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Abstract

This document is an attempt to document the internal structure of L4 and its operations. It is based on the L4
implementation for the MIPS R4x00 (L4/MIPS), kernel version 79 (February 1999). The document is meant as
an aid in teaching operating systems internals, and as a guide for kernel implementors. While the actual code
discussed is very specific to the MIPS processor, much of the overall structure and logic of L4 is quite uniform
across platforms.

The present version of this report documents L4/MIPS data structures, exception handling and the IPC system
call. Documentation of the implementation of the other system calls, and issues such as scheduling, will be added
in the near future.
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Chapter 1

Introduction

L4/MIPS is the implementation of the L4 microkernel [Lie93, Lie95] on R4000 series CPUs [R4695]. The
R4600/R4700 is an implementations of the MIPS R4x00 architecture [KH92] aimed at embedded applications.
The L4/MIPS API is based on the ix86 version of L4 [Lie96a] as of mid-1996 (“Version 2”) with a few minor
extensions (compatible to “Version 4”).

L4/MIPS was designed by Kevin Elphinstone, then a PhD student at UNSW, and Jochen Liedtke, then a researcher
at GMD, Germany, in 1995–6. It was mostly implemented by Kevin Elphinstone between mid 1995 and mid 1997.
Improvements were since made by Kevin Elphinstone and Alan Au, the latter also a PhD student at UNSW. This
document is based on L4/MIPS kernel version 79 [L4M99], which was released in February 1999.

L4/MIPS is now in regular use at UNSW for research and teaching. The Mungi single-address-space operating
system [HEV+98] has been implemented on top if it, Linux has been ported to it [HHL+97], and the kernel is
used in teachingAdvanced Operating Systems.

This report is an attempt to document the internal operations of the kernel, and to shed some light on what “makes
it tick” and where it gets its performance from.

1.1 Intended Audience

This document is written to serve two purposes:

• to be used in operating systems teaching.

L4/MIPS has been used as a platform on which students built operating systems in UNSW’s COMP9242
Advanced Operating Systemscourse since August 1997. Since 1999 the course took a closer look at mi-
crokernel implementation issues, and the first version of this document grew out of that. It is planned to
expand the coverage of microkernel internals in the future, based on a more complete version of this docu-
ment. Arizona State University is also planning to use this report as an aid in teaching an operating systems
internals course.

• as an aid to future kernel implementors.

L4 implementations are highly optimised, contain lots of assembler code, and tend to employ plenty of
architecture-specific tricks. However, the general structure, and the “course-grain logic” is remarkably
similar across platforms. An in-depth study of L4 source code for one particular architecture will therefore
provide a good guide on how to approach a re-implementation on a different platform.
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0 mtc0 t0, C0_STATUS
1 dli a6, 0
2 j k_ipc
3 move a5, a4
4 3: lui a0, KERNEL_BASE
5 ld a0, K_GPT_POINTER(a0)
6 move a1, s3
7 and a2, a0, a4

Listing 1.1: Sample code listing.

In both of these aspects, this report aspires to follow the example of the famousLions Book[Lio77,Lio96], also
from UNSW, without pretending to rival the Commentary’s impact and significance.

This report, as well as the source code it describes, is available from the UNSW L4 web site.1 That site also
contains the latest releases of L4 for various architectures, associated documentations and forms to register for
mailing lists with L4-related announcements. Feedback on this report is highly welcomed and should be directed
to l4.inside@cse.unsw.edu.au .

1.2 Why MIPS?

Why did we go through the trouble of writing this report on L4 for the MIPS architecture, when it is more than
doubtful whether this architecture has any future?

The answer comes in two parts:

1. For the purposes stated in the previous section, it doesn’t matter much. For teaching microkernel internals
the specific platform it is of little relevance. Teaching use is also supported by a R4x00 simulator which can
run L4, and thus provides independence from actually available hardware.Real Soon Now... Similarly, as
an aid for future kernel builders the MIPS source as relevant as any other.

2. The MIPS implementation is very clean, certainly the most readable one available at this time. It is about
half assembler, half C, but even the assembler code is mostly very readable and not too hard to understand.
The same cannot be said about other implementations.

And, of course, it helped that the code was developed locally, and as a result a number of people were familiar
with at least parts of it, and could therefore answer questions.

1.3 Conventions

Most of this report consists of verbatim source code listings and associated annotations. Source code is shown in
displays called “Listings”, such as the exampleListing 1.1. Wherever feasible, listings and annotations appear on
the same or on opposite pages. To make this possible the listings have been condensed as much as possible, by
eliminating empty lines, instrumentation code, compiler directives, and even the (rare) comments.

The listing shows the format of MIPS assembler instructions. In general an instruction consists of an opcode and
up to three operands. The first operand isalways the destination register. The second operand is normally the
source register. The third operand is a second input to the instruction, and can be a register or an immediate value.
If a three operand instruction is written with two operands only, then the first operand represents both source and
destination registers. In the case of a store instruction, the first (“destination”) operand is the register to be saved.

1The URL of the UNSW L4 web site ishttp://www.cse.unsw.edu.au/˜disy/L4/ .

mailto:l4.inside@cse.unsw.edu.au
http://www.cse.unsw.edu.au/~disy/L4/
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Assemblers on RISC architectures such as the MIPS generally do a good job of scheduling instructions into
load and branch delay slots. For some of the tightest system code, however, the “DIY” approach is still better.
Consequently, much of the critical kernel code is covered by.set noreorder directives, which prevent the
assembler from changing the order of instructions. To avoid cluttering up the listings with these directives, any
code for which anoreorder directives is in force, is shown in the listings withbold line numbers. InListing 1.1
this is the case for Lines 0–3. Here, Line 3 is in Line 2’s branch delay slot; logically Line 3 precedes Line 2.

In the reminder of this document we will make an attempt to point out (often non-obvious) implementation deci-
sions/simplifications as follows:

Implementation choice:This highlights an implementation choice.

Any known bugs in the exhibited code will be indicated like this:

Bug/Restriction 0: Sample bug.
This is how bugs are shown.

A bug is code which causes the kernel to operate in a way that is inconsistent with the specification. This includes
unimplemented features.

There are other shortcomings of the implementation, for example affecting efficiency, which are not bugs as they
do not affect correctness. These are highlighted like this:

Implementation criticism: This criticises the implementation.

Note that these shortcomings are often “quick-and-dirty hacks” which were put in place to get things going, and
were never removed because there was not enough pressure for having them removed. Much of this is actually
nitpicking. The frequent use ofimplementation criticismsshould not create an impression that the L4/MIPS
implementation is highly deficient. In fact, it’s great code!

Text in bold italics indicates something that needs fixing up in this document.

1.4 Structure

Chapter 2 provides background information required for the understanding of the remainder of the report. There
are two parts to this: L4 in general, and the MIPS R4x00 architecture. The description of L4 is kept extremely
brief, for the simple reason that we consider it essential to have the L4 Reference Manual [EHL99] handy when
reading this document. Hence it makes little sense to repeat much of what is said in the Reference. The R4x00
architecture description is much more detailed, and, hopefully, sufficient for the understanding of the code.

Chapter 3 provides the introduction to the L4 code. It contains a short overview of the structure of the source
code, and then presents and explains the main kernel data structures and their use.

The remaining chapters consist mostly of annotated source code listings. Chapter 4 presents the exception han-
dling code, Chapter 5 the IPC code, and Chapter 6 the code implementing the other system calls.





Chapter 2

Background

This chapter provides some background information on L4 and the MIPS R4x00 architecture.

2.1 L4 Overview

Here we give a quick summary of the main features of L4. However, the reminder of this document assumes a fair
amount of familiarity with L4 and its API, well beyond what is presented in this section. The reader is advised
to have the L4/MIPS reference manual [EHL99] handy when reading on. A practical guide to using L4 and its
various features is provided by the User Manual [AH98].

2.1.1 L4 philosophy

The design of the L4 microkernel is based on the principle of minimality:A feature should be in the microkernel
if and only if security requires that the feature be implemented in privileged mode. The term “kernel” refers to
code which executes in the hardware’s privileged mode. This implies, for example, that device drivers should not
be part of the kernel. While drivers have access to physical memory, and are thus part of the system’strusted
computing base, security of the system does not depend on running device drivers in privileged mode, only on
protecting the drivers from interference by untrusted code [Lie96b].

Another important principle is thatit should be possible to implement arbitrary systems on top of the microkernel.
Together with the minimality principle this leads to a requirement for a small number of powerful and orthogonal
abstractions, and for a strictlypolicy-freekernel.

It is important to note that Liedtke does not claim that the present versions of L4 fully satisfies these requirements.
In fact, the L4 API is still developing in an attempt to better meet its design goals.

Interestingly, efficiency is not a primary design principle. However, all features have been carefully analysed
and were only included into the interface if it was clear that they could be implemented efficiently. Smallness
itself is a very good basis for efficiency. The performance of modern computer systems is critically dependent on
maintaining high hit rates in the CPU caches, and the kernel’s cache footprint has a dramatic impact on perfor-
mance [Lie95]. Small is certainly beautiful in the world of microkernels.

But that is not the full story. A careful implementation which makes the best possible use of hardware features is
a major factor for kernel efficiency. A careful design of kernel data structures and algorithms is, maybe, the most
important factor in making a kernel fast.
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2.1.2 L4 abstractions

L4’s main abstractions are:

Threads represent program execution. The CPU is multiplexed between threads, each of which has some context,
including its view of hardware registers. Each thread is uniquely identified via athread ID(TID).

Address spacesform the basis of protection. A thread can access data which are mapped into its address space.
Address spaces are constructed bymapping sections of other address spaces.

Inter-process communication, based on synchronous message-passing, provides for a controlled way to com-
municate between address spaces. L4 IPC also serves as asynchronisationprimitive between threads.

Address spaces and tasks

Each thread belongs to atask. There is a one-to-one correspondence between tasks and address spaces.1 Creating
and deleting tasks implies creating and deleting address spaces. This is done via thetask new system call.

Logically, the number of tasks is fixed (2048 in L4/MIPS Version 79). Hence tasks are strictly speaking not created
or destroyed, but their state is changed frominactiveto activeor vice versa. Inactive tasks consume (almost) no
resources.

Creation (activation) of a task implies creation of a fixed-size set of threads (128 in L4/MIPS Version 79). These
are numbered consecutively, starting at zero. All of a task’s threads, except local thread zero (“lthread zero”, or
l0) are logically created executing an idle loop (but without consuming any resources). L0 is immediately active
and starts execution at a start address passed to thetask create syscall.

A new task’s address space is initially empty, and can only be populated by mapping-in parts of other address
spaces. Consequently,l0, when it begins execution, will immediately trigger a page fault when attempting to fetch
its first instruction. It is the responsibility of itspage fault handler(pager) to provide a mapping for that page.

A task has a number of attributes:

chief or owner. For an active task, this is the task to which the thread belongs which has activated the task. Only
a task’s chief can activate or deactivate a task. As a side effect of deactivation, a task can bedonatedto a
new chief. Task IDs are effectively capabilities conferring rights over tasks.

maximum controlled priority (MCP). This is the upper limit to which a thread of the task can influence the
priority of other threads (including its own). The MCP isnot a priority. A task’s MCP is specified at the
time the task is activated (and cannot be higher that the MCP of its chief).

Further attributes are (explicitly or implicitly) specified when a task is activated, but they are attributes ofl0 rather
than the task’s.

Threads

Threads are the active entities in L4, they are the source and destination of IPC messages. Threads have the
following attributes:

task: the task (and thus address space) to which the thread belongs;

pager: the thread responsible for handling this thread’s page faults. On a page fault the kernel will send a page
fault IPC message to the pager, and the pager is expected to reply with a message containing a mapping for
the faulting page;

1For that reason, tasks are not a primitive concept, and it can be argued that the task concept is redundant. Not surprisingly, it is due for
removal in a future version of the L4 specification. But for the time being tasks are an essential component of L4.
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excepter (exception handler)2: the thread responsible for handling this thread’s exceptions. On an exception,
the kernel will send an exception IPC message to the excepter. It is then up to the excepter to implement
whatever policy it chooses for handling exceptions;

internal preempter: not implemented on L4/MIPS Version 79.

external preempter: not implemented on L4/MIPS Version 79.

scheduling priority: determines when a thread will be scheduled by the kernel. L4 implements hard priorities
(values 0–255): The scheduler will select the highest-priority runnable thread, using round-robing within
priority levels;

time-slice length: the value a thread’scurrent time-slice lengthwill be set to by the scheduler to the value of the
thread’s time-slice length when selecting the thread to run;

current priority determines preemptability of a thread. A thread may be preempted by another thread whose
priority is higher than the presently running thread’s current priority. The current priority of a thread may
be set at scheduling time, or by time-slice donation;

current time-slice length determines the time a thread is allowed to run until preempted (unless a higher-priority
thread becomes runnable). The current time slice is obtained either by scheduling or by time-slice donation.

A thread’s stack pointer, program counter, excepter, internal preempter and pager can be obtained and manipulated
via thelthread ex regs syscall. This call can be performed by any thread on another thread belonging to the
same task. It is the means by which new threads can, for example, be activated (taken away from their logical idle
loops to more productive endeavours), or moved out of harm’s way (by forcing them to block on an IPC which
will never succeed). An excepter can use this system call to redirect a thread to some code which saves its user
state, and later restores it.

A thread’s scheduling parameters (time-slice length, scheduling priority and external preempter) can be obtained
and manipulated via thethread schedule system call. A thread may only perform such an operation on
another thread whose priority does not exceed the caller’s MCP.

Time-slice donation can happen in one of two ways:

• explicitly via thethread switch system call. This call donates the remainder of the caller’s current time
slice to a specific thread. If that thread does not exist, or is blocked, the system call becomes a “yield”
operation, i.e., the caller forfeits the remainder of its present time slice, and the scheduler is invoked to
select another thread to run with a new time slice;

• implicitly via IPC. IPC operations are often accompanied by a context switch from the sender to the receiver,
in which case the sender’s current time slice is implicitly donated to the receiver.

IPC and mapping

IPC is performed via theipc system call. All L4 IPC is blocking — a message transfer only takes place when
both he sender and receiver are ready for it. This implies a synchronisation between the communication partners.
It also means that messages only have to copied once, no buffering of messages in the kernel is required.

An IPC system call specifies an optional send operation and an optional receive operation. This reduces the
number of system calls required in many frequent situations, such as RCP (or “call”: send message and wait for
answer) or server-style reply-and-wait-for-next-request.

To prevent indefinite blocking, timeouts are specified for each IPC. An IPC system call has four timeout argu-
ments:

2Excepters are a MIPS-specific feature. Other L4 implementations handle exceptions differently, e.g., by mirroring hardware exceptions
[Lie96a].
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send timeout: the maximum amount of time the caller is willing to block on the send operation (if any), measured
from the time of trapping into the kernel until the partner becomes ready to receive;

receive timeout: the maximum amount of time the caller is willing to block on the receive operation (if any),
measured from the time of concluding the send operation (if any, time of trapping into the kernel otherwise)
until the partner becomes ready to send (if any);

send page-fault timeout: the timeout value to use for the send and receive parts of any page-fault IPC that may
be required for the partner’s address space during delivery of the send message (if any);

receive page-fault timeout: the timeout value to use for the send and receive parts of any page-fault IPC that
may be required for the partner’s address space during delivery of the receive message.

Timeouts may be specified as zero (poll partner) or infinity (block indefinitely).

IPC messages may transfer data in two ways:

By value: data is copied from sender to receiver. By-value data is supported in three forms:

• registers — up to 64 bytes (on MIPS R4x00) may be transferred in registers. This is in many cases a
zero-copy operation, and is therefore highly efficient;

• direct strings — a message buffer contains data which is copied by the kernel into the receiver’s
message buffer. Direct strings must be word aligned;

• indirect strings — the message buffer contains an arbitrary number of pointers to data buffers, which
are copied by the kernel into the corresponding buffers pointed to by the receiver’s message buffer.

Direct and indirect strings are copied only once, from the sender’s address space directly into the receiver’s
address space.

By reference: the sender can designate a range of pages in its address space, which get mapped into the receiver’s
address space during the IPC. The receiver must specify a window where the pages may be mapped. By-
reference data transfer can happen in two ways:

• mapping — sender and receiver share the mappings after a successful IPC map operations. The sender
may revoke (“flush”) the mappings at any time via afpage unmap system call;

• granting — the pages are implicitly unmapped from the sender’s address space, who loses any access
or control over them. This operation is not reversible by the sender.

Bug/Restriction 1: No granting.
Granting is not implemented in L4/MIPS Version 79.

Address-space regions are specified via an abstraction of variable size pages, called aflexpageor fpage. An fpage
is a section of virtual address space whose size is a power-of-two multiple of the smallest page size supported by
the hardware, and must be aligned to its size. A single IPC operation may specify several fpages for mapping.
The receiver specifies its window via a singlereceive fpage.

Clans and chiefs

Clans and chiefs are a mechanism allowing control over information flow. Tasks, via the relation to their chiefs,
form a hierarchy. All tasks which are owned by the same chief form that chief’sclan. A thread can send an IPC
message only to

• a thread belonging to its chief task,

• a thread belonging to a task which is part of the same clan as the sender’s task, or

• a thread belonging to a task which is (directly) part of the sender’s task’s clan.
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All other IPC isredirectedto thenearestchief. The nearest chief is

• the sender’s chief, in the case of a message directed to a task not directly or indirectly inside the caller’s
clan,

• otherwise the task inside the caller’s clan whose clan directly or indirectly contains the intended receiver.

The id nearest syscall returns the ID of the “nearest” chief which would be the actual receiver of such an IPC
message.

For the purpose of IPC redirection, the chief is threadl0 of the chief task. The receiving chief is informed,
via a bit in the IPC syscall’s result word, that the message was redirected, and is also informed of the intended
recipient. The chief has then the option of forwarding the message to the intended receiver (or the next nearest
chief along the way). In order to maintain RPC semantics, the chief can send on the message usingdeceivingIPC.
A deceiving IPC specifies avirtual sender, different from the actual sender, which will be returned to the receiver
as the originator of the message. The receiver is alerted to the deceit via a bit in the IPC result code. The kernel
allows a deceit only if it isdirection preserving. Loosely speaking, a deceit is direction preserving if the actual
sender is within the sequence of chiefs a message from the virtual sender to the receiver had to take.

System calls

The above mentioned seven syscalls,ipc , fpage unmap, task new, id nearest , lthread ex regs ,
thread switch , andthread schedule comprise the full set of L4 system calls.

Interrupts

Interrupts are modelled as threads sending empty messages spontaneously. Each interrupt has a TID, and a single
user thread can beassociatedwith each interrupt, thus becoming a handler for that interrupt. If an interrupt has
an associated hander, the kernel will convert an occurance of that interrupt into a message to the handler thread.

Initial address space

Mapping IPC (particularly in combination with pagers) can be used to build up an address space from others, but
somewhere the recursion must bottom out. For that reason, L4 provides a (somewhat magical)initial address
spacecalledσ0. It is created at system initialisation time with an address space containing a one-to-one image of
physical memory (other than the parts reserved for kernel use).

L4’s boot protocol also contains a notion ofinitial servers, which are started up byσ0 once the kernel has booted.
σ0 is the pager of all initial servers.σ0 will satisfy any faults within the range of its own initialised address space
by mapping the corresponding page, and ignores faults outside its valid address space range (leading to the server
becoming blocked). Pages are only mapped to one initial server, thus ensuring protection. Special protocols exist
to request mappings for device regions.

Initial tasks

Tasks other thanσ0 and initial servers remain inactive and owner-less, until someone claims them. A task is
claimed by performing a deactivating form of thetask new syscall, specifying oneself as the new chief.
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2.2 Relevant Features of the MIPS R4x00 Processor

2.2.1 Target systems

The kernel code described in this document is for a uniprocessor R4600/R4700 system. There are a number of
minor differences between various processors of the R4x00 family. For the purpose of kernel code, no significant
differences exist between the R4600 and the R4700, and we will use the term “R4600” to represent both processor
models. Similarly, the differences between the R4000 [Hei93] and the R4400 are very minimal, and we will use
the term “R4000” to refer to both. For most of our purposes there is no need to distinguish between processors of
the family, and we will use the generic term “R4x00” to refer to any of them.

