp instructions, based
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Figure 5.3: The covert timing channel on the L1-I cache.

on previous work on reverse engineering the BTB structure [Godbolt, 2016; Milenkovic
et al., 2004].

5.3.1.5 BHB

We build the BHB channel with inspiration from the residual state-based covert chan-
nel [Evtyushkin et al., 2016b]. The BHB is a virtually-indexed cache that contains outcomes
(i.e., taken or not taken) of the most recently executed conditional branch instructions. To
predict a coming conditional branch instruction, the speculative execution engine (Sec-
tion 2.3.3) consults the past history stored in the BHB entry. Because the BHB only uses
the virtual address for indexing, two conditional branch instructions that are located at the
same virtual address but are from different virtual-address spaces can contend on a single

BHB entry, influencing the predicted outcome of each other.

Unlike the above mentioned channels, the BHB channel only contends on one BHB
entry rather than on a number of entries or sets: the Trojan sends a single-bit symbol, as “0”
or “1”, on each system tick. The Trojan and spy use the same code for sending and receiving.
Here we present the implementation for the x86 architecture, shown in Listing 5.1, together
with a detailed explanation. We present a more detailed explanation of the BHB channel
than other channels, because the probing technique used here is distinctly different from
the classical PRIME+PROBE techniques used in other channels (Section 3.2.1). The code is
located at the same virtual address for both Trojan and spy. Therefore, both Trojan and spy
contend on the same BHB entry by executing a conditional branch instruction, jz (line 13).
In other words, the history of the Trojan can influence the predicted outcome of the same

branch instruction while the spy executes.
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The code starts with a sequence of conditional jump instructions that are always taken
(line 8) to prime the branch history to a known state. Then, the attack (lines 10-17) measures
the latency of the branch instruction (Line 13) that conditionally skips 256 nop instructions
(line 14): the code takes the branch if the least significant bit on register %edi is 0. The

output of this channel is the measured latency, which is contained in register %eax.

#define X_4(a) a; a; a; a
#define X_16(a) X_4(X_4(a))
#define X_256(a) X_16(X_16(a))

#define IMP jnc 1f; .align 16; 1:

xorl %eax, %eax
X_256 (JMP)

rdtscp

movl %eax, %esi
and $1, %edi

jz 2f
X_256(nop)

2:

rdtscp

subl %esi, %eax

Listing 5.1: BHB channel implementation on x86.

The conditional branch (line 13) is more expensive if the CPU mispredicts the outcome,
aborting the speculatively executed computation (Section 2.3.3). To use branch prediction as
a timing channel, the Trojan repeatedly calls the code with input “0” or “1” , which primes
the history of the branch as taken or not taken. The spy always calls the code with input
“0” (branch taken), sensing the influence of the branch history trained by the previously
executed Trojan. A longer latency represents that the prediction conflicts with the actual
outcome (i.e., Trojan inputs “1” ), whereas a shorter latency represents that the prediction is

correct, (i.e., Trojan inputs “0” ).

5.3.1.6 Summary

The above listed channels create cache-like intra-core microarchitectural components,
including the L1-D cache, L1-I cache, TLB, BHB, and BTB. These components work
closely together, efficiently serving execution engines in the CPU. Because of interaction
between those components, our evaluations cannot treat them separately. For instance, the
attack that probes the L1-I cache (Section 5.3.1.2) using chained jump instructions also
probes BTB entries (Section 5.3.1.4), thus an apparent L.1-I channel may in reality be the

result of a BTB contention.
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Name Haswell  Skylake Sabre Hikey
Architecture x86 x86 Arm v7 Arm v8
Microarchitecture Haswell Skylake Cortex-A9 Cortex-AS53
Manufacturer Intel Intel Freescale HiSilicon
Processor 17-4770 17-6700 1.MX6 Kirin 620
Clock rate (GHz) 34 34 0.8 1.2
Year 2013 2015 2011 2015
Address size (bit) 64 64 32 32
Execution order 000 000 000 InO
Time slice (ms) 1 1 1 1
L1-D size (KiB) 32 32 32 32
line (B) 64 64 32 64
setsx assoc. 64x8 64x8 256 x4 128 x4
L1-1 size (KiB) 32 32 32 32
line (B) 64 64 32 64
setsx assoc. 64x8 64x8 256 x4 2562
L2 size (KiB) 256 256 1024 512
line (B) 64 64 32 64
sets xassoc. 512x8 512x8 2048 <16 512x16
L3 size (MiB) 8 8 NxA NxA
line (B) 64 64 NxA NxA
setsxassoc. | 8192x16 8192x16 NxA NxA
BTB size ? ? 512 256
setsx assoc. ? ? 256x2 ?
Instruction-TLB  size 64 128 32 10
sets xassoc. 8x8 16x8 32x1 10x1
Data-TLB size 64 64 32 10
setsx assoc. 16 x4 16x4 32x1 10x1
L2-TLB size 1024 1536 128 512
sets xassoc. 1288 128x12 64x2 128 x4

Table 5.1: Experimental hardware, covering 2 generations of microarchitectures across x86 and
Arm. Instruction-TLB and Data-TLB represent first-level TLBs, L2-TLB represents the
second-level (unified) TLB. “?” indicates unknown values.

5.3.2 Mitigations

As mentioned in Section 5.1, the only mitigation strategy available for studied channels
is providing a deterministic execution environment through hardware resetting operations,
such as cache-flushing operations, or completely disabling features relying on hardware

state, such as the prefetcher (Section 2.3.2). In this section, we list those hardware opera-
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tions provided by manufacturers on experimental platforms. We select four experimental

platforms, across two generations of both x86 and Arm architectures (Table 5.1).

5.3.2.1 Architectural support on x86

We list the architectural support on x86 for mitigating on-core timing channels in Table 5.2.
The x86 architecture does not support selectively flushing caches, instead providing a
privileged instruction, wbinvd, for flushing and invalidating all levels of caches [Intel, e].
After the instruction executes, all cache entries are invalidated, and subsequent accesses for
both data and instructions suffer cache misses (Section 2.3.1); the data is instead loaded
from the main memory. Flushing all levels of caches is too expensive to be used in practice,
especially for the x86 architecture which has three levels of caches. Our experiments use
the operation to demonstrate the maximum deterministic execution environment that can be
archived by architectural means. When executing in 64-bit mode, we use the invpcid to
flush and invalidate all TLB entries (both tagged and global entries) and paging structure
caches.

The architecture separates instruction and data prefetching, each controlled by a dedic-
ated prefetcher. As described in Section 2.3.2, the prefetcher predicts the instruction or data
that will be visited in the near future, based on the most recent history. Thus, the prefetcher
contains state that is influenced by the previously executed programs (i.e., the Trojan or spy).
Instead of flushing, disabling the data prefetcher is the only option provided by the architec-
ture to avoid any potential timing channel on this unit. The x86 architecture offers disabling
the data prefetcher though updating the machine state register (MSR) @x1A4 [Viswanathan,

2014]. However, there is no way to disable the instruction prefetcher.

Component Operation

All levels of caches | wbinvd
TLB invpcid
Data prefetcher MSR 0x1A4
Branch prediction | IBC

Table 5.2: Architectural support on x86 for mitigating on-core timing channels.

For mitigating the Spectre attack [Kocher et al., 2019], Intel provided a series of opera-
tions through a microcode update, called IBC [Intel, 2018c]. As introduced in Section 3.3.4,
the IBC mechanism provides configurations for restricted speculations on indirect branch
predictions across privilege modes or hardware threads, or based on previous history. IBC
is designed to provide isolation on the branch prediction state, without claiming to be a
flushing operation. To understand the effectiveness of the IBC, we apply the microcode
patches on all of our x86 testing platforms [Intel, 2018a], and evaluate the timing protection

with and without the IBC mechanism.
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To summarise, for x86 we flush all caches and TLBs, disable the data prefetcher, and
apply the IBC mechanism during a security domain switch. However, there is no operation

to either flush or disable the instruction prefetcher.

5.3.2.2 Architectural support on Arm

We list the architectural support on Arm for mitigating on-core timing channels in Table 5.3.
The Arm architecture supports selectively flushing caches. We use the DCCISW operation to
flush and invalidate the L1-D cache, and ICIALLU for the L1-I cache. We flush L1 caches
by instrumenting these two operations with the level of unification, which is the L2 cache.
Similar operations on the L2 cache are platform dependent, as the L2 cache is normally
implemented as a core-external cache. We therefore use the following specified operations
offered on each platform: the clean and invalidate set operation on the external cache
controller for the Sabre (Arm Cortex-A9) platform, and DCCISW and ICIALLU operations

with level of coherency, the level for the main memory, for the Hikey (Arm Cortex-A53)

platform.
Component Cortex-A9 Cortex-A53
L1-D DCCISW DCCISW
L1-1 ICIALLU ICIALLU
L2 clean and invalidate (external L2) | DCCISW, ICIALLU
TLB TLBIALL TLBIALL
Branch predictor (flush) BPIALL BPIALL
Branch prediction (disable) | SCTLR N/A
Data prefetcher ACTLR auxiliary control

Table 5.3: Architectural support on Arm for mitigating on-core timing channels.

Both Arm testing platforms provide TLBIALL to flush and invalidate all TLB entries, and
BPIALL for the branch predictor. On the Sabre platform, we disable the branch prediction
by clearing the Z-field in the SCTLR and also the first-level data prefetcher by setting the
ACTLR register. On the Hikey platform, we disable the data prefetcher by setting the CPU
auxiliary control register.

In summary, on Arm we flush and invalidate all caches, TLBs, and branch prediction
entries. On the Sabre platform, we also disable the first-level data prefetcher and the branch
predictor for providing the most deterministic execution environment offered by hardware
operations. On the Hikey platform, we disable the first-level data prefetcher. However,

neither of the two testing platforms support flushing or disabling the instruction prefetcher.

5.3.3 Evaluating Channels

On all timing channels, the Trojan sends a pseudo-random sequence of input symbols, and

the spy collects a large number of timing measurements, observing the Trojan’s activity.
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The channel can also be regarded as a pipe into which the Trojan sends secret values
drawn from a set X, and from which the spy receives output from a set Y as measured timing
variances. This attacking model can be used for leaking information in the confinement
scenario introduced in Section 4.1.1. Using the cache attack as an example, the input is the
number of cache sets accessed by the Trojan, and the output is the probing cost measured
by the spy on revisiting the previously-loaded cache lines (a cache-sized buffer).

To analyse the timing channel, we show its channel matrix (Section 5.3.3.1) and quantify
the channel leakage (Section 5.3.3.2) with a method for verifying zero-leakage channels
(Section 5.3.3.3).

5.3.3.1 The channel matrix

For all studied timing channels in this thesis, we use the channel matrix, which represents
the conditional probability of an observed output (spy probing time, y axis) given an input
(cache sets accessed by the Trojan, x axis). The sample size n means the number of samples
collected for each input symbol, and the total sample collected for generating a given matrix
is n x §, where S is the number of input symbols.

We present the channel matrix as a heat map, where colours indicate probability as per
the scale on the right. In the heat graphs shown in this thesis, a brighter colour represents a
higher probability.

If a channel exist, the matrix graph will show a correlation between the input and output,
demonstrating that the selected input (number of cache sets accessed by the Trojan) impacts
the output (probing cost measured by the spy). In other words, the probability of observing
a particular output depends on the inputs, which in the channel matrix appears as a variation
of colour along a horizontal line. The matrix graph would show no horizontal variation if
no channel exists. We create the channel matrix using the technique developed by Cock
et al. [2014].

Figure 5.4 demonstrates the channel matrix for the L1-I cache covert timing channel
(Section 5.3.1.2) without any countermeasures on an Arm Cortex-A9 processor. In the
graph, the input symbol represents the number of L1-I cache sets that the Trojan uses
during each run, and the output symbol represents the cost of probing on all L1-I cache
sets measured by the spy. The graph shows that the Trojan’s activity (input x) is strongly
correlated with the cost of probing measured by the spy (output y): a larger input symbol
causes a larger output value, as a consequence of the cache contention created by the Trojan.
In other words, the spy is much more likely to observe a higher probing cost when the
Trojan has executed on more cache sets in its most recent run. In contrast, the spy cannot
infer Trojan’s activity while the channel is mitigated by resetting operations provided by
hardware manufacturers. As shown in Figure 5.5, the correlation between x and y does not
exist in the mitigated channel. We will explain the method used to analyse channel leakage
in Section 5.3.3.3.
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Figure 5.5: Channel matrix for the mitigated L1-I covert channel on an Arm Cortex-A9. This
example uses 3,824 samples for each input symbol and shows a channel capacity of
0.7 mb (millibit) per usage, we summarise this as .# = 0.7 mb, n = 3,824.

5.3.3.2 Channel leakage

To quantify the leakage of timing channels, we use mutual information, MI, from Shannon
information theory [Shannon, 1948], for measuring the size of a channel. MI quantifies the
mutual dependency between an input and an output, representing the amount of information
that the input variable passes to the output. A high MI value indicates a large reduction on
the uncertainty about the input given the knowledge of the output. On the contrary, a zero
MI means the two variables are independent.

In this work, MI represents the average number of bits of information that a computa-
tionally unbounded receiver can learn from each input symbol x by observing the output
time y, representing how easily an input symbol can be guessed on average. Previous

work [Cock et al., 2014] used discrete capacity [Shannon, 1948] for evaluating channels.
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The discrete capacity treats each sample pair, (x, y), as unrelated separate values, hence can
miss any patterns between those pairs. On the contrary, the MI treats the outputs as continu-
ous, estimating the probability of a particular output y given some input x by examining
every observation that resulted from x. For each of those observations, we calculate the
distance from the observed y’ to y, and use that distance to estimate how that observation
should affect our estimation at y.

We chose this model for the following three reasons. First, we treat all values as
unordered and equivalent if we treat the output (timing measurement) as purely discrete.
For example, a collection of unique particularly high values cannot be treated differently
from a collection of unique uniformly distributed values by discrete capacity, therefore
we might miss a leak. Second, a channel with continuous MI value of zero implies that
the discrete capacity is also zero, for a uniform input distribution. Last, MI is easier to
estimate reliably as an average function to compare against a maximum function (the
discrete capacity), which makes the MI an effective metric for detecting channel leakage if
there is any information leakage.

For all our experiments, we sample at least 1 million outputs from a pseudo-randomly
generated input sequence. Then, we apply kernel density estimation [Silverman, 1986]
to estimate the probability density function of outputs for each input. Finally, we use the
rectangle method ([Hughes-Hallet et al., 2005] p. 340) to estimate the MI between a uniform
distribution on inputs and the observed outputs, which we write as ..

The channel bandwidth can now be calculated by multiplying the leakage (.#) by
the input symbol rate, i.e., the frequency with which the pipe operates. For instance,
Figure 5.4 has a leakage .# = 2500 mb (millibit), and 500 x 2500 = 1,250,000 mb/s
throughput, if the Trojan and spy are scheduled 500 times per second (i.e., 1 ms time slice)
on the same core (Figure 5.1). Although previous work achieved much higher bandwidth
channels [Evtyushkin and Ponomarev, 2016; Gruss et al., 2016b; Liu et al., 2015; Maurice
et al., 2017], our work does not focus on maximising the channel throughput, but rather

demonstrates the existence of a channel to facilitate analysis.

5.3.3.3 Analysing timing channels

For all unmitigated and mitigated channels, we use both channel matrices and the channel

leakage evaluation (.#) to analyse timing channels.

The zero-leakage test For each sampled data set, we conduct the MI evaluation. How-
ever, sampling can result in an apparent non-zero MI even when no channel actually exists
due to noise. Therefore, we apply the following test to differentiate a significant leak from
noise in the sampling process [Chothia and Guha, 2011; Chothia et al., 2013].

To perform the zero-leakage test, we simulate the measurement noise of a zero-leakage
channel by shuffling the outputs in our dataset to randomly chosen inputs. The randomly

assigned input and output pairs ensure that there is no correlation between input and output,
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representing a zero-leakage channel even though the new dataset has the same range of
values as the sampled dataset. We repeat this process 100 times, and calculate .# for each of
the new datasets, resulting in 100 estimations for zero-leakage channels. Then, we calculate
the mean and standard deviation of those 100 .#, and the exact 95% confidence interval
for an estimate to be compatible with zero leakage, written as .#. Similar to calculating
the MI for the original samples, the calculated .# for each of the simulated channels can
be non-zero as the simulation only removes any correlations between input and output but
not the noise contained in the samples. In other words, ., estimates the 95% confidence
interval of a zero-leakage channel if noise exists: the calculated .#) is highly likely not a

timing channel based on resource contentions, but noise.

If the .# of a sampling dataset is larger than the .# (outside the 95% confidence
interval for zero leakage as .# > .#), we say the sampled data set is inconsistent with the
MI being zero, and thus there is a leak on that sample set. The strict inequality is important
here, because for very uniform data with no leakage .# may equal .#(: we consider that
the dataset does not contain evidence of an information leak if the estimated MI is within,
or equal to, the 95% confidence interval. Our present tool [Chothia et al., 2013] has a
resolution of about 1 mb (millibit), and hence it cannot give conclusive evidence if .#Z <
1 mb.

Confirming a timing channel For the unmitigated channels, we confirm the timing
channel from matrices, and report the .# value only, as the zero-leakage test is not relevant
if the timing channel is obvious. For mitigated channels, we report both .# and .#, and

confirm any remaining channel by examining matrices obtained from repeated runs.

If we observe that .# > ., for a mitigated channel, it is still possible that the evaluated
A of a mitigated channel is not due to the timing channel, but some other side effects, such
as hardware noise. In order to avoid any false claims, we repeat the experiments multiple
times (five to eight times), and examine any consistent trend on the output distribution
across the same range of inputs from channel matrices. A consistent trend on all repeated
runs is solid evidence of a remaining timing channel, as the same distribution pattern is
always related with the secret sent by the Trojan (inputs). Hence, we confirm that the
evaluated MI is caused by residual channels, which are marked bold in Table 5.4. If there
is no consistent pattern on matrices, we report the lower bound of the MI evaluation from

repeated runs, as there is no evidence of timing channel on matrices.

Examining channel matrices obtained from repeated runs can also confirm any remain-
ing channel if the leakage is less than the precision of the tool chain (1 mb), as well as

detect any false negatives of the zero-leakage test.
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5.4 Results

5.4.1 Evaluation platforms

We perform our study on the two most widely-used architectures, x86 and Arm, as listed
in Table 5.1. For x86, we use the Haswell and Skylake microarchitectures; for Arm, we
use the Sabre platform (Cortex-A9), an implementation of Arm v7, and the Hikey platform
(Cortex-AS53), an in-order (InO) implementation of Arm v8. We summarise their relevant
features in Table 5.1, including caches, TLBs, and BTB. The information on the BTB is
incomplete, because information is not published by the manufacturers.

The purpose here is to investigate the effectiveness of hardware operations on closing
intra-core timing channels, which should be independent of the OS or hypervisor used.
However, it becomes harder to preclude interference from software components on a
more complex system, such as Linux, than when using a simple system, such as the sel.4
microkernel [Klein et al., 2014; seL.4]. We therefore use the sel.4 microkernel (Section 2.6)
as our base system.

In particular, we configure sel.4 as a separation kernel [Rushby, 1984], where the Trojan
and spy programs are scheduled by the system tick, and share nothing but the time source.
This almost noise-free environment not only helps us in measuring small-capacity channels,
but also simplifies the implementation of mitigation. Lastly, the formal verification of seL.4
provides the absence of storage channels [Murray et al., 2013], which simplifies the analysis

of results as any remaining channel must be a timing channel.