Other related processors, such as the R5000 and the R10000 will probably run L4/MIPS without major changes.
Particularly the R5000’s MMU seems to be similar enough to the R4x00 to allow the code to run virtually un-
changed. However, the R5000 and R10000 are multi-issue CPUs, and no attempt has been made in the kernel to
schedule instructions for multiple issue.

2.2.2 R4x00 general features

The R4x00 processor family is a 64-bit architecture which supports full compatibility with the 32-bit MIPS CPUs
R2000 and R3000. This is achieved by supporting a 32-bit execution mode.

Implementation choice:32-bit execution is not supported by L4/MIPS and is therefore not covered here.

The processor is a RISC design which issues one instruction per clock cycle. The only addressing mode is base-
register plus 16-bit, signed immediate offset. Most instructions execute in a single cycle.

On the R4600, which has a 5 stage pipeline, jump and branch instructions have an additional one cycle delay, and
load instructions also have a one cycle delay. On the R4000, which has a 8 stage pipeline, the branch delay is
3 cycles and the load delay 2 cycles. On all R4x00 processors, the instruction immediately following a jump or
branch (theload/branch delay slot) is always executed while the target instruction is being fetched.

The pipeline will stall in the case of an attempted access to the result of a load before it is available. Hence
scheduling instructions in a load delay slot will hide the delay but is not necessary for correct execution.

Multiplication and division instructions require between 10 and 133 cycles to complete. They leave their results
in two special registers,HI andLO, and the pipeline stalls until the result is available.

The processor can be configured to operate little-endian or big-endian, and can also switch endianess between
user and kernel mode.

Implementation choice:L4/MIPS uses big-endian only.

MIPS instructions support four data types:byte(b, 8 bits),half word (h, 16 bits),word (w, 32 bits), anddouble
word, or dword (d, 64 bits). Load and store instructions support all four sizes, but data must be aligned to size.3

The processor features 32 general-purpose registers, r0–r31, all 64 bits wide. Assembler programs use symbolic
names based on compilers’ usage conventions. These are summarised inTable 2.1. Registerr0 reads as zero and
ignores writes. Registerr31 is implicitly used by thejump-and-link(jal ) instruction.

The following register conventions are important to observe when writing kernel code:

• The AT register is used by the assembler to store intermediate results of pseudo-instruction macros. If
used for any other purpose the appropriate instructions must be surrounded by.set at and.set noat
directives to prevent interference from assembler macros.

3A special instruction islui , which loads the specified immediate value into the second-least significant byte, zeroing the least significant
byte, and sign extending.
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• The k0 andk1 registers are used as temporary registers by the kernel’s exception handlers. As various
exceptions can occur in kernel mode, these must not be used except in situations where it is certain that no
exceptions can occur. This means that interrupts must be disabled. It also means that no mapped addresses
may be used, or it must be ensured that any virtual pages used are already mapped.

register menmonic convention
r0 zero always zero
r1 AT assembler temporary

r2 –r3 v0 –v1 integer function results
r4 –r11 a0 –a7 first eight integer function arguments

r12 –r15 t0 –t3 temporary (callee saved)
r16 –r23 s0 –s7 caller-saved
r24 –r25 t8 –t9 temporary (callee saved)
r26 –r27 k0 –k1 kernel reserved

r28 gp global (data segment) pointer
r29 sp stack pointer
r30 s8/fp frame pointer (caller saved)
r31 ra return address

Table 2.1: R4x00 general purpose register set, mnemonic names and usage conventions (for 64-bit API).

In addition to the general-purpose registers, the processor has three special purpose registers:

• the program counter register,PC;

• the multiplication and division result registers,HI andLO. These registers can only be accessed via special
instructions,mfhi , mflo , mthi , andmtlo . The first two read the and the last two write the respective
register.

MIPS assembly code general uses the format

op dst, src, trgt

wheredst is the register receiving the result of the operation, andsrc, trgt are the operands. If only two registers
are specified, thesrc is taken to be the same asdst. One exception to the general scheme is thestoreinstructions,
wheredstdesignates the register whose contents are to be stored to memory.

The processor has a number ofco-processors, which have their own register sets. Co-processor zero (CP0) is the
system coprocessor, which contains the the memory-management unit (MMU) as well as the status register and a
number of other registers relevant to exception handling. Co-processor 1 (CP1) is the optional floating-point unit
(FPU). Further co-processors are optional.

The processor has separate primary instruction and data caches on chip and accessible in parallel. For the R4600
these are both 16kB big, are two-way associative and feature a 32B line size (8 instructions in the case of the
I-cache). Best case cache miss penalty on a system with 80ns DRAM and no secondary cache is 13–14 cycles for
the I-cache and 15–16 cycles for the D-cache.

2.2.3 Memory management unit

The MMU is part of the CP0. Virtual addresses are translated in one of two ways:

• mappedVM addresses are translated by thetranslation lookaside buffer(TLB),

• unmappedVM addresses are translated by masking out the most significant bits of the address.

Which mechanism is used depends on the address, as explained inSection 2.2.4below. Here we summarise the
translation of mapped addresses.
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The R4x00 TLB is fully associative and holds 48 entries, each mapping a pair of 4kB pages. TLB entries are
taggedwith an address-space identifier(ASID), an 8-bit number. The TLB issoftware loaded, a translation
miss raises a TLB miss exception. The miss handler uses thetlbwi or tlbwr instruction to load a TLB entry.
The former instruction loads the entry indicated by theC0 INDEX register, while for the latter instruction the
target entry is indicated by theC0 RANDOMregister. TheC0 RANDOMregister is decremented at each instruction
execution. TheC0 WIREDregister can be used to define a lower limit ofC0 RANDOMregister values, and is used
to protect some TLB entries from “random” replacement.

Implementation choice:L4/MIPS only uses random replacement (except to update an existing entry) and does
not wire down any entries.

MASK 00

255 205 192217

131239
C0_PAGEMASK

191 141 128

C0_ENTRYHI

R

2

189 168

0 ASIDVPN2

139 136

22 27 1 4 8

GFILL

127

C0_ENTRYLO1
34 24

0 GVDCPFN

6494 70 67

1113

63

34 24

0 GVDCPFN

30

1113
C0_ENTRYLO0

036

Figure 2.1: The format of R4x00 TLB entries and of the corresponding coprocessor registers.

Figure 2.1shows the format of a TLB entry and the corresponding coprocessor registers from which thetlbwi or
tlbwr load the entry. There is one minor difference between the format of a TLB entry and the coprocessor reg-
isters: TheG(global) bit shown in the EntryHi word exists in the TLB entry but must be zero in theC0 ENTRYHI
register. Conversely, theGbit in the EntryLo words is settable in theC0 ENTRYLO0, C0 ENTRYLO1registers
but is zero in the TLB entry. When a TLB entry is loaded itsG bit is set to the logical AND of theG bits in
C0 ENTRYLO0andC0 ENTRYLO1. The ASID field ofC0 ENTRYHI is also used during address translation to
match the ASID value of a TLB entry.

The meaning of the fields are:

MASK: Defines the page size. Valid page sizes vary from 4kB (MASK=0) to 16MB (MASK=0xfff) in powers of 4.

Implementation criticism: L4/MIPS presently only uses the smallest page size, 4kB.

R: Indicates that the mapping is valid in kernel mode only (R=11), in kernel or supervisor mode (R=01) or always
(R=00). During address translation theR field is matched against bits 63:62 of the virtual address (except
for CKSEG addresses) which ensures that the processor is in the reight mode.

FILL : In C0 ENTRYHImust have all bits equal to the MSB ofR. Zero in the TLB entry.

VPN2: Virtual page number (in units of the page size defined by theMASKfield) divided by two.

G: If set the ASID is ignored when the TLB is looked up.

ASID: Used to distinguish mapping for the same page belonging to different processes. If theG is unset on a
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TLB entry, it will only match if theASID field matches the ASID value presently set in theC0 ENTRYHI
register. If the TLB entry’sGbit is set the ASID is ignored.

PFN: Physical frame number (in units of the page size defined by theMASKfield).

C: Cacheability and cache coherency setting (seeTable 2.2).

D: Dirty bit — iff set (and theV bit is set also) the page is writable.

V: Valid bit — iff unset a TLBL or TLBS exception occurs when accessing the page mappede by this entry.

C Cacheability and coherency XKPHYSstarting address
0† Cacheable, non-coherent, write-through, no write allocate8000 0000 0000 0000
1† Cacheable, non-coherent, write-through, write allocate 8800 0000 0000 0000
2 Uncached 9000 0000 0000 0000
3 Cacheable, noncoherent, write back 9800 0000 0000 0000
4‡ Cacheable, coherent exclusive A000 0000 0000 0000
5‡ Cacheable, coherent exclusive on write A800 0000 0000 0000
6‡ Cacheable, coherent update on write B000 0000 0000 0000
7 Reserved B800 0000 0000 0000

Table 2.2: Memory cacheability and coherency attributes on the R4x00. “C” represents the cacheability field of
a TLB entry (bits 5:3 of EntryLo) for mapped accesses, or theK0 field (bits 2:0) of theC0 CONFIGregister, or
bits 61:59 of aXKPHYSaddress for unmapped accesses. Attributes marked† are R4600 only and are unavail-
able (“reserved”) on the R4000. Attributes marked‡ are R4000 only and are unavailable (“reserved”) on the
R4600/R4700.

2.2.4 Address space layout

The MIPS R4x00 features a 64-bit address space. The processor can run in three different modes:user, supervisor
andkernel. In each of these modes some regions of the address space are accessible while others lead to addressing
exceptions. The valid address range in supervisor mode is a subset of the user mode address range, and the kernel
address range is a superset of the supervisor address range.Figure 2.2shows the address map, indicating for each
address-space region the minimum privilege (kernel, supervisor or user) required.

As the figure shows, the MIPS’ virtual address range is 1TB (40 bits). Address-space regions denoted asmapped
are translated by the TLB, whereas regions denoted asunmappedare translated by masking out the most significant
bits of the address.

The processor supports up to 64GB of physical memory, all of which can be addressed unmapped via the various
XKPHYSsegments. When usingXKPHYSaddresses, address bits 61:59 are interpreted as thecacheabilitybits.
Their interpretation is the same as the corresponding bits in a TLB entry (seeFigure 2.2.3). Table 2.2summarises
cacheability and coherency attributes selected by bits 61:59 of aXKPHYSaddress.

TheCKSEGregions (top 2GB of the address space) are calledcompatibility spaces, as they correspond, via sign
extension of the address, to kernel and supervisor regions in 32-bit mode.

Implementation choice: L4/MIPS does not make use of supervisor mode. The supervisor address space
XKSSEGis used, but only as another kernel mapped area (for temporary mappings). Supervisor mode does not
provide sufficient privilege to be useful inside the kernel. The design of L4 does not seem to make it necessary
to use supervisor privilege outside the kernel.
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Figure 2.2: MIPS R4x00 address space.

Implementation choice:L4/MIPS only uses the compatibility spacesCKSEG0, CKSEG1in kernel mode. The
reason is that these addresses allow the kernel to use 32-bit address constants, which are faster to load than
64-bit constants. In some cases, in particular, page tables, pointers are also stored in 32-bit form, resulting in
more compact data structures. Furthermore, 0.5GB is more than enough memory for kernel use.

Note, however, that the kernel presently only supports 0.5GB as the maximum RAM size. Addressing based on
CKSEG0, CKSEG1means that on a machine with more than 0.5GB of RAM the kernel’s dynamic memory pool
could no longer reside at the high end of physical memory. The necessary changes to the kernel’s startup code
would be straightforward.

One drawback of the use ofCKSEG0for unmapped cached memory accesses is that there is no control over the
cache coherency protocol via the address. This is not an issue on the R4600/R4700, which does not offer a choice
of coherency protocols. On other processors the cacheability ofCKSEG0accesses is defined via the K0 field (bits
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2:0) of theconfig registerC0 CONFIG.

2.2.5 Exception processing

Exceptionsare events which disrupt the normal flow of instruction execution. On the R4x00 this includes the
synchronous events of TLB miss, arithmetic overflow and system calls as well as asynchronous interrupts.

When an exception occurs, the CPU enters kernel mode, saves some context in CP0 registers and jumps to the
appropriate exception handler. The architecture defines four different exception handlers:

TLB at PA 0x000: Used during 32-bit execution for primary TLB refill exceptions.

Implementation choice:The 32-bit TLB miss handler is not used by L4.

XTLB at PA 0x080: Used during 64-bit execution for primary TLB refill exceptions.

CACHE at PA 0x100: Used for cache errors.

Implementation choice:L4/MIPS Version 79 handles cache errors by panicking.

GENERAL PA 0x180: Used for all other exceptions (overflow, system call, interrupt, or nested TLB miss).

Exception handlers are addressed viaCKSEG0during normal operation, except cache errors which useCKSEG1
(for uncached access). During boot time the exception vector base address is shifted up to 0xfff ffff bfc0 0200 (a
ROM address), but this is only of relevance when writing ROM monitors.

The relevant CP0 registers are:

C0 BADVADDR: Contains the virtual address causing a TLB or cache exception.

C0 STATUS: Contains the processor status, see below.

C0 CAUSE: Contains, among others, a field indicating the cause of the exception and a mask indicating pending
interrupts.

C0 EPC: Contains the saved PC value during exception processing. Theeret instruction will reload the PC
from this register, if it finds theC STATUS.EXLbit set and theC STATUS.ERLbit unset.

C0 ErrPC : Contains the saved PC value during error processing. Theeret instruction will reload the PC from
this register, if it finds theC STATUS.ERLbit set.

In addition there is aC0 COUNTregister which is decremented on every second clock cycle, and theC0 COMPARE
register, which triggers a timer interrupt when it matches the contents of theC0 COUNTregister.

E LR E LX

31 0

RP FR RE DSCU IM KSUKX SX UX IE

12 1 1111

12356816 7

9 8

25262728

114 1

Figure 2.3: R4x00 status register format.

Figure 2.3shows the contents of the status register,C0 STATUS. The relevant fields are:

IM: Interrupt mask; a bit, if set, enables the corresponding interrupt, providing that theIE bit is set.

KX, SX, UX: If set turns on 64-bit addressing in kernel, supervisor and user modes, respectively.

KSU: Processor mode — values of 00, 01, 10 for kernel, supervisor and user mode, respectively.

ERL: Error level — if set, the CPU is executing inerror mode, which implies kernel mode irrespective of the
setting of theKSUfield.
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EXL: Exception level — if set, the CPU is executing inexception mode, which implies kernel mode irrespective
of the setting of theKSUfield.

IE: Interrupt enable — if set, interrupts are enabled or disabled according to the setting ofIM ; if unset, interrupts
are disabled irrespective of the setting ofIM .
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L4/MIPS Organisation and Data
Structures

3.1 L4/MIPS Source Structure

The directory structure of the L4/MIPS distribution is relatively simple:

example/ a simple example program
doc/ Ref man, User man, C inferface man pages
src/ source tree

Makefile.conf master configuration file
include/ header files

*.h rudimentary C library
kernel/ kernel-internal header files
l4/ C bindings for L4 syscalls

lib/ rudimentary C library
tools/dit Boot file builder
kernel/ kernel source

vm/*/ various versions of page table code
drivers/ user-level device drivers (shouldn’t be in kernel directory)
indy/ Indy-specific kernel code
p4000i/ code for Algorithmics board
u4600/ code for UNSW R4700 board
libkern/ minimal libraries for kernel code
test/ a number of test programs

Most directories contain aMakefile which contains generic rules and includesrc/Makefile.conf for
parameterisation.

In the reminder of this document, unless there is an explicit statement to the contrary, we will denote file path
names relative to thesrc/ directory.

Two header files should be mentioned at this stage:include/regdef.h defines the mnemonic register names.
include/r4kc0.h defines architecture-dependent constants defining the address-space layout ofFigure 3.1,
the exception vectors, CP0 register names and status, cause and TLB register fields. It also defines constants for
setting the cachingCfield and cache instructions.



18 3.2 Kernel Data Structures

3.2 Kernel Data Structures

3.2.1 Kernel memory allocation

The kernel is loaded across an ethernet interface by the resident boot monitor, PMON. The boot image is built
from the kernel executable (in ELF format) via a tool called DIT. The kernel must be linked to start at virtual
memory address 0xffff ffff 8005 0000, theCKSEG0address corresponding to physical address 0x50000. (This is
for the P4000i and U4600 systems, on the Indy the addresses are shifted but the layout is the same.) This address
is defined asMakefile.conf:LINKADDR .
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Figure 3.1: Kernel physical memory map.

At boot time the kernel sets up physical memory as shown inFigure 3.1. The region from 0x1000–0x20000
(124kB) seems presently unused. Possibly this is used by the resident boot monitor on either the U4600 or the
Indy.

Implementation criticism: There is to be no reason why this memory is not used once L4 has booted up. It
should be added to the kernel’s memory pool.
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The region marked as “TLB2” is used for the software TLB, it supports an STLB of up to 128kB.

Implementation criticism: Ideally, the STLB size should be determined as a function of physical memory size.
This would imply allocating it at a dynamically determined location, but that could be done without slowing
down the TLB miss handler.

The memory layout is defined by constants ininclude/kernel/kernel.h .

3.2.2 Miscellaneous kernel data:kernel vars

Page 0x40 contains a structure, calledkernel vars , defined ininclude/kernel/kernel.h . It contains
global kernel data, mostly simple types. It also contains the jump tables for the system call despatcher and general
exception handler, and the array of pointers to the ready queues for each of the 256 scheduling priorities. Its fields
are (somewhat out of order for the purpose of grouping related ones):

stack bottom : the kernel stack for the current thread (top of the current TCB);

s0 save –s4 save : place for exception handlers to saves0 –s4 as long as no kernel stack is set up;

soon wakeup list , wakeup list , late wakeup list : pointer to the heads of the three wakeup lists of
threads blocked with a timeout. The thread is inserted into the “soon” wakeup list if its timeout is at most
16ms, into the medium-term wakeup list if its timeout is not more than 1024ms, and the “late” wakeup list if
it has a finite timeout of more than 1024ms. The three lists are used to reduce the amount of list processing
required at each 1ms clock tick;

present list : list of all valid TCBs, grouped by task;

int list : list of threads preempted by interrupts;

clock : system clock, mirrored in KIP;

timeslice : remaining current time slice (i.e., time until next preemption);

priority : current priority (as assigned by last scheduler invocation);

memory size : total RAM size;

trace reg save : place where instrumentation code may save a register;

tlb t0 save –tlb t8 save : place for TLB miss handlers to savet0 –t8 ;

gpt pointer : root of running thread’s page table;

profile addr : when kernel profiling is enabled, this is used to store the address where execution was inter-
rupted by the timer;

tcb gpt pointer , tcb gpt guard : root and root guard of kernel page tables (mapping TCBs) —appar-
ently unused ;

frame list : pointer to head of list of free kernel heap frames (i.e., high physical memory);

free asid list , gpt free list , gpt leaf free list , mt free list : pointer to head of free lists
for: ASIDs, GPT internal nodes, GPT leaf nodes, mapping tree nodes, respectively. A separate free list
is maintained for each data structure of (potentially) different size. The ASID free list is in static kernel
memory, all others are on the kernel heap;

break on : used for setting kernel break points for debugging;

sigz tcb : TCB of σ0

asid fifo count : pointer to next ASID due for FIFO preemption;
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int0 thread –int4 thread : TID of handler thread of user-visible interrupts 0–4;

fp thread : TID of thread “owning” the FPU;

tlb miss , tlb miss time , tlb2 miss : used in instrumented TLB miss handler to store miss counts and
handling times;

syscall jmp table[8] : jump table used by syscall dispatcher;

exc jmp table[16] : jump table used by exception handler dispatcher;

prio busy list[MAX PRIORITY+1] : pointers to each priority’s circular list of runnable threads, null if a
particular list is empty. The array entries actually point to thetail of the list, which is the TCB of the thread
that was last scheduled (and on whose time slice the present thread, whoever it might be, is executing). If
prio busy list[p] is non-null, thenprio busy list[p]->busy link is the TCB at the head
of the list;

frame table base , frame table size , frame table pointer : unused.

3.2.3 TCBs

TCBs are allocated as a large array in virtual memory (CKSEG). The structure of a TCB is defined ininclude/kernel/kernel.h .
Each TCB is half a page (2kB) in size. Only about 0.5kB of this is needed for various data structures describing a
thread, the reminder is used as the stack during execution in kernel mode.

TCBs are allocated on demand: When a thread with no previously allocated TCB is created, a frame on the kernel
heap is allocated and mapped to the appropriate entry in the TCB array. If an unmapped TCB of a non-existing
thread is touched (e.g., when someone attempts to IPC to that thread), the Invalid TCB is mapped (by the TLB
miss handler).

The individual fields of the TCB are listed here (again somewhat reordered). Entries marked “†” are task attributes
which are only defined forl0’s TCB; all others are defined for any active thread (even though some are logically
task attributes):

sndq start , sndq end : head and tail pointers for the doubly linkedFIFO??? queue of send operations
pending for this thread;

sndq next , sndq prev : link fields for send queue, only relevant if thread’s state is PENDING;

soon wakeup link , wakeup link , late wakeup link : link field for short term, medium term, long
termwakeuplists, respectively;

wakeup : time at which the thread’s timeout expires (defined for threads presently linked in a wakeup list);

busy link : link field for busy list (prioritised ready queue), zero if thread is not in the busy list;

int link : link field for list of interrupted threads;

present next : link field for TCB presentlist. This links all allocated TCBs of a task to allow efficient cleanup
on task destruction;

wfor : TID of partner this thread is waiting to receive from;

stack pointer : top of thread’s kernel stack;

asid : ASID value of task, -1 if task has no ASID allocated at present;

gpt pointer : root of task’s page table;

myself : this thread’s ID (TID);
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coarse state : state of this TCB:unused, used, invalid. The latter is used to identify TCBs which are presently
mapped to the sharedInvalid TCB;

fine state : thread state. Set of:

BUSY: ready to run or running,

WAITING: blocked on a receive,

POLLING: blocked on a send; also calledpending,

WAKEUP: waiting or polling thread with a finite timeout; is in a wakeup queue,

LOCKS: in long IPC, sending,

LOCKR: in long IPC, receiving,

DYING: task being killed (duringtask new),

INACTIVE : not activated but has a TLB allocated anyway (because it’s the buddy of an active thread).

Only WAKEUPcan occur in combination with other state values;CHECK!

timeout : timeout value in L4 timeout format (only some fields still relevant by the time it gets stored here...);

recv desc : receive descriptor for receive phase of IPC, stored here during send and while blocked on receive;

child task †: pointer to TCB of first child task (or NULL);

sister task †: pointer to TCB of next task in same clan (or NULL);

rem timeslice : remaining time slice of preempted thread;

timeslice : thread’s time slice length;

mcp†: maximum controlled priority (MCP) as defined by thetask new system call;

bpad1 : byte padding (should never be accessed);

tsp : scheduling priority of current thread;

ctsp : scheduling priority under which the current thread is presently executing. This can be different fromtsp
due totime-slice donationandpriority inheritance;

pager tid : TID of thread’s pager;

excpt tid : TID of this thread’s exception handler;

commpartner : pointer to TCP of thread we are waiting (or polling) for or are presently communicating with;

wdw map addr : the base address, in the receiver’s address space, of the temporary mapping area. This is used
during long IPC to allow mapping a page fault address inside the temporary mapping area back to an address
in the receiver’s address space;

interrupt mask: if thread is associated with an interrupt, this holds the corresponding interrupt mask. It has
a single bit set which corresponds to the interrupt the thread is associated with;

stacked fine state , stacked commprtnr : values offine state andcommpartner saved while
in recursive (page fault) IPC;

fp regs[32] , fp control : thread’s FPU context;

pt size , pt number : page table space usage and number of mappings, used by instrumentation code;

cpu time : thread’s accumulated CPU time.
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3.2.4 Other kernel data structures

Other statically allocated data are:

TID Table: Array of task version numbers indexed by task ID. The format of a (32-bit wide) entry is:

i 0 (3) chief (11) 0 (2) o vers(14)

Herechief is the present owner (chief) of the task,versis the present task version number,i, if set, indicates
that the task is inactive, ando indicates version overflow (task activated too many times). Note that the
chief field is at the same position as in the upper word of a thread ID, and can therefore be matched without
additional shift operations.

Debugger stack: Used as kernel stack during boot time, later as the stack for the kernel debugger.

Sigma0 TCB: Thread control block forσ0. Only first half of page is used.

NIL TCB: TCB of NIL threadwhat is it used for??? .

Invalid TCB: Page of two TCBs whosecourse state is marked invalid. Mapped on demand to TCB of
non-existing thread (when faulting on an unmapped TCB).

ASID Table: Array, indexed by ASID. For each ASID presently in use the entry contains the task ID it is asso-
ciated with. For unused ASIDs it contains a pointer to the next free one, zero indicates the end of the list.
The list head (pointer to first free entry) is inkernel vars.free asid list .

Interrupt TCBs: TCBs of virtual threads representing interrupts. Inherit scheduling parameters from their re-
spective interrupt handler threads (if associated).

Page tables are dynamically allocated on the kernel heap. Their structure is discussed with the miss handling code
in Section 4.1.2below.Still TO DO: mapping database.
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Exception Processing

4.1 TLB Miss Handling

TLB miss handling is, together with “short” IPC, the kernel operation most critical to performance of systems
built on top of L4.

The L4/MIPS distribution contains a number of page table implementations, each in a separate subdirectory
of kernel/vm/ : multi-level page table (vm-mpt/ ), inverted page table (vm-ipt/ ), clustered page table
(vm-cpt/ ), and guarded page table (vm-gpt/ ). The guarded page table (GPT) structure is also implemented in
combination with two versions of a software TLB (STLB,vm-tlbcache-gpt/ andvm-tlbcache-gpt-pair/ ).
The version to be built is specified byMakefile.conf:VM CODE. The kernel-internal API for the page tables
is defined ininclude/kernel/vm.h .

Implementation choice: Elphinstone [Elp99b] showed thatvm-tlbcache-gpt-pair/ is, of the ones
implemented, the most appropriate version for L4. We will therefore not consider any of the other implementa-
tions.

The page table implementation invm-tlbcache-gpt-pair/ supports four different implementation of the
STLB: tlb2-1way-8.S , tlb2-1way-128.S , tlb2-2way-128.S , andtlb2-2way-8.S . The one used
is selected byMakefile.conf/TLB2 OBJ.

Implementation choice:Again, the study has shown that the most appropriate version istlb2-1way-128.S
and only it will considered in this report. See Elphinstone’s PhD thesis [Elp99b] for details on the various page
table implementation and their analysis.

In summary, the kernel’s page tables consist of a global, direct-mapped STLB of 128kB size, tagged with VPN
and ASID. It contains 8k entries, each mapping two pages. Hence the total coverage of the STLB is 16k pages,
or 64MB best case. Note that equals times the physical memory size for which the configuration was optimised.
This results in reasonably high STLB hit rates.

On a miss the STLB is reloaded from a per-address-space GPT. Given that the STLB is configured for high hit
rates, the GPT lookup costs are not very critical. However, GPTs can potentially grow rather deep (7–10 levels
are not extraordinary), the GPT lookup code is therefore highly optimised.

4.1.1 Fast miss handler

Owing to the architecture-determined allocation of exception vectors, the TLB miss handler (like other exception
vectors) can be up to 128 bytes (32 instructions) long, any extra code must be allocated elsewhere and accessed via
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0 lui k0, KERNEL_BASE # kernel vars ptr
1 sd t0, K_TLB_T0_SAVE(k0) # save t0
2 lui k1, TLB2_BASE # TLB cache base adr
3 dmfc0 k0, C0_ENTRYHI # has VPM/2
4 dsll t0, k0, 38
5 dsrl t0, t0, 47 # STLB index
6 daddu k1, t0, k1
7 ld t0, (k1) # EntryHi
8 bne t0, k0, 2f # check tag
9 lwu t0, 8(k1) # EntryLo1

10 lwu k0, 12(k1) # EntryLo0
11 dmtc0 t0, C0_ENTRYLO0
12 dmtc0 k0, C0_ENTRYLO1
13 lui k0, KERNEL_BASE
14 tlbwr # load TLB
15 ld t0, K_TLB_T0_SAVE(k0) # restore t0
16 eret
17 2: j tlb2_miss # TLB cache miss
18 lui t0, KERNEL_BASE

Listing 4.1: TLB refill handlerxtlb refill .

a jump instruction. The handler,xtlb refill in kernel/vm/vm-tlbcache-gpt-pair/tlb2-1way-128.S ,
reloads the TLB from the STLB. It is shown inListing 4.1.

Line 0 loads the address ofkernel vars into the kernel-reserved register k0. Note that thelui instruction
does not introduce a load delay, sok0 can be used in the next cycle.

Line 1 saves registert0 in kernel vars , as the two reserved registersk0 andk1 are not sufficient for this TLB
miss handler.

Line 2 loads the address of the STLB intok1 . The result is not used until Line 6. This means that, provided that
the STBL base was allocated to the same cache line asK TLB T0 SAVE, there would be no extra cost for loading
the STLB base fromkernel vars , as would be required for a dynamically sized STLB.

Line 3 loads the CP0 EntryHi register intok0 . On a TLB exception this coprocessor register is loaded by the
hardware with the VPN2 value corresponding to the faulting virtual address, and the present ASID value.

Lines 4–5 loadt0 with the value of(VPN2*16)%TLB2 SIZE , ready to use as an index into the STLB. Lines 6–7
loadt0 with the first half of the 16-byte STLB entry, which contains the EntryHi value.

Line 8 compares the EntryHi value of the STLB entry with the value obtained from CP0 (note the pipeline stall
due to the immediate use oft0 ). A mismatch indicates a cache miss and the code branches to Line 17 from where
it jumps to the STLB miss handler (outside frame zero). The address ofkernel vars is reloaded intot0 in the
delay slot of the jump.

Line 9 (executed in Line 8’s delay slot, although not used if the branch is taken) loads the third quarter of the STLB
entry intot0 , and the following line loads the final part of the entry intok0 . These two values are the compressed
EntryLo values for the two pages represented by VPN2. Lines 11–12 load them into the corresponding CP0
registers. Note that the top 34 bits of the EntryLo registers are always zero on the R4x00, so both are effectively
32-bit quantities. Line 14 loads the TLB with the new entry, randomly replacing an existing one.

Lines 13 and 15 restore the original value oft0 and Line 16 performs the return from exception handling.

The fast TLB miss handler code is 16 instructions long. It contains four memory loads, one of which has an
unused delay slot. There is one branch instruction which is usually not taken. It may take a maximum of two data
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cache misses.

4.1.2 STLB miss handler

The STLB miss handler,tlb2 miss in kernel/vm/vm-tlbcache-gpt-pair/tlb2-1way-128.S ,
reloads the cache from the page table proper, i.e., the GPT belonging to the faulting task. Each GPT node is an
array of GPT entries of the form

127

G

52 6 6 64

646769

ptr1s s’0

where:

s1: # untranslated address bits (guard & node index stripped)

s0: # address bits to be translated at node (s′0 for child node)

s1 − s′0: log of child node size (# child index bits)

s0 − s1: # guard bits

G: extended guard (index bits + guard)

u: node index

For a given partially translated virtual address these fields look as follows:

127

G

52 6 6 64

646769

ptr1s s’0

Implementation choice: The pointer could be stored in 32-bit, relying on sign extension during the load.
However, this would not by itself make more compact page tables feasible due to the resulting unaligned data.
However, since virtual addresses on the R4x00 are only 40 bits long, 28 bits would suffice for the extended
guard, and the pointer could be packed into the remaining 24 bits. This would half the page table size, but the
requirement for unpacking the data would result in a significant slowdown of page table lookup and manipula-
tion code.
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The STLB miss handler is entered with EntryHi ink0 , the address of the cache bucket to load ink1 , and the
address ofkernel vars in t0 . The code is shown inListing 4.2.

Lines 0–2 free up additional work registerst1 , t2 , and loadt2 with the address of the root of the current page
table fromkernel vars . Line 3 is redundant (but see comments to Line 30).

Line 4 loads the shift count used in Line 5 to extract the top bits of the VPN as an index into the root node of
the GPT.GPTROOTSIZEis the number of index bits required (the root node has in the present implementation
a constant size of2GPTROOTSIZEentries), and24 is the size of each GPT node entry. Note that bits 3:0 of the
value resulting from Line 5 are not masked out and are therefore undefined. To save the masking operation Line 6
constructs a GPT entry pointer not by adding but by or-ing the base pointer with the offset. This leads to a defined
result if it is ensured that the “node pointer” int2 has bits 3:0 all set. It is in this form that all GPT pointers are
stored, including the root pointer inkernel vars .

This becomes evident in Lines 7–8, where the 128-bit GPT entry is loaded intot0 andt2 . The specified offsets
of −15 and−7 result in the correct address when added to the result of Line 6.

0 sd t1, K_TLB_T1_SAVE(t0)
1 sd t2, K_TLB_T2_SAVE(t0)
2 ld t2, K_GPT_POINTER(t0)
3 dmfc0 k0, C0_ENTRYHI
4 dli t1, WORDLEN - 4 - GPTROOTSIZE

5 1: dsrlv t1, k0, t1
6 or t2, t1
7 ld t0, -15(t2)
8 ld t2, -7(t2)
9 xor k0, t0

10 dsrl t1, k0, t0
11 beql t1, zero, 1b
12 dsrl t1, t0, 6

13 dsrl k0, t0, 6
14 dsllv t1, t1, k0
15 bne t1, zero, xtlb_refill_fail
16 nop
17 lw t0, (t2)
18 lw t1, 4(t2)
19 dmfc0 t2, C0_ENTRYHI
20 sw t0, 8(k1)
21 sw t1, 12(k1)
22 sd t2, (k1)
23 dmtc0 t0, C0_ENTRYLO0
24 dmtc0 t1, C0_ENTRYLO1
25 lui k0, KERNEL_BASE
26 tlbwr
27 ld t0, K_TLB_T0_SAVE(k0)
28 ld t1, K_TLB_T1_SAVE(k0)
29 ld t2, K_TLB_T2_SAVE(k0)
30 nop /* avoid a potential 48 instruction routine */
31 eret

Listing 4.2: STLB miss handlertlb2 miss .
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Lines 9–11 implement the matching of the guard. The extended guard from the first word of the GPT entry is
xor-ed with the as yet untranslated part of the address (the full EntryHi value on the first iteration of the loop).
This destroys bits 11:0 of the value, as the GPT entry storess1, s′0 in those bits, but since these bits are not part of
the page number this is irrelevant. (In fact, bits 7:0 of EntryHi contain the ASID.) Line 10 shifts the xor result to
the right bys′0, which leaves the guard bits and the bits already used for indexing the GPT node. Both fields are
stored in the GPT node as part of theextended guard. The index bits are guaranteed to match (and are therefore
zero in the result left int1 after Line 10), sot1 contains zero iff the guard matched. This is tested in Line 11.

Note that Line 10 relies on the shift instruction only using bits 5:0 (s′0) of t0 for determining the shift count. This
field is shifted out by Line 12 which is in Line 11’s branch delay slot and is executed prior to executing Line 5
the next time, which then usess1 as the shift count. Line 11 uses thebeql instruction which nullifies the branch
delay slot if the branch isnot taken, so Line 12 is not executed if the loop is exited due to a guard mismatch.

Lines 13–15 test the reason the loop terminated: guard mismatch or a leaf has been reached. Loop exit at a
leaf entry is forced by storing “incorrect” index bits in the extended guards of leaf nodes. The xor result from
Line 9 is shifted right bys1, which only leaves the xor of the guard proper, and is zero iff the guard matched
(indicating a leaf entry). Otherwise a page fault has occurred, which is handled inxtlb refill fail . The
latter restores registers and jumps tofail tlb rfl ent , which is part of the general exception handling code
in kernel/exc.S , to invoke the faulting thread’s pager (seeListing 4.5).

Lines 17–19 load the EntryLo values from the leaf node and the EntryHi value from CP0 and Lines 20–24 and 26
load the complete entry into the STLB and the TLB. Lines 25 and 27–31 restore registers and return.

Thenop instruction in Line 30 is to avoid the possibility that the whole miss will be handled in exactly 48 cycles.
This would mean that theC0 RANDOMregister would point to the same TLB entry (remember, the TLB has 48
entries) and would thus run the risk of the entry just loaded being replaced right away. This would bear the risk of
getting into an infinite loop if a single instruction faults on two pages (as is possible for a load or store instruction).

More details on this very tight code can be found in [LE95].
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4.2 General Exception Handling

All exceptions, other than cache errors and TLB misses occurring outside exception mode, are vectored to the
general exception handler. This includes all system calls.

4.2.1 General exception handler

The general exception handler is the last exception vector, so it is not restricted to a length of 128B (and is, in fact,
180B long). The code is inkernel/exc.S:gen exc and is shown inListing 4.3.

Lines 0–7 load theExcCode from CP0 and invokeother excpt to handle exceptions other than system calls.
As well, the Status register value is loaded intok1 and the pointer tokernel vars into k0 .

Lines 8–11 reset the error level and exception level flags, disable interrupts and turn on kernel mode. Kernel mode
was already active while in exception mode, but turning off exception mode (by resetting theEXL flag) would

0 mfc0 k0, C0_CAUSE
1 mfc0 k1, C0_STATUS
2 andi k0, CA_EXC_CODE
3 subu k0, CA_Sys
4 beq k0, zero, 1f
5 lui k0, KERNEL_BASE
6 j other_excpt
7 nop
8 1: move t0, k1
9 srl k1, 5

10 sll k1, 5
11 mtc0 k1, C0_STATUS
12 andi k1, t0, ST_KSU
13 beq k1, zero, 1f
14 move t2, sp
15 ld sp, K_STACK_BOTTOM(k0)
16 1: dmfc0 t1, C0_EPC
17 sd t2, -8(sp)
18 daddiu t1, t1, 4
19 sd t1, -16(sp)
20 sb t0, -24(sp)
21 bne AT, zero, 1f
22 dsubu sp, 24
23 j k_ipc
24 tcbtop(t8)
25 1: slti t1, AT, MAX_SYSCALL_NUMBER + 1
26 beq t1, zero, 2f
27 dsll AT, 3
28 daddu t0, k0, AT
29 ld t0, K_SYSCALL_JMP_TABLE(t0)
30 jr t0
31 ori t8, sp, TCBO
32 2: syscall_ret

Listing 4.3: General exception handlergen exc .
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otherwise return the CPU to user mode. Similarly for interrupts; these are implicitly disabled when in exception
mode and need to be disabled explicitly when resetting exception mode.

Note that during a system call the kernel is allowed to trash certain registers, particularly the “callee-saved”
t registers.

Lines 12–15 check whether the CPU was in kernel mode (ST KSU) prior to the exception. If not, the stack pointer
is set to the kernel stack area in the executing thread’s TCB, after temporarily saving the oldsp value int2 (in
Line 13’s branch delay slot). Note that this allows kernel threads, such as the idle thread andσ0, to perform L4
system calls without changing the kernel stack.

Lines 16–20, 22 set up an exception frame, as shown inFigure 4.1, on the kernel stack. The old stack pointer
is stacked as well as the exception PC (adjusted to restart executionafter the syscall instruction) and the least
significant byte of the old status register value (which will still differ from the pre-exception value by theST EXL
bit).

Lines 21, 23 invoke the IPC handlerk ipc if the syscall number inAT is zero. Line 24, executed in Line 23’s
branch delay slot, loadst8 with the address of the top of the running thread’s TCB, by masking in the least
significant bits of the stack pointer.

Lines 25–311 check whether the syscall number is within range and, if yes, invoke the appropriate system call via
the jump table stored inkernel vars .

Implementation criticism: Line 31 is identical to Line 24 andshould really use the same macro.

Implementation choice: L4/MIPS uses theAT register to hold the system call number, while Linux on the
MIPS uses thev0 register. This prevents binary compatibility of statically linked binaries between native
Linux and L4-based systems. However, statically linked binaries are rarely used in the Linux world, mostly
for some maintenance tool, whose source code is readily available. We therefore do not consider this choice
problematic.

An out-of-range syscall is silently ignored, as Line 32 simply continues execution of the caller.

Implementation criticism: Ignoring invalid system calls is a bad idea, an exception should be raised instead.
This would then allow the use of atrampolinemechanism to emulate other system calls.

The code uses all load and branch delay slots. However, the memory access at Line 15 is likely to cause a cache
miss. The total execution time for an IPC system call is 25 cycles plus one possible D-cache miss.