5.4.2 Overview of results

For each experiment, we collect more than 1 million input and output pairs. We summarise
the result of unmitigated and mitigated MI analyses in Table 5.4. As introduced in Sec-
tion 5.3.3.3, the .# represents the MI calculated for the original samples whereas the .
represents the 95% confidence interval of simulated zero-leakage channels. Both .# and
M can be non-zero due to noise even though the corresponding timing channel does not
exist.

On x86 platforms, we also evaluate the mitigated channel without the IBC mechanism
enabled [Intel, 2018c], to determine how effective IBC is in mitigating intra-core timing

channels.

Raw channels The “none” rows in Table 5.4 demonstrate the unmitigated MI of all the
channels on four testing processors. Most of the channels leak several bits per input symbol,
except the BTB channels on the Skylake and Arm Cortex-A9, which have MI less than
100 mb. We suspect the reasons are replacement policies and the unknown BTB architecture
on the x86 processors, as our simple attacks work best with a true least-recently used (LRU)

replacement policy. Although we could try to enlarge the channel by reverse engineering
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Processor | Haswell Skylake | Cortex-A9 | Cortex-A53
Chan. Mitig. 64-bit 64-bit 32-bit 32-bit
LLp hone 4,053 4,458 2,070 1,540

full 0.3 (0.3) 0.4 (0.4) 0.5 (0.6) 0.4 (0.4)

no IBC 0.7 (0.9) 0.4 (0.4) N/A N/A
L1 Pone 260 2,088 2,489 4,137

full 0.4 (04) 0.3(0.3) 0.7 (0.7) 18 (0.8)

no IBC | 20.3(0.3) 9.7 (0.4) N/A N/A
TLp hone 2,564 2,106 559 544

full 0.3(0.3) 0.4 (0.4) 0.2 (0.3) 1.2 (1.2)

no IBC 0.2 (0.2) 0.4 (0.5) N/A N/A
BTB none 1,533 47 5.4 486

full 0.4 (0.4) 0.8 (0.8) 2.02.2) 2.3(0.7)

no IBC 307 (0.7) 1.3 (0.9) N/A N/A
pup hone 1,000 1,000 1,000 1,067

full 0.4 (0.0) 0.8 (0.1) 0.0 (0.3) 37 (0.0)

no IBC 555 (0.0) 170 (7.6) N/A N/A

Table 5.4: Observed unmitigated (‘“none”), maximally mitigated (“full”), and mitigated without
IBC (“no IBC”, x86 only) MI (millibit) and the 95% confidence interval of simulated
zero-leakage channels (.#)). Value in parentheses is .#(. Confirmed residual channels
are marked in bold.

the replacement policy, the purpose of this work is to show timing channels on on-core

microarchitectural components (Section 5.1).

As Table 5.4 demonstrates, all the microarchitectural components that contain recent
execution history can be used for creating timing channels. As a result, the OS must consider
the effect of those microarchitectural components when trying to enforce temporal isolation

in the confinement scenario (Section 4.1.1). We will now examine these results in detail.

Mitigated channels The “full” rows in Table 5.4 show the MI with all mitigations
enabled during the domain switch. Note the mitigation is more than flushing caches, rather
enabling all hardware provided operations listed in Section 5.3.2, to provide a deterministic

execution environment.

From Table 5.4, we observe that most of the channels are effectively mitigated by
hardware functions for eliminating the microarchitectural state: the .# of sampling datasets
are inside the 95% confidence interval for zero-leakage channels (.#); and we cannot
observe any consistent patterns on channel matrices obtained from multiple runs. Still, a
few channels on Arm Cortex-A53 contain evidence of an information leak on matrices

generated from repeated runs (Section 5.3.3.3). We highlight them in bold.
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We also highlight the residual BHB timing channels on x86 processors with all mitiga-
tion enabled, as we observed a consistent distribution pattern from matrices generated from

repeated runs, even though .# values are beyond the precision of our tool chain (1 mb).

5.4.3 The effectiveness of hardware resetting operations

We generate all matrices for channels listed in Table 5.4, visualising the timing variance

caused by microarchitectural contention if any.

5.4.3.1 L1-D cache

As mentioned in Section 5.3.1.1, the L1-D cache timing channel creates cache contentions
though reading a buffer. Based on results listed in Table 5.4, the channel is completely
closed on all four testing platforms, showing the cache flushing operations are very effective
in closing the L1-D channel.

Figure 5.6 demonstrates matrices for the unmitigated (top), mitigated without the IBC
mechanism enabled (middle), and maximally mitigated (bottom) L1-D cache channels on
the Haswell processor.

From the matrix of the unmitigated channel, we can observe that the Trojan’s activity
(input), probing S cache sets on each system tick, is correlated with the probing cost
measured by the spy (output). However, the trend disappears and the channel is mitigated
when the kernel conducts hardware resetting operations (Section 5.3.2.1) during a domain
switch, as the output is evenly distributed across all possible inputs, irrespective of the IBC
mechanism.

Similarly, the L1-D channel is closed on Skylake (Figure 5.7), Arm Cortex-A9 (Fig-
ure 5.8), and Arm Cortex-A53 (Figure 5.9) platforms.

5.4.3.2 L1-I cache

The L1-I cache timing channel (Section 5.3.1.2) is an instruction-based channel, which
probes L1-I cache sets with jumping instructions.

The channel is effectively closed on x86 platforms with the IBC mechanism enabled.
As Figure 5.10 shows, there is a definite horizontal variation around input value 2 on the
channel matrix (middle) without the IBC mechanism involved during the domain switch on
the Haswell processor. However, the distribution of the output becomes evenly distributed
across all possible input values once the IBC mechanism is introduced (bottom). Results
for the MI evaluation are consistent with the observations from those matrices, the channel
leakage is .# = 20.3 mb (.#, = 0.3 mb) while being mitigated without the IBC mechanism
enabled, but .#Z = 0.4 mb (.#y = 0.4 mb) while being maximally mitigated, consistent with
a fully closed channel.

We observe a similar phenomenon on the Skylake processor (Figure 5.11): the output is

higher on average at inputs 0-10 without IBC (middle) whereas it is evenly distributed with
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IBC enabled (bottom). In terms of the channel leakage, results of the MI evaluation are
M =9.7mb (#y = 0.4 mb) without enabling the IBC, which are down to .# = 0.3 mb
(.#y = 0.3 mb) with IBC enabled.

For Arm processors, the L1-I cache channel is fully closed on the Cortex-A9, but
less so on the Cortex-A53. On the Cortex-A9 (Figure 5.12), the matrix for unmitigated
channel (top) shows a clear correlation between inputs, number of cache sets probed by the
Trojan using jumping instructions, and outputs, probing cost measured by the spy. With
hardware resetting operations (bottom), there is no horizontal variation across all possible
inputs. The unmitigated channel has .# = 2,489 mb, which is completely closed with
hardware resetting operations given the .# = 0.7 mb is inside the 95% confidence interval
for zero-leakage channels, .#() = 0.7 mb.

However, on the Cortex-A53 processor (Figure 5.13), the hardware resetting operations
(bottom) are less effective, as the distribution of the output drops at inputs 0-50 then
climbs gradually from input 50. Results of the MI evaluation are consistent with facts
observed on those matrices: there is a small amount of residual channel while the hardware
resetting operations are engaged, . = 18 mb is outside of the 95% confidence interval for

zero-leakage channels, .Zy = 0.8 mb.

5433 TLB

The TLB timing channel (Section 5.3.1.3) uses the contention on TLB entires that are
created by reading a number of consecutive pages. Similar to the L1-D cache channel
(Section 5.4.3.1), the TLB channel is fully closed on all testing platforms.

Figure 5.14 shows channel matrices for unmitigated (top), mitigated without IBC
(middle), and maximally mitigated channels (bottom) on the Haswell processor. On the
matrix for unmitigated channel, we can observe the horizontal variation around a list of
input values, 6, 20, 35—40, and 48. The variation disappears on matrices for the mitigated
channels, regardless of the engagement of the IBC mechanism. Results of the MI evaluation
also show that the channel is closed nonetheless of the engagement of the IBC mechanism,
A = 0.2mb (.#y = 0.2 mb) without enabling the IBC, and .# = 0.3 mb (.#, = 0.3 mb)
with the IBC.

Figure 5.15 demonstrates a similar situation on the Skylake processor: the horizontal
variation that occurs on the matrix for unmitigated channel (top) vanishes on matrices for
mitigated channels (middle and bottom).

Similar with x86 processors, the channel is fully closed on the Arm Cortex-A9 (Fig-

ure 5.16) and Cortex-AS3 processors (Figure 5.17).

5.4.3.4 BTB

For the BTB timing channel (Section 5.3.1.4), the Trojan and spy probe BTB entries with

jump instructions.
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Similar to results for mitigating the L1-I channel (Section 5.4.3.2), the IBC mechanism
is very effective on closing the BTB channel on x86 processors. Moreover, hardware
resetting operations completely close the channel on the Arm Cortex-A9 processor but
leave a small amount of residual channel on the Cortex-A53 processor.

Figure 5.18 shows matrices for the BTB channel on the Haswell processor. Without
IBC mechanism involved, the matrix (middle) contains the curiously shaped pattern around
inputs 3640-3660, which disappears on the bottom matrix, generated for the maximally
mitigated channel. Results of the channel leakage evaluation also prove that there is a
distinctive amount of residual channel without the IBC, .# = 307 mb (.#, = 0.7 mb),
which is fully closed with all hardware resetting operations, .# = 0.4 mb (.#y = 0.4 mb).

On the Skylake processor (Figure 5.19), the IBC mechanism enhances the effectiveness
of the hardware resetting operations, the evaluated channel leakage becomes .#Z = 0.8 mb
(A = 0.8 mb) compared to .#Z = 1.3 mb (#y = 0.9 mb) without the IBC mechanism
being involved.

On the Arm Cortex-A9 processor (Figure 5.20), we can observe that the distribution of
outputs slides slightly downwards around inputs 400-500 on the matrix for unmitigated
channel (top). However, the matrix for the mitigated channel (bottom) shows that the outputs
are evenly distributed across inputs. Results of the MI evaluation also shows the channel is
completely closed with hardware resetting operations, .#Z = 2.0 mb (.#, = 2.2 mb).

On the Arm Cortex-A53 processor (Figure 5.21), a small amount of channel leakage
remains even though the channel is maximally mitigated with hardware resetting operations.
The MI evaluation for the mitigated channel shows that the .# = 2.3 mb is outside the
95% confidence interval for zero-leakage channels, .# = 0.7 mb. By observing the matrix
carefully, we identify that the distribution of outputs curve slightly downwards while the
inputs are between 50-200, an evidence of a small amount of residual channel. We observe
the same phenomenon on matrices generated for six repeated runs, confirming the residual

timing channel.

5.4.3.5 BHB

The BHB timing channel (Section 5.3.1.5) is a single-bit channel, showing the timing effect
of colliding on a BHB entry that is caused by probing on a condition branch instruction.

Results for the channel leakage evaluation (Table 5.4) demonstrate that the IBC mech-
anism improves the effectiveness of mitigating the channel on x86 processors.

For the unmitigated channel created on the Haswell processor, the top matrix in Fig-
ure 5.22, we see that the Trojan successfully influences the latency of the conditional
branch instruction executed by the spy: the conditional branch instruction takes longer to
execute when the CPU mispredicts the outcome (i.e., the input is “1”). Furthermore, the
channel remains without the IBC mechanism, as shown on the middle matrix in Figure 5.22.
However, the IBC mechanism does not fully eliminate the remaining channel, which can be

observed on the bottom matrix in Figure 5.22— a tiny amount, less than 0.5% based on the
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data for generating the matrix, of outputs is smaller than 40 if input is “0”. The same trend
exists in five repeated runs, confirming that the timing variance is not due to hardware noise
but a residual channel. In terms of MI evaluations, the remaining channel is significant
without the IBC involved, .# = 555 mb (.#, = 0.0 mb), which is reduced to .#Z = 0.4 mb
(Ao =0.0mb).

Results are similar on the Skylake processor (Figure 5.23). The probing time clearly
identifies the two input values—O0 and 1 on the middle matrix in Figure 5.23, demonstrating
a residual channel without the IBC enabled. The remaining channel has .#Z = 170 mb
(y = 0.0 mb) leakage. With IBC enabled, we can observe that a small number of output
values, less than 2.6% based on our data, are smaller than 37 while the input is “0”. We
also observe the same trend in five repeat runs, representing a residual channel, even though
the calculated .#Z = 0.8 mb (.#y = 0.1 mb) is beyond the the precision of our tool chain
(1 mb).

For Arm processors the story is similar to that for the L1-I cache and BTB channels:
hardware resetting operations fully close the channel on the Arm Cortex-A9 processor, but
leaves a residual channel on the Arm Cortex-AS53 processor .#Z = 37 mb (.#y = 0.0 mb).

On the Arm Cortex-A9 processor (Figure 5.24), the channel is completely closed. The
bottom matrix in Figure 5.24 shows that outputs are evenly distributed across inputs. The
MI value for the mitigated channel is . = 0.0 mb (.#y = 0.3 mb).

The situation is different on the Arm Cortex-A53 processor. Based on our data for
generating the bottom matrix in Figure 5.25, 20% of the input is smaller than 500 for input
“0”, which demonstrates that the hardware resetting operations cannot fully prevent the
contention on the BHB entry. The MI evaluation for the residual channel is .# = 37 mb
( Ay =0.0mb).

5.4.3.6 Summary

All studied x86 and Arm processors are very effective at mitigating L1-D (Section 5.4.3.1)
and TLB (Section 5.4.3.1) channels. Those timing channels create contention on targeted
microarchitectural components with data accesses (i.e., data-based).

For instruction-based timing channels, L1-I (Section 5.4.3.2), BTB (Section 5.4.3.4),
and BHB (Section 5.4.3.5) channels, the IBC mechanism significantly reduces the MI on
x86 processors, even though the manufacturer designed it as mitigation for the Spectre
attack [Kocher et al., 2019]. Our results demonstrate that manufacturers are able to provide
more effective operations to mitigate timing channels by resetting all possible microar-
chitectural state. However, we are able to observe a small amount of timing variance on
channel matrices for the BHB channel on x86 processors, which helps to verify the small
amount of residual channel while MI values are less than the precision of our tool chain.

For Arm processors, we observe that it is more difficult to completely close instruction-
based timing channels with current available hardware operations on advanced processors,

compared to data-based timing channels: the Arm Cortex-AS53 contains residual channels on
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L1-I cache, BTB, and BHB, which are all closed on the Arm Cortex-A9, an implementation
of an earlier version of the Arm architecture. Still, the hardware provided operations largely
reduces the MI for those channels on the Arm Cortex-A53, with maximum MI less than
40 mb.

The cause of the residual channels is that hidden microarchitecture state is preserved
across a context switch. It is highly likely that the state accumulated in the instruction
prefetcher contributes to the residual channels, due to the lack of operations for either

flushing or disabling the instruction prefechter on all our testing platforms (Section 5.3.2).

5.5 Security Needs a New Hardware-Software Contract

We have seen that L1-I cache, BTB, and BHB timing channels cannot be removed on
the Arm Cortex-AS53 processors by using microarchitectural history resetting operations.
Furthermore, a small BHB channel remains on both Haswell and Skylake processors, even
after applying all resetting operations including the IBC mechanism. Therefore, there is a
certain amount of residual microarchitectural state on those processors that cannot be reset.
To address this problem, the hardware manufacturer should provide more information on

resetting microarchitectural components that cannot be partitioned as part of the ISA.

5.5.1 The Augmented ISA: A New Hardware-Software Contract

The ISA, which defines the hardware-software contract, gives freedom to both hardware
and software designs, with the expectation that everything works functionally correctly
as long as everyone observes the contract. However, the ISA is not the right contract
for ensuring timing channel protection, because it abstracts away the hardware state that
accelerates system performance but leaves a great opportunity for microarchitectural timing
channels. In other words, we need a new hardware-software contract, which must satisfy

the following requirements:

1. It must provide the OS with sufficient mechanisms for supporting time protection;
it should be as simple as possible;

it should not reveal more architectural details than absolutely necessary; and

ol

it should minimise restrictions imposed on architects.

Points 2—4 can be viewed as different aspects of the same principle, and are important in
practice. The simplicity requirement helps both hardware and software on implementation.
Additionally, manufacturers can choose to not reveal critical IP, retaining their freedom
for microarchitectural innovations. Together these points argue for minimal augmentation
to, rather than wholesale replacement of, the ISA. We therefore call the new contract the
augmented ISA (alSA).

Based on this observation, we define the minimal properties the aISA should provide:
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Property 1: Security enforcement
Any shared microarchitectural feature can either be spatially partitioned between

security domains, or reset to a known state when required by privileged software.

Furthermore, resetting cannot close timing channels exploited between threads that
are running concurrently on multiple cores or hardware threads, e.g., the LLC cross-core

timing attack (Section 3.2.3.2). This lack of separation implies a second property:

Property 2: Secure concurrent sharing
Microarchitectural features accessed by concurrent execution streams must be

partitionable; partitions must be completely static or controlled by a privileged

software layer, such as the OS or hypervisor.

It is essential that the OS controls partitioning changes: in terms of information flow,
dynamic partitioning by hardware is no different from a normal data or instruction cache,
the dynamics can be exploited as a timing channel. However, the hardware can provide
mechanisms for assisting partitioning, such as locking cache ways to threads.

As the OS cannot partition state accessed solely by virtual address (Section 2.4), we

require:

Property 3: Secure virtually indexed state

Hardware state indexed solely by virtual address must not be concurrently access-

ible and must be resettable.

This condition does not apply to access using a combination of virtual address and (tempor-
ary unique) thread identification.

To allow the OS to partition microarchitectural components, the aISA must provide
sufficient information. For instance, the OS can efficiently partition the physically-indexed
hardware caches using cache colouring (Section 2.4), as long as the OS can determine the
number of available colours. More recent Intel processors implement hashing functions
on the LLC, which distributes cache lines to different LLC blocks [Yarom et al., 2015].
Although providing information on the hashing scheme can increase the number of available
colours, the OS only needs to know an over-approximation of the number of colours.

Similarly, the aISA must clearly define reset mechanisms, especially for any aspect
related with timing. For example, the execution history, such as the number of dirty cache
lines, can affect the reset latency, which can be used as a timing channel. Therefore, the

reset must be either a constant-time operations or padded to its worst-case latency.

Property 4: Specified mechanisms
The alSA must completely specify the mechanisms used to partition or reset

microarchitectural features. Reset operations must be constant time or have a

specified worst-case latency.
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For resettable state, privileged software benefits from knowing the kind of information
that is cached (data, instructions or addresses of data or instructions) to optimise system

performance:

Property 5: State provenance
The aISA should specify whether a reset operation acts on state derived from data,

instructions, data addresses or instruction addresses.

The alSA can abstract resetting of multiple features into a single operation, such as flushing
all on-core microarchitectural states (L1 caches, TLB, branch predictor and prefetcher) by
a single reset operation. However, a detailed abstraction can help the software to achieve
potential performance advantages, as only the specified resetting operation is engaged to

prevent a targeted attack.

5.5.2 Discussion

The augmented ISA that we proposed in Section 5.5.1 provides more than a functional
specification of instructions, rather, the alSA ensures that the architecture provides a timing-

secure microarchitecture. We now examine the implications and its potential cost.