ESP

0

8

16

24

sp

stack_bottom

S

EPC

Figure 4.1: Exception stack frame set up on the kernel stack by the general exception handler. The field denoted
by S is the least significant byte of the Status word.

1Theslti instruction set the destination register to one if the source register (here same as destination) is less than the signed immediate
operand; otherwise the destination is zeroed.
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4.2.2 Return from exception

The syscall ret macro, defined ininclude/kernel/macros.h is worth looking at. It generates the
code shown inListing 4.4.

Lines 0–2 turn the exception mode bit back on in the Status register. This is required for correct operation of the
eret instruction, which checks the exception and error mode bits to determine whether to reload the PC from
the EPC or ErrorPC CP0 registers. (“Errors” include cache errors and reset, which can happen during exception
handling.) The interrupt-enable bitIE is also turned off as a side effect. Remember that interrupts are disabled
while in exception mode irrespective of the setting ofIE .

Lines 3–6 combine intok0 bits 31:8 of the status register with the old value of bits 7:0 which was stacked in
Line 20 of the general exception handler. This leaves, among others, the interrupt mask unchanged, and thus
allows the interrupt mask to change during the execution of a system call. This is necessary to allow correct
interrupt handling, seeListing 5.11. The pre-exception value ofIE (normally on) is restored. Interrupts remain
disabled as the exception flag is on.

Note, however, that the mask in Line 3 does not have the top four bits set, which mask theST CU(coprocessor
usable) bits in the status register. As a result, all coprocessor use is unconditionally disabled upon return to the
user. This includes the FPU, and any subsequent FPU use by the user will result in acoprocessor unusable
exception, which will be handled byexc cpu (Listing 4.18).

Lines 7–8 load the exception PC, stacked in Line 19 of the general exception handler, back into the appropriate
coprocessor register, from where theeret instruction will reload the PC to return to the caller. Line 9 resets the
status register so that its least significant byte now contains the value from immediately after the exception was
taken (which will be the pre-exception setting with the exception of theST EXL bit). This changes the processor
status from normal kernel-mode back to exception mode.

Line 10 restores the stack pointer and Line 11 leaves exception mode and returns to the caller.

The load delay slots of the two load instructions (Lines 5 and 7) are unused, leading to a pipeline stall. The total
execution time is therefore 14 cycles, plus a possible D-cache miss on Line 5.

Note that the syscall macro uses thek0 , k1 registers. These registers are trashed during exception handling,
including TLB reloads. Hencethis code must not cause a page fault, or thek register contents might get lost,
with unpredictable results. The (only) point where a page fault can happen is Line 5, where the stack pointer is
first dereferenced. Remember, the stack pointer points to the kernel stack, which is part of the TCB, which is in
kernel mapped memory.

The way to avoid a page fault at this point is to touch the TCB before invoking thesyscall ret macro,after

0 mfc0 k0, C0_STATUS
1 ori k0, k0, ST_EXL
2 mtc0 k0, C0_STATUS
3 li k1, 0x0fffff00
4 and k0, k0, k1
5 lbu k1, (sp)
6 or k0, k0, k1
7 ld k1, 8(sp)
8 dmtc0 k1, C0_EPC
9 mtc0 k0, C0_STATUS

10 ld sp, 16(sp)
11 eret

Listing 4.4: Thesyscall ret macro.



CHAPTER 4. EXCEPTION PROCESSING 31

any other references to mapped memory.

4.2.3 Exception dispatcherother excpt

The code for handling general exceptions other than system calls is inkernel/exc.S:other excpt . This
entrypoint is aliased tofail tlb rfl ent , which is invoked when a TLB refill fails due to a page not being
mapped in the page table (a proper page fault). The handler is shown in Listings4.5, 4.6.

Lines 0–5 load the processor status and save a number of temporary registers inkernel vars .

Lines 6–13 reset exception mode and set kernel mode, and load the kernel stack pointer if coming from user
mode. This is identical to the code of Lines 8–15 of the general exception vector. Note that this needs to be done
here as the corresponding code in the general exception vector was not executed prior to jumping here, nor was it
executed in the TLB miss handler.

Lines 14, 17–19 set up the exception stack frame consisting of the excepting thread’s PC, stack pointer and
processor status, as inFigure 4.1. This is like in the general exception vector, except that the PC is not adjusted,
so the excepting instruction will be restarted upon return from exception.

Lines 20–54 stack the whole register set, other than the kernel-reservedk0 andk1 , and the stack pointer, which
is already stacked. This includes the registers already saved inkernel vars which are now also pushed onto
the stack (Lines 36–45; note the order of loads and stores which makes use of all load delay slots).

Having saved all registers the exception handler is now able to call C functions. Some registers which are not used
by kernel assembly code would not need saving for the sake of invoking C functions. However, a context switch
may occur as a side effect of an exception, and it is therefore important that the full processor context is saved.

Bug/Restriction 2: HI/LO not saved.
The code as shown fails to save the multiplication and division result registers,HI andLO.

Lines 55–61 dispatch the appropriate exception handler function via the jump table inkernel vars , using the
Cause register fieldCA EXCCODEas the index. The handlers are invoked with the address causing the exception
(C0 BADVADDR) in s3.

General exception return: other excpt ret

The return code,other excpt ret , is a straightforward extension of thesyscall ret macro. It restores all
stacked registers prior to performing the same operations assyscall ret (mindful of the different stack state,
Listing 4.7).

4.2.4 TLB exceptions

The MIPS R4x00 knows four types of TLB exceptions:

TLB Refill: No TLB entry matches the virtual address. This exception vectors to the fast TLB miss handler
discussed inSection 4.1.1, unless the CPU is in exception mode (as for a secondary TLB miss). However,
remember that the fast TLB miss handler reverts back to the general exception handler code in the case of a
page fault (when no mapping is found in the page table, see Line 15 ofListing 4.2).

In the latter case the exception is vectored to the general exception handler like a TLB Invalid exception.
Note that L4 does not access mapped memory in exception mode (except in thesyscall ret macro,
which must be used with care), so this type of exception indicates a kernel bug.
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TBL Invalid — Load or Store: A matching entry for a virtual address was found in the TLB but it is marked
invalid (i.e., theV bit is off). TheCA EXCCODEis set toCA TLBL or CA TLBSdepending on whether the
exception occurred on a memory read or write operation.

TLB Modified: A store is attempted to a page which is mapped read-only in the TLB (V bit is on butDbit is off).
TheCA EXCCODEis set toCA Mod.

These exceptions (except the Refill exception vectored to the fast TLB exception handler) can have three causes: a
kernel bug (as indicated above), a page fault in kernel mapped memory (i.e., the TCB array), or a user page fault.
In the latter case the user thread’s pager must be invoked by sending an IPC message to it.

The TLB Modified and TLB Store exceptions use the same handler (exc tlbs being an entrypoint inexc mod),
except thatexc modfirst checks for a documented processor bug (and panics it that bug is tripped). The handler
for TLB Load exceptions (exc tlbl ) is almost identical, except it omits one instruction.

Implementation criticism: These functions should share some code.

0 mfc0 k1, C0_STATUS
1 sd s0, K_S0_SAVE(k0)
2 sd s1, K_S1_SAVE(k0)
3 sd s2, K_S2_SAVE(k0)
4 sd s3, K_S3_SAVE(k0)
5 sd s4, K_S4_SAVE(k0)
6 move s0, k1
7 srl k1, 5
8 sll k1, 5
9 mtc0 k1, C0_STATUS

10 andi k1, s0, ST_KSU
11 beq k1, zero, 1f
12 move s1, sp
13 ld sp, K_STACK_BOTTOM(k0)
14 1: dmfc0 s2, C0_EPC
15 dmfc0 s3, C0_BADVADDR
16 mfc0 s4, C0_CAUSE
17 sd s1, -8(sp)
18 sd s2, -16(sp)
19 sb s0, -24(sp)
20 sd AT, -32(sp)
21 sd v0, -40(sp)
22 sd v1, -48(sp)
23 sd a0, -56(sp)
24 sd a1, -64(sp)
25 sd a2, -72(sp)
26 sd a3, -80(sp)
27 sd a4, -88(sp)
28 sd a5, -96(sp)
29 sd a6, -104(sp)
30 sd a7, -112(sp)
31 sd t0, -120(sp)
32 sd t1, -128(sp)

Listing 4.5: Exception dispatcherother excpt , first part.
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33 sd t2, -136(sp)
34 sd t3, -144(sp)
35 lui k0, KERNEL_BASE
36 ld t0, K_S0_SAVE(k0)
37 ld t1, K_S1_SAVE(k0)
38 sd t0, -152(sp) /* s0 */
39 ld t0, K_S2_SAVE(k0)
40 sd t1, -160(sp) /* s1 */
41 ld t1, K_S3_SAVE(k0)
42 sd t0, -168(sp) /* s2 */
43 ld t0, K_S4_SAVE(k0)
44 sd t1, -176(sp) /* s3 */
45 sd t0, -184(sp) /* s4 */
46 sd s5, -192(sp)
47 sd s6, -200(sp)
48 sd s7, -208(sp)
49 sd t8, -216(sp)
50 sd t9, -224(sp)
51 sd gp, -232(sp)
52 sd s8, -240(sp)
53 sd ra, -248(sp)
54 daddiu sp, sp, -(ST_EX_SIZE)
55 andi t0, s4, CA_EXC_CODE
56 dsll t0, 1
57 daddu t0, t0, k0
58 ld k1, K_EXC_JMP_TABLE(t0)
59 nop
60 jr k1
61 nop

Listing 4.6: Exception dispatcherother excpt , second part.

0 ld ra, (sp)
1 ld s8, 8(sp)

...
26 ld v0, 208(sp)
27 ld AT, 216(sp)
28 mfc0 k0, C0_STATUS
29 ori k0, k0, ST_EXL
30 mtc0 k0, C0_STATUS
31 li k1, 0x0fffff00
32 and k0, k0, k1
33 lbu k1, 224(sp)
34 or k0, k0, k1
35 ld k1, 232(sp)
36 dmtc0 k1, C0_EPC
37 mtc0 k0, C0_STATUS
38 ld sp, 240(sp)
39 eret

Listing 4.7: General exception return codeother excpt ret .
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Listing 4.8shows the first part of the TLB Modify/TLB Store handler. It is invoked byother excpt with the
exception PC ins2 , the exception virtual address ins3 and the value of the Cause register ins4 .

Line 0 checks whether the fault address is negative, which indicates aCKSEGaddress and thus a fault on a non-
existent TCB. If so, it jumps to the TCB handling code at the end, which is discussed below.

Lines 2–27 of the code deal with page faults during long IPC. Understanding of this code requires some under-
standing of the operation of long IPC, in particular the implementation of the memory copy operation between
address spaces. We defer its description toSection 4.2.6below.

0 bltz s3, 3f
1 move t2, sp

Listing 4.8: TLB fault handlerexc tlbs , prologue.

The reminder of the TLB fault handler is shown inListing 4.9. The instruction (Line 40) missing inexc tlbl
is flagged by a comment.

Line 28 is the continuation point for faults other than long-IPC page faults. The address ofother excpt ret
is loaded as the restart address intot3 and an infinite timeout is loaded intoa2 . Long IPC page fault code will
have loaded the appropriate values into these registers when it joins this code at line 30.

Lines 30–33 enable interrupts. The reason is that the user’s pager may fail to send a valid mapping. TLB ex-
ceptions take priority over interrupt exceptions on the MIPS, so this would result in the fault being re-triggered
immediately on return from the exception. Interrupts would never become enabled again and the system would be
livelocked. Hence we enable interrupts for a short while to introduce apreemption point. Interrupts are disabled
again (Line 47) prior to invoking the pager IPC (Line 49).

Implementation criticism: The kernel should prevent unlimited repetition of page faults.

Line 34–50 set up the IPC message to the pager. A pseudo-exception stack is set up (Lines 34–37) containing
a saved PC value pointing to theother excpt ret code, so that the IPC code’ssyscall ret sequence in
fact “returns” to the exception return code, which does the proper return to user code. (In the case of a page
fault during long IPC the return address isipc fault ret , see Line 9). The register message containing the
fault address, writable bit (except forexc tlbl ) and exception PC, is set up (Lines 38–41). A send descriptor
(Line 43), receive descriptor (Line 44), timeouts (Line 29), destination (= pager) TID (Lines 42 and 45) and wait-
for TID (Line 50) are set up and the IPC code is called as if the call came directly fromgen exc . Note that long
IPC page faults skip lines 28–29, as they have already had their restart address and timeout values set up.

Implementation criticism: Line 48 (setting the virtual sender to zero) is redundant (deceive bit is off in send
descriptor), as is Line 46 (redone in the branch delay slot, Line 50).

Implementation criticism: This code triggersBug 15, which results from the way an error status is returned
if an IPC operation is aborted. The page fault IPC may be aborted or cancelled (e.g., by a handler using the
lthread ex regs system call to save the faulter’s state). The cleanup code will then overwrite the saved
value ofv0 with an error value. If the faulter is then restarted, itsv0 register is restored from the modified
value in the TCB, resulting in a trashing of the thread’s register. It is necessary to savev0 separately, like the
thread state and communication partner are stacked in Lines 10 and 12.

The end of the routine (Lines 51–56) is concerned with handling page faults in the TCB array.

The code calls the C functionvm tcb insert (in kernel/vm/*/vm.c ), passing as parameters the pointer
(from kernel vars ) to the current page table, the fault address, and the (physical) address of theinvalid TCB
statically allocated in low memory (seeFigure 3.1).

This function allocates a GPT leaf node (by callinggpt.c:gpt insert ) and inserting the physical address of
the frame containing the invalid TCB. This is ok, as an unmapped TCB can only belong to an invalid (not yet
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28 4: dla t3, other_excpt_ret
29 dli a2, L4_IPC_NEVER
30 5: mfc0 t0, C0_STATUS
31 li t1, ST_IE
32 or t1, t0, t1
33 mtc0 t1, C0_STATUS
34 daddiu sp, sp, -24
35 sb t0, (sp)
36 sd t3, 8(sp)
37 sd t2, 16(sp)
38 dli s0, ˜(L4_FPAGE_RW_MASK | L4_FPAGE_GRANT_MASK)
39 and s0, s0, s3
40 ori s0, s0, L4_FPAGE_RW_MASK /* TLB Mod/Store ONLY! */
41 move s1, s2
42 tcbtop(t8)
43 dli a0, L4_IPC_SHORT_MSG
44 dli a1, L4_IPC_SHORT_FPAGE|(L4_WHOLE_ADDRESS_SPACE<<2)
45 ld a4, T_PAGER_TID-TCBO(t8)
46 move a5, a4
47 mtc0 t0, C0_STATUS
48 dli a6, 0
49 j k_ipc
50 move a5, a4
51 3: lui a0, KERNEL_BASE
52 ld a0, K_GPT_POINTER(a0)
53 move a1, s3
54 dli a2, INVALID_TCB_BASE
55 jal vm_tcb_insert
56 j other_excpt_ret

Listing 4.9: TLB fault handlerexc tlbs , main part.

activated) thread. The kernel must obviously avoid modifying the invalid TCB, so when a thread is created it
must check whether its TCB is the invalid one, and, if yes, allocate, initialise and map a new one. The code of
gpt insert is inherently ugly and we leave it to greater masochists to delve in it. We note, however, that the
function can be called with either a GPT or a TCB pointer as its first argument. In the latter case (obviously not
usable if the fault is on a TCB) the GPT pointer is taken from the TCB. The two types of pointers can be distin-
guished by the fact that TCB pointers are 8-byte aligned while GPT pointers have bits 3:0 set (seeListing 4.1.2).

vm tcb insert turns on theglobal bit in the page table entry, to ensure that the mapping is valid no matter
which user thread executes. The function also callstlb2-1way-128.S:tlb2 sync shared which removes
any matching TLB and STLB entries. Normal TLB refill handling is relied on to activate the mapping.

4.2.5 Exceptions passed to the user

A number of exceptions (address error on load, address error on store, bus error on fetch, bus error on load or
store, breakpoint, reserved instruction, arithmetic overflow, and floating-point exceptions) are handled by in-
voking the excepting thread’s user-level exception handler. They all use the same kernel exception handler,
with the aliasesexc adel , exc ades , exc ibe , exc dbe , exc bp , exc ri , exc ov , andexc fpe . A
coprocessor-unusable exception, handled byexc cpu , is also diverted here if it originated in user mode for a
coprocessor other than the FPU. The code is almost identical to the TLB exception code inSection 4.2.4(ignoring
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the part dealing with long IPC page faults. The differences are the that the IPC goes to the exception handler
rather than the pager and is “short” (no mapping). Kernel exceptions are not meant to occur and result in a kernel
panic.

Implementation criticism: This code triggersBug 15as does the TLB miss handlers. In the case of user
exceptions this is actually more serious than for page faults, as it makes it impossible for a user-level exception
handler to save an excepting thread’s complete user state.

4.2.6 TLB misses during long IPC

As mentioned above, the middle part of the TBL fault handlersexc mod, exc tlbs andexc tlbl deal with
TLB misses occurring during cross-address-space memory copies while processing long IPC. We will examine
this code here.

As stated earlier, this code is unlikely to make much sense to someone who does not understand the implemen-
tation of long IPC. The reader is therefore encouraged to skip this section for now and return to it after reading
Section 5.5.

Listing 4.10shows the relevant part of the TLB miss handlers. Here we are dealing with a TLB miss which
occurred in kernel mode but outside the TCB array. Faults of this kind should only result from long IPC processing.
They can be either in user space (resulting from “normal” page faults while the kernel is trying to access the
sender’s message buffers) or inXKSSEG, which is used as thetemporary mapping area allowing the
kernel to access the receiver’s data from within the sender’s context. SeeListing 5.16, page67 for details.

2 tcbtop(a0)
3 lw t0, T_FINE_STATE-TCBO(a0)
4 andi a1, t0, FS_LOCKS
5 beq a1, zero, 4f
6 dsrl a1, s3, 62
7 bne a1, zero, window_fault
8 nop
9 dla t3, ipc_fault_ret

10 sw t0, T_STACKED_FINE_STATE-TCBO(a0)
11 ld t0, T_COMM_PARTNER-TCBO(a0)
12 sd t0, T_STACKED_COMM_PRTNR-TCBO(a0)
13 li a2, 0x01010000
14 lw t1, T_TIMEOUT(t0)
15 lw a3, T_TIMEOUT-TCBO(a0)
16 andi a3, a3, 0xff00
17 andi t1, t1, 0x0f00
18 srl t1, t1, 4
19 or a2, a2, t1
20 srl t1, t1, 4
21 or a2, a2, t1
22 or a2, a2, a3
23 daddiu sp, sp, -8
24 move t2, sp
25 sd s3, (sp)
26 b 5f
27 nop

Listing 4.10: TLB fault handlerexc tlbs , long IPC faults.
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Line 2 loadsa0 with the address of the faulting thread’s TCB. Note thata0 points to the top, not the bottom of
the TCB (compare thek ipc code,Listing 5.1).

Lines 3–5 test whether the faulting thread is in theLOCKSstate, indicating that it is in the middle of performing
long IPC. If so then we test whether the fault address is outside the user-mode address range (Lines 6–7). A TLB
miss outside the user address range and outside the TCB array can only result from faulting on the temporary
mapping area (or from a kernel bug). This case is handled by jumping towindow fault , see page38.

If we reach Line 9 we must be dealing with a fault in user space resulting from the kernel accessing the sender’s
message buffers during a long IPC operation. Handling this requires invoking the faulting thread’s pager. That
means that a (nested) IPC must be performed by the sender while it is in the middle of a (long) IPC. In order to
allow clean unwinding of the stack if the page fault IPC is aborted, Lines 10–12 save the thread’s state and its
communication partner in special locations (stacked fine state , stacked commprtnr ) of the TCB.

The send and receive timeout for the page-fault IPC (ina2) are constructed from the receive page-fault timeout
value of the faulting thread’s communication partner (Lines 13–22); the faulter’s page-fault timeouts are preserved
(so they would be used if the pager itself faults).

The real fault address is stacked (Lines 23, 25) for later use byipc fault ret . The address of the restart
codeipc fault ret is loaded intot3 as the “exception PC” (Line 9), and the “exception SP” into registert2
(Line 24); these will further down be used to set up an “exception stack” (Lines 34–37). We are now ready to
handle this like any user page fault (but we use a different restart routine from other faults). The code jumps to
Label 5, which is at Line 30 ofListing 4.9.
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Restart after long IPC page fault: ipc fault ret

The TLB exception handlers, prior to invoking the sender’s pager for handling a page fault during long IPC,
push the address of this function as the post-pager-IPC resumption code (Line 9 ofListing 4.10and Line 36 of
Listing 4.9).