5.5.2.1 Implications

Firstly, we note that the two options in Property 1, partitioning and reset, must not interfere
with each other. For instance, the operation for flushing all levels of caches breaks parti-
tioning of caches (i.e., cache colouring on the LLC), as a malicious program can invalidate
all cache lines on the LLC including those that belong to other partitions. Therefore, the
hardware should not provide that operation to user-level programs, but only as a privileged
instruction for the OS or VMM. In other words, resetting instructions for partitionable fea-
tures must be reserved for use by the privileged software layer, such as the OS or hypervisor,
else the hardware fails to observe Property 1.

Secondly, Property 2 does not imply that all hardware threads on a core have to belong
to the same security partition, but the microarchitecture would have to partition all state
that is concurrently shared, including L1 caches, TLB, branch predictors, prefetchers, and
any on-core state; this would seem to turn threads into full-blown cores.

Lastly, the requirement for resetting operations in Property 4, presenting a constant
or defined latency, might seem restrictive at first glance. However, we argue that this is
not the case: the resetting operation is required only for on-core resources that cannot be
partitioned, such as pipeline states or core-private L.1 caches. Resetting read-only data,
such as instructions stored in the L.1-I cache, generates little variance in operating latency,
as the hardware only needs to invalidate those cache lines. Hence, resetting on-core state
that contains solely read-only data, such as the L1-I cache, can be implemented as a

constant-time operation.
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Resetting caches that contain modified data is more expensive, as the hardware has to
flush those modified cache lines down the memory hierarchy to maintain the cache coher-
ency. Additionally, resetting operations may have multiple use cases, including maintaining
the correctness of a system. For example, flushing the L1-D cache is useful not only for
preventing the L1-D timing attack but also for maintaining the coherency between the
instruction and data caches, a common case for implementing self-modifying code. The
hardware may reveal only the worst-case latency of those resetting operations, because
requiring the hardware to always enforce constant time execution may not be reasonable.
As long as it knows the worst case, the privileged software layer can enforce time protection
with software padding. Alternatively, the hardware might provide a parameterised flushing

operation, which guarantees a minimum latency for the resetting operation.

5.5.2.2 Cost

In terms of the cost, the system pays not only the cost of flushing the microarchitecture
state, the direct cost, but also the indirect cost of starting with a cold state (i.e., cold caches
or predictors).

As discussed in Section 3.3.4, we argue that the direct cost is low for resetting a small
amount of microarchitecture state, such as the 32KiB L1-D cache on x86 processors.
Previous work [Varadarajan et al., 2014] measured an 8.4 us direct cost for flushing L1
caches manually on a 6 core Intel Xeon E5645 processor. In addition, the indirect cost is
also small if security domains are not lightweight, such as VMs hosted on cloud computing
platforms, because the cached content of previously running domains will be overwritten by
the next running domain even without flushing. In other words, the small cache is normally
cold anyway after a domain switch, thus flushing operations do not introduce much indirect
cost. Moreover, flushing operations are only required when switching security domains,
which are typically operated at a rate of 10—100 Hz. Such a long execution time implies
that the relative cost of flushing L1 caches is quite affordable, unlike flushing all levels of
caches.

Previous research has done in-depth studies of the cost of cache partitioning. For
instance, Sanchez and Kozyrakis [2011] evaluated the cost of statically partitioning the
LLC between cores, presenting a performance overhead of 7%. Additionally, STEALTH-
MEM [Kim et al., 2012] measured the cost of providing pinned pages in the LLC as 5.9%
for the SPEC 2006 CPU benchmark. This measured cost is far less than the cost of the
Spectre [Kocher et al., 2019] or Meltdown [Lipp et al., 2018] defences. Recently, cache
colouring has also been used to improve system performance [Han et al., 2018; Noll et al.,
2018]. In the next chapter, we also evaluate the cost of cache colouring on seL4, which will

be presented in Section 6.5.3.4.
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Figure 5.6: Channel matrix for the L1-D covert channel on Haswell. Top: without mitigation .#Z =
4,053 mb, n = 15,436, middle: mitigated without IBC .# = 0.7 mb, .#y = 0.9 mb,
n = 15,461, bottom: maximally mitigated . = 0.3 mb, .#y = 0.3 mb, n = 15,444.
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Figure 5.7: Channel matrix for the L1-D covert channel on Skylake. Top: without mitigation .#Z =
4,458 mb, n = 15,366, middle: mitigated without IBC .# = 0.4mb, .#y = 0.4 mb,
n = 15,510, bottom: maximally mitigated .# = 0.4 mb, .Zy = 0.4 mb, n = 15,341.
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Figure 5.9: Channel matrix for the L1-D covert channel on Arm Cortex-A53. Top: without mitigation
M =1,540mb, n = 7,728, bottom: maximally mitigated .# = 0.4 mb, .#y = 0.4 mb,
n=7,693.
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Figure 5.10: Channel matrix for the L1-I covert channel on Haswell. Top: without mitigation
M =260mb, n= 15,532, middle: mitigated without IBC .# =20.3 mb, .#y = 0.3 mb,
n = 15,480, bottom: maximally mitigated .# = 0.4 mb, .#y = 0.4 mb, n = 15,482.
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Figure 5.11: Channel matrix for the L1-I covert channel on Skylake. Top: without mitigation .#Z =
2,088 mb, n = 15,438, middle: mitigated without IBC .#Z = 9.7 mb, .#; = 0.4 mb,
n = 15,472, bottom: maximally mitigated .# = 0.3 mb, .#p = 0.3 mb, n = 15,406.
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Figure 5.12: Channel matrix for the L1-I covert channel on Arm Cortex-A9. Top: without mitigation
A =2,489 mb, n = 3,808, bottom: maximally mitigated .#Z = 0.7 mb, .#; = 0.7 mb,
n=3,824.
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Figure 5.13: Channel matrix for the L1-I covert channel on Arm Cortex-A53. Top: without
mitigation .# = 4,137 mb, n = 3,822, bottom: maximally mitigated .# = 18 mb,
Mo =0.8mb, n =3,797.
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Figure 5.14: Channel matrix for the TLB covert channel on Haswell. Top: without mitigation .#Z =
2,564 mb, n = 15,511, middle: mitigated without IBC .#Z = 0.2 mb, .#; = 0.2 mb,
n = 15,440, bottom: maximally mitigated .#Z = 0.3 mb, .#y = 0.3 mb, n = 15,529.
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Figure 5.15: Channel matrix for the TLB covert channel on Skylake. Top: without mitigation .#Z =
2,106 mb, n = 15,444, middle: mitigated without IBC .#Z = 0.4 mb, .#; = 0.5 mb,
n = 15,428, bottom: maximally mitigated .#Z = 0.4 mb, .Zy = 0.4 mb, n = 15,494.
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Figure 5.17: Channel matrix for the TLB covert channel on Arm Cortex-A53. Top: without
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Figure 5.18: Channel matrix for the BTB covert channel on Haswell. Top: without mitigation .#Z =
1,553 mb, n = 7,663, middle: mitigated without IBC .# = 307 mb, .#y = 0.7 mb,
n ="7,733, bottom: maximally mitigated .# = 0.4 mb, .#y = 0.4mb, n = 7,748.
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Figure 5.19: Channel matrix for the BTB covert channel on Skylake. Top: without mitigation
M =47 mb, n="7,727, middle: mitigated without IBC .#Z = 1.3 mb, .#y = 0.9 mb,
n ="7,713, bottom: maximally mitigated .# = 0.8 mb, .#y = 0.8 mb, n = 7,747.
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Figure 5.20: Channel matrix for the BTB covert channel on Arm Cortex-A9. Top: without mitigation
A =5.4mb, n = 1,857, bottom: maximally mitigated .# = 2.0 mb, .# = 2.2 mb,
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Figure 5.21: Channel matrix for the BTB covert channel on Arm Cortex-A53. Top: without
mitigation .# = 486 mb, n = 3,771, bottom: maximally mitigated .# = 2.3 mb,
My =0.7mb, n =3,774.
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Figure 5.22: Channel matrix for the BHB covert channel on Haswell. Top: without mitigation .# =
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Figure 5.23: Channel matrix for the BHB covert channel on Skylake. Top: without mitigation .# =
1,000 mb, n = 511,487, middle: mitigated without IBC .# = 170 mb, .#y = 7.6 mb,
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Figure 5.24: Channel matrix for the BHB covert channel on Arm Cortex-A9. Top: without mitigation
A = 1,000mb, n = 511,434, bottom: maximally mitigated .#Z = 0.0mb, .#, =
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Figure 5.25: Channel matrix for the BHB covert channel on Arm Cortex-A53. Top: without mit-
igation .# = 1,067 mb, n = 511,872, bottom: maximally mitigated .# = 37 mb,
My =0.0mb, n=511,668.
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Time Protection Mechanisms

and Their Implementation in
selL4

This chapter is the subject of the following paper of which I was the primary author:
Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time protection: the missing OS
abstraction. In EuroSys Conference, Dresden, Germany, March 2019. ACM. The design
and implementation of kernel mechanisms were performed primarily by myself, under the
supervision of Gernot Heiser. The evaluation of efficacy and performance impact of time
protection were designed and performed mainly by myself, with assistance from Yuval
Yarom and Tom Chothia, under the supervision of Gernot Heiser. The evaluation of fork

and exec system calls on Linux was performed by Peter Chubb.

In Section 4.3, we outlined the targeted system solution that provides time protection in
the OS. In this chapter, we examine the requirements for time protection in an OS, present
a design in the seL4 microkernel with a proof-of-concept implementation, and evaluate its
efficacy for time protection as well as the system performance overhead on both x86 and

Arm processors.

6.1 Requirements for Providing Time Protection in the OS

In this section, we define the requirements for providing time protection in the OS. Our
goal is to design a system integrating the solution discussed in Section 4.3.

As discussed in Section 4.2.1, resetting execution history by flushing is the only option
for preventing timing channels on shared virtually-indexed on-core state as it cannot be
partitioned. However, the existing ISA does not satisfy this requirement, as we demonstrate
in Section 5.4.3.6. Hence we propose alSA which emphasises this requirement as part
of its core property (Property 1, Section 5.5.1). Most importantly, the resetting operation
must be performed not only on virtually-indexed caches and cache-like components (e.g.,
L1 caches or TLBs), but also on other on-core states that are shared. Recently published
attacks [Minkin et al., 2019; Schwarz et al., 2019; van Schaik et al., 2019] demonstrated

that timing channels are possible on line fill buffers, load ports, and store buffers (Sec-
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tion 3.2.2)—strong evidence that resetting all on-core states is compulsory for eliminating
microarchitectural timing channels. Because our work focuses on providing time protection
with system mechanisms, we assume that the hardware offers operations for resetting
on-core state. These system mechanisms can easily adopt any future improvements to
hardware, such as an implementation of the aISA. For this work, we require the OS to flush
on-core caches, including L1 caches, the TLB, the BTB, and the BHB on a domain switch
(Figure 4.3). Resetting more on-core states, such as the line fill buffer (Section 2.3.4) or
prefetcher (Section 2.3.2), can be more expensive, however we leave the evaluation for
future work.

Moreover, we assume that there is no concurrent resource sharing between hardware
threads by either disabling hardware multithreading or allocating all hardware threads of
a core to the same security domain (Section 3.1.1). As a result, timing channels on core-
private microarchitectural components are only possible with time-multiplexed sharing,
exploring microarchitectural state that contains execution history of previous running

domains. Flushing on-core state is necessary to prevent these timing channels.

Requirement 1: Flush on-core state
When time-sharing a core, the OS must set on-core caches to a defined microarchi-

tectural state on domain switch, unless the hardware supports spatially partitioning

such state.

The OS can either partition other core-private caches (e.g., the physically-indexed L2
cache on Intel processors) or set those caches to a defined state on domain switch. However,
the OS must prevent concurrent sharing among cores by partitioning (Section 4.2.2), in
particular flushing the LLC does not help due to the concurrent access (Section 4.1.2).
Furthermore, flushing the LLC introduces unacceptably high overhead, as we will show in
Section 6.5.1.

Applying cache colouring to partition physically-indexed caches, such as the LLC,
prevents memory frames from being shared among security domains, either explicitly or
implicitly though page de-duplication [Bugnion et al., 1997; Mitos et al., 2009], and hence
may enlarge the memory footprint of the system. Nonetheless, prohibiting page sharing is
necessary, as even sharing of read-only (code) pages has been demonstrated to be a source of
side channels [Gullasch et al., 2011; Yarom and Falkner, 2014]. Cloud providers explicitly
discourage the practice of cross-VM deduplication because of the risks it presents [VMware
Knowledge Base, 2014].

The kernel image itself becomes the only partition shared by all domains while sharing
any memory frames among security domains is prohibited. More specifically, sections in the
kernel image, including code, data, stack, and heap, are shared. As described in Section 4.3,
a shared kernel image can generate cache footprints due to invoking kernel services, such
as system calls. Because those cache footprints are related to the security domain which

invokes kernel services, the shared kernel image can be exploited as a timing channel in
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the same way as any shared memory frames (e.g., shared user-level libraries). We will

demonstrate the timing channel in Section 6.5.2.3.

Requirement 2: Partition the OS
Each domain must have its private copy of OS text, stack and (as much as possible)
global data.

Partitioning most kernel data is straightforward if the memory is managed from user
space, such as the memory management model in sel.4 as stated in Section 2.6: all dy-
namically allocated kernel memory is provided by user-level threads. Thus, partitioning all
user memory using cache colouring automatically colours all dynamically allocated kernel
data structures that are used for managing user-level threads (e.g., TCBs), as previously
explained in Section 2.6.3. In contrast, other systems, such as Linux, would require a
significant amount of work to achieve a similar level of kernel partitioning, although there
is no fundamental barrier to accomplish it. This leaves a very small amount of uncoloured

global data that is initialised at boot-up.

Requirement 3: Deterministic data sharing

Access to any remaining shared OS data must be sufficiently deterministic to avoid

information leakage.

On-core cache flushing latency depends on the number of cache lines in those caches
which can be used as a timing channel, as we will show in Section 6.5.2.2. For example,
flushing the L1-D cache invalidates and flushes all used cache lines, which represents the
activity of the previously running domain. Hence, the latency depends on the amount of

used lines in the cache and equivalently on the execution history.

Requirement 4: Flush deterministically

State flushing must be padded to its worst-case latency.

Uncontrolled interrupts can also be a source of covert timing channels, as they allow
a domain working as a Trojan to signal a spy thread in other domains by configuring
those interrupts for preempting the spy’s execution. These channels are applicable in the
confinement scenario (Section 4.1.1), even though the bandwidth of such a channel would
be bounded by the limited number of interrupts available on a platform. However, this type
of channel is irrelevant to the cloud scenario (Section 4.1.2), because there is no evidence
of leveraging interrupts as timing side channels and they are likely infeasible due to the
limited data carried by an interrupt. Thus, our work regards interrupts as only a concern for

intra-core covert timing channels.

Requirement 5: Partition interrupts

When sharing a core, the OS must disable or partition any interrupts other than the

preemption timer.
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The methodology of flushing on-core state and padding the corresponding latency are
well understood. We now describe a system approach that partitions both kernel image
(Requirement 2) and interrupts (Requirement 5), as well as simplify the sharing of remaining
kernel data (Requirement 3) as a side effect. Overall, we are looking for a system solution
that provides mechanisms without any built-in security policy in the kernel, in order to be

suitable for verification purposes in the long run.

6.2 Partitioning the OS: Cloning the Kernel

Partitioning the kernel image (Requirement 2) demands that each partition has a copy
of the kernel. A simple approach would be to create a defined number of kernel copies
at boot time, so that each partition can run in a separate kernel text segment as done by
some non-uniform memory access (NUMA) systems [RedHawk Linux]. In that case, the
kernel has to handle the remaining global shared data section carefully, which is required
by Requirement 3 (deterministic data sharing among all copies). Reducing the amount of
shared global kernel data can simplify the handling process (Requirement 3), by replicating
as much as possible among kernel instances, resulting in a multikernel approach similar to
Baumann et al. [2009].

The main drawback of this approach is that it results in a completely statically parti-
tioned system, where the security policy is hard-coded into the kernel boot image as the
number of partitions. Any change of such a security policy would require a change to the
kernel itself, which can reduce the degree of assurance or increase the cost of applying
such an approach to real system scenarios. Moreover, the static approach would not suit the
cloud scenario (Section 4.1.2): the number of security domains would be fixed, forcing the
system to over-provision domains even though most of them would be idle during run time.
In terms of verifying such a system, the verification project would need to consider para-
metrizing parts that are related with domain configurations, avoiding the need to re-verify
the initialisation code.

We prefer a system design where the kernel is free from any specific security policy. In
such a system, only one kernel configuration exists, and the security policy is defined by a
privileged user-level process that allocates system resources (e.g., memory). The managing
process can also create and delete domains dynamically at run time, in the same way as the
process creation and deletion.

Our design introduces a policy-free kernel clone mechanism, which creates a copy of
the kernel image in user-supplied memory frames. Each cloned kernel contains a replica of
the kernel code and read-only data sections, as well as a dedicated kernel stack. The only
section that cannot be cloned is the global data that is created at system initialization. Using
this mechanism, the initial user process can partition the system to the extreme: partitioning
user-level memory, kernel data, and even the kernel image, leaving a minimum amount of
global data as shared (Figure 6.1).
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Figure 6.1: Coloured security domain.

To create such a partitioned system, the initial process can work as both resource and
security manager that first groups all free memory into coloured pools, one per partition,
then clones a kernel image into each coloured pool, and eventually starting child processes
that are supported by the cloned kernel image from the same partition (i.e., coloured pool).
During system runtime, the initial process can choose to clone more kernel images or delete
any valid kernel images, depending on the runtime needs on scaling up or down the number
of domains. An extreme use case would be that the initial process deletes itself, resulting in
a completely and permanently partitioned system.

The existing memory management mechanisms in sel.4 are sufficient to guarantee that
the partitioned system will remain coloured for its lifetime. Additionally, cloning can also
be undone as long as a process which has authority over a kernel image remains runnable.
A partition can further divide itself into sub-partitions, each with new kernel clones, as
long as it satisfies the requirements of managing coloured memory pools. Lastly, the kernel
provides mechanisms to revoke a partition, for both cloned kernel images and other kernel
data objects (e.g., user-level page table, or TCB). The only requirement for a thread to
revoke a kernel object is to provide capabilities for the corresponding kernel images or

objects, which are normally possessed by the initial thread.

6.3 Partitioning Interrupts

To control interrupts (Requirement 5), interrupts are associated with kernel images, and are
only enabled while the corresponding kernel is running. As shown in Figure 6.2, cloned
kernel images in each security domains have dedicated IRQ sources. The existing sel.4
offers interrupt services through IRQ handling capabilities (IRQHandler) which allow
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user-level processes to subscribe and acknowledge any interrupt notifications (Section 2.6).
We extend this model by associating interrupt capabilities with kernel images. As a result,

each partition has dedicated IRQ sources, user-level threads, and a cloned kernel image.

Assign IRQ to kernel image 1
_ Network IRQ Timer IRQ _
Hard disk IRQ _ _ USB IRQ

IRQHandler IRQHandler

Figure 6.2: Partitioning IRQs sources by assigning IRQHandler capabilities to kernel images.

6.4 Implementation in selL4

We have implemented our design on both x86 and Arm systems, including multi-core

support for all kernel mechanisms.