0 tcbtop(s2)
1 lw t0, T_STACKED_FINE_STATE-TCBO(s2)
2 sw t0, T_FINE_STATE-TCBO(s2)
3 sd zero, T_STACKED_FINE_STATE-TCBO(s2)
4 ld s3, T_STACKED_COMM_PRTNR-TCBO(s2)
5 sd s3, T_COMM_PARTNER-TCBO(s2)
6 ld s0, (sp)
7 daddiu sp, sp, 8
8 andi t0, v0, L4_IPC_ERROR_MASK
9 bne t0, zero, 1f

10 ld a0, T_GPT_POINTER-TCBO(s2)
11 move a1, s0
12 jal vm_lookup_pte
13 beq v0, zero, 1f
14 lw a0, (v0)
15 and t1, a0, EL_Valid
16 beq t1, zero, 1f
17 j other_excpt_ret
18 1: daddiu sp, s2, 1 - 24
19 dli v0, L4_IPC_RESNDPFTO
20 move t8, s2
21 move t9, s3
22 ld v1, T_MYSELF-TCBO(t8)
23 b send_only_short

Listing 4.11: Resumption code after pager IPC:ipc fault ret

Lines 0–5 restore the sender’s state which was saved in the TCB prior to the pager IPC. Lines 6–7 restore the
original fault address, which was stacked by the TLB exception handler (Lines 23, 25 above). The return value of
the IPC is checked, diverting to the error code at the end if the IPC failed (Lines 8–9).

Lines 10–12 call the page table lookup function to check wether a mapping now exists for the page (as expected
from a successful pager invocation), and, if found, the validity of the page table entry is verified (Lines 13–16). If
there is a valid entry,other excpt ret is invoked to perform a return-from-exception and continue long IPC
processing (Line 17).

Lines 18–23 constitute the cleanup code for the case of an unsuccessful pager invocation. The stack is unwound
back to the original frame set up by the system call handler (Line 18). The return value is set to indicate a page-
fault timeout on the sender’s side (Line 19), and the register conventions expected by the short IPC code (see
Table 5.1) are re-established (Lines 20–22). The code then branches tosend only short to perform delivery
of the register message.

TLB misses in temporary mapping area:window fault

Thewindow fault code shown in Listings4.12– 4.15is invoked from the TLB exception handlersexc tlbl ,
exc tlbs , exc mod if the fault address is in kernel space but outside the TCB array (Line 7 ofListing 4.10).
Such a miss address indicates a page fault in the temporary mapping area during long IPC (seeListing 5.17).
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Line 0 loads the faulting thread’s ID intot0 (a0 points to the top of the faulter’s TCB). Lines 1–6 compute from
the local thread number the base of the thread’s slot in the temporary mapping area (compare this with the C code
in do long ipc , Listing 5.17, which sets up the temporary mapping area).

Line 7 subtracts this from the fault address (left in registers3 by other excpt ). This yields the offset of the
fault address from the base of the mapping window. Lines 8–9 add the window’s base address in the receiver’s
address space (left in the TCB fieldwdw map addr by do long ipc ). The result (ins5 ) is the fault address in
the receiver’s address space, which is what is needed to look up the mapping in the receiver’s page table.

Lines 10–13 callvm lookup pte to find the mapping for the fault address. The function’s parameters are the
base address of the receiver’s page table (a0) and the fault address (a1). The function’s implementation is very
similar to the STLB miss handlertlb2 miss discussed inSection 4.1.2. The difference is in register usage
(k0 , k1 cannot be used here), and the calling convention (tlb2 miss obtains the fault address from CP0 and
reloads the TLB and the STLB, whichvm lookup pte does not do). The return value ofvm lookup pte is
the address of theENTRYLOword containing the mapping. Note that this is a 32-bit entity.

Line 14 tests the return value for zero, indicating that no mapping exists. A non-existing mapping requires
invocation of the receiver’s page fault handler, which is done below starting at Line 56.

Lines 15–18 check whether the page table entry isvalid andwritable (i.e., has the “dirty” bit set). If not, the
receiver’s pager must be called after all. Line 23 constructs the correctENTRYHIvalue containing the sender’s
ASID (Lines 19–20) and the VPN2 (half of the faulting page number, Lines 21–22).

Lines 24–30 check whether the TLB already contains a mapping forENTRYHI. If not, indicated by a negative
value left inC0 INDEX after the TLB probe instruction, execution diverts to Line 42.

A matching entry can exist either because the same entry was loaded earlier and then invalidated, or, more likely,

0 ld t0, T_MYSELF-TCBO(a0)
1 dli t1, TID_THREAD_MASK
2 and t0, t0, t1
3 dsrl t0, t0, TID_THREAD_SHIFT
4 dsll t0, t0, RECV_WINDOW_SHIFT
5 dli t1, RECV_WINDOW_BASE
6 daddu t0, t1, t0
7 dsubu a1, s3, t0
8 ld a2, T_WDW_MAP_ADDR-TCBO(a0)
9 daddu s5, a1, a2

10 ld a2, T_COMM_PARTNER-TCBO(a0)
11 ld a0, T_GPT_POINTER(a2)
12 move a1, s5
13 jal vm_lookup_pte
14 beq v0, zero, 1f
15 lw a0, (v0)
16 li t0, EL_Valid|EL_Dirty
17 and t1, a0, t0
18 bne t1, t0, 1f
19 tcbtop(t8)
20 ld a1, T_ASID-TCBO(t8)
21 dli t1, ˜(8192-1)
22 and a2, s3, t1
23 or a3, a2, a1

Listing 4.12: Mapping window TLB misses:window fault , first part.



40 4.2 General Exception Handling

because a mapping exists for the faulting page’s buddy. Remember that on the R4x00 a TLB entry always maps a
pair of pages.

Lines 27 and 32 test whether the faulting page number is even or odd, corresponding to the TLB’sENTRYLO0,
ENTRYLO1words respectively. The matched TLB entry is read (Line 31), theENTRYLOword constructed in
Line 23 is written to the appropriate coprocessor register (Lines 34, 37) and the new entry is loaded into the TLB
(Line 39). We can now return from the exception (viaother excpt ret ).

Lines 42–55 deal with the case that the TLB does not yet contain a matching entry. It is a straigthforward variation
of Lines 32–41, except that now bothENTRYLOwords are set, one as above, the other to zero (for an invalid
mapping).

24 dmtc0 a3, C0_ENTRYHI
25 nop
26 tlbp
27 andi t0, s3, 4096
28 mfc0 t2, C0_INDEX
29 bltz t2, 2f
30 nop
31 tlbr
32 beq t0, zero, 3f
33 nop
34 dmtc0 a0, C0_ENTRYLO1
35 b 4f
36 nop
37 3: dmtc0 a0, C0_ENTRYLO0
38 nop
39 4: tlbwi
40 j other_excpt_ret
41 nop
42 2: beq t0, zero, 3f
43 nop
44 dmtc0 zero, C0_ENTRYLO0
45 dmtc0 a0, C0_ENTRYLO1
46 nop
47 tlbwr
48 j other_excpt_ret
49 nop
50 3: dmtc0 a0, C0_ENTRYLO0
51 dmtc0 zero, C0_ENTRYLO1
52 nop
53 tlbwr
54 j other_excpt_ret
55 nop

Listing 4.13: Mapping window TLB misses:window fault , second part.

Note: The window mappings are truly “temporary”, they are entered into the TLB but not into any page tables,
not even the TLB cache. This is appropriate, as they are, by definition, very short lived and unlikely to be replaced
from the TLB while still active. The cost of adding the entries to, and removing them from, the page table would
not be justified.

Line 56 is reached if the destination buffer is not presently mapped and the copy operation therefore triggers a
user-visible page fault in the receiver’s address space. This fault must be handled by sending a message to the
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56 1: daddiu sp, sp, -8
57 dla a0, window_fault_ret
58 sd a0, (sp)
59 tcbtop(t8)
60 li t0, FS_LOCKS
61 sw t0, T_FINE_STATE-TCBO(t8)
62 sd sp, T_STACK_POINTER-TCBO(t8)
63 ld t8, T_COMM_PARTNER-TCBO(t8)
64 ld sp, T_STACK_POINTER(t8)
65 ld t0, T_ASID(t8)
66 bgez t0, 9f
67 dmtc0 t0, C0_ENTRYHI
68 jal asid_get
69 nop
70 9: ld t0, T_GPT_POINTER(t8)
71 lui t9, KERNEL_BASE
72 sd t0, K_GPT_POINTER(t9)
73 li t0, FS_LOCKR
74 sw t0, T_STACKED_FINE_STATE(t8)
75 ld t0, T_COMM_PARTNER(t8)
76 sd t0, T_STACKED_COMM_PRTNR(t8)
77 li a2, 0x01010000
78 lw t1, T_TIMEOUT(t0)
79 lw a3, T_TIMEOUT(t8)
80 andi a3, a3, 0xff00
81 andi t1, t1, 0xf000
82 srl t1, t1, 8
83 or a2, a2, t1
84 srl t1, t1, 4
85 or a2, a2, t1
86 or a2, a2, a3

Listing 4.14: Mapping window TLB misses:window fault , third part.

receiver’s pager from the receiver’s context.

The address of the continuation code for the sender,window fault ret is pushed onto the stack (Lines 56–
58). The sender’s state is set toLOCKS, indicating it is blocked during a send operation. (The previous state would
have beenLOCKS|BUSY.)

Lines 62–72 perform a context switch to the receiver. This code is analogous tothread switch fast (List-
ing 5.3). The difference is that thek registers cannot be used here as this code is pre-emptible. Instead general-
purpose registers can be used, as user state is already saved.

Lines 73–86 are completely analogous to Lines 10–22 ofListing 4.10(the TLB exception handler), with two
exceptions: in Line 73 the (receiver) thread’s state is explicitly set toLOCKR(blocked during receive operation),
and in Line 82 the sender’s send-pagefault timeout value is used to construct the timeout value for the pagefault
IPC.
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87 daddiu t2, sp, -16
88 daddiu sp, sp, -40
89 dla t3, 1f
90 mfc0 t0, C0_STATUS
91 sb t0, (sp)
92 sd t3, 8(sp)
93 sd t2, 16(sp)
94 dli s0, ˜(L4_FPAGE_RW_MASK | L4_FPAGE_GRANT_MASK)
95 and s0, s0, s5
96 ori s0, s0, L4_FPAGE_RW_MASK
97 move s1, zero
98 sd s5, 24(sp)
99 sd s3, 32(sp)

100 tcbtop(t8)
101 dli a0, L4_IPC_SHORT_MSG
102 dli a1, L4_IPC_SHORT_FPAGE|(L4_WHOLE_ADDRESS_SPACE<<2)
103 ld a4, T_PAGER_TID-TCBO(t8)
104 j k_ipc
105 move a5, a4
106 1: ld s0, (sp)
107 ld s1, 8(sp)
108 daddiu sp, sp, 16
109 tcbtop(t8)
110 lw t0, T_STACKED_FINE_STATE-TCBO(t8)
111 sw t0, T_FINE_STATE-TCBO(t8)
112 sd zero, T_STACKED_FINE_STATE-TCBO(t8)
113 ld t1, T_STACKED_COMM_PRTNR-TCBO(t8)
114 sd t1, T_COMM_PARTNER-TCBO(t8)
115 li t0, FS_LOCKS | FS_BUSY
116 sw t0, T_FINE_STATE(t1)
117 lui t2, KERNEL_BASE
118 thread_switch_fast(t8, t1, t2)

Listing 4.15: Mapping window TLB misses:window fault , final part.

Lines 87–105 are similar to Lines 34–50 ofListing 4.9(TLB exception handler). The main difference is that here
the fault address and its equivalent in the receiver’s address space is saved (Lines 87, 98–99) above the “exception
stack frame”, for later continuation. The “exception PC” stacked (Line 92) is actually the address of Line 106
below. Thesyscall ret executed by the IPC code will therefore return to that line. Thek ipc entry point is
invoked to deliver the page-fault IPC (Line 104).

Line 106 is invoked by the IPC’ssyscall ret as discussed above. The fault address in the receiver’s address
space (Line 106) and the original fault address in the temporary mapping window (Line 107) are restored from
the stack. The receiver’s state is restored (Lines 109–114) in analogy to Lines 0–5 ofipc fault ret (List-
ing 4.11). The sender’s state is set back toLOCKS|BUSY, indicating that it is in the process of delivering long
IPC (Lines 115–116) and a context switch is performed back to the sender. This will leave the receiver blocked
on the IPC, until resumed bysend only short . The sender will resume execution at the restart address,
window fault ret , stacked in Line 57.

Note that a fast thread switch is possible here as the register message has not yet been delivered to the receiver.
It is therefore ok to trash the receiver’s registers. The sender’s registers were stacked by the general exception
handler, and will be restored upon return from exception.
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window fault ret

Thewindow fault ret code shown in Listings4.16–4.17is invoked by the context switch at the end of the
window fault routine. The invocation is a result of a receiver-side page fault, which was handled by invoking
the receiver’s pager. This code then restarts the long IPC (remember, all IPC is performed in the sender’s context).

The routine is called with the return status of the page fault IPC inv0 , and the fault address, and the receiver’s
equivalent of the fault address, in registerss1 , s0 , respectively.

Line 0 pops the restart address (its own address) off the stack. Lines 1–4 check for the success of the IPC, and divert
to Line 49 for error handling if it failed. Lines 5–16 are essentially identical to Lines 11–23 ofwindow fault
(Listing 4.12), except for the different fault handling code (Label 1, Line 49 above or Line 56 ofwindow fault ).

Implementation criticism: Line 12 aborts the IPC if a page fault is handled by an invalid or read-only mapping,
instead of taking a repeated fault. This behaviour is not strictly correct, the IPC should only be aborted when
the page fault timeout is reached. However, the definition of page fault timeouts implies that the timeout is
restarted with each repeated fault, so that timeouts do not help in this case. Hence the present implementation
is probably the best that can be done to stop denial-of-service attacks. Note that this problem does not exist in
thewindow fault code.

Lines 17–48 are identical to Lines 24–55 ofwindow fault (Listing 4.13), except for a different register assign-
ment affecting Line 20.

Implementation criticism: Lines 17–48 should be replaced by a branch to the appropriatewindow fault
code, the different register assignment could easily be fixed. The run-time overhead introduced by the back-
wards branch would most likely be offset by a reduction of the number of cache missess resulting from denser
code.

0 daddiu sp, sp, 8
1 tcbtop(s2)
2 ld s3, T_COMM_PARTNER-TCBO(s2)
3 andi t0, v0, L4_IPC_ERROR_MASK
4 bne t0, zero, 1f
5 ld a0, T_GPT_POINTER(s3)
6 move a1, s0
7 jal vm_lookup_pte
8 beq v0, zero, 1f
9 lw a0, (v0)

10 li t0, EL_Valid|EL_Dirty
11 and t1, a0, t0
12 bne t1, t0, 1f
13 ld a1, T_ASID-TCBO(s2)
14 dli t1, ˜(8192-1)
15 and a2, s1, t1
16 or a3, a2, a1
17 dmtc0 a3, C0_ENTRYHI

...
47 j other_excpt_ret
48 nop

Listing 4.16: Sender-side continuation after receiver-side page fault:window fault ret .
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0 1: daddiu sp, s2, 1 - 24
1 dli v0, L4_IPC_RERCVPFTO
2 move t8, s2
3 move t9, s3
4 ld v1, T_MYSELF-TCBO(t8)
5 b send_only_short

Listing 4.17: Error handling code ofwindow fault ret .

Lines 49–54 handle unsuccessful page-fault IPC exactly as Lines 18–23 ofipc fault ret (Listing 4.11) except
that the error code is set to indicate a page-fault timeout on the receiver’s side.

4.2.7 Coprocessor unusable exception

Thecoprocessor unusable exceptionis handled by theexc cpu routine. This exception occurs as a result of a user
thread attempting to access a coprocessor. L4/MIPS presently only supports two of the possible four coprocessors:

• CP0, the system coprocessor (incorporating the MMU) is never enabled for user mode. Any attempted
access is treated as a “normal” user exception and handled by invoking the user’s excepter.

• CP1, the FPU, is enabled on demand. The first user-mode access will trigger theexc cpu exception, which
L4 handles by enabling the FPU and returning to the user.

Saving and restoring FPU state (a total of 33 registers) is an expense which the kernel tries to avoid as much as
possible, by keeping the FPU disabled by default (comparesyscall ret , Listing 4.4). It keeps track of which
thread has last used (“owns”) the FPU. If an exception happens as a result of a user trying to use the FPU, the
kernel checks whether that thread owns the FPU already. If not it saves and restores FPU state prior to enabling
access.

0 lbu t0, 224(sp)
1 andi t0, t0, ST_KSU
2 beq t0, zero, 3f
3 move t2, sp
4 li t0, CA_CE_MASK
5 and t1, s4, t0
6 li t0, CA_CE_FP
7 bne t1, t0, exc_user
8 nop
9 mfc0 t0, C0_STATUS

10 li t1, ST_CU1
11 or t0, t0, t1
12 mtc0 t0, C0_STATUS
13 lui a0, KERNEL_BASE
14 tcbtop(t8)
15 ld a1, K_FP_THREAD(a0)
16 ld a2, T_MYSELF-TCBO(t8)
17 beq a2, a1, 2f
18 nop

Listing 4.18: Coprocessor-unusuable exception handler:exc cpu , first part.
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19 tid2tcb(a1,a3)
20 ld a4, T_MYSELF(a3)
21 bne a4, a1, 1f
22 nop
23 cfc1 t2, $31
24 nop
25 sd t2, T_FP_CONTROL(a3)
26 sdc1 $f0,T_FP_REGS+0(a3)

...
57 sdc1 $f31,T_FP_REGS+248(a3)
58 1: ldc1 $f0,T_FP_REGS+0(a3)

...
89 ldc1 $f31,T_FP_REGS+248(a3)
90 ld t2, T_FP_CONTROL(a3)
91 ctc1 t2, $31
92 sd a2, K_FP_THREAD(a0)

Listing 4.19: Coprocessor-unusuable exception handler:exc cpu , second part.

This lazy saving of FPU state works well unless there is a thread which uses the FPU heavily and also performs
very frequent system calls. Such a thread would trigger a coprocessor-unusuable exception after every system
call, resulting in significant overhead. However, such a behaviour is unusual for heavy users of floating point
operations, and the approach chosen works well in practice (as indicated by the SPEC-FP benchmarks presented
in [Elp99b]).

Listings4.18–4.20show theexc cpu routine. Remember, this is invoked byother excpt with the exception
PC ins2 , the exception virtual address ins3 and the value of the Cause register ins4 .

Lines 0–3 check whether the exception occurred in kernel mode, if yes, it jumps to Label 3 (Line 133) to cause a
kernel panic, as the kernel does not use the FPU, and cannot trigger this exception for the system coprocessor.

Lines 4–8 examine CE (coprocessor number) field in the Cause register. Any value other than one (indicating
CP1, i.e, the FPU) leads to diverting toexc user , which invokes the user’s excepter. Lines 9–12 enable the
FPU, so the kernel can access its registers.

Lines 13–18 check whether the excepting thread is already the “owner” of the FPU. If so, no further action is
required other than returning to the user without disabling the FPU. This is done from Line 93 on.

Line 19 locates the TCB of the present owner of the FPU. The TID recorded in that TCB is then compared to the
TID of the owner (Lines 20–24). If there is no match, the original owner no longer exists (its task was killed in
the meantime) and saving of FPU state can be skipped.

Lines 25–57 save the FPU state in the previous owner’s TCB. FPU state consists of theFPU Control Registerand
32 general floating point registers. The FPU Control Register is copied to a general purpose register by thecfc1
(move control word from CP1, Line 23) instruction and subsequently stored in the TCB. The general floating point
registers can be stored directly to memory by thesdc1 (store double word from CP1) instruction (Lines 26–57).

Lines 58–92 perform the corresponding restore of FPU state from the excepting thread’s TCB. That thread is then
recorded as the new owner of the FPU (Line 92).

Bug/Restriction 3: FPU state incorrectly restored.
The code in Lines 58–91 restores the FPU state from the previous owner’s context, rather than the excepting
thread’s. The effective addressT FP REGS+0(a3) should readT FP REGS-TCBO+0(t8) etc.
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93 2: ld ra, (sp)
94 ld s8, 8(sp)

...
120 ld AT, 216(sp)
121 mfc0 k0, C0_STATUS
122 ori k0, k0, ST_EXL
123 mtc0 k0, C0_STATUS
124 li k1, 0xffffff00
125 and k0, k0, k1
126 lbu k1, 224(sp)
127 or k0, k0, k1
128 ld k1, 232(sp)
129 dmtc0 k1, C0_EPC
130 mtc0 k0, C0_STATUS
131 ld sp, 240(sp)
132 eret
133 3: dla a0, kern_exc_msg
134 j panic

Listing 4.20: Coprocessor-unusuable exception handler:exc cpu , final part.

The remainder of the code is straightforward. It is almost identical toother excpt ret , the general exception
return code: restore registers (Lines 93–120), followed by the equivalent ofsyscall ret . The only difference
is in Line 124: Contrary to Line 3 ofsyscall ret (Listing 4.4) this line doesnot mask out the coprocessor-
enable bits, and thus leaves the FPU enabled for user code.

Lines 133–134 performs the kernel panic resulting from a coprocessor exception in kernel mode.



Chapter 5

IPC Path

5.1 Introduction

IPC is the “heart” of L4, and its efficiency of paramount importance to any L4-based system. This applies in
particular to the “short” IPC path, which, as a consequence, is highly optimised.

IPC is considered “short” if it only passes a “short” message, i.e., only uses registers to transmit data. “Short”
IPC does not involve fpage mappings or messages in memory buffers (direct or indirect strings). Note that the
distinction between “short” and “long” IPC has nothing to do with whether the operation is between local partners
(threads of the same task) or not, but has to do with the time it takes to perform.

L4 IPC is blocking, hence an IPC can only be started when one of the partners is currently blocked (waiting
for the IPC to happen) and the other is running (trying to perform the IPC). Most IPC processing is done in the
sender’s context. In the case of a sender being originally blocked, waiting for the receiver to be available, and
the IPC is consequently initiated from the receiver’s context, this implies a context switch to the sender before
any other processing. At the end a context switch is performed from the sender to the receiver, which delivers the
register part of the message to the receiver. The present implementation always continues the receiver first after a
successful IPC.

Implementation criticism: This is not always the correct behaviour, see comments inSection 5.3.1.

Remember, L4 terminology calls the state of a thread blocked on a send “polling” or “pending”, while a thread
blocked on a receive is considered “waiting”. The latter can be an “open” wait, if the thread is willing to receive
from any thread, or a “wait-for” if it is trying to receive from a specific partner.

The thread state is recorded intcb.fine state . The distinction between open wait and wait-for is by the
tcb.wfor field, which is zero for an open receive.

5.2 Short IPC

The short IPC code is contained inkernel/exc.S:k ipc , which is called by the general exception handler
gen exc . The code uses a register convention and introduces mnemonic aliases for a number of them, as shown
in Table 5.1. Thetypeindicates whether a register is an input (I), output (O), input and output (I/O) to the system
call or a temporary (T). I/O registers are delivered to the receiver unchanged. Thestcb register is set up by the
general exception handler prior to invokingk ipc , the other temporaries and outputs are set up by thek ipc
code prior to thedeliver label.
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alias standard type usage
sdesc a0 I send descriptor
rdesc a1 I receive descriptor

timeout a2 I timeout struct for IPC
dthrd a4 I/O (intended) destination TID

a3 T various
wfor a5 I wait-for TID

vsend a6 I virtual sender TID
s0 –s7 I/O register message

v0 O result word
v1 O sender TID (may be deceived)

stcb t8 T source TCB pointer (+TCBO)
dtcb t9 T (actual) destination TCB pointer

Table 5.1: Register usage and naming convention in IPC code.

5.2.1 Send & receive:k ipc

The k ipc code is shown in Listings5.1 and 5.2. The function contains the code for a complete short IPC
message delivery in the sender’s context. Send-only and receive-only IPC operations use separately optimised
code (send only short , receive only , respectively), which get invoked fromk ipc if appropriate.

0 bltz sdesc, receive_only
1 tid2tcb(dthrd, dtcb)
2 ld t0, T_MYSELF(dtcb)
3 ld v1, T_MYSELF-TCBO(stcb)
4 lw t3, T_FINE_STATE(dtcb)
5 xor t1, t0, v1
6 dsll t1, 4
7 dsrl t1, 53
8 bne t1, zero, to_chief
9 move v0, zero

10 return_to_chief1:
11 bne t0, dthrd, invalid_dest
12 return_to_chief2:
13 andi t3, t3, FS_WAIT
14 bne sdesc, zero, ipc_long
15 nop
16 beq t3, zero, pending
17 ld t2, T_WFOR(dtcb)
18 beq t2, zero, deliver
19 nop
20 bne v1, t2, pending
21 nop
22 deliver:

Listing 5.1: Prologue ofk ipc .
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Prologue

Listing 5.1shows the prologue of the IPC code. It performs various validity checks: is the destination TID valid,
is redirection required, is an attempted deceit legal. None of these are relevant for receive-only IPC: redirection
and deception do not apply to receive operations, and receiving from an invalid thread is legal, and is in fact the
way sleeps are implemented in L4. A receive from a non-existent thread is guaranteed to block the caller until the
specified timeout is exhausted.

Line 0 consequently diverts toreceive only if the system call does not request a receive operation, as indicated
by a nil (-1) send descriptor.

Line 1 uses thetid2tcb macro to convert the destination TID into a TCB pointer. That macro uses the con-
catenated task and thread numbers from the TID as an index into the TCB array. Note that thetid2tcb macro
expands into five instructions (none of which access memory). The first of these falls into the branch delay slot of
Line 0. Its result is ignored if the branch is taken.

Lines 2–3 load the TIDs of source and destination. The source (caller’s) TID was not known before, and the des-
tination TID, although supplied by the caller, cannot be trusted. The caller could be using an incorrect destination
TID (a thread which has not yet been created, or a task with an incorrect version number). Also the code requires
thechief field in the TID, which it cannot trust in a user-supplied TID.

Here it becomes obvious that the source (stcb ) and destination (dtcb ) TCB pointers are aligned differently:
The former has been obtained by masking in the least significant bits of the (kernel) stack pointer and points to
the end of the thread’s TCB, while the destination TCB pointer has been obtained from the TID and points to the
beginning of the respective TCB. Consequently,TCBOmust be subtracted from allstcb offsets. This approach
saves one cycle in the shortest IPC path.

Note that Line 2 may result in a page fault, if the caller has supplied an invalid TID which was not referenced
before. The kernel page fault handler (inexc tlbl , see page34) will handle this by establishing a mapping to
the Invalid TCB, which a TID of zero, inconsistent with whatever entry in the TCB array it is mapped to. The
only thread with a task number of zero and a thread number of zero is the idle thread. It is intentionally given an
“inconsistent” TID to make sure it can never be the destination of an IPC operation.

Lines 5–8 check whether source and destination are part of the same clan (by checking whether the chiefs are the
same). If not, the IPC may need to be redirected, andto chief is called to determine the real destination. That
function returns to Line 10 or Line 12.

Line 9 sets up the return value (optimistically) as “successful, undeceived, not redirected, no mappings”. Note
that this line is in the branch delay slot of Line 8. Theto chief function modifiesv0 as appropriate if it finds
that the IPC is to be redirected.

Line 11 tests whether the caller-supplied destination TID agrees with the one recorded in the TCB corresponding to
the task and thread number in the user-supplied TID. If not,invalid dest is invoked, which sets an appropriate
error code in the return value and returns viasyscall ret . As a consequence of what was said for Line 2, the
branch will be taken if the user supplied the TID of a non-existing thread. Line 13 is in the branch delay slot, but
its execution is irrelevant if the branch is taken.

The test in Line 11 is skipped by theto chief function if redirection is required, asto chief has already
verified a valid receiver.

Line 14 diverts toipc long if the send operation includes memory messages, mappings or deceiving.

Lines 4, 13, 16–20 check whether the message can be delivered without blocking. This requires that the receiver is
in the WAIT state (Line 16) and the wait-for partner is zero (indicating an open receive, Lines 17–18) or equal to
the sender (Line 20). Otherwise the caller must enter the PENDING state, which is done in thepending routine.

Thenops in Lines 15, 19, 21 are there to make unfilled branch delay slots obvious, as an aid in cycle-counting.
All other delay slots are utilised. If there are no cache misses, this code executes in 20 cycles (open receive) or 22
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cycles (closed receive). Lines 2 and 17 may miss on different cache lines in the destination TCB, and Line 3 may
cause a cache miss in the source TCB.

Delivery

Having made it to Line 22 we now know that we are ready to deliver the message. All registers listed inTable 5.1
are set up (although the value ofv0 might still change if something goes wrong). This label is jumped to by some
other parts of the IPC code, once they are ready to do the delivery:ipc long to do the “fast” bit after processing
mappings and memory operations, andpending restart when a sender becomes unblocked.

Line 23 diverts tosend only short if there is no receive part in the IPC, so thesend&receiveand pure send
can be optimised independently. The instruction in the branch delay slot is irrelevant if the branch is taken.

The reminder of the function contains the “magic” of L4 IPC. At the very end (line 52) a limited context switch
is performed to the receiver, leaving most of the sender’s general purpose registers unchanged. This is partially
where L4 IPC gets its high performance from: The limited context switch reduces the amount of context that needs
to be saved and restored, and at the same time transfers part of the message (the register message ins0 –s7 ).

22 deliver:
23 bltz rdesc, send_only_short
24 ori t0, zero, FS_BUSY
25 sw t0, T_FINE_STATE(dtcb)
26 bne wfor, zero, 1f
27 lui t1, KERNEL_BASE
28 ld t0, T_SNDQ_START-TCBO(stcb)
29 beq t0, zero, 1f
30 daddiu sp, sp, -32
31 sd rdesc, 24(sp)
32 sd wfor, 16(sp)
33 sd timeout, 8(sp)
34 dla t0, sender_restart_receiving
35 sd t0, (sp)
36 daddiu t3, stcb, -TCBO
37 ins_busy_list(t3, t1, t0)
38 dli t0, FS_BUSY
39 b 3f
40 1: andi s8, timeout, L4_RCV_EXP_MASK
41 beq s8, zero, 2f
42 dli t0, FS_WAIT
43 li t0, FS_WAIT+FS_WAKEUP
44 daddiu t3, stcb, -TCBO
45 receive_timeout(timeout, t2, t2)
46 ins_wakeup(t2, t3, t1)
47 2: sd rdesc, T_RECV_DESC-TCBO(stcb)
48 sw timeout, T_TIMEOUT-TCBO(stcb)
49 sd wfor, T_WFOR-TCBO(stcb)
50 3: sw t0, T_FINE_STATE-TCBO(stcb)
51 thread_switch_fast(stcb, dtcb, t1)
52 syscall_ret

Listing 5.2: Delivery part ofk ipc .
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The code in Lines 24–51 serves to set up that context switch. The caller/sender must be set up so it will complete
its IPC (by performing the receive part) once it gets to execute again. Part of L4’s context switch protocol (see
to next thread , Listing 5.8) is that the top of the kernel stack of a runnable thread which is not currently
executing points to the instruction where execution is to continue.

Lines 24–25 mark the receiver as BUSY, as the IPC will unblock it.

Lines 28–38 are executed only if the receive part of the caller’s IPC operation (remember, we are doing a send
and a receive operation with the same system call) is an open wait (i.e., we’re really in areply&wait call, but see
further comments below).

The send-queue of the caller’s TCB is checked for any pending sends to this thread (Lines 28–29). If there
are any, the receive will be processed the next time the caller is dispatched. This is achieved by pushing the
address ofsender restart receiving as the restart address on the stack (Lines 30, 34–35). This func-
tion will perform the receive part of the IPC. The parameters for the restart function, the receive descriptor,
wait-for TID (zero in this case) and timeout are pushed on the stack as well (Lines 31–33). When called
sender restart receiving will simply pop these parameters off the stack and callreceive only .

Note that the timeout is irrelevant in this case: the source thread of the receive part of the IPC was already pending,
so no receive timeout can occur. As well, we are in short-only IPC, so no page faults (with associated timeouts)
can occur. However, the restart function is common to all cases and therefore takes a timeout parameter.

In Line 37 the caller is inserted into the busy list by theins busy list macro (seeListing 7.3). Even though it
is currently executing, it may not have been entered into the busy list, as it may be executing on time slice donated
by the receiver (lazy scheduling). Note that the list insertion macros expect a properly aligned TCB pointer, so it
is adjusted in Line 36 (similarly in Line 44).

The caller is then marked BUSY (Lines 38, 50) and the context switch is performed (Line 51).Consequently,
the syscall ret macro at Line 52 returns not to the caller, but to the thread which received the caller’s
message.

If the receive is not an open one we are assumed to be in acall IPC, send and receive from the same partner. The
receive part of the IPC will necessarily block, until the partner gets to do its send operation to the caller thread
(or a timeout occurs). Note that it is not necessary to stack a continuation address in this case: Once the receive
part of the IPC is performed (as a send operation in the partner’s context) it will, after message delivery, involve a
(fast) context switch back to the caller, who has then nothing more to do than to return from the system call. This
is done by thesyscall ret macro, which uses the exception stack frame, which is already on the top of the
stack.

Since the partner is (by definition) not yet ready to send, the receive part of the IPC can time out. If a finite receive
timeout is specified, the TCB is added to the wakeup queue (Lines 45–46) so it will be unblocked when the receive
times out. The thread state is set to WAIT+WAKEUP to indicate that it is blocked but also in the wakeup queue.
The zero timeout case is not handled separately: the thread cannot be dispatched anyway (as we are switching to
the receiver) and processing can be left to the next time the wakeup queue is processed.

Implementation criticism: The code shows that a “zero” timeout really means a timeout of less than the
timeout resolution (1ms).

Implementation criticism: If the receive is not an open one, the code assumes that it is to receive from the
same partner (consistent with L4/ix86 Version 2 specification). However, the L4/MIPS IPC interface allows the
specification of different TIDs for destination and wait-for. The above code should therefore check whether the
wait-for thread’s send is already pending, and threat this like the open receive. The present implementation will
probably block until timeout and then return a failure status if the send is pending.

Lines 47–49 save the receive descriptor, timeout value and wait-for TID in the caller’s TCB prior to switching
context. Note that since the send phase is completed and the receive timeout already taken care of via the wakeup
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queue, the only remaining timeout value of interest at this stage would be thereceive page-fault timeout. As we
are in short IPC, that one is not ever used either.

The fastest path through this code, with an open receive (reply&wait semantics) and an infinite timeout, requires
12 cycles, plus the time taken by thethread switch fast and thesyscall ret macros. The fast path
does not cause D-cache misses or pipeline stalls.

5.2.2 Fast context switch:thread switch fast

The last bit of IPC magic is hidden in thethread switch fast macro, defined inkernel/macros.h . It
implements the limited context switch which is at the heart of the fast IPC. It expands into the code shown in
Listing 5.3. (t1 still contains the address ofkernel vars .)

Line 0 saves the caller’s (= sender’s) stack pointer in its TCB. That frees upsp to use as a temporary register,AT
is also used as a temporary.

Line 1 loads the receiver’s ASID value from its TCB. If this is non-negative (Line 3) it is defined (Line 4) as the
new ASID for the MMU to use for matching TLB tags (see page12).

The current page table is set to the one of the receiver thread (Lines 2, 12) and the stack pointer is set to
the one saved in the receiver’s TCB (Line 13) — this is the point where the context switch “really” happens.
kernel vars.stack bottom is set appropriately (TCB address plus TCB size, Lines 13–14). This is to
allow unwinding the stack later on.

0 sd sp, T_STACK_POINTER-TCBO(stcb)
1 ld sp, T_ASID(dtcb)
2 ld AT, T_GPT_POINTER(dtcb)
3 bgez sp, 255f
4 dmtc0 sp, C0_ENTRYHI
5 sd AT, K_GPT_POINTER(t1)
6 ld sp, T_STACK_POINTER(dtcb)
7 daddiu AT, dtcb, TCB_SIZE
8 jal asid_get
9 sd AT, K_STACK_BOTTOM(t1)

10 b 254f
11 nop
12 255: sd AT, K_GPT_POINTER(t1)
13 ld sp, T_STACK_POINTER(dtcb)
14 daddiu AT, dtcb, TCB_SIZE
15 sd AT, K_STACK_BOTTOM(t1)
16 254:

Listing 5.3: Thethread switch fast macro.

A negative ASID value implies that the destination thread does not currently have an ASID allocated, and
asid get is called (Line 8) to obtain one, possibly preempting another task’s ASID. Otherwise the code is
the same as in the case of a valid ASID.

As the stack pointer is now switched to the destination’s kernel stack, thesyscall ret macro (see page30) will
use thereceiver’sexception stack frame to restore processor status, including its PC. The finaleret instruction
will thus “return” to the receiver, completing the IPC operation for the receiver, and leaving the sender blocked
until it can perform its own receive operation.

If the receiver thread has an ASID already allocated, the macro executes in 9 cycles, assuming no cache misses.
All delay slots are utilised. Lines 1 and 2 may cause D-cache misses in different lines of the destination TCB.



CHAPTER 5. IPC PATH 53

5.2.3 Discussion

As can be seen from the above, only very minimal context is saved and restored. The sender thread gets restarted
with very few of its registers in tact. Only the receive descriptor, the timeouts and the wait-for id will be restored,
or just enough to perform the receive part of the IPC. Thes registers will be overwritten by the receive anyway,
andv0 is implicitly known to be zero, as otherwise no receive would be attempted.

The other point to note is that, while the sender thread is put into the busy list to allow it to be scheduled again,
the context switch to the receiver is actually performed without any scheduling (lazy scheduling[Lie93]). The
receiver simply continues in the remainder of the sender’s time slice. This is an instance oftime-slice donationin
L4.

The best-case execution time of the short IPC path (reply&wait semantics with infinite timeouts) is25 + 20 +
12 + 9 + 14 = 80 cycles. It was benchmarked at 99 cycles. The difference is most likely due to cache conflict
misses. It should be possible to construe an example which avoids any cache misses (but what would it prove?)

Note that interrupts remain disabled throughout the whole short IPC path.
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5.3 Other Short IPC Send Code

5.3.1 Non-blocking send:send only short

This code (Listing 5.4) is a simplified version of the delivery part ofk ipc . The main difference is that it
does not need to check for a sender to match the receive phase of the IPC and that a different restart code,
send only short restart , is used.

Lines 8–14 mark sender and receiver both as BUSY. (This code is also invoked to finish up long IPC, during which
the sender may have become blocked.)

Line 15 performs the context switch to the receiver and Line 16 returns (to the receiver).

Bug/Restriction 4: Priority inversion in send only short .
This unconditional context switch is incorrect. A send-only operation with waiting receiver should, after mes-
sage delivery, continue executing the sender rather than donating the sender’s time slice to the receiver [Elp99a].

0 daddiu sp, sp , -16
1 dla t0, send_only_short_restart
2 sd t0, (sp)
3 andi t1, v0, L4_IPC_ERROR_MASK
4 beq t1, zero, 1f
5 sd zero, 8(sp)
6 ori t1, v0, L4_IPC_SND_ERR_MASK
7 sd t1, 8(sp)
8 1: dli t0, FS_BUSY
9 sw t0, T_FINE_STATE-TCBO(stcb)

10 ori t0, zero, FS_BUSY
11 sw t0, T_FINE_STATE(dtcb)
12 daddiu t3, stcb, -TCBO
13 lui t1, KERNEL_BASE
14 ins_busy_list(t3, t1, t0)
15 thread_switch_fast(stcb, dtcb, t1)
16 syscall_ret

Listing 5.4: Send-only delivery:send only short .
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5.3.2 Blocking send:pending

Thepending routine (Listing 5.5) is called if the message cannot be delivered right away because the receiver
is not ready for it. It is called fromk ipc and fromipc long . Upon entry,v1 contains the senders TID or, in
the case of adeceiving send, the virtual sender ID specified by the caller ina6 . Reordering by the assembler is
enabled in this code.

Lines 0–6 check the send-timeout specified in the syscall. If it is zero the operation is aborted with an error status.