6.4.1 Kernel clone overview

The seL4 microkernel is a capability-based system (Section 2.6.2), where all kernel objects
are referenced by capabilities, including the TCB, the VSpace (virtual address space of a
user-level thread), or endpoints for IPC messaging. Capabilities represent objects as well as
the authorisation to perform system operations on those objects. For example, an Endpoint
capability with the read-only right only allows a thread to receive IPC messages but not
send them. Moreover, a thread invokes system services by providing capabilities to system
calls, such as calling seL4_Send on an Endpoint capability for sending an IPC message.
Lastly, the kernel provides all unused memory to the initial thread as Untyped objects that
are later retyped into other kernel objects, in order to create a system that suits the use case

(e.g., a confinement system).

6.4.1.1 Representing a kernel image

To control the cloning mechanism, we introduce a new object type, Kernellmage (List-
ing 6.1), to represent a kernel image. A holder of a capability with clone rights to a
Kernellmage object can clone the kernel image, if the holder has access to a sufficient
amount of Untyped memory. Moreover, the cloned kernel can be destroyed in the same way
as any other objects in the system, and revoking a Kernellmage capability destroys all the
other copies of that capability. The cloned kernel is independent of the kernel it is cloned
from (the template kernel), and the template kernel can be destroyed without destroying

the cloned kernel. The Kernellmage object is similar to the existing PageDirectory object
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that represents the top-level page directory in the virtual address space used by a user-level
thread (Section 2.6.2). The main difference is that the Kernellmage object represents the

top-level page directory as the virtual address space used by a kernel image.

block kernel_image_cap {

field capKIMappedASID 12 /*Assigned ASIDx/

field capKIClone 1 /*The right for cloningx/
field capKIIsMapped 1 /*Mapped with an ASID*/
padding 50

field capType 6 /*Type: KernelImagex/
field_high capKIBasePtr 48 /*Base address*/

padding 10

Listing 6.1: The format of Kernellmage capability on the 64 bit x86 architecture.

6.4.1.2 Representing memory used by a kernel image

We introduce a second new object type, KernelMemory (Listing 6.2), to manage the memory
used for cloning a kernel image. Having a separate object for kernel memory is necessary
because the coloured memory is generally not contiguous (discussed in Section 2.4). The
size of a kernel image, for example 300 KiB on a 4-core x86 machine, is lager than the size
of a coloured frame, 4 KiB. Hence the system requires the cloning process to manage them
separately: the process must create coloured frames used as kernel memory before it can
clone a kernel image from those coloured frames. The KernelMemory object is similar to
the existing Frame object that represents memory mapped into a user-level address space.
In other words, KernelMemory represents memory mapped into the kernel-level address
space, whereas Frame is used only to create user-level address space. The only difference
between KernelMemory and Frame is that KernelMemory cannot be mapped as a shared
frame between VSpace, a feature that is commonly used for creating shared buffers between

processes.
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block kernel_mem_cap {
field capKMMappedASID 12 /*The ASID of KernellImagex/
field_high capKMMappedAddress 48  /*Address mapped to kernel windowx/

padding 4

field capType 6 /*Type: KernelMemory*/

field capKMIsMapped 1 /*Mapped into a kernel imagex/
field_high capKMBasePtr 48 /*Base addressx/

padding 9

Listing 6.2: The format of KernelMemory capability on the 64 bit x86 architecture.

6.4.1.3 Creating a partitioned system

For supporting kernel clone, seL.4 introduces a new procedure at boot time: seL4 creates
a master Kernellmage capability with the clone right which references the initial kernel
image. Once the boot stage is finished, the kernel passes the master capability to the initial
user thread, as well as the size of the kernel image.

In each TCB, we add a new field, a copy of the Kernellmage capability, that represents
the kernel serving that thread. The creator of a TCB can assign a specific Kernellmage to
the thread with the existing seL4_TCB_Configure system call.

To partition the system, the initial thread first groups Untyped memory into coloured
pools (Section 2.6.3). Then, it creates objects used by a coloured domain from the corres-
ponding pool: retyping kernel objects from coloured Untyped memory, including creating
the Kernellmage, the KernelMemory, user-level threads, and all kernel objects used by
those threads (e.g., endpoints for IPC messaging). Along with coloured KernelMemory
objects, the thread clones a coloured kernel image which is represented by the Kernellmage.
Once kernel images are initialised, the initial thread associates user-level threads with the
corresponding kernel image in the same pool (i.e., partition). At last, the initial thread makes
all threads runnable, whereupon all threads are hosted by their respective kernel images.

For restricting the future cloning, the initial thread can choose to create copies of
the master Kernellmage capabilities, but without the clone right, preventing unauthorised
cloning. As a result, any holder of the stripped Kernellmage capabilities cannot clone new

kernel images.

6.4.2 The process of cloning a kernel image

The process for cloning a kernel has three steps, as demonstrated in Figure 6.3. First, a
user thread retypes Untyped memory into an uninitialised Kernellmage and a sufficient
amount of Kernel[Memory. The user-level thread can choose either to select the Untyped

memory from a coloured memory pool (Section 2.6.3) or from a unified memory pool
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that is not aware of cache colours. The kernel is not aware of any colour contained in the
Untyped memory, because cache colouring is a memory management policy implemented
at user-level.

Secondly, the user thread allocates an ASID to the Kernellmage with the ASID assigning
method offered by the ASIDPool object, the object that represents the right to allocate an
ASID to a virtual address space (Section 2.6.2). The user thread conducts the ASID
assignment in the same way as allocating an ASID to a user-level page directory. By using
the ASID, the hardware can identify the virtual-to-physical address mappings used for
different kernel images (Section 2.2), which is also a requirement of both x86 and Arm
Processors.

Thirdly, the user thread invokes the seL4_KernelImage_Clone system call on the unini-
tialised Kernellmage, passing its own Kernellmage with clone right and KernelMemory
capabilities as parameters, triggering the initialisation process on the Kernellmage. The
Kernellmage with clone right can be the master capability (Section 6.4.1.3) owned by the
initial thread, as well as a copy of the master capability that is distributed by the initial
thread. After the cloning, the user thread obtains a cloned Kernellmage, which is identical

to the initial kernel image.

the initial
Kernellmage

1 3: Cloning a kernel image

2. Assigning ASID

Objects used for kernel clone

ﬁ 1. Retyping untyped memory

Coloured memory pool

Figure 6.3: An overview of the kernel clone mechanism.

All cloned kernel images have the same virtual address layout (virtual pages) as the
initial kernel image, as well as the contents stored in those virtual pages. However, virtual
pages from different kernel images are mapped to different physical frames. We call
the layout of the virtual address space used by a kernel image the kernel window, and the

mapping of the address space the kernel window mapping. Cloning is the process of creating
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Figure 6.4: Cloning a kernel window mapping on x86.

the kernel window mapping of a kernel image using Kernellmage and KernelMemory
objects.

As mentioned in Section 6.4.1.1, the mapping for a kernel window is represented by
Kernellmage, the root of the kernel’s address space that is equipped with an ASID. Cloning
creates a valid mapping by populating the kernel window (i.e., Kernellmage) with frames
that are represented by KernelMemory objects.

Figure 6.4 demonstrates the cloning process implemented for x86 processors. On x86,
the kernel window contains sections for referencing kernel objects (e.g., TCB objects) that
are manged at user-level (Section 2.6.2); for executing a kernel image (code, ready-only
data, stack, and shared global data); and for accessing hardware devices (e.g., interrupt
controllers). Among those sections, only sections used for executing a kernel image are
duplicated, except the shared global data section which is unchanged. The mapping of other
non-kernel sections are unchanged. In other words, cloning creates a copy of the kernel’s
code, read-only data, and stack sections with memory referenced by KernelMemory objects,
and populates the mapping in those sections accordingly.

As a result, each kernel image can execute on its own kernel window mapping for
handling system calls, receiving interrupts, conducting security domain switches according
to the system timer ticks, or staying idle when there is no thread can be scheduled on a core.
The cloning process does not require any changes on the implementation for a multicore

system, but inherits the existing multicore implementation from seL4 (Section 2.6).

6.4.3 Managing a cloned kernel image

Each cloned kernel image contains a metadata section for recording resources that belong
to this kernel, including ASID, IRQs, kernel stacks, and cores for the current and past

execution history. We use low addresses in the kernel window to store the metadata, as the
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kernel window mapping does not use those addresses. This design efficiently utilises areas

in the Kernellmage object that are not used for the kernel window mapping.

Figure 6.5 shows the layout of the metadata. This includes: the validation flag, the
ASID and IRQs assigned to this kernel image, and addresses for kernel stacks. To support
multicore systems, the metadata contains a bitmap representing cores that are currently

executing this kernel image, and a bitmap for cores that have executed this kernel image.

Validation flag

Assigned ASID

Assigned IRQs

Kernel stack addresses

Bitmap for cores that are
currently running this
kernel

Bitmap for cores that
have executed this kernel

Figure 6.5: The structure of the kernel metadata.

First-level ASIDPool

Second-level ASIDPool
> >
} L
Kernellmage
3bits 9bits
ASID (12 bits)
11 0

Figure 6.6: Addressing a kernel image with an ASID on x86.

The kernel stores the ASID assigned to a kernel image in the capKIMappedASID field
of the Kernellmage capability (Listing 6.1), as well as the capKMMappedASID field of all
KernelMemory capabilities used by that kernel image (Listing 6.2). In other words, the
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ASID sufficiently links all the objects belonging to a kernel image together, which is
extremely useful for KernelMemory deletion (Section 6.4.7).

By reading the ASID stored in a KernelMemory capability, the kernel can locate
its Kernellmage through the existing ASID indexing process in seL4. As mentioned in
Section 2.6.2, sel.4 uses a two-level ASID mapping: the first-level ASIDPool is created
at boot, and the second-level ASIDPool is managed by user-level threads. Figure 6.6
demonstrates the process of locating a Kernellmage from its ASID on x86. The kernel
first uses the upper three bits in the ASID to index the first-level ASIDPool, locating the
second-level ASIDPool. Then, the kernel indexes the second-level pool with the lower nine
bits, locating the Kernellmage. Once the Kernellmage is located, the kernel can mark the
kernel image as invalid before deleting any KernelMemory from this image, hence avoiding

any race conditions during the deletion process.

6.4.4 Audit of the shared global data section

Cloned kernel images only share the minimum amount of global data required for main-
taining the correctness of the system, such as the scheduling queue, the IRQ states, or the
current thread running on a core. The shared global data section is created at compile time
as the static data section in a kernel image.

The cloned kernel images share only the following structures in the static global data

section (numbers indicate size per core on x86, total of about 9.5 KiB):
1. the scheduler’s array of head pointers to per-priority ready queues (4 KiB), as well as
the bitmap used to find the highest-priority thread in constant time (32 B);
the current scheduling decision (8 B);
the tables of IRQ state and corresponding interrupt handlers (2 x 1.1 KiB);
the interrupt currently being handled, if any (8 B);
the first-level hardware ASID table (1.1 KiB);

the 10 port control table (2 KiB, x86 only);

A e R

the pointers for the current thread, its capability space (Cspace), the current kernel,

idle thread, and the thread currently owning the floating point unit (40 B);
8. the kernel lock for SMP (8 B); and

9. the barrier used for inter-processor interrupts (8 B).

To ensure that there are no possible cross-core side channels, we conduct an audit of the
shared data on both x86 and Arm platforms. Specifically, we list all system circumstances
under which the kernel will access those data structures, such as interrupt handling, context
switching, or scheduling a runnable thread. We then conclude that none of those cache

lines involved contain or are indexed by private user information (such as address-space
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layout). It is worth to mention that this conclusion will need proving when the kernel will

be verified.

6.4.5 Partitioning interrupts

As mentioned in Section 6.2, we assign interrupt sources to Kernellmages to partition
interrupts (Requirement 5). In sel4, all interrupts except the system tick (i.e., the kernel’s
preemption timer) are controlled by IRQHandler capabilities, which allows a user-level
thread to configure its corresponding interrupt sources. We introduce a seL4_KernelImage_-
SetInt system call for associating an interrupt source, represented by the IRQHandler
capability (Section 2.6.2), with a kernel image, represented by the Kernellmage capability.

While executing, a kernel image can receive interrupts only from the preemption
timer and associated interrupt sources; all the other interrupts are masked. Therefore,
it is impossible for kernels (i.e., security domains) to trigger interrupts across partition
boundaries if all interrupts are partitioned.

In the same way as the kernel clone mechanism, the system does not enforce any
partitioning on interrupt sources, leaving the configuration of security policy as a user-level
task. Rather than assigning dedicated interrupts to kernel images, a privileged user-level
thread can choose to assign an interrupt to a group of kernel images, resulting in the interrupt
being handled by any executing kernel in the group while triggered. In this case, the kernels
in this group are not entirely isolated, as they are sharing an interrupt source. Furthermore,
an interrupt cannot be handled if it is not associated with any kernel images. Lastly, the
user-level device manager needs to ensure that all devices are correctly associated with
corresponding security domains, to ensure that one domain cannot trigger interrupts that

belong to another domain through accessing any hardware devices.

6.4.6 Domain-switch actions

The running kernel is mostly unaware of partitioning. As mentioned in Section 6.4.2,
all valid kernel images are laid out identically in the kernel window (virtual pages), as
well as the contents stored in those pages. Only the mapping for the kernel window is
different for each kernel image. Hence, a kernel switch only requires switching between
different kernel window mappings. Assuming that each domain is supported by its own
kernel image, switching domains then becomes switching kernel window mappings. Also,
a domain switch involves actions to satisfy requirement listed in Section 6.1, including
flushing on-core state (Requirement 1), deterministic data sharing (Requirement 3), flushing

deterministically (Requirement 4), and partitioning interrupts (Requirement 5).

6.4.6.1 Switching kernel window mapping

To perform a kernel switch (i.e., domain switch), the kernel switches the root page-directory

pointer of the user-level address space as part of the normal context switch. Switching the
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page-directory pointer implicitly switches all the sections that are cloned (duplicated) for
the next running domain. The mapping contains kernel code, read-only data, and stack
sections that are mapped at fixed addresses in the kernel window from its own coloured
memory (the KernelMemory used by this kernel image). This process is the same on both
x86 and Arm processors.

The only explicit action needed for a kernel switch is preparing the kernel stack by

copying the present stack to the new one before switching the page directory.

asm volatile (
"movqg %%rsp, %%krax\n"
/*copying from the bottom of the current stack*/
"subqg %1, %%rax\n"
"1: \n"
"movq (%%rax, %1, 1), %%rbx\n"
"movq %%rbx, (%%rax, %0, 1)\n"
"addq $8, %%rax\n”
"cmpg $4096, %%rax\n"
/*copying until the top of the stackx/
"j1 1b\n"
"mfence\n”
/*updating the page directory pointer=/
"movg %2, %%cr3\n”
"+r" (kernel_vaddr)

:"r" (esp_bottom), "r"(cr3)

.on n n n

rax", "rbx", "rsp"”, "memory"”

Listing 6.3: Switching kernel image on x86.

Listing 6.3 lists the code used for kernel switches on x86: a sequence of stack copying
followed by a page directory switch. The switching code first calculates the offset of the
current stack pointer, by comparing the rsp with esp_bottom, which contains a reference to
the bottom of the current stack (lines 2-3). Then, it copies the contents of the current stack
to the corresponding point in the new stack (kernel_vaddr), one word a time, until the
top of the stack (lines 4-9). Lastly, the kernel switch finishes by updating the cr3 register,
which refers the root of the page directory on x86. The kernel switch also automatically
switches the idle thread, as the idle thread is also contained in the kernel window mapping
as part of the code section.

The kernel detects the need for a stack switch (i.e., domain switch) by comparing
the current Kernellmage with the kernel image used by the destination thread through
referencing the Kernellmage capability stored in its TCB. In a properly partitioned system,
the domain switch only occurs on a system tick, due to the fact that a domain cannot be

preempted by interrupts owned by other domains (Section 6.4.5).
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6.4.6.2 Flushing on-core state

To satisfy Requirement 1, the kernel flushes all on-core microarchitectural state after a
domain switch but before resuming the destination thread in the next running domain.

Furthermore, the kernel releases the lock used by the multicore version of seL.4 before
flushing the state. As mentioned in Section 2.6.1, the current seL.4 implementation uses a
big lock which will be acquired before conducting any kernel services and released after the
scheduling decision has been made. We release the kernel lock before flushing the on-core
state, as flushing is not related with the consistency of any kernel data.

We summarise the operations for flushing on-core state in Table 6.1. To flush the
on-core state on Arm (Sabre platform in Table 6.2), we flush the L1 caches, TLBs, and
states contained in the BPU (BTB and BHB). On x86 (Haswell platform in Table 6.2),
we flush the TLB and reset the BHB state with the IBC mechanism introduced recently
for mitigating the Spectre attack [Intel, 2018c]. However, flushing the L1 caches is a
challenging task on x86 as the hardware manufacturer only supports flushing the complete
cache hierarchy (i.e., three levels of caches) but not selectively flushing any of the LL1 caches.
Hence, we implement a “manual” flush by sequentially traversing a cache-sized buffer. For
flushing the 32 KiB L1-D cache, the kernel performs read operations on a 32 KiB buffer,
one per cache line (64 B). Recently, Intel added support for flushing the L1-D cache [Int,
2018b], as a mitigation for the Foreshadow timing channel attack [Van Bulck et al., 2018].
Unfortunately, we cannot use this feature as a microcode update is yet to be available for
our testing machine. Furthermore, Intel does not support L1-I flushing at the current stage.

Similarly, the kernel executes jump operations stored in a 32 KiB buffer for flushing the
32 KiB L1-I cache, one per instruction (8 B). In total, the flushing code executes 4,096 jump
instructions. Jumping through these many instructions also flushes the BTB which stores
the destination addresses of those jumps. However, the size of the BTB is not published by
the manufacturer, jumping with a stride of 8 B is the best effort approach to conduct the
manual flush on a 32 KiB buffer.

Executing
Flushing x86 (Haswell) Arm (Sabre)
L1-D 512 mov instructions on a 32 KiB buffer DCCISW
L1-I 4,096 jmp instructions on a 32 KiB buffer ICIALLU
TLBs invpcid TLBIALL
BHB IBC BPIALL
BTB implicitly done by the L1-I cache flush BPIALL

Table 6.1: Operations for flushing on-core states.
Obviously, our “manual” flush on x86 assumes that .1 caches replace cache lines

according to the LRU or the first in, first out (FIFO) replacement policy. The “manual” flush

can be potentially incomplete on future platforms or even on the current platforms, due
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to the lack of documentation of replacement policy used on those caches. However, the
reliability of flushing operations could be increased if the hardware manufacturer either
gives more exposure to corresponding hardware components or introduces new features for
selectively flushing those caches. The hardware manufacturer should consider providing

sufficient support on flushing on-core state.

6.4.6.3 Flushing deterministically

To ensure that domain switch has a deterministic latency (Requirement 4), the kernel can be
configured with a domain tick length that is the sum of the latency of conducting a domain
switch and the length of a domain time slice. When switching domains, the kernel defers
returning to the user mode (i.e., resuming the next running domain) until the configured

length has elapsed since the timer got reprogrammed at the previous switch.

Current domain

Domain tick length that
covers domain switching
latency

Next domain

A

A deterministic code
path: resuming the Domain tick
next running domian

executing threads
from the current

; Switching to the next
domain

running domain, containing
the domain switching latency

Figure 6.7: The configured domain tick length, K represents kernel mode.

Figure 6.7 shows the mechanism of this configuration: the configured domain tick
length covers the latency of resuming user-level thread, the length of a domain tick, and the
latency of conducting a domain switch, including flushing any on-core state.

This mechanism allows the kernel to hide any timing variations from the moment a
domain is entered until the next domain is scheduled. Possible timing variations include a
delayed scheduling decision due to a postponed domain tick interrupt delivered by hardware,
or the cost of flushing on-core microarchitectural states. A domain tick interrupt can be
potentially delayed due to race conditions caused by other exceptions, such as, a system

call exception or other interrupts.
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6.4.6.4 Deterministic data sharing

The cloning mechanism simplifies the implementation of Requirement 3 by minimising the
amount of shared data as much as possible. Our design achieves determinism by carefully
prefetching the shared data section listed in Section 6.4.4 when executing a domain switch,
loading every cache line in this section.

The kernel groups the shared data in a section, and identifies the start and end cache
line in this section by the global symbol inserted at compile time. We use the layout of the
kernel image compiled for x86 as an example (Listing 6.4). The kernel image contains four
sections: text for the code section, rodata for the read-only data section, data for the
section that only contains private data for this kernel, such as the kernel stack, and bss for
the data section that is initialised during the boot up stage. In the bss, there is a subsection
used for the idle thread, which is also kernel private. Hence, the shared global section that
requires prefetching starting from the symbol ki_share_start, and ending at the symbol
ki_share_end. The prefetching implementation strides on this section, on each cache line,
loading the section into the on-core cache. As a result, the kernel’s usage is deterministic

for this section before returning to the next running domain.

.text .
{

*(.text) /*code section*/

b

.rodata .

{

*(.rodata) /*read-only data sectionx/
}
.data .
{

*(.data) /*private data section, including kernel stackx*/

3
.bss .
{
ki_idle_start = .;
*(.bss.idle) /*data section used for idle threadx/
ki_idle_end = .;
/*align to a frame size (4KiB), suitable for cloningx*/
. = ALIGN(4K);

ki_share_start = .;
*(.bss) /*the global shared data sectionx/

ki_share_end = .;

Listing 6.4: The layout of the kernel image on x86.
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All the prefetching is done prior to padding of the domain-switching latency. Prefetching
the shared data section also prevents the latency of restoring the next running domain from
depending on the previous domain’s execution history, as the kernel image and stack are

already switched and the exit code path is deterministic.

6.4.6.5 Switching interrupts

As described in Section 6.4.5, each cloned kernel image has a set of assigned interrupt
sources. Hence, the domain switching action must also switch interrupt sources: masking
interrupts of the previous running domain and unmasking interrupts of the next running
domain. Specifically, the kernel masks all interrupts before switching the kernel window
mapping (Section 6.4.6.1), disabling all interrupts that belong to the previous running
domain. Then, the kernel unmasks interrupts associated with the next running kernel image
(i.e., security domain) before returning to user mode in the next domain.

The x86 platform has a hierarchical interrupt routing structure, where all interrupts
at the bottom layer are routed to the top-level interrupt controllers on CPU cores. During
execution of the domain switch, the kernel disables interrupts by configuring the interrupt
controller on its core. However, bottom-level interrupt sources can still trigger interrupts
before being masked off, creating a race condition. As demonstrated in Listing 6.5, we
solve this problem by deliberately probing any possible pending interrupts (lines 6-12) after
masking but before switching to the next kernel (lines 1-5), acknowledging any pending

interrupt at the hardware level.

/*mask IRQs of the previous kernel imagex*/
irqg_list = irg_kernel
for irq on irqg_list
if irqg is enabled
disable(irq)
/*ack any pending IRQx/
apic_set_task_prority(USER_THRESHOLD)
do {
received = get_active_irq( )
if received != irqglInvalid
ackInterrupt(received)
} while (received != irgInvalid)

Listing 6.5: The pesudo code for acknowledging any pending interrupts that belong to the previous

running kernel image on x86.

To ensure that the kernel only acknowledges pending user-level interrupts, we tem-
porarily raise the interrupt serving priority by configuring the task and processor priority
feature provided by the advanced programmable interrupt controller (APIC) on each core.

The task priority feature allows the OS to set a threshold for receiving interrupts, hence
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temporarily blocking low priority interrupts from interrupting the CPU while processing
high-priority tasks. By setting the task priority register (TPR), the core can receive only
interrupts which have an interrupt-priority class higher than the current priority class [Intel,
a]. On x86 platforms, the priority class of each interrupt source is stored in bits 7—4 of
the 8-bit interrupt vector value. On our testing platform, we reserve vector values that are
higher than 64 for user-level interrupts, which have interrupt priority class higher than 3.
Hence, the kernel can only receive the user-level interrupts while the interrupt threshold is
configured as 3 (USER_THRESHOLD), line 7 in Listing 6.5.

There are two advantages with this design: first, it guarantees that all interrupts are
served by their corresponding kernel image; second, interrupts cannot be lost if configured
as level-triggered, hence domains can still receive them once execution is resumed. For
interrupts that are configured as edge-triggered, the hardware will lose them if they are
not being triggered at their partition. However, our design does not introduce additional
limitations on top of those imposed by hardware.

The Arm platform has a much simpler, single-level interrupt control structure, hence

there is no race involved.

6.4.6.6 Summary

To summarise, the kernel executes the following steps for handling a preemption tick; steps

in bold are only performed on a kernel switch (i.e., domain switch).

1. save user-level context;

2. acquire the kernel lock;

3. process the timer tick normally;

4. mask all interrupts (Section 6.4.6.5);

5. switch the kernel stack (Section 6.4.6.1);

6. switch thread context (and implicitly the kernel image);

7. release the kernel lock;

8. unmask interrupts of this kernel (Section 6.4.6.5);

9. flush on-core microarchitectural state (Section 6.4.6.2);
10. pre-fetch shared kernel data (Section 6.4.6.4);
11. poll the cycle counter to pad to the the configured latency (Section 6.4.6.3);
12. reprogram the timer interrupt; and

13. restore the user stack pointer and return.

123



6.4.7 Deleting cloned kernel images

Our design supports destroying cloned images by using the delete operation on Kernellmage
or KernelMemory capabilities. Deleting the only existing copy of the Kernellmage capabil-
ity or any of its KernelMemory capabilities will trigger kernel image deletion. Additionally,
revoking the Untyped capability that a Kernellmage or KernelMemory object is derived
from can also trigger a kernel destruction, as performing a revocation on a capability deletes

all of its descendants, based on the revocation mechanism in the seL.4 kernel.
The capability management model of seL4 requires that the kernel must be able to
perform deletions on all valid capabilities. Hence our design separates the deletion of

Kernellmage and KernelMemory capabilities, as they are different types of object.

Delete a
Kernellmage
capability

Last capability of this
object?

Vaild kernel image?

Perpare kernel
image deletion on
running cores

Running on any
core?

Unbind the kernel
image from its ASID <

Y
Mark the kernel
image as invalid

Y
Clear the memory

L [ used by this object

Reset the
capablity slot

Y

Figure 6.8: The flow chart of deleting a Kernellmage capability.
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The process of deleting a Kernellmage capability is shown in Figure 6.8. Firstly, the
kernel verifies that the capability is the last reference to the corresponding Kernellmage
object. If other copies of the capability exist, the kernel only deletes the capability by
emptying its slot in the corresponding capability space. Otherwise, the kernel deletes the
object if the kernel image is valid, i.e., the KernelMemory objects belonging to this kernel

image have not been deleted yet.

Prepare kernel
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all cores involved in

Running on local
core?

kernel image

Switch to the default

Y
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Send system_stall
request to those cores

Request a scheduling

€——|decision on local core

"
Y

Request a scheduling . |Invalidate TLBs on all
decision on those 7| cores that had execut-
cores ed this kernel image

kernel image

is ready to be
deleted

Figure 6.9: The flow chart of preparing a kernel image deletion.

Additionally, the kernel cannot delete a kernel image that is currently in use. On a
multicore system, destroying a kernel image can create a race condition if the kernel that
is being destroyed is executing on other cores. Hence, the kernel prepares the deletion by
switching to the default kernel image (i.e., kernel image created at boot time) on all the

cores involved, including both local and remote cores (Figure 6.9).

For notifying all remote cores, the kernel sends IPIs to all cores on which the Kerne-
[Image is running. We call this type of IPI request system_stall. In order to precisely send
system_stall messages, our design maintains a bitmap in each kernel image (Section 6.4.3),
indicating cores on which the kernel is presently running. The kernel-switching process
(Section 6.4.6.1) updates bitmaps in the current and next running kernel. When receiving

the system_stall request, a core switches to the idle thread belonging to the default kernel
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image that is created at boot time. Likewise, the kernel sends a TLB_invalidate request to all
cores that the kernel image had been running on, which is analogous to TLB shoot-down.
Then the kernel unbinds the Kernellmage from its ASID, same as the PageDirectory

object deletion. At last, the kernel marks the kernel image as invalid, and cleans up the

memory used by the Kernellmage object.

Delete a
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Figure 6.10: The flow chat of deleting a KernelMemory capability.

Deleting a KernelMemory capability is similar to deleting a Kernellmage capability,

except that the kernel first locates the kernel image using this KernelMemory object by the
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ASID (Section 6.4.3). As shown in Figure 6.10, destroying a KernelMemory that belongs
to a valid kernel image also invalidates the corresponding kernel image, causing the same
sequence of actions. Once a kernel image is marked as invalidated, destroying the remaining
objects becomes easy as the kernel only needs to recycle their memory.

The selL4 kernel assumes that the system always has a runnable idle thread. To maintain
this invariant, our design prevents the destruction of the initial kernel image by not providing
its KernelMemory capability to the initial thread. Hence, our design guarantees that the
default kernel and its idle thread will forever be available even though all the other kernel
images can be dynamically created and destroyed. If no user-level thread is available, the
system will do nothing but acknowledge the system timer interrupt.

Our current design does not support reusing the kernel memory used by the default
kernel image, if the system decides that the initial kernel image is no longer useful once
a strictly partitioned system is formed with cloned kernel images. The cost is affordable
due to the small amount of dead memory. On x86, the default kernel image will only create
224 KiB of waste on a single core, and requiring an additional 4 KiB for the kernel stack of
each additional core. The kernel image on x86 includes a 64 KiB of buffer for manually
flushing the L1 caches. Arm sizes are 120 KiB on a single core, with extra 4 KiB for each

core used as the kernel stack.

6.5 Evaluation

We evaluate our system design in terms of its efficacy in preventing timing channels, as

well as its impact on system performance.

6.5.1 Hardware platforms

We conduct our experiments on both x86 and Arm platforms, as listed in Table 6.2.

We run a full set of evaluations on the Haswell processor (x86), and on the Arm
Cortex A9 processor (Sabre platform). According to the results in Section 5.4.3.6, the
flushing operations provided by manufacturers cannot fully mitigate the BHB channel
on the Haswell processor, as it contains some hidden state. We acknowledge that the
effectiveness of our “manual flush” on x86 (Section 6.4.6.2) could be worse than the result
listed in Section 5.4.3.6 for mitigating intra-core timing channels, as the hardware does not
provide operations for resetting L1 caches and the BTB.

Resetting on-core state that cannot be partitioned is one of hardware requirements
listed in Section 4.2.1. which is not provided by Haswell, Skylake, nor Arm Cortex-A53
processors according to the results of our study conducted on four popular commodity
processors (Section 5.4). Here we assume that our mechanism will be fully effective at
preventing intra-core channels, if the processor provides a sufficient hardware-software
contract for security as we proposed in Section 5.5. Since x86 and Arm are different archi-

tectures, we evaluate a full set of benchmarks on one x86 processor and one Arm processor.
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System Haswell Sabre
Architecture x86 Arm v7
Manufacturer Intel Freescale
Microarchitecture | Haswell Cortex-A9
Processor/SoC Core i7-4770 1.MX 6Q
Cores X threads 4x2 4x1

Clock 3.4GHz 0.8 GHz
Cache line size 64 B 32B
L1-D/L1-Icache | 32KiB, 8-way | 32KiB, 4-way
L2 cache 256 KiB, 8-way | 1 MiB, 16-way
L3 cache 8MiB, 16-way | N/A

I-TLB 64, 8-way 32, 1-way
D-TLB 64, 4-way 32, 1-way
L2-TLB 1024, 8-way 128, 2-way
BTB ? 512

RAM 16 GiB 1GiB

Table 6.2: Hardware platforms.

For representing the x86 architecture, we select the Haswell processor; for representing the
Arm architecture, we select the Arm Cortex-A9 processor, an implementation of Arm v7.
Our implementation for the Arm architecture does not support the Arm v8 architecture yet,

therefore we cannot evaluate on the Cortex-AS3 processor.

For timing channel benchmarks, we evaluate the unmitigated channel, marked as raw,

and the channel with time protection applied, marked as protected.

Our time protection deploys two coloured security domains using cache colouring. The
cache colouring implementation splits available colours on the L2 cache into two partitions,
50% of colours for each partition unless specifically stated otherwise. On the Haswell
platform, there are eight colours on the L2 cache, and colouring the memory according to
colours of the L2 also colours the L3 cache. On the Sabre platform, there are 16 colours on
the L2 cache. Each coloured domain has user-level threads and a dedicated kernel image
which are created from the same partition. During a domain switch, the kernel conducts

domain switch actions as described in Section 6.4.6.

For covert channels on components that cannot be partitioned (Section 5.3.1), we also
list the result of performing a full flush of the microarchitectural state (marked as full flush)
including the full cache hierarchy, as listed in Section 5.3.2. We list the effectiveness of
the full flush to see whether minimal flush of only non-partitioned state leaves residual
channels that could be closed by less discriminate flushing. On x86, the cache flushing
operation wbinvd flushes and invalidates all three levels of caches, which is overkill for

mitigating intra-core timing channels that only explore two levels of caches.
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To establish a baseline of the cost of cache flushing operations, we measure the direct
and indirect cost of flushing L1 caches as well as the complete cache hierarchy. The direct
cost is the latency of performing corresponding cache flushing operations. We measure the
latency of performing L1 or LLC cache flush operations. On x86, the L1 cache flush is
implemented as a manual flush (Section 6.4.6). The indirect cost is the slowdown of an
application whose working-set size equals the respective cache. Even though we measure
the indirect cost for flushing L1 caches, this cost is somewhat academic, due to the limited
capacity of L1 caches. A process would be highly unlikely to reuse any of the L1 cache

lines after a domain switch, which is conducted once every 10—-100 ms.

Haswell (x86) Sabre (Arm Cortex-A9)
Cache dir ind total | dir ind total
L1 (us) | 25.52 1.08 26.59 | 20 24.53 44.53
all (us) 270 250 520 | 380 770 1,150

Table 6.3: Cost of cache flushes.

Table 6.3 summarises the result of these benchmarks. We report the mean from 320
runs. All relative standard deviations are less than 1% on Haswell and 3% on Sabre. The
direct cost of the manual L1 cache flush on the Haswell platform is mainly contributed by
the chained jumps for flushing the L1-I cache: there is only less than 0.5 pts consumed by
the L1-D flush. The manual L1-I cache flush is expensive because of branch mis-predictions
on chained jumps (Section 6.4.6), which could be largely reduced with a targeted flushing
operation provided by the manufacturer. The indirect cost measures the slowdown of a
user-level thread accessing a L1-D cache sized buffer with chained instructions which is the
same used by the PRIME+PROBE attack on the L.1-D cache (Section 5.3.1.1). Compared
to only flushing L1 caches, flushing the entire cache hierarchy is much more expensive,
costing 520 us on Haswell and 1,150 us on Sabre.

To put these figures into context, only flushing L1 caches introduces 0.3% overhead on
Haswell and 0.4% overhead on Sabre, if the system tick is 10 ms. In contrast, flushing all
caches can potentially introduce 5.2% overhead on Haswell and 11.5% overhead on Sabre
with the same configuration. Clearly, only flushing L1 caches has a distinct advantage on

system performance compared to flushing the entire cache hierarchy.

6.5.2 Timing channel mitigation efficacy

Our evaluations cover covert timing channels between two security domains by time-
multiplexing a core, threats in the confinement scenario (Section 4.1.1), and a side channel
on the LLC between domains running concurrently on different cores, which is the only
threat in the cloud scenario (Section 4.1.2). For covert timing channels, we create chan-
nels on cache and cache-like components (Section 6.5.2.1), on domain switching latency

(Section 6.5.2.2), on a shared kernel image (Section 6.5.2.3), and on a timer interrupt
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(Section 6.5.2.4). For the timing side channel, we replay the cross-core side channel attack
of Liu et al. [2015], a classical cross-core timing attack on the LLC.

To analyse covert timing channels, we use the method introduced in Section 5.3.3,
including generating channel matrices (Section 5.3.3.1) and quantifying the channel leakage
with MI calculations (Section 5.3.3.2). We rerun each experiment up to eight times, and

analyse the results according to the method stated in Section 5.3.3.3.

6.5.2.1 Covert timing channels on cache or cache-like components

Platform Cache | Raw | Full flush | Protected
Haswell (x86) LI-D | 4,053 | 0.3(0.3) | 0.3(0.3)
L1-I 260 | 0.4(0.4) | 0.6(0.2)
TLB 2,564 | 0.3(0.3) | 13.4 (22.9)
BTB 1,533 | 0404)| 02(0.2)
BHB 1,000 | 0.4 (0.0) | 0.0(0.0)
L2 2,685 1.3 (1.3) | 49.1 (2.5)
Sabre (Arm Cortex-A9) | L1-D 2,070 0.5(0.6) | 29.7 (38.8)
L1-1 2,489 | 0.7(0.7) | 24Q.6)
TLB 559 | 0.20.3) | 1.1(1.2)

BTB 54| 20(22) | 56.2(66.2)
BHB 1,000 0(0.3) | 0.0091.7)
L2 1,929 111D 0.7 (0.7)

Table 6.4: MI (millibit) of unmitigated (raw) covert timing channels on cache or cache-like compon-
ents, mitigated with full cache flush (full flush) and time protection (protected). Value in
parentheses is .#. Confirmed residual channels are marked in bold.

We implement a full set of covert channels that are exploitable on hardware components
that behave like a cache, including L1-D, L1-I, and L2 caches, the TLB, the BTB, and
the BHB. We use the PRIME+PROBE attack introduced in Section 5.3.1 on all above
components, where the Trojan encodes secrets by touching a number of cache sets, and the
spy receives by timing the cost of probing on a cache-sized buffer. The L2 cache channel
has a similar implementation to the L1-D cache channel, only with an extended number
of probing sets to touch all of the L2 cache sets. The Trojan and spy are running inside
dedicated security domains, time-multiplexing a core.

The evaluated MI values of the protected scenario are generally higher than those of
the full flush scenario. The reason is that the deterministic execution environment provided
by the full flush contains much less hardware noise, thus smaller MI values contributed
by noise. However, we confirm any residual channels by carefully examining matrices
generated from up to eight repeated runs, as only reading the MI (millibit) numbers are not

sufficient for confirm a timing channel as explained in Section 5.3.3.3.
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Firstly, we successfully create timing channels in all cases, as we can observe a clear
resource contention on channel matrices. Furthermore, the raw channels all have significant
MI values. Secondly, the implementation of time protection can effectively mitigate timing
channels on both Haswell and Sabre platforms. However, we confirm two residual channels,
the L2 cache channel on Haswell, and the L1-D channel on Sabre, which we investigate
further.

L1-D cache As described in Section 5.3.1.1, the L1-D cache timing channel uses the
time to perform the attack on every cache set as the output symbol. The message sent by

the Trojan is encoded as accessed cache sets, a number between 0 and 64 on Haswell (256

on Sabre).
- 6500 0.1000
% 6000
§ 5500 0.0100
§_ 2000 0.0010
g 4500 ’
4000 0.0001
7900
‘@ 7850
<2 7750
§_ 7700 0.0010
3 7650
7600 0.0001

0 10 20 30 40 50 60
Input (sets)

Figure 6.11: The L1-D cache covert channel on Haswell. Top: without mitigation, .# = 4,053 mb,
n = 15,436, bottom: mitigated with time protection .#Z = 0.3 mb, .Zy = 0.3 mb, n =
15,501.