0 andi t2, timeout, L4_SND_EXP_MASK
1 dsrl t2, t2, 4
2 beq t2, zero, 1f
3 send_timeout(timeout, t2, s8)
4 bne s8, zero, 1f
5 dli v0, L4_IPC_SETIMEOUT
6 syscall_ret
7 1: bne dthrd, v1, 1f
8 dli v0, L4_IPC_ENOT_EXISTENT
9 syscall_ret

10 1: dli t0, FS_POLL
11 lui t1, KERNEL_BASE
12 daddiu t3, stcb, -TCBO
13 beq t2, zero, 2f
14 li t0, FS_POLL+FS_WAKEUP
15 ins_wakeup(s8, t3, t1)
16 2: sw t0, T_FINE_STATE-TCBO(stcb)
17 ins_sendq_end(t3, dtcb)
18 daddiu sp,sp,-144
19 sd sdesc, 8(sp)
20 sd rdesc, 16(sp)
21 sd timeout, 24(sp)
22 sd dthrd, 32(sp)
23 sd wfor, 40(sp)
24 sd vsend, 48(sp)
25 sd dtcb, 56(sp)
26 sd dtcb, T_COMM_PARTNER-TCBO(stcb)
27 sd s0, 64(sp)
28 sd s1, 72(sp)
29 sd s2, 80(sp)
30 sd s3, 88(sp)
31 sd s4, 96(sp)
32 sd s5, 104(sp)
33 sd s6, 112(sp)
34 sd s7, 120(sp)
35 sd v1, 128(sp)
36 sd v0, 136(sp)
37 dla t0, pending_restart
38 sd t0, (sp)
39 lui t0, KERNEL_BASE
40 to_next_thread(t0)

Listing 5.5: Blocking send code:pending .
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IPC with zero timeout effectively polls the communication partner, as it can only succeed it the destination is
already waiting.

Note that Lines 1 and 2 are logically inverted. The above order was probably chosen to prevent the assembler
from inserting anop in the branch delay slot.

Lines 7–9 abort with a status ofnon-existent destination or source(which here really means “invalid destination”).
While receives from invalid partners are legal (and used to implement timed sleeps), send operations are only
considered legal if a message can actually be delivered. It is therefore legal to attempt to receive from oneself, but
illegal to attempt to send to oneself. This includes deceiving sends pretending to come from the receiver.

Lines 10–16 insert the thread into the wakeup queue if the send timeout is finite, and set the thread state accord-
ingly (POLL indicating pending send). The sender is inserted into the receiver’ssend queue, the list of pending
send operations.

Bug/Restriction 5: Send queue not prioritised.
The send queue should be in priority order rather than FIFO.

The sender’s state is stacked (Lines 18–36). Temporary registers and inputs are not saved. Thestcb register is
not stacked as it can be recomputed from the stack pointer using thetcbtop macro. The receiver TCB is also
recorded in thecommpartner field of the sender’s TCB.

In Lines 37–38 the address ofpending restart is pushed as the restart address. Lines 39–40 then use the
to next thread macro to switch to another thread.

5.3.3 Short IPC send: odds & ends

Unblocking sender:pending restart

Thepending restart code (Listing 5.6) first restores all the registers stacked bypending (not shown). The
thread then removes itself from the destination TCB’s send queue (Lines 1–2) and marks itself BUSY (Lines 3–4).
Delivery is then performed by invokingdeliver or ipc long deliver as appropriate.

Implementation criticism: A comment inpending restart indicates that the code does not properly deal
with the case where the receiver has been killed in the meantime. I think this comment is obsolete.

0 ... /* pop registers */
1 daddiu t3, stcb, -TCBO
2 rem_sendq(t3, dtcb, t0)
3 dli t0, FS_BUSY
4 sw t0, T_FINE_STATE-TCBO(stcb)
5 bne sdesc, zero, ipc_long_deliver
6 b deliver

Listing 5.6: Unblocking sender:pending restart

Find redirection target: to chief

The to chief routine is called fromk ipc (Listing 5.1Line 8) if it was found that the sender and destination
had different chiefs, and redirection was therefore required. The routine is to determine the actual destination of
the IPC message, i.e., the appropriate chief. It is called with the sender’s TID inv1 and the receiver’s TID int0 .
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0 dsll t1, t0, 32
1 xor t1, t1, v1
2 dsll t1, t1, 4
3 dsrl t1, t1, 53
4 beq t1, zero, return_to_chief1
5 dsll t1, v1, 32
6 xor t1, t1, t0
7 dsll t1, t1, 4
8 dsrl t1, t1, 53
9 beq t1, zero, return_to_chief1

10 move s8, v1
11 beq t0, zero, invalid_dest
12 move t2, v1
13 jal ipc_nchief
14 move v1, t0
15 tid2tcb(v1,dtcb)
16 lw t3, T_FINE_STATE(dtcb)
17 xori v0, v0, L4_IPC_SRC_MASK /* invert inner/outer */
18 b return_to_chief2
19 move v1, s8

Listing 5.7: Determining real destination:to chief .

Lines 0–3 check whether the task of the intended receiver is the sender’s chief (by comparing the task number in
the receiver TID with the chief number in the sender TID). If so, delivery can go ahead to the intended receiver,
and the routine returns (Line 4) to where it was called from (thereturn to chief1 label ink ipc ). Similarly,
Lines 5–9 return without changing the destination if the sender is the receiver’s chief.

At Line 10 we know that proper redirection is required, andipc nchief is called in Line 13 to determine the
actual destination.ipc nchief is actually an entrypoint innchief , the routine which implements most of the
id nearest system call (Listing 6.2). It skips the tests which were already done ink ipc or to chief (the
code cannot be shared due to inconsistent register assignments, seeTable 6.1).

The ipc nchief code expects the (intended) destination TID inv1 (Line 14) and the sender TID int2
(Line 12). It returns the actual destination (nearest) in v1 and thedirection in v0 , exactly as theid nearest
system call. Prior to invocation the sender TID is saved ins8 (Line 10).

Bug/Restriction 6: a7 not initialised when ipc nchief is called..
The entry pointipc nchief also expects the caller to set upa7 to contain the source task number in the
chief position (seeListing 6.2, Line 14). The invoking code into chief does not initialisea7 at all.

Upon return fromipc nchief , k ipc ’s register conventions are re-established (Lines 15, 16) to match the new
destination. Line 17 sets up the IPC return code inv0 for the receiver with the direction (type) field, which for
the receiver is the inverse as for the sender (for whom it was evaluated by theipc nchief call). The sender TID
is restored (Line 19) and the code returns tok ipc .

Note thatipc nchief will return outer as type and the caller’s chief asnearestif invoked with an invalid
destination ID. While this makes sense in the context of theid nearest system call, it does not make sense to
redirect a message destined to an invalid thread to the chief; the IPC is to be aborted in this case. Therefore the
validity of the destination TID is checked prior to the call (Line 11). As the same check is performed by Line 11
of k ipc after the redirection test, this part ofto chief returns to thereturn to chief2 label ofk ipc ,
skipping the redundant test.
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0 move s0, kernel_base
1 move a0, kernel_base
2 jal get_next_thread
3 tcbtop(t0)
4 thread_switch_fast(t0, v0, s0)
5 ld ra, (sp)
6 jr ra

Listing 5.8: Theto next thread macro.

Context switch on blocking: to next thread

Theto next thread macro expands into the code shown inListing 5.8.

Line 2 invokes the scheduler,schedule.c:get next thread , in order to select a runnable thread; its TID
is returned inv0 . The familiarthread switch fast macro is used to perform a minimal context switch. The
new thread is restarted by invoking the restart routine which had been stacked earlier (Lines 34–35 ofk ipc ,
Listing 5.2) and which is responsible for restoring any required context.

5.3.4 Discussion

The advantage of havingto next thread invoke a restart routine whose address was pushed to the stack prior
to suspension is obvious: it allows reducing the context that needs to be saved and restored to the minimum
required in the particular situation.

5.4 Short IPC Receive

5.4.1 receive only

Sections5.2and5.3have presented the code for the send side of basic short IPC. The receive code, activated by
sender restart receiving after the context switch to the receiver, is contained in thereceive only
function. This function is also invoked from thek ipc if the system call does not contain a send phase (Line 0 of
Listing 5.1).

As pointed out on page49, the receive code does not perform any validity checking of the source TID, as an
attempted receive from a non-existing thread is allowed and has a well-defined semantics.

However, there is more, as user-level interrupt handling in L4 is implemented via IPC receive operations from
virtual hardware threads. This makes the receive code more complicated (and worth looking at).

The code ofreceive only is shown in Listings5.9–5.11. At the time the function is invoked (byk ipc or
sender restart receiving ) only the IPC arguments provided by the user andstcb are set up, all other
registers inTable 5.1are undefined.

Lines 0–1 check whether a send operation is already pending for the caller, if so, execution is diverted to
pending receive only (Listing 5.12) which will deliver the message if possible, and otherwise return to
Line 2 (if the wait-for partner is not in the queue).

We now know that no IPC message can be delivered immediately. If the receive timeout is finite (Lines 7–8) we go
straight to the epilogue (Line 112) to set up the wakeup and block the caller. If the timeout is infinite (Lines 5–6)
wakeup processing is skipped by jumping to Line 115 in the epilogue.
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Interrupt association

At this stage in the receive operation we know that we have a zero timeout, and that the partner is not ready to
receive the message. This would normally imply that the IPC has timed out. However, L4 uses IPC also for
invoking user-level interrupt handlers, and a zero-timeout receive from aninterrupt threadis used to associate the
caller thread with this interrupt, i.e., register the caller as the interrupt handler. Note that we will not get here as
long as an interrupt message is pending, so (dis)association is only effective when there are no pending interrupts.

The MIPS supports 8 different interrupts, numbered 0–7, each corresponding to a bit in the interrupt maskIM in
the status register. Of these, interrupts 2–6 are available to user code, the others are used by the kernel itself (e.g.,
timer interrupt).Check!

L4 models these user-visible interrupts as virtual threads, each having a TID and a TCB. The five user-visible
interrupts are mapped to TIDs 1–6.

The code first checks whether the specified TID refers to an interrupt (TID¡8, Lines 9–10), if not, the IPC is
aborted with a timeout (Lines 110–111).

We now know that the caller attempts interrupt association. First, any previous interrupt association of the caller
is removed by zeroing its interrupt mask in the TCB (Line 11), and removing the caller from the list of iterrupt
handlers inkernel vars (Lines 12–31).

Implementation criticism: Any attempt to associate with an interrupt, whether successful or not will always
remove any previous association. This is in conflict with the reference manual [EHL99]. It is probably better to
consider the behaviour of the code correct and document it in the manual.

If the destination TID specified by the caller is zero, then interrupt dissociation is all the caller wanted, and the call
returns with a timeout status (Lines 32, 110–111). Otherwise the caller wants to associate with a new interrupt.
This is possible if the interrupt is presently free (unassociated).

Each interrupt is now checked by the same procedure. The wait-for value is decremented, and, if zero, would
refer to user-visible interrupt number 0, which is hardware interrupt number 2 (Lines 33–34). Lines 35–36 check
whether this interrupt is free, which is indicated by a zero TID having been recorded in theint0 thread field
of kernel vars . If not, the operation is aborted with a statusnon-existing partner(Lines 108–109).

We now know that the requested interrupt is free and can proceed with associating the caller with it. The interrupt
mask corresponding to hardware interrupt number 2 is recorded in that caller’s TCB (Lines 37–38).

Line 39 loads the address of the TCB of the virtual interrupt thread. Note that the constantINT0 TCB BASE
(defined ininclude/kernel/kernel.h ) points to the top of the TCB, the bottom of the interrupt stack,
rather than the top of the TCB, which is the reason for masking out the least significant bits in the address.

Lines 40–45 copy the scheduling parameters (priority and time slice length) of the caller to the interrupt TCB. This
allows the kernel to deal with interrupts according to the priorities of their handlers; the virtual interrupt thread

0 ld t0, T_SNDQ_START-TCBO(stcb)
1 bne t0, zero, pending_recv_only
2 leave_waiting:
3 dli t0, FS_WAIT
4 lui t1, KERNEL_BASE
5 andi t3, timeout, L4_RCV_EXP_MASK
6 beq t3, zero, 2f
7 receive_timeout(timeout, t3, t9)
8 bne t9, zero, 1f

Listing 5.9: Prologue ofreceive only .
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effectively inherits the handler’s scheduling parameters. The caller’s TID is recorded as the handler of user-
visible interrupt 0 (hardware interrupt 2) inkernel vars.int0 thread (Line 46) and the syscall returns
with a timeout status (Lines 47, 110–111).

Lines 48–107 perform the corresponding actions for the other interrupts. Note that specification of a non-existent
interrupt (TID=7) will correctly lead to a timeout abort (Line 107).

9 dsrl t0, wfor, 3
10 bne t0, zero, 3f
11 sd zero, T_INTERRUPT_MASK-TCBO(stcb)
12 ld t0, T_MYSELF-TCBO(stcb)
13 ld t2, K_INT0_THREAD(t1)
14 bne t2, t0, 5f
15 sd zero, K_INT0_THREAD(t1)
16 b 4f
17 5: ld t2, K_INT1_THREAD(t1)
18 bne t2, t0, 5f
19 sd zero, K_INT1_THREAD(t1)
20 b 4f
21 5: ld t2, K_INT2_THREAD(t1)

...
29 5: ld t2, K_INT4_THREAD(t1)
30 bne t2, t0, 4f
31 sd zero, K_INT4_THREAD(t1)
32 4: beq wfor, zero, 3f
33 daddiu s0, wfor, -1
34 bne s0, zero, 5f
35 ld s1, K_INT0_THREAD(t1)
36 bne s1, zero, 6f
37 dli t3, ST_IM2
38 sd t3, T_INTERRUPT_MASK-TCBO(stcb)
39 dli t2, INT0_TCB_BASE & (˜(TCB_SIZE-1))
40 lbu t3, T_TSP-TCBO(stcb)
41 sb t3, T_TSP(t2)
42 sb t3, T_CTSP(t2)
43 lhu t3, T_TIMESLICE-TCBO(stcb)
44 sh t3, T_TIMESLICE(t2)
45 sh t3, T_REM_TIMESLICE(t2)
46 sd t0, K_INT0_THREAD(t1)
47 b 3f
48 5: daddiu s0, s0, -1
49 bne s0, zero, 5f

...
106 sd t0, K_INT4_THREAD(t1)
107 b 3f
108 6: dli v0, L4_IPC_ENOT_EXISTENT
109 syscall_ret
110 3: dli v0, L4_IPC_RETIMEOUT
111 syscall_ret

Listing 5.10: Interrupt association part ofreceive only .



62 5.4 Short IPC Receive

112 1: li t0, FS_WAIT+FS_WAKEUP
113 daddiu t3, stcb, -TCBO
114 ins_wakeup(t9, t3, t1)
115 2: ld t2, T_INTERRUPT_MASK-TCBO(stcb)
116 mfc0 t3, C0_STATUS
117 or t3, t3, t2
118 mtc0 t3, C0_STATUS
119 sw t0, T_FINE_STATE-TCBO(stcb)
120 sd rdesc, T_RECV_DESC-TCBO(stcb)
121 sw timeout, T_TIMEOUT-TCBO(stcb)
122 sd wfor, T_WFOR-TCBO(stcb)
123 to_next_thread(t1)

Listing 5.11: Epilogue ofreceive only .

Epilogue

The epilogue ofreceive only blocks the caller, as there is no pending message, and performs a context switch.

Line 112 is jumped to by the prologue code if the receive has a finite timeout. The caller’s state is set to
WAIT+WAKEUP (Lines 112, 119), indicating it is blocked for a finite time. The thread is inserted into the
wakeup queue according to the timeout value (Lines 113–114). Lines 115–118 perform interrupt acknowledge-
ment as explained below. The receive descriptor, timeout and wait-for TID are stored in the caller’s TCB (Lines
120–122) prior to scheduling a new thread (Line 123).

Remember, all the short IPC code is executed with interrupts disabled. The interrupt mask in the status register
is left unmodified, so when thesyscall ret macro turns off the interrupt-disable bit in the status word, the
interrupt status will be as before the system call.

An interrupt, once raised, is disabled until it is received its handler. This implies that an IPC receive operation
may change the interrupt mask: When a handler receives an interrupt IPC, that interrupt must be enabled again.

This may have occurred when we reach Line 115. Therefore the interrupt mask stored in the thread’s TCB (zero
for threads not associated with an interrupt) is or-ed to the interrupt mask in the status register (Lines 115–118).
If the caller is an interrupt handler this will enable the corresponding interrupt, in all other cases it has no effect.

5.4.2 pending receive only

If the caller of a receive IPC has a non-empty pending list, thereceive only code in the prologue (Section 5.4.1
diverts topending receive only , shown inListing 5.12.

Line 0 test for an open wait, if so, the message can be delivered (Lines 6–11). Otherwise we loop through the send
queue (list of pending sends to this thread) to see if one of them matches the caller’s TID (Lines 1–4). If there is
no match, the receive will have to block, and Line 5 returns to Line 2 ofreceive only .

Implementation criticism: The comment “FIXME: check if wfor interrupt” in the source (between Lines 0
and 1) is no longer relevant and should be removed.

Bug/Restriction 7: Wait-for checks real instead of virtual sender.
Lines 1–2 check the send queue for a sender’s TID matching the receiver’s wait-for specification. This will
produce incorrect results in the case of deceiving sends. The code should instead check the sender’sv1 register,
which contains the sender TID for non-deceiving sends and the virtual sender otherwise.
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Lines 6–7 store the deceive descriptor and timeout word in the caller’s TCB. These are needed during delivery of
long messages.

A limited context switch is now performed to the sender (Line 9). Remember, all IPC handling is performed in the
sender’s context. The context switch will restart the blocked sender which had, prior to context switching, pushed
the address ofpending restart (Line 37 of pending , Listing 5.5). That function will now be executed
in the sender’s context, restoring as much of the sender’s context as required, in particular the message registers
s0 –s7 . It will then invoke thedeliver part of k ipc (Listing 5.2) or the corresponding long IPC delivery
code, as appropriate. This will switch back to the receiver’s context, thereby delivering the message.

0 beq wfor, zero, 1f
1 3: ld t1, T_MYSELF(t0)
2 beq t1, wfor, 1f
3 ld t0, T_SNDQ_NEXT(t0)
4 bne t0, zero, 3b
5 j leave_waiting
6 1: sd rdesc, T_RECV_DESC-TCBO(stcb)
7 sw timeout, T_TIMEOUT-TCBO(stcb)
8 lui t1, KERNEL_BASE
9 thread_switch_fast(stcb, t0, t1)

10 ld ra, (sp)
11 jr ra

Listing 5.12: Receiver finds sender ready:pending receive only .

5.4.3 Discussion

Abstracting interrupts as virtual threads, which occasionally send messages to their handlers, binds interrupt
handling nicely into L4 IPC, with a minimum of API constructs and little extra kernel code. It also provides an
elegant means of prioritising interrupt processing.

Using zero-timeout receive operations, to change association of handlers with interrupts, moves these operations
off the critical IPC path, as this processing is done only in cases where the IPC would block (and is therefore more
expensive anyway).

Delivery of a pending send involves two limited context switches, the second one taking the message with it. This
is all done in the receiver’s time slice, without any scheduler invocation. This is an instance oflazy schedulingin
L4.

5.5 Long IPC

Line 8 of k ipc (Listing 5.1) branches toipc long when thesource descriptorof the operation is not empty.
A non-empty source descriptor indicates that the operation is not of the simplest kind, it may involve deceiving,
memory messages or mappings.

Similarly, thepending restart code, which is (eventually) executed by a receive-only operation, diverts to
ipc long deliver if the source descriptor (describing the receive operation) is non-zero.

In both cases, mostly the same code is executed, asipc long deliver is an entrypoint inipc long . Most
of the actual long IPC code is in C functions,ipc long itself contains mostly the clans&chiefs and deception
code.
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0 andi t0, sdesc, L4_IPC_DECEIT_MASK
1 beq t0, zero, 2f
2 tid2tcb(vsend,t0)
3 ld t0, T_MYSELF(t0)
4 beq t0, zero, invalid_dest
5 move t3, v0
6 move s8, v1
7 move t2, v1
8 move v1, vsend
9 jal long_ipc_nchief

10 move a3, v0
11 move t2, s8
12 move v1, dthrd
13 jal long_ipc_nchief
14 xor t0, a3, v0
15 andi t0, t0, L4_IPC_SRC_MASK
16 beq t0, zero, 3f
17 move v1, vsend
18 ori v0, t3, L4_IPC_DECEIT_MASK
19 b 2f
20 3: move v0, t3
21 move v1, s8

Listing 5.13: Long IPC code:ipc long , first part.