The top matrix in Figure 6.11 shows the original L1-D channel on the Haswell, demon-
strating a clear information leak (.# = 4,053 mb). The effectiveness of our time protection
mechanism is shown in Figure 6.11 (bottom), where the channel is completely closed as
there is no correlation between outputs (spy’s probing cost) and inputs (Trojan’s activity)
(A =0.3mb, .#y=0.3mb).

Figure 6.12 shows matrices for the same channel on the Sabre platform. On the top
matrix, we can observe that the probing cost measured by the spy increases significantly
while the Trojan accesses more cache sets, showing the original channel (.#Z = 2,070 mb).
This trend disappears once time protection is enabled (bottom). However, we observe that

the output has a 1% probability of observing 22,087 for inputs larger than 60, while it
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Figure 6.12: The L1-D cache channel on Sabre (Arm Cortex-A9). Top: without mitigation, .#Z =

2,070 mb, n = 3,808, bottom: mitigated with time protection .# = 29.7 mb, .#, =
38.8mb, n = 3,842.
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Figure 6.13: The L1-D cache covert channel on Sabre (Arm Cortex-A9), mitigated with time
protection and disabling both prefetcher and branch prediction unit, .# = 59 mb,
My = 61.8mb, n=3,803.

is essentially zero for smaller inputs, a clear channel. Furthermore, we repeat the same
experiment five times and are able to observe the same distribution from all five repeated
runs. Hence, the effect is highly unlikely to be caused by random hardware noise, but due
to a small amount of on-core state that cannot be flushed with instructions targeting on-core
state (Section 6.4.6.2), while a full flush closes the channel. To investigate the site of the
channel, we rerun the mitigated channel with both the prefetcher and branch prediction unit
disabled, the remaining two hardware operations we cannot included with the discriminating
flush operations at our disposal (Table 6.1). Figure 6.13 shows the result—outputs are evenly
distributed across inputs. The domain switch executes the BPIALL instruction to invalidate

all branch prediction entries (Section 6.4.6.2). Hence, the residual channel that we observe
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on the bottom matrix in Figure 6.12 is due to the 2-level prefetcher (Section 2.3.3). This
result also shows the importance of examining any residual channels using channel matrices
even though the MI evaluation passes the zero-leakage test (.# = 29.7 mb, .4, = 38.8 mb),

a false negative.

L1-1 cache We run the L1-I cache timing channel as described in Section 5.3.1.2. The
Trojan and spy conduct the PRIME+PROBE attack with jump instructions that map to
corresponding cache sets. The input ranges are 0—64 on Haswell and 0-256 on Sabre.

3100 0.1000
2 3000
S 2000 0.0100
3 2800 0.0010
g 2700

2600 0.0001
7 12000 0.01000
s
S 11800
= 0.00100
3 11600
o
3

11400 0.00010

0 10 20 30 40 50 60
Input (sets)

Figure 6.14: The L1-I cache covert channel on Haswell. Top: without mitigation, .# = 260 mb,
n = 15,532, bottom: mitigated with time protection .#Z = 0.6 mb, .#Zy =0.2mb, n =
15,417.

Figure 6.14 shows matrices for unmitigated (top) and mitigated with time protection
(bottom) channels on Haswell. The top matrix presents the contention on L1-I cache sets
that are utilised as a timing channel: the probing cost measured by the spy is higher while
the Trojan jumps through more cache sets. With time protection (bottom), the Trojan’s
activity no longer affects the probing time of spy. We measure the MI of the mitigated
channel as .#Z = 0.6 mb (.#y = 2 mb), and we cannot observe any consistent trend with
matrices generated for eight repeated runs. Hence, we conclude that the channel is closed.

On Sabre, the channel is closed with time protection as outputs are evenly distributed
across inputs (bottom in Figure 6.15). The MI evaluation for unmitigated channel is .Z =
2,489 mb, and mitigated channel is .#Z = 2.4 mb (.#, = 2.6 mb).

TLB As specified in Section 5.3.1.3, we implement the TLB covert timing channel as a
PRIME+PROBE attack on TLB entries. The Trojan probes TLB entries by reading an integer
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Figure 6.15: The L1-I cache covert channel on Sabre (Arm Cortex-A9). Top: without mitigation,

A = 2,489 mb, n = 3,808, bottom: mitigated with time protection .# = 2.4 mb,
Mo =2.6mb, n = 3,835.

from a number of consecutive pages, whereas the spy measures the cost of accessing half
of the TLB entries.

Figure 6.16 presents matrices for the TLB covert timing channel on Haswell. We see
that the stepping effect on the distribution of outputs for the unmitigated channel (top)
disappears once time protection is enabled (bottom). There is a correlation between the
input ranging in 3—-37 and output value 1713: 0.01% of outputs are 1713. However, we
cannot observe the same trend from eight repeated runs. Hence the distribution is highly
likely due to hardware noise. Results for the MI evaluation are .# = 2,564 mb for the
original channel and .# = 13.4 mb (.# = 22.9 mb) for time protection, a closed channel.

On Sabre, the effect on the distribution of outputs due to the TLB contention (top)
completely disappears in the bottom matrix generated for the time-protection mitigated
channel, as shown in Figure 6.17. The MI evaluation also shows that the original channel
(A = 559 mb) is completed closed (.#Z = 1.1 mb, .#y = 1.2 mb).

BTB The BTB covert timing channel uses chained branch instructions as the probing
buffer, as described in Section 5.3.1.4. Same as the attack implemented in Section 5.3.1.4,
the Trojan probes from 3584 to 3712 branch instructions on Haswell (0 to 512 on Sabre).

As demonstrated on the bottom matrix in Figure 6.18, time protection effectively
removes the strip shaped pattern contained on the matrix for the unmitigated channel (top).
Results for MI evaluation are .# = 1,553 mb for the original channel, and .# = 0.2 mb
(Ao = 0.2 mb) for the mitigated channel.
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Figure 6.16: The TLB covert channel on Haswell. Top: without mitigation, .#Z = 2,564 mb, n =
15,511, bottom: mitigated with time protection .#Z = 13.4mb, .#y =22.9mb, n =
15,470.

We present matrices for the unmitigated (top) and time protection mitigated (bottom)
channels on Sabre in Figure 6.19. On the bottom matrix, outputs are evenly distributed

across inputs, demonstrating a fully closed channel (.# = 56.2 mb, .#y = 66.2 mb).

BHB We run the BHB covert timing channel as described in Section 5.3.1.5. The Trojan
sends information by either taking (input “0”) or skipping (input “1”’) a conditional jump
instruction, whereas the spy measures the latency on taking a similar conditional jump
instruction, sensing any speculative execution caused by the Trojan’s history.

On Haswell, the channel (.#Z = 1,000 mb) is closed (.# = 0.0 mb, .#y = 0.0 mb) by
our time protection implementation, as shown on the bottom matrix in Figure 6.20. The
distribution of outputs is independent of inputs on the matrix generated for the mitigated
channel (bottom). It is interesting to note that time protection is more effective at closing
the BHB channel, comparing with the result for the full flush scenario (Section 5.4.3.5).
This fact is mostly likely due to our manual L1-I cache flush being effective at flushing
the BHB as a side effect: a large number of jump instructions (4,096) are included in the
manual L1-I cache flush Section 6.4.6.2. However, we cannot confirm the actual situation

on hardware due to the lack of documentation provided by the manufacturer.
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Figure 6.17: The TLB covert channel on Sabre (Arm Cortex-A9). Top: without mitigation, .#Z =
559 mb, n = 7,680, bottom: mitigated with time protection . = 1.1 mb, .#y = 1.2 mb,

n="717,685.
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Figure 6.18: The BTB covert channel on Haswell. Top: without mitigation, .# = 1,553 mb, n =
7,663, bottom: mitigated with time protection .# = 0.2 mb, .#y = 0.2mb, n = 7,769.

Similarly, the channel (.# = 1,000 mb) is closed (.# = 0.0 mb, .#y = 91.7 mb) on
Sabre (Figure 6.21) by time protection.
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Figure 6.19: The BTB covert channel on Sabre (Arm Cortex-A9). Top: without mitigation, .#Z =

5.4mb, n = 1,857, bottom: mitigated with time protection .# = 56.2mb, .4, =
66.2mb, n =9,680.
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Figure 6.20: The BHB covert channel on Haswell. Top: without mitigation, .# = 1,000 mb, n =
511,765, bottom: mitigated with time protection .#Z = 0.0mb, .#y = 0.0mb, n =
511,538.
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Figure 6.21: The BHB covert channel on Sabre (Arm Cortex-A9). Top: without mitigation, .#Z =
1,000 mb, n = 511,434, bottom: mitigated with time protection .#Z = 0.0 mb, .#y =
91.7mb, n =511,550.

L2 cache The L2 cache channel uses a similar implementation to the L.1-D cache channel,
but with a larger probing set to cover all the L2 cache sets. We run the L2 covert channel as

a representation of the covert channel on a physically-indexed cache.

Figure 6.22 shows matrices for both the original (top) and mitigated (bottom) channels
with time protection on the Haswell processor. On the matrix generated for the original
channel, we can observe that the output, probing cost measured by the spy, surges upwards
while the input, number of cache sets visited by the Trojan, increases. The MI evaluation
for the original channel is .#Z = 2,685 mb, which is reduced by time protection, .# =
49.1 mb (#, = 2.5 mb). However, we can still observe the wave on the bottom matrix,
indicating that the distribution of outputs is still correlated with input values even though
the timing mitigation is enabled. Moreover, the phenomenon is consistent across eight
repeated runs, confirming a remaining channel. The calculated MI values for those eight
repeated experiments range from .# = 49.1 mb to .# = 351.1 mb. In Table 6.4, we use the
lower bound because calculated MI values can also be caused by other effects, such as the
hardware noise.

We suspect that some remnant state cannot be fully reset, because the hardware does
not comply with our requirements, as it does not provide resetting operations on all on-core
states that cannot be partitioned (Section 4.2.1). One possible remaining microarchitectural
state is the prefetcher, which prefetches data streams based on previous cache misses
(Section 2.3.2). To investigate, we disable the data prefetcher (Section 5.3.2.1) in the

time protection scenario. The result shown in Figure 6.23 justifies our hypothesis, as the
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Figure 6.22: The L2 cache covert channel on Haswell. Top: without mitigation, .#Z = 2,685 mb,
n = 3,817, bottom: mitigated with time protection .# = 49.1 mb, .#y =2.5mb, n =
1,867.
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Figure 6.23: The L2 cache covert channel on Haswell, mitigated with time protection and disabling
prefetcher .# = 5.2mb, .#y=2.7mb, n = 3,807.

waving effect on the output distribution disappears once the data prefetching is disabled
(A =52 mb, #y= 2.7 mb). Moreover, we cannot observe any consistent trend on
matrices for five repeated runs, demonstrating that the calculated MI is highly likely due to
another side effect, such as hardware noise. This is more evidence than a need for a better

software-hardware contract that controls all hidden microarchitecture states (Section 5.5).

Time protection is effective on Sabre (.# = 0.7 mb, .#, = 0.7 mb) for mitigating the
L2 channel. Figure 6.24 demonstrates channel matrices for the L2 cache channel on Sabre
without (top) and with the time protection (bottom). The result shows that partitioning the
L2 cache is effective in preventing the covert channel on the L2 cache, as there is no L2

flushing operation involved in time protection. As the L2 is the external cache on Sabre,
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Figure 6.24: The L2 cache covert channel on Sabre (Arm Cortex-A9). Top: without mitigation,
A = 1,929 mb, n = 424, bottom: mitigated with time protection .# = 0.7 mb, .#y =
0.7mb, n =3793.

the spy can only probe half of the L2 cache due to cache colouring conducted in the time

protection scenario.

6.5.2.2 Covert timing channel on domain switching latency

As Requirement 4 stated, the state flushing must be padded to its worst-case latency, because
the latency of flushing on-core caches depends on the number of used lines in those caches.
Since the flushing invalidates and flushes all those lines, the cost of flushing increases with
the increasing number of cache lines. Hence, the latency of flushing can reflect the number
of cache lines used by previous running domain, forming a timing channel.

To demonstrate this channel, we create a Trojan that alters the number of cache sets
it accesses in each time slice, manipulating the cost of the on-core cache flushes (Sec-
tion 6.4.6.2), and hence the domain switching latency.

Additionally, we establish a spy that measures its online time and offline time. The
online time is the spy’s observed length of its time slice, the uninterrupted execution time;
whereas the offline time is the latency between its time slice.

Figure 6.25 shows the system scenario. Both Trojan and spy are executing in their
own security domains, sharing a core. Each security domain is created with coloured
memory containing user-level processes and a kernel image. To demonstrate a channel,
the kernel conducts all the actions listed in Section 6.4.6 during a domain switch, except
for padding the configured domain tick length which also covers the on-core flushing

latency (Section 6.4.6.3). The cost of flushing on-core states during a domain switch varies
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Figure 6.25: The system scenario of the cache-flush channel.

according to the number of cache sets accessed by the Trojan, and therefore the spy’s online

or offline time.

while(1) {
current = timestamp_counter( );
//detected a large jump, the begining of the current tick
if (current - previous > THRESHOLD) {
online = previous - start;
offline = current - previous;
//recording the start of this tick
start = current;

b

previous = current;

Listing 6.6: The online and offline time measurement.

To detect a preemption, the spy reads repeatedly the time-stamp counter, waiting for a
large jump that indicates a preemption. Listing 6.6 contains the pseudo code for the spy’s
measurements. Online time measures the uninterrupted period, while offline time is the
length of the jump.

The top matrix in Figure 6.26 shows the channel created on Haswell. We see that the
measured offline time (output) increases slightly while the Trojan enlarges its working set
size. In other words, the Trojan successfully modulates the offline time by polluting L1
caches. The channel is effectively mitigated by the configured domain tick length, covering
the timing variation in on-core cache flush (bottom in Figure 6.26). Figure 6.27 shows
matrices for the original (top) and mitigated (bottom) online channel on Haswell. On the
top matrix, we see that the online time of the spy shortens while the Trojan probes on a
larger working set, representing the increased latency for switching from Trojan to spy. The
online time becomes stable once the configured domain tick length is enabled (bottom), as

the latency of domain switch can no longer shorten the domain tick length enjoyed by the

Spy.
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Figure 6.26: The offline time observed by the spy vs. the Trojan’s cache footprint, which is caused
by a variation of domain switching latency (top). The channel is mitigated by the
configured domain tick length (bottom) on Haswell (x86). The original channel has
M ="T7.7mb, n = 1,844, which is mitigated to .#Z = 0.3 mb, .#y = 0.3 mb, n =7,653.
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Figure 6.27: The online time observed by the spy vs. the Trojan’s cache footprint, which is caused
by a variation of domain switching latency (top). The channel is mitigated by the
configured domain tick length (bottom) on Haswell (x86). The original channel has
A =".8mb, n= 1,844, which is mitigated to .# = 0.3 mb, .#y = 0.3 mb, n =7,654.
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Figure 6.28: The offline time observed by the spy vs. the Trojan’s cache footprint, which is caused
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by a variation of domain switching latency (top). The channel is mitigated by the
configured domain tick length (bottom) on Sabre (Arm Cortex-A9). The original
channel has .#Z = 1,406 mb, n = 1,828, which is mitigated to .# = 256 mb, .#, =
342mb, n =6,719.
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Figure 6.29: The online time observed by the spy vs. the Trojan’s cache footprint, which is caused

by a variation of domain switching latency (top). The channel is mitigated by the
configured domain tick length (bottom) on Sabre (Arm Cortex-A9). The original
channel has .#Z = 1,406 mb, n = 1,828, which is mitigated to .# = 194 mb, .#, =
239mb, n =6,719.
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Similarly, both offline and online channels (the top matrix in the corresponding figure)
is mitigated (the bottom matrix in the corresponding figure) by the configured domain tick
length on Sabre, as shown in Figure 6.28 and Figure 6.29.

Table 6.5 summarises the result for MI evaluation. The domain tick length is configured
as the sum of the length of a domain tick and the padded domain switch latency. The padded
domain switch latency is 58.8 us on Haswell and 62.5 us on Sabre. We configure the length
of the padding according to the cost of domain switch cost measured in Table 6.8, about
twice the cost measured on corresponding platforms. We have only configured the padding

time as an upper bound of the cost, which can be further optimised.

Platform Timing | No pad | Protected (.#))
Haswell (x86) Online 7.8 0.3(0.3)
pad = 58.8 us Offline 7.7 0.3 (0.3)
Sabre (Arm Cortex-A9) | Online 1,406 194 (239)
pad = 62.5 us Offline 1,406 256 (342)

Table 6.5: Channels resulting from cache-flush latency (mb) without and with time protection.

6.5.2.3 Covert timing channel via a shared kernel image

As stated in Requirement 2, the shared kernel image can be used as a timing channel, even
though all security domains, including user-level threads and kernel data (e.g., TCBs or page
tables), are partitioned on physically-indexed caches with cache colouring (Section 2.6.3).
The shared kernel image can be exploited as a timing channel in a similar way to user-level
libraries shared between domains. Note, this attack scenario already prevents the attack
demonstrated by van Schaik et al. [2018], since page tables are automatically coloured as
part of the kernel data on selL4.

We implement the shared kernel image attack on seL.4 with a user-level cache-colouring
memory allocator. All other time protecting mechanisms (flushing and padding) are in place.
The initial thread creates two threads, a Trojan and a spy, with disjoint cache colours. The
two threads share nothing but a kernel image. Then, the initial thread suicides, leaving the
two attacking threads as the only runnable threads in the system. The system tick length is
1 ms.

The attack explores contention on LLC between the Trojan and spy, by triggering kernel
services. Figure 6.30 demonstrates the attack scenario. The shared kernel image uses all
cache colours, including those owned by the spy. Hence, the Trojan can create contention
on the spy’s cache sets, by calling into the kernel. In each system tick, the Trojan, acting
as a sender, sends information by triggering sel.4 system calls, whereas the spy, acting as
a receiver, measures the probing cost on the coloured cache sets that the kernel uses for
serving system calls. To clarify, the spy can only probe on the cache sets used by the kernel

that are located in its own share of the cache. Both the Trojan and spy detect a system
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tick by probing on the time-stamp counter, waiting for a large jump which represents a

preemption, as shown in Listing 6.7.

) The probing buffer covers
Trojan Spy all LLC cache sets used by
the kernel that have the
same colour as the spy.

Cache sets used by the
The shared kernel image shared kernel image

across colours.

Coloured cache

Figure 6.30: The Trojan sends information to the spy via a shared kernel image, even though both
of them are coloured.

newTimeSlice( ) {
/*read time-stamp counter=*/
previous = timestamp_counter( );
for (5 5 )«
current = timestamp_counter( );
/*detected a large jump, the begining of the current tickx/
if (current - previous > TS_THRESHOLD)
return;

previous = current;

Listing 6.7: Detecting a system tick by probing on the time-stamp counter.

Before conducting the attack, the spy first creates a probing buffer with the PRIME+
PROBE technique [Liu et al., 2015; Osvik et al., 2006; Percival, 2005]. The spy identifies
cache sets used by the kernel from comparing cache misses on each cache set in its own
share of the cache, before and after executing a system call. If the number of cache misses
increases, the selected caches are also highly likely used by the kernel. With this method,
the spy gradually establishes a probing buffer that covers all cache sets potentially used by
the kernel locating on its share of the cache.

When a new time slice is detected, the Trojan encodes a random sequence of symbols

from the input set I, by triggering the kernel services.

145




200 0.10000
%\ 600 0.01000
©
& 500 0.00100
3 400 0.00010
=)
S 300 0.00001
0 1 2 3
2280
g 2260 0.01000
S 2240 0.00100
5 2220 0.00010
5 2200
8 5180 0.00001
0 1 2 3

Input (taking seL4 syscall)

Figure 6.31: Kernel covert timing channel on Haswell (x86), with coloured userland (top) and full
time protection (bottom). The original channel has .# = 800 mb, n = 255,790, which
is closed to .#Z = 0.3 mb, .#y = 0.0mb, n = 255,790.

On the Haswell platform, the Trojan encodes information from / =0, 1,2, 3: seL4_Signal
for 0, seL4_TCB_SetPriority for 1, seL4_Poll for 2, and being idle for 3. Moreover, the spy

conducts probing on each time slice, returning the cost of probing the buffer as the output.

The Figure 6.31 (top) shows the channel matrix resulting from the attack on Haswell.
From the channel matrix, we can clearly observe the cost of probing (output symbols)
being affected by the usage of kernel services (input symbols). As the brighter colours
indicate a higher probability, the spy is more likely to take 475-729 cycles on probing
while the Trojan called seL4_Signal (input 0), 462—724 for seL4_TCB_SetPriority (input 1),
and 284595 for seL4_Poll (input 2). Quantifying the leakage gives us the MI estimation as
A = 800 mb.

The time protection mechanism defeats the channel (bottom in Figure 6.31), as the
kernel image is no longer shared between the Trojan and spy. For creating this scenario,
the initial thread clones two kernel images using coloured memory, and assigns each
coloured partition with the corresponding kernel image. Once scheduled, threads within a
partition can only invoke their own kernel, and hence are completely separated on cloned
kernel sections. Moreover, the kernel deterministically visits the remaining global data
shared between kernel images during a domain switch (Section 6.4.6.4), hence leaving a
deterministic cache footprint (not related to the previous running domain). With the kernel
clone, the MI evaluation is . = 0.3 mb (.#y = 0.0 mb). Moreover, we repeat the test five
times, and cannot observe a consistent trend on channel matrices. Thus, the evaluated MI is

highly likely due to hardware noise.
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Figure 6.32: Kernel covert timing channel on Sabre (Arm Cortex-A9), with coloured userland (top)
and full time protection (bottom). The original channel has .# = 20mb, n = 511,151,
which is closed to .#Z = 0.0mb, .#Zy = 0.0mb, n = 511,531.

In addition, we implement a similar channel on the Sabre platform, shown in Figure 6.32.
On the Sabre platform, the Trojan encodes information from I = 0, 1: being idle for 0, and
invoking kernel services with three system calls (seL4_Signal, seL4_TCB_SetPriority, and
seL4_Poll) for 1. Compared to the channel created on Haswell, the encoding scheme is
different on the Sabre platform because of the microarchitectural differences: we first
implement the same attack as the one on Haswell, the Trojan invoking one system call
in each send, but notice a weak signal. The reason for the weak signal is the small cache
footprint left by the shared kernel image being hidden from the aggressive 2-level data
prefetcher (Section 2.3.3). The Spy’s probing buffer for detecting a system call is prefetched
before accessed; hence the cost of probing the buffer cannot fully reveal the actual cache
misses. Therefore, we enhance the channel by making the Trojan invoke all three system
calls in each system tick, in order to enlarge the kernel footprint left on the L2 cache. We
did not try to improve the channel leakage with more sophisticated encoding schemes, due

to our main focus on only demonstrating a channel.

In the top matrix in Figure 6.32, we can observe that the probing time measured by the
spy is more densely distributed on 7500-8500 while the Trojan sends “0” than sending “17,
showing the timing channel. With time protection, the distribution disappears as shown on
the bottom matrix. The MI evaluation for the unmitigated channel is .# = 20 mb while the
kernel image is shared between coloured partitions, which is completely mitigated by time
protection (.#Z = 0.0 mb, .#y = 0.0 mb).
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6.5.2.4 Covert timing channel on a shared Interrupt

We evaluate interrupt partitioning (Section 6.4.5) with a covert timing channel based on a
timer interrupt. Figure 6.33 shows the attack scenario. The Trojan and spy execute on the
same core, with a 10 ms system tick. To send information, the Trojan programs the timer to
fire while the spy is running. The timer interrupt breaks the system tick in which the spy
executes into two parts, and the length of each part is related to the configuration of the
timer. To receive information, the spy measures its online time, the uninterrupted execution

time, which is correlated with the timer.

while(1) {
newTimeSlice( );
//polling until received the pending IRQ notification
do {
seL4_Poll(timer, &message);
} while(!message);
handle_timer_irq( );
//timer latency: 11-19 (ms)
latency = random_latency( );
//set the timer
set_timeout(timer, latency * NS_IN_MS);

Listing 6.8: The Trojan programs the timer interrupts in every system tick.

i Online

The timer interrupt
preempts the spy’s
execution.

The Trojan programs
the timer to fire while
the spy is running.

A shared timer

Figure 6.33: The Trojan sends information to the spy via a shared timer interrupt.

Listing 6.8 shows the pseudo code for the Trojan to program the timer interrupt. In each
system tick, the Trojan first acknowledges any pending timer interrupt. Then, it programs
the timer with a latency between 11-19 ms, greater than the system tick (10 ms). Hence, the
timer will be triggered at the next system tick while the spy is running. When the timer is
triggered, the spy can detect changes on its online time (Listing 6.6), as the kernel has to

handle the interrupt before resuming the spy’s execution. In other words, the system tick
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of the spy breaks into two parts by being interrupted, resulting in two measurable online

periods in a system tick.
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Figure 6.34: The online time observed by the spy vs. the timer interrupt configured by the Trojan,
resulting in observing interrupted timer tick (top) which is mitigated interrupt partition-
ing (bottom) on Haswell (x86). The original channel has .# = 902 mb, n = 10, 860,
which is mitigated to .#Z = 0.5mb, .#y = 0.7mb, n = 11,029.

Platform Shared | Partitioned (.7)
Haswell (x86) 902 0.5(0.7)
Sabre (Arm Cortex-A9) 444 42 (68)

Table 6.6: MI (mb) of the interrupt channel (shared), mitigated with time protection (IRQ partition-
ing).

Table 6.6 summarises results of MI evaluation for original and mitigated channels.
Original channels are .# = 902 mb on Haswell, and .# = 444 mb on Sabre, which are
mitigated by time protection (IRQ partitioning) as demonstrated by the corresponding
channel matrices and MI evaluation, .#Z = 0.5 mb (.#; = 0.7 mb) on Haswell, and .#Z =
42 mb (.#, = 68 mb) on Sabre.

6.5.2.5 Cross-core LLC side channel

For cross-core attacks in the cloud scenario (Section 4.1.2), our threat scenario only con-
siders the side channel on core-shared LLC. We reproduce the cross-core side channel attack
(Section 3.2.3.2) of Liu et al. [2015] on GnuPG version 1.4.13 on the Haswell platform, in

order to test our time protection mechanism on preventing LL.C-based cross-VM attacks.
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Figure 6.35: The online time observed by the spy vs. the timer interrupt configured by the Trojan,
resulting in observing interrupted timer tick (top) which is mitigated interrupt parti-
tioning (bottom) on Sabre (Arm Cortex-A9). The original channel has .# = 444 mb,
n = 10,902, which is mitigated to .# = 42 mb, .#y = 68 mb, n = 10,976.

The original attack created by Liu et al. is a cross-VM attack: an attacking VM conducts
the PRIME+PROBE attack on the core-shared LLC, in order to break the private key used in

an ElGamal server hosted in the victim VM. The attack, originally performed in a clean lab
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environment, was later demonstrated on an Amazon EC2 cloud by Inci et al. [2016].

The attack targets the square-and-multiply implementation for the modular exponenti-
ation in the decryption process of the EIGamal. In this attack, an attacking thread probes
cache sets on the LLC, learning the cache usage of the ElGamal decryption from a victim

thread concurrently running on the other core. A successful attack reveals the secret key

through the victim’s cache activity captured by the probing.
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Figure 6.36: Unmitigated concurrent LLC side-channel attack on Haswell (x86). The pattern in blue

Time slot number

shows the victim’s cache footprint detected by the spy.
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To create this attack, we use two processes that are currently executing on different
cores on the Haswell platform. The victim process iteratively decrypts a file, whereas the
spy process conducts the PRIME+PROBE attack implemented by the Mastik toolkit [ Yarom,
2016]. After each round of probing, the spy examines its record, the number of cache misses
in each cache set, searching for patterns corresponding to the use of the square function.
The Figure 6.36 demonstrates the cache activity captured by PRIME+PROBE attack from
the spy. On cache set number 119, the sequence of blue dots represents invocations of the
square function, which are separated by intervals of varying lengths, encoding the secret
key. The long interval encodes bit “1”, while the short interval encodes bit “0”.

Our time protection mechanism closes the channel. As a result, the spy cannot detect
any cache usage patterns of the victim. We only implement this attack on the Haswell
platform, as the Sabre (Arm Coretex-A9) is not relevant in the cloud scenario. However,
Section 6.5.2.1 already demonstrates that time protection is effective at preventing the

covert channel on the L2 cache on the Sabre platform, due to cache partitioning.

6.5.3 Performance

To understand the impact on system performance, we evaluate time protection with an IPC
microbenchmark (Section 6.5.3.1), a microbenchmark of the cost of domain switching
(Section 6.5.3.2), a microbenchmark of the cost of kernel cloning and destruction (Sec-
tion 6.5.3.3), a system benchmark of the cost of cache colouring (Section 6.5.3.4), and a

system benchmark of the impact of domain switching (Section 6.5.3.5).

6.5.3.1 IPC microbenchmark

We evaluate the impact of time protection by measuring the cost of cross-address-space
message-passing IPC. The IPC operation is one of the most important performance tests for
microkernels, as the highly optimised IPC path can easily reflect any performance impact
introduced by the new kernel feature. We use an IPC microbenchmark to examine the
baseline cost of our mechanisms, even though the cross-domain IPC is an artificial scenario
in a strictly partitioned system as it does not use a fixed time slice or time padding (which

would defer IPC delivery to the partition switch).

Haswell (x86) Sabre (Arm Cortex-A9)
Version Cycles Overhead | Cycles Overhead
original 381 - 344 -
colour-ready 386 1% 391 14%
intra-colour 380 0% 395 15%
inter-colour 378 -1% 389 13%

Table 6.7: IPC performance microbenchmarks.
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Table 6.7 summarises the results. The colour-ready refers to a kernel that supports
time protection without using it. The intra-colour measures IPC between threads within
a domain, while the inter-colour represents the cost of IPC between two threads across
different coloured security domains, thus different kernel images. The inter-colour test
does not use a fixed time slice or cache flushing, which would deliberately defer the IPC
delivery until the end of padded partition switch. Although it is an artificial configuration,
the test gives a concrete estimation of the cost of switching between coloured kernel images,
representing the baseline cost of the kernel clone mechanism. We report the mean from
30 runs, all relative standard deviations are less than 1%. We are not using the mainline
kernel [sel4, 2019], hence results are not comparable with results listed on the seL.4 web
site [selL4].

The time-protection mechanism introduces negligible overhead on Haswell, as IPC
costs are within 1% of the baseline for all tests cases. However, supporting the kernel clone
mechanism introduces 14% overhead on the Sabre platform. The reason is that the baseline
kernel uses global mappings to map the kernel’s virtual address space, and those mappings
are never evicted from TLB as locked entries. With kernel clone, there is no default mapping
for the kernel’s virtual address space, and thus the kernel cannot use global mappings. This

creates pressure on TLB entries.

The effect is more pronounced on the Sabre platform when compared to more advanced
Arm processors, such as the Arm Cortex-A53, as TLBs on the Arm Cortex-A9 processor
have smaller associativities. There are two 1-way L1 TLBs and a 2-way L2 TLB on the Arm
Cortex-A9 processor. Hence, the cross-address-space IPC test suffers from an increasing
number of conflict misses on TLBs. However, there is no overhead from using per-partition
kernel images, beyond this architectural limitation that poorly supports multiple kernel
mappings. A more advanced Arm processor would have a higher associativity on TLBs,
such as the 4-way L2 TLB on the Arm Cortex-AS53 processor (Table 5.1). Thus, we expect

this overhead to be significantly reduced on more recent processors.

6.5.3.2 Domain switching cost

With time protection, we expect that the cache flushing cost (Table 6.3) dominates the
domain switching latency. To verify this, we evaluate the domain switching latency for
cache-based attack workloads. Specifically, we select three attack scenarios from Sec-
tion 6.5.2.1, including attacks on L1-D, L1-I, and L2. For the L3 test on Haswell, we use
the same test as Table 6.3 for measuring cost of switching from a domain whose working-
set size equals the size of the L3 cache. We measure the time taken to switch from the
probing conducted by the spy to an idle domain. For all tests, spy and idle domains are
partitioned on caches by coloured security domains, and time protection is fully enabled
except for padding the length of domain ticks. We use this setup to represent realistic

defence scenarios.
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Platform Mode Idle | L1-D | L1-I| L2 | L3

Haswell Raw 0.18| 0.19 | 022 1023 | 0.5
(x86) Full flush | 271 271 | 271 | 271 | 271

Protected 30 30 30 30 30
Sabre Raw 0.7 0.8 12| 1.6 | N/A

(Arm Cortex-A9) | Full flush | 414 414 | 414 | 414 | N/A
Protected 27 27 27 31 | N/A

Table 6.8: Cost (us) of switching away from a domain running various cache probing (spy).

The results are summarised in Table 6.8, for measurements on the original sel.4 (raw),
seLL4 with time protection (protected), and seL.4 with all hardware provided microarchitec-
tural resetting operations (full flush) listed in Section 5.3.2. For the L3 test on Haswell and
the L2 test on Sabre, the measurements on the original seL.4 have bimodal distributions with
relative standard deviations of 18% for Haswell and 25% for Sabre, hence we report median
values. The reason of the bimodal distribution is that the domain switch execution either
hits a fastpath or a slowpath on hardware, depending on state of the CPU (e.g., pipeline, and
caches). For all the other tests, we report the mean for 320 runs, where all relative standard

deviations are less than 3% for Haswell and 1% for Sabre.

By examining the result in Table 6.8, we first observe that the latency depends on the
workload for the orginial seL.4: the larger the probing buffer, the higher the cost. However,
the protected system has no such dependency, as a result of all the determinism provided by
our time protection mechanisms. Secondly, the latencies for the full flush scenario match
the direct flushing cost measured in Table 6.3. For time protection, the switching latency is
only slightly higher than the cost of direct L1-flushes listed in Table 6.3, which confirms

the domination of the L1-flushing latencies in a domain switch.

Our implementation of time protection introduces significantly less overhead than the
hardware provided resetting operations (full flush), even though it is just as effective at
mitigating timing channels, except for cases resulting from the lack of targeted prefetcher
flushing operations on Haswell and Sabre, as discussed in Section 6.5.2.1. For a system
configured with 10 ms time slice, the relative overhead of a full flush would be about 3% on
Haswell, and 4% on Sabre, whereas time protection introduces only about 0.3% relative

overhead on both processors.

6.5.3.3 Kernel cloning and destruction cost

To understand the overhead of managing cloned kernel images, we evaluate the cost of
cloning and destroying a kernel image created from coloured frames on sel.4. The memory
overhead of cloning a kernel image is 224 KiB on Haswell (x86) and 120 KiB on Sabre
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(Arm Cortex-A9). The memory requirement is for a single-core system, and requires extra
kernel stacks to support added cores with the cost of 4 KiB per core.

Table 6.9 summarises the cost of cloning and destroying a cloned kernel image for both
Haswell and Sabre platforms.

To measure the cost of cloning, we measure the latency of conducting the kernel
clone system call (seL4_KernelImage_Clone) by the initial thread. As mentioned previously
(Section 6.4.2), the system call clones a kernel image (the Kernellmage object) with memory
(KernelMemory objects) provided as parameters of the system call. All Kernellmage and
KernelMemory objects are created from coloured memory, owning 50% of colours on the
L2 cache, in order to simulate the system scenario for creating a partitioned system. We
measure the cost on a single-core system; adding support for an extra core only requires
creating the mapping for the extra kernel stack, which is just adding a translation in the
kernel window. The cost of cloning is 79 s on Haswell and 608 tis on Sabre, which
represents the total cost of creating a kernel window mapping on the Kernellmage, the
root page directory of the kernel’s address space, and cloning kernel sections into kernel
memory, KernelMemory objects.

We measure the cost of the frequently executed fork and exec system calls on Linux
using the LMbench [McVoy and Staelin, 1996]. The fork and exec system calls are always
used together for launching a program on Linux. We run this benchmark to have a relative
comparison with the cost for kernel clone. Table 6.10 listed the results. On Haswell,
executing the fork system call costs 53 us, and executing the exec system call costs 204 us.
The total cost of executing the two system calls is 257 pus on Haswell. On Sabre, executing
the two system calls cost 4,298 s in total: fork 1,099 us, exec 3,199 us. On both platforms,

cloning a kernel image costs much less than executing the fork+exec.

Platform clone destroy

KImage KMemory num. KM total
Haswell 79 (0.3%) | 0.59 (10.18%) 0.17 (23.60%) 55 10
Sabre 608 (4.1%) | 67.45 (1.68%) 1.67 (21.14%) 29 116

Table 6.9: Cost of cloning (us) on seL.4 with coloured memory. Numbers in parentheses denote
relative standard deviation. Reporting mean for 10 runs if the relative standard deviation
is less than 4.1%, otherwise, reporting the median due to the bimodal distributions caused
by executing on a fast path and a slow path on hardware while testing.

As discussed in Section 6.4.7, our design handles deletion of Kernellmage and Kernel-
Memory objects separately, in order to be consistent with the existing capability manage-
ment model on seL4. Therefore, we measure the cost of deleting the representation of a
kernel image, the Kernellmage object, as well as the average cost of deleting KernelMemory
objects used by that kernel image. The total cost of deleting a kernel image is the cost of
deleting all objects used by the kernel image, including a Kernellmage object and all of its

KernelMemory objects.
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Platform fork exec total
Haswell 53 (6%) 204 (0.5%) 257
Sabre 1,099 (3%) | 3,199 (7%) | 4,298

Table 6.10: Cost of fork and exec system calls on Linux (us). Numbers in parentheses denote
standard deviation values. Reporting mean for 4 runs on Sabre and 6 runs on Haswell.

On Haswell, performing object deletion costs 0.59 us for the Kernellmage object, and
0.17 us for each KernelMemory object. The total cost of deleting all objects used by the
kernel image is the cost of deleting the Kernellmage object and 55 KernelMemory objects
used for cloning kernel sections (code, read-only and stack sections), which is 10 us on
Haswell. On Sabre, performing a kernel image deletion costs 116 us, which is the total
of deleting its Kernellmage object (67.75 us) and 29 KernelMemory objects (1.67 us for
deleting each object). As with the cloning cost, the total cost for deletion is calculated
based on the memory requirement for a single-core machine; adding an extra core requires
deleting an extra KernelMemory object used as the kernel stack on that core, which costs
0.17 us on Haswell and 1.67 us on Sabre.

6.5.3.4 The cost of cache colouring

We evaluate the cost of cache colouring (Section 2.4), as time protection uses this tech-
nique for partitioning physically-indexed caches. Cache colouring replaces the dynamic
partitioning (allocation of cache sets) performed by hardware with a static partitioning
(assigning cache sets to coloured frames) that is controlled by the OS. It is expected that
performing cache partitioning with cache colouring can lead to less optimal usage of the
cache, hence introducing performance degradation, a well-understood tradeoff. However,
static partitioning also leads to more predictable performance [Kessler and Hill, 1992;
Liedtke et al., 1997; Lynch et al., 1992], as each application runs on their own share of the
cache. Recently, cache colouring has also been proposed as a method for improving system
performance [Han et al., 2018; Noll et al., 2018].

Nonetheless, partitioning physically-indexed caches as part of mandatory security
enforcement can cause some performance degradation on average, especially if a cache
is shared between one application with a large footprint and another application with a
small footprint. To test the effect of owning different portions of the cache, we test a single
benchmark, Splash-2, with two configurations on cache colouring, 50% and 75% of colours
of the L2 cache.

The Haswell platform contains three levels of caches where L1 and L2 caches (256 KiB)
are core-private, and the L3 cache (8 MiB) is an external cache. We colour the benchmarking
thread according to the L2 cache colours, because it also implicitly colours the L3 cache
(Section 6.5.1). The alternative option would be to only colour the L.3 cache, and conduct

a flushing operation on the L2 cache during a domain switch by paying the increased
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domain-switching latency. However, the x86 architecture does not support a targeted L2
cache flush; nor does it provides any documentation on the implementation of cache line
replacement policies, hence we cannot test the alternative option.

There are two levels of caches on Sabre, core-private L1 caches, and an external L2
cache (1 MiB). We conduct the cache colouring according to the L2 cache colours.

Time protection on seL4 is a research prototype, which lacks a complete implementa-
tion of the portable operating system interface (POSIX) that is expected by most system
benchmarks, such as the SPEC benchmark. Hence, we port the easily portable Splash-2
benchmark [Woo et al., 1995] to the seL.4 system, except for volrend due to its Linux de-
pendencies on processing tagged image file format (TIFF) files. The Splash-2 benchmark is
obviously quite dated, but for our purpose we only need a system benchmark that exercises
the coloured cache. To achieve this, we configure the Splash-2 benchmark with running
parameters to consume 220 MiB of heap and 1 MiB of stack, which is a large memory
consumption for running on half of the L2 cache (128 KiB on Haswel, and 512 KiB on
Sabre).

The overhead of cache colouring is summarised in Figure 6.37 for Haswell and Fig-
ure 6.38 for Sabre. We evaluate the cache colouring with and without the kernel clone
mechanism, to demonstrate the extra cost of supporting the benchmarking thread with a
coloured kernel image if any. For all tests, we report the mean of 10 repeated single-threaded
runs, with relative standard deviations less than 3%, as well as the geometric mean across

the suite. During the test, the benchmarking thread is the only runnable user-level thread in

the system.
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Figure 6.37: Slowdowns of Splash-2 benchmarks against baseline kernel without partitioning for
Haswell (x86) and geometric mean. Benchmarks are run as the only process on the
system. The “base” cases use the standard kernel with reduced cache. The “cloned”
cases run the benchmark on a cloned kernel with reduced cache, the “100% colours
clone” case uses an unpartitioned cache like the baseline.
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Figure 6.38: Slowdowns of Splash-2 benchmarks against baseline kernel without partitioning for
Sabre (Arm Cortex-A9) and geometric mean. Benchmarks are run as the only process
on the system. The “base” cases use the standard kernel with reduced cache. The
“cloned” cases run the benchmark on a cloned kernel with reduced cache, the “100%
colours clone” case uses an unpartitioned cache like the baseline.

On Haswell (Figure 6.37), having 50% of the L2 cache only slows down the majority
of Splash-2 tests by less than 3%. Furthermore, having an increased share of the L2 cache
(75%) improves the performance, limiting the overhead to less than 3.5%. Most importantly,
the kernel clone mechanism introduces close to zero overhead. The geometric mean is 2.7%
slowdown for running on 50% of the L2 cache with cloning, and 0.9% for running on 75%
of the L2 cache with cloning.

On Sabre (Figure 6.38), executing with 50% of the cache colours introduces less
than 1% of slowdown for most of the Splash-2 benchmarks, except for raytrace, which
incurs a 6.5% slowdown due to its large working set size. Running on 75% of the colours
improves the performance of raytrace, with only 2.5% slowdown. Overall, kernel cloning
introduces almost no performance penalty, except for waterspatial with less than 0.5%
overhead, showing the overhead of cloning on a memory intensive workload that does high
performance computing. As discussed in Section 6.5.3.1, cloning increases the number of
conflict misses on TLBs that have small associativities, like for the Sabre platform. Still,
the geometric mean is 0.8% for running on 50% of the L2 cache with cloning, and 0.3% for

running on 75% of the L2 cache with cloning.

6.5.3.5 The impact of domain switches

The above evaluation of cache colouring and cloned kernel images does not reveal the
effect of increased domain-switching latency resulting from flushing on-core state (Sec-
tion 6.4.6.2). To evaluate the impact of increased domain-switching latency, we run the

Splash-2 benchmark in a security domain sharing the processor with an idle domain. The
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two domains are partitioned on physically-indexed caches as stated in Section 6.5.3.4. The
system tick length is 10 ms. During a domain switch, the kernel conducts all actions listed in
Section 6.4.6.6. This benchmark scenario measures the impact of decreased CPU bandwidth

from the increased domain-switching latency.
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Figure 6.39: Slowdowns of Splash-2 benchmarks of time protection, including the increased domain-
switching latency in a time-shared setup, against baseline kernel without partitioning
for Haswell (x86) and geometric mean. Benchmarks share the processor with an idle
domain. The “colours” cases run the benchmark on a security domain with reduced
cache without padding the domain switch latency to the configured length. The “colours
with padding” cases pad the domain switch latency to the configured length while
running on a reduced cache.

To identify the cost of padding the configured domain tick length (Section 6.4.6.3), we
evaluate slowdown resulting from time protection with and without padding. For padded
domain ticks, we configure the system to use the tick length configured to prevent the timing
channel resulting from domain-switching latency (Section 6.5.2.2). The padded domain
switch latency is 58.8 s on Haswell and 62.5 us on Sabre, which is the same as configured
for preventing the covert channel on the domain switching latency (Section 6.5.2.2). Results
are summarised in Figure 6.39 for Haswell, and Figure 6.40 for Sabre. We report the mean
of 10 repeated time-shared runs where relative standard deviations are less than 2%. On
Haswell, results for all [u tests and the water-spatial test on unmodified seL4 have 5%—6%
relative standard deviations caused by bimodal distributions, hence we report the median.
We also show the geometric mean of the slowdown across the suite.

On Haswell, deploying time protection with 50% of the L2 cache introduces less than
3% of slowdown on the majority of Splash-2 tests. The overhead ranges from the lowest,
0.26%, to the highest, 10.96%. Padding the domain tick length introduces a little extra
overhead which causes the overhead ranging from 0.86% for the lowest to 11.06% for
the highest, adding around 0.6% overhead on top of time protection. Geometric means of
having 50% of the L2 cache are 2.8% without padding, and 3.4% with padding. Increasing
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Figure 6.40: Slowdowns of Splash-2 benchmarks of time protection, including the increased domain-
switching latency in a time-shared setup, against baseline kernel without partitioning
for Sabre (Arm Cortex-A9) and geometric mean. Benchmarks share the processor with
an idle domain. The “colours” cases run the benchmark on a security domain with
reduced cache without padding the domain switch latency to the configured length. The
“colours with padding” cases pad the domain switch latency to the configured length
while running on a reduced cache.

cache share to 75% limits the slowdown to below 6% without padding and 6.5% with
padding. Geometric means for running on 75% of the L2 cache are 1.7% without padding
and 2.4% with padding. For waterspatial, having 75% of the L2 cache introduces more
slowdown compared to only having 50%, this is an example of timing anomalies where
having more cache can potentially cause longer execution time [Lundqvist and Stenstrom,
1999].

On Sabre, time protection with 50% of the L2 cache introduces slowdown from the
lowest, —2.9%, to the highest, 6.7%. For the radix test, having less cache improves the
performance, which is another example of timing anomalies. Padding the domain switch
latency introduces less than 0.4% overhead, causing the slowdown ranging from —2.6% to
7.1%. Geometric means of having 50% of the colours are 0.8% without padding and 1.1%
with padding. With 75% of the cache colours, time protection introduces —3.0% to 2.7%
slowdown without padding and —2.7% to 3.0% slowdown with padding. Geometric means

of having 75% of the colours are 0.3% without padding and 0.6% with padding.

6.5.4 Summary

Our evaluation shows that time protection is generally highly effective at preventing all
studied timing channels, including covert channels between threads that are time-sharing a
core, and a cross-core side channel between concurrently executing threads. Our studied

timing channels cover threats on both confinement (Section 4.1.1) and cloud (Section 4.1.2)
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scenarios. However, we also observe that present hardware does not provide enough support
for resetting on-core resources that cannot be partitioned, leaving the prefetcher as a source
of residual channels (Section 6.5.2.1). This finding supports our earlier claim that the
current ISA is not sufficient to provide timing security, and that we need an improved
hardware-software contract to address this shortcoming (Section 5.5).

Our implementation of time protection in seL.4 is low-cost, particularly for running a
cloned kernel, except on Sabre (Arm Cortex-A9) due to its low TLB associativity (Sec-
tion 6.5.3.1). The memory overhead of cloning is also low (Section 6.4.7): 224 KiB on
Haswell (x86) and 120 KiB on Sabre. Moreover, kernel image creation and destruction is
fully dynamic and affordable, 79 us on Haswell and 608 (ts on Sabre for creation, and 10 s
on Haswell and 116 us on Sabre for destruction, much less than process creation costs on
Linux. Time protection also introduces low overhead on memory intensive benchmarks
(Section 6.5.3.5), by only slowing down the Splash-2 benchmark up to 3.4% on Haswell
and 1.1% on Sabre, according to the geometric mean across the suite.

Although our prototype is implemented on the seL.4 microkernel, we expect that the
time protection can be adopted by other kernels, as the idea of dynamically creating and
destroying kernel images has no dependency on seL.4. Our prototype does not depend on
any specific hardware features (e.g., customised hardware caches), hence the evaluation can
be a point of reference for a similar implementation on other systems. Additionally, creating
or destroying kernel images is only necessary during system initialisation or reconfiguration,
which may make it affordable in monolithic kernels such as Linux, even though cloning
a monolithic kernel requires populating a larger kernel window (Section 6.4.2) than seL4.
Lastly, the cost of flushing on-core caches during a domain switch should also be affordable
on monolithic kernels because these caches are small and are highly likely to contain
non-reusable cache lines after a switch, as discussed in Section 3.3.4. In other words, the
cost of flushing on-core caches is independent of the OS, which should be the same in a

monolithic kernel such as Linux.
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Conclusion

Microarchitectural timing channels exploit timing variance due to the shared use of caches
or other cache-like hardware components. These channels result from contention on hard-
ware resources (e.g., caches) that are functionally transparent to software and designed to
maximize average-case performance, generally by exercising the well-established principles
of temporal and spatial locality.

The existence of microarchitectural timing channels challenges security enforcement
conducted by the OS, and has eluded a comprehensive solution to date. The importance of
preventing those channels has been highlighted by recent attacks, including the attack on
cryptographic encryption keys between VMs on cloud system [Inci et al., 2016; Liu et al.,
2015], as well as a the Spectre attack, which targets the speculative execution engine in the
CPU’s pipeline [Kocher et al., 2019] and uses timing channel to extract information.

Our work addresses this challenge by providing time protection as an OS abstraction,
providing temporal isolation analogously to the spatial isolation provided by the established
memory protection. Rather than preventing a particular timing channel, we propose a
design of OS mechanisms that prevents unauthorized timing information flow between
security domains, the first attempt of providing a principled solution for preventing mi-
croarchitectural timing channels in the OS. Additionally, our work shows the need of a new,
security-oriented, hardware-software contract, to address the shortcoming of insufficient

support for preventing timing interference on existing hardware.

7.1 Contributions
To summarise, this work makes the following contributions:

* We design kernel mechanisms for providing time protection for mandatory temporal

isolation enforcement in the OS;

* we demonstrate that time protection introduces low overhead and is effective in

preventing studied timing channels;

* we observe the lack of support for the complete prevention of timing channels on

current hardware, causing uncloseable channels associated with hidden microarchi-
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tectural state. We therefore propose an improved hardware-software contract, the

augmented ISA, to address this shortcoming.

We propose time protection, a mandatory, black-box kernel mechanism implemented in
the seL.4 microkernel for preventing microarchitectural timing channels. Time protection
combines spatial and temporal partitioning to prevent interference on shared hardware
components. Our work provides a new kernel mechanism, kernel image clone, to almost
entirely duplicate kernel images with user managed memory. In combination with the
memory model in selL4, a privileged user-level thread can deploy cache colouring policies
for creating security domains which are supported by dedicated kernel images. Time
protection also offers an option of partitioning hardware interrupts by assigning interrupts
to security domains. One distinct advantage of this design is that the kernel has no built-in
security policy, giving the freedom for any user-level security deployment.

Our evaluation shows that time protection is effective in preventing studied timing
channels with small to negligible performance overhead. However, we also observe that the
current hardware does not provide enough support for resetting on-core state that cannot be
spatially partitioned, thus preventing effective temporal partitioning. This discovery supports
our earlier claim that a new software-hardware contract is necessary for providing true
security by preventing microarchitectural timing channels [Ge et al., 2018b]. In particular,
the hardware needs to support flushing all virtually-addressed state, and provide mechanisms
for partitioning concurrently-accessed resources.

Despite hardware limitations, we demonstrate time protection as a general OS abstrac-
tion, and an implementation that can easily adapt to any improved hardware changes that

provide better security.

7.2 Strength and Limitations

Time protection provides a set of mechanisms for deploying security policies according to
the threat scenario. For example, preventing all possible covert channels (Section 4.1.1) in a
confinement scenario requires padding the domain switching latency to the worst-case, one
of the most expensive operations. In contrast, a cloud platform may only consider deploying
cache colouring policy for partitioning security domains on the core-external cache, which
is enough for preventing cross-core side channels.

The security domain is a collection of software components and processes which are
treated as a single unit by the system’s security policy. Consequently, within a domain,
there are no restrictions imposed by the security policy, and its internal structure is solely a
matter of software-engineering convenience.

Therefore, the overall cost of security is a matter of system structure, particularly the
granularity of domains and the amount of useful work performed in a time slice. An extreme

example is an interactive program that performs little work between events: each activation
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would be padded to the full time slice length. On the other hand, compute-bound programs
will only observe a small overhead resulting from the increased domain-switching latency.

A system does not need to create and destroy kernel images as frequently as user-level
processes. While it is good that the cost of creating and destorying kernel images is very
small in sel4, this will not be the case for a monolithic system such as Linux. However,
the system can clone as many images as the maximum number of security domains during
initialisation, leaving those images as stand-by system resources which will never be
destroyed.

Our implementation of time protection is orthogonal to other countermeasures for
preventing the recent, speculation-based attacks, such as Spectre [Kocher et al., 2019],
Meltdown [Lipp et al., 2018], and Foreshadow [Van Bulck et al., 2018] attacks. Other
countermeasures can be easily deployed together with time protection. However, our
implementation is efficient for preventing cross-domain Spectre attacks, as time protection
includes the IBC mechanism [Intel, 2018c], Intel’s hardware mitigation for the Spectre
attack, during a domain switch.

The number of available cache colours is a potential bottleneck, limiting the number of
supportable security domains. A system can choose to only colour the LLC which offers a
much larger number of colours (32 colours on the Haswell platform) than the core-private
L2 cache (8 colours on the Haswell platform), especially for the cloud scenario. For the
LLC that contains multiple slices [ Yarom et al., 2015], the actual number of colours is much
higher than only colouring according to the indexing scheme within a slice as described in
Section 2.4. For these LLCs, knowledge of the hash function used for mapping cache slices
can increase the number of cache colours.

Re-allocating coloured memory between security domains is possible, but with the cost
of moving (and copying contents) allocated memory between affected partitions. However,
this is inevitable as there is a lack of hardware support for more fine-grained partitioning,
which can be improved with better help on hardware. In comparison, partitioning the cache
using Intel’s CAT mechanism [Intel, d], allocating cache ways to domains, introduces less

overhead for re-allocating, but has higher runtime overhead as it reduces associativity.

7.3 Discussion and Future Work

To implement time protection in other OS, the system needs to provide a solution for
duplicating kernel images (Section 6.4.1). In particular, cloning requires partitioning kernel
data, which can be a challenge for a kernel with a dynamic heap and far more static global
data. The advantage of cloning a microkernel, such as sel4, is that its small size makes the
memory consumption more affordable than a monolithic kernel, such as Linux, and this is
particularly helped by selL.4’s unique memory management model.

Still, there is no fundamental reason why the same approach could not be done in other

systems. For example, the mechanism for cloning kernel images can be easily adopted by
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multikernels (Section 3.4) such as Barrelfish [Baumann et al., 2009], since the Barrelfish
kernel already provides mechanisms for dynamic kernel swapping [Zellweger et al., 2014],
which is a clear sign of its capability to decouple the kernel state from the rest of the kernel.
Similarly, cloning should also be applicable in exokernels(Section 3.5) which are designed
to be lightweight kernels that are mainly responsible for exposing hardware resources to
application-level library OSes. Implementing cloning the kernel image in a monolithic
kernel, such as Linux, requires supporting the dynamic kernel heap in all cloned kernel
images. Possible solutions include preserving a kernel heap region during initialisation, and
acknowledging any kernel heap growth in all cloned kernel images at runtime. However,
there are other possibilities, such as relocating all kernel services that cause heap growth in
user-level library OSes.

Additionally, the two partitioning schemes in time protection, temporal partitioning and
spatial partitioning, have no dependency on either hardware or software systems. Therefore,
a system can introduce these partitioning schemes in a suitable format. For instance, cache
colouring used as spatial partitioning can be implemented in a system’s memory allocator,
which has already been demonstrated by previous work [Bershad et al., 1994; Cock et al.,
2014; Kessler and Hill, 1992; Kim et al., 2012; Liedtke et al., 1997; Shi et al., 2011].

One potential challenge of colouring a kernel image is colouring the kernel heap used
for kernel metadata. On seL4, kernel metadata are abstracted as objects that can be created
and destroyed at user-level. This feature undoubtedly simplifies the design of colouring
kernel heap in sel4: a user-level resource manager creates kernel objects from coloured
memory (Section 2.6.3), hence no kernel modification is required. Colouring a kernel image
with a dynamic heap can be a challenging task. One potential solution is applying other
spatial partitioning schemes to the kernel heap, such as reserving cache ways through
hardware provided mechanisms (Intel’s CAT, Section 3.3.5).

One possible extension of this work is to explore other usages of the cloning mechanism,
for selectively cloning sections in the kernel image. For time protection, the system can
configure to clone code and read-only sections but share the static global data section to
maintain the consistency of system states (e.g., the scheduling queue). For multikernel
systems [Baumann et al., 2009; von Tessin, 2012], each kernel image manages a partition
of the system, including CPUs and main memory, thus only requiring cloning the static
global data section for managing their system states. We have not yet found other convin-
cing system scenarios for cloning other combination of sections, but they may be worth

exploration and future study.
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