5.5.1 Clans & Chiefs and Deception:ipc long

Lines 0–1 test the deception bit in the source descriptor and continue at Line 22 if the operation is not deceiving.

Hence, we are now looking at a deceiving send operation. We have to check whether the deceit is legal, i.e.,
direction preserving. To this end, the direction of the deceiving operation is compared with that of the operation
would actually be performed. Informally speaking, the deceit is legal if the actual send can form part of a (most
direct) message chain from the virtual sender to the intended receiver. This means that the virtual sender and the
intended receiver must lie at different sides of the actual sender’s clan boundary, oneinsideand the otheroutside.

Lines 2–6 prepare for calls tolong ipc nchief , another entry point inside thenchief . Lines 2–3 load the
real TID of the virtual sender (note that this may cause a page fault on the TCB access). A zero TID (indicating
an Invalid TCB) leads to returning with annon-existing partnerresult (Line 4). Lines 5 and 6 save the values of
registersv0 andv1 , which are used for output bylong ipc nchief , in registerst3 ands8 , which are not
used by that routine.

In Lines 7–9long ipc nchief is invoked with the sender’s TID as the source and the virtual sender’s TID
as the destination. This will deliver the redirection target of a message sent from the caller to the virtual sender,
which is the opposite direction of what is logically to be tested. This will be taken into account later.

Line 10 saves thetyperesult ina3 . Lines 11-13 invokelong ipc nchief again, this time with the sender’s
TID as the source and the caller-supplied receiver TID as the destination.

Lines 14–16 compare thedirection bits returned by the two calls. If they differ, the directions (from the actual
sender) to the virtual sender and the intended receiver are the different, and hence the attempted deceit is legal. It
is performed by loading (Line 17) the virtual sender TID intov1 (which will later return the “sender TID” to the
receiver) and turning on thedeceitbit in the result wordv0 (Line 18).

An attempted illegal deceit is ignored, and Lines 20–21 simply restore the previous values ofv0 andv1 .



CHAPTER 5. IPC PATH 65

Implementation criticism: Note that this logic allows deceiving between an inner task and another task of the
same clan, but not between an outer task and another task of the same clan. This asymmetry is justified by the
fact that a sibling task can send to the same outer destinations as the caller, and no deceit is necessary to achieve
the communication. Still, this behaviour required by the present L4 specification increases the overhead of
implementing multi-threaded servers.

If the deceit is direction preserving, the sender TID is set to the virtual sender (Line 17) and the deceit flag is set
in the return value (Line 18), otherwise the real source is used and no deceit happens (Lines 20–21).

Lines 22–27 check whether a send is pending. If not, thepending routine is invoked (seeListing 5.5) is invoked,
which, on restart viapending restart , will eventually return toipc long deliver (Line 28), which is
exactly where the code continues if there is an appropriate pending send operation.

Lines 29–46 stack all registers whose contents are still needed and also save in the TCB the timeout value, which
may be needed for setting page-fault timeouts. Lines 47–51 set up the arguments to the functiondo long ipc ,
called at Line 52. The address of the stackeds registers is passed to the function ina2).

After return Lines 53–63 restore registers. Lines 64–67 merge the result value returned from the C function with
what had been accumulated before. If the result indicates an error,send only short is invoked to finish
quickly (ignoring any receive part of the IPC), otherwise thek ipc entrypointdeliver is used to finish the
send and process the receive part of the IPC.

22 2: lw t3, T_FINE_STATE(dtcb)
23 andi t3, t3, FS_WAIT
24 beq t3, zero, pending
25 ld t2, T_WFOR(dtcb)
26 beq t2, zero, ipc_long_deliver
27 bne v1, t2, pending
28 ipc_long_deliver:
29 daddiu sp, sp, -128
30 sd rdesc, (sp)
31 sd timeout, 8(sp)
32 sw timeout, T_TIMEOUT-TCBO(stcb)
33 sd dthrd, 16(sp)

...
46 sd s7, 120(sp)
47 ld a1, T_RECV_DESC(dtcb)
48 daddiu a2, sp, 64
49 daddiu a3, stcb, -TCBO
50 move a4, dtcb
51 move a5, v0
52 jal do_long_ipc
53 move a0, v0
54 ld rdesc, (sp)

...
61 ld v0, 56(sp)
62 daddiu sp,sp,128
63 tcbtop(stcb)
64 or v0, v0, a0
65 andi t0, a0, L4_IPC_ERROR_MASK
66 beq t0, zero, deliver
67 b send_only_short

Listing 5.14: Long IPC:ipc long , second part.



66 5.5 Long IPC

Implementation criticism: This code calls C completely unnecessarily if the IPC is deceiving but otherwise
short (register-only and no mappings). After Line 28 we should return todeliver if there is no other “long”
IPC operation to perform.

5.5.2 Performing long IPC operations:do long ipc

All the remaining IPC code, i.e., processing mappings and memory copies, is in the functiondo long ipc (in
ipc.c ).

Prologue

The prologue is shown inListing 5.15. The state of the communicating threads is marked as LOCKED, indicating
in the process of performing long IPC. The sender is also marked BUSY (remember, IPC processing is all done
in the sender’s context). The communication partners are recorded in the TCBs so it is possible to find out who is
locking whom.

0 dword_t do_long_ipc(dword_t sdesc,
1 dword_t rdesc,
2 dword_t *sregs,
3 tcb_t *stcb,
4 tcb_t *dtcb,
5 dword_t status) {
6 l4_msgdope_t r;
7 dword_t window_addr;
8 r.msgdope = status;
9 window_addr = 0;

10
11 stcb->fine_state = FS_LOCKS | FS_BUSY;
12 dtcb->fine_state = FS_LOCKR ;
13 stcb->comm_partner = dtcb;
14 dtcb->comm_partner = stcb;

Listing 5.15: Prologue ofdo long ipc

The next section of the function is concerned with processing mappings (fpage specifications). The first part of
this, locating the receive fpage, is shown inListing 5.16.

Receive fpage

Line 15 tests for the mapping bit in the send descriptor (if it is unset there will be no mappings). We then look for
the receive fpage. This can either specified as part of the receive descriptor, if the map-bit is set in the descriptor
(Lines 19–22). Otherwise, the first word of the message header pointed to by the receive descriptor is expected to
contain the receive fpage.

As the IPC is performed in the sender’s context, the receiver’s memory, including a potential receive fpage, is not
currently accessible. Unless we want to bear the overhead of copying things twice (which we don’t) we need to
set up a mapping of the receiver’s buffer(s) in some free address-space region.

L4/MIPS uses the supervisor address regionXKSSEGas thetemporary mapping area. There is a slot in this region
for each thread in the sender’s task, and it can map a 16MB window in the receiver’s address space. Note that long
IPC can block on a page fault, so it is inherently preemptible. Care must be taken that the temporary mappings
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15 if (sdesc & L4_IPC_FPAGE_MASK)
16 {
17 dword_t recv_fpage;
18 recv_fpage = 0;
19 if (rdesc & L4_IPC_FPAGE_MASK)
20 {
21 recv_fpage = rdesc;
22 }
23 else if (rdesc & (˜(dword_t)(L4_IPC_FPAGE_MASK|L4_IPC_DECEIT_MASK)))
24 {
25 if (rdesc < USER_ADDR_TOP)
26 {
27 window_addr = RECV_WINDOW_BASE +
28 (((stcb->myself & TID_THREAD_MASK) >> TID_THREAD_SHIFT)
29 * RECV_WINDOW_SIZE) +
30 (rdesc & (4 * 1024 * 1024 - 1 - 7));
31 stcb->wdw_map_addr = rdesc & (˜(dword_t)(4*1024*1024 -1));
32 recv_fpage = *(dword_t *) window_addr;
33 }
34 }

Listing 5.16: Locating the receive fpage indo long ipc .

used in long IPC do not overlap. Mappings from different tasks are no problem as the TLB entries are tagged
with the sender’s ASID. (ASID tags are active even in kernel mode unless a TLB entry has the global-bit set.) But
within a task mapping windows must be kept disjoint, which is why each local thread has its own slot.1

Lines 27–29 determine the address of the mapping slot, and Line 30 shifts the receive buffer address (specified
in the receive descriptor) into that slot. The resulting pointer,window addr , will later be used to access the
receiver’s buffer. The base address of the window in the receiver’s address space is recorded aswdw map addr
the sender’s TCB.

Line 32 reads the receive fpage from the reveiver’s address-space window. This will trigger a page fault (called
window fault) which will be handled by translating the address back into the receiver’s address space, looking up
the mapping in the receiver’s page table, translating it into the correct mapping area address, and loading the TLB.
These mappings are truly “temporary” in that they are never entered into any page table — TLB entries for them
are created on-the-fly. For details see thewindow fault code, Listings4.12–4.15.

Implementation choice:Note that in the case of intra-task messages the temporary mapping area is not neces-
sary. The long IPC code could be optimised to make use of the fact that the sender and receiver buffers are both
directly accessible within the sender’s address space. However, sending memory messages intra-task is silly, as
the same effect could be achieved by user-level memory copy operations, without any help from the kernel. It
therefore makes sense not to complicate kernel code in an attempt to optimise a case which should not be used
in the first place.

1Obviously, this would be a bit more difficult to manage if the number of threads per task wasn’t fixed.
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Processing mappings

Next is processing the sender’s fpages, this is shown inListing 5.17. The mapping descriptors (2 words each)
are processed in turn by passing them togpt.c:vm map (in thevmdirectory) which does the actual work. The
eight message registers can hold up to four mapping descriptors, and further descriptors should be located in the
direct string. The operation stops when a descriptor containing a null fpage is encountered.

Bug/Restriction 8: Four fpages only.
The direct string is presently not searched for mapping descriptors, limiting the number of mappings to four.

Bug/Restriction 9: Fpage processing terminated too late.
The vm map function does not have a return value and therefore cannot indicate whether it has set up the
mapping successfully. This means that mapping processing is not terminated immediately when an invalid
fpage is found (e.g., one specifying an invalid size), which is contrary to [EHL99].

35 if (recv_fpage != 0)
36 { int i;
37 for (i = 0; i < 4; i++)
38 {
39 if (sregs[i*2+1] != 0)
40 {
41 vm_map(stcb, sregs[i*2+1], sregs[i*2],
42 dtcb, recv_fpage);
43 r.md.fpage_received = 1;
44 }
45 else
46 {
47 recv_fpage = 0;
48 break;
49 }
50 }
51
52 if ((sdesc & (˜(dword_t)(L4_IPC_FPAGE_MASK|L4_IPC_DECEIT_MASK)))
53 && (recv_fpage != 0))
54 {
55 /* FIXME: implement fpages from memory */
56 }
57 }
58 }

Listing 5.17: Processing mappings indo long ipc .

Memory messages

Line 59 checks whether there is anything left to do, i.e., whether a send buffer is supplied. The buffer address is
checked to be in the valid user address range (Line 61), the three-word message header is extracted (Line 64) and
checked whether it specifies any direct or indirect strings to be copied (Lines 65–66). If not we are done and can
return, after first flushing any temporary mappings from the TLB.

Implementation criticism: This seems to be purely defensive, as I do not think any harm could come from
leaving them in. Better safe than sorry!
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59 if (sdesc & (˜(dword_t)(L4_IPC_FPAGE_MASK | L4_IPC_DECEIT_MASK)))
60 {
61 if ((sdesc + sizeof(l4_msghdr_t)) < USER_ADDR_TOP )
62 {
63 l4_msghdr_t *snd_hdr;
64 snd_hdr = (l4_msghdr_t *) (sdesc & (˜(dword_t) 7));
65 if (snd_hdr -> snd_dope.md.dwords == 0 &&
66 snd_hdr -> snd_dope.md.strings == 0)
67 {
68 if (window_addr != 0)
69 {
70 tlb_flush_window(window_addr);
71 }
72 return r.msgdope;
73 }
74
75 if ( ((rdesc & L4_IPC_FPAGE_MASK) == 0) &&
76 (rdesc & (˜(dword_t)3)) &&
77 ((rdesc + sizeof(l4_msghdr_t)) < USER_ADDR_TOP))
78 {
79 l4_msghdr_t *rcv_hdr;
80 window_addr = RECV_WINDOW_BASE +
81 (((stcb->myself & TID_THREAD_MASK) >> TID_THREAD_SHIFT)
82 * RECV_WINDOW_SIZE) +
83 (rdesc & (4 * 1024 * 1024 - 1 - 7));
84 stcb->wdw_map_addr = rdesc & (˜(dword_t)(4*1024*1024 -1));
85 rcv_hdr = (l4_msghdr_t *) window_addr;
86
87 if ( ((sdesc + sizeof(l4_msghdr_t) +
88 8 * snd_hdr->size_dope.md.dwords +
89 sizeof(l4_strdope_t)*snd_hdr->size_dope.md.strings)
90 >= USER_ADDR_TOP) ||
91 ((rdesc + sizeof(l4_msghdr_t) +
92 8 * rcv_hdr->size_dope.md.dwords +
93 sizeof(l4_strdope_t)*rcv_hdr->size_dope.md.strings)
94 >= USER_ADDR_TOP) ||
95 (snd_hdr->snd_dope.md.dwords >
96 snd_hdr->size_dope.md.dwords)
97 )
98 {
99 r.msgdope |= L4_IPC_REMSGCUT;

100 tlb_flush_window(window_addr);
101 return r.msgdope;
102 }

Listing 5.18: Processing memory messages indo long ipc .

The receive descriptor is similarly checked for a valid pointer to the receiver’s message buffer (Lines 75–77). The
temporary window is set up for the receiver’s address space as above (Lines 27–31) to make the receive buffer
accessible (Lines 80–84) and the receive message header is extracted (Line 85).

Lines 87–102 check whether one of the buffers extends outside the valid user address range or the sender’s string
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dope specifications are nconsistent. If so we return with an error status indicating “message truncated”. Nothing
is copied at all in this case.

Note that the address of the mapping window is always maintained up-to-date in the TCB. This is necessary
to allow the TLB miss handler to inverse the mapping if a TLB miss occurs during access (see Line 8 of
window fault , Listing 4.12).

Direct strings

We are finally ready to process the direct string (if any), the code is shown inListing 5.19. If the sender’s string
exceeds the receiver’s buffer we again return with a “truncated message” error status. Otherwise a straight-forward
memory copy is performed, and the actual number of words copied is recorded in the result word.

During the memory copy (Lines 119–122) interrupts are enabled, by callingints on (in likern/ints.S )
before andints off immediately after. This creates apreemption pointin long IPC, which is necessary as
interrupts could easily be lost in the time it takes to copy 4MB. Note that this is the first point in the IPC path
where interrupts are enabled.

Implementation criticism: The simple copying algorithm is inefficient for long strings, the copy loop should
be unrolled.

103 if (snd_hdr -> snd_dope.md.dwords != 0)
104 {
105 dword_t *sp,*rp;
106 int i;
107
108 if (rcv_hdr->size_dope.md.dwords <
109 snd_hdr -> snd_dope.md.dwords)
110 {
111 r.msgdope |= L4_IPC_REMSGCUT;
112 tlb_flush_window(window_addr);
113 return r.msgdope;
114 }
115
116 sp = (dword_t *)((char *) snd_hdr + sizeof(l4_msghdr_t));
117 rp = (dword_t *)((char *) rcv_hdr + sizeof(l4_msghdr_t));
118 ints_on();
119 for (i = 0; i < snd_hdr->snd_dope.md.dwords; i++)
120 {
121 rp[i] = sp[i];
122 }
123 ints_off();
124 r.md.dwords = snd_hdr->snd_dope.md.dwords;
125 }

Listing 5.19: Processing direct strings indo long ipc .

Indirect strings

After checking that string copying is requested and doing the obvious sanity checking (Lines 126–141) we are
ready to start processing the indirect strings. Pointers are set up to the string dopes in the sender’s and receiver’s
buffers.
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126 if (snd_hdr->snd_dope.md.strings != 0)
127 {
128 int i;
129 dword_t direct_map_addr;
130
131 l4_strdope_t *snd_strings, *rcv_strings;
132 if ( (snd_hdr->snd_dope.md.strings >
133 snd_hdr->size_dope.md.strings) ||
134 (rcv_hdr->size_dope.md.strings <
135 snd_hdr->snd_dope.md.strings)
136 )
137 {
138 r.msgdope |= L4_IPC_REMSGCUT;
139 tlb_flush_window(window_addr);
140 return r.msgdope;
141 }
142 snd_strings = (l4_strdope_t *)
143 ((char *) snd_hdr + sizeof(l4_msghdr_t) +
144 8 * snd_hdr->size_dope.md.dwords);
145 rcv_strings = (l4_strdope_t *)
146 ((char *) rcv_hdr + sizeof(l4_msghdr_t) +
147 8 * rcv_hdr->size_dope.md.dwords);
148 direct_map_addr = stcb->wdw_map_addr;
149 for (i = 0; i < snd_hdr->snd_dope.md.strings; i++)
150 {
151 char *rp, *sp;
152 int j;
153
154 if ((snd_strings[i].snd_size > L4_MAX_STRING_SIZE) ||
155 (rcv_strings[i].rcv_size > L4_MAX_STRING_SIZE) ||
156 (snd_strings[i].snd_size>rcv_strings[i].rcv_size)||
157 ((snd_strings[i].snd_str +
158 snd_strings[i].snd_size) >= USER_ADDR_TOP) ||
159 ((rcv_strings[i].rcv_str +
160 rcv_strings[i].rcv_size) >= USER_ADDR_TOP)
161 )
162 {
163 r.msgdope |= L4_IPC_REMSGCUT;
164 tlb_flush_window(window_addr);
165 return r.msgdope;
166 }

Listing 5.20: Processing indirect strings indo long ipc , first part.

Line 148 copies the temporary mapping window address from the TCB into a local variable, essentially saving
it on the sender’s kernel stack. This is necessary as it contains the description of the window mapping for the
receiver’s message buffer. The receiver’s strings may lie in completely different parts of the receiver’s address
space, and accessing them may result in conflicting mappings.

Lines 149–185 then process the strings one at a time, starting with the usual sanity checks (Lines 158–166).
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167 sp = (char *) snd_strings[i].snd_str;
168 rp = (char *) (RECV_WINDOW_BASE +
169 (((stcb->myself & TID_THREAD_MASK)
170 >> TID_THREAD_SHIFT)
171 * RECV_WINDOW_SIZE) +
172 ( rcv_strings[i].rcv_str & (4 * 1024 * 1024 - 1)));
173 j = (int) snd_strings[i].snd_size - 1;
174 stcb->wdw_map_addr = rcv_strings[i].rcv_str &
175 (˜(dword_t)(4*1024*1024 -1));
176 tlb_flush_window(window_addr);
177 ints_on();
178 for (;j >= 0; j--)
179 {
180 rp[j] = sp[j];
181 }
182 ints_off();
183 stcb->wdw_map_addr = direct_map_addr;
184 tlb_flush_window(window_addr);
185 }
186 r.md.strings = snd_hdr->snd_dope.md.strings;
187 }
188 }
189 else
190 {
191 r.msgdope |= L4_IPC_REMSGCUT;
192 return r.msgdope;
193 }
194 }
195 else
196 {
197 r.msgdope |= L4_IPC_REMSGCUT;
198 }
199 }
200 if (window_addr != 0)
201 {
202 tlb_flush_window(window_addr);
203 }
204 return r.msgdope;
205 }

Listing 5.21: Processing indirect strings indo long ipc , final part.

In Lines 167–175 the mapping window is set up for the receiver’s string. The TLB must then be flushed of window
mappings for the receiver’s message buffer (or for strings mapped in the previous loop iteration), as these may
overlap with the mapping window for the string. The string is then copied, again with interrupts enabled.

Line 183 restores the mapping window address in the TCB to the correct value for the message buffer so that the
next loop iteration can access the receiver’s string dopes.

Line 186 sets the string count in the result word. Note that, while the result word is maintained in thesender’s
context, it will eventually be returned to thereceivervia the context switch in thedeliver code. The number of
direct string words and indirect strings copied isnot returned to the caller. The caller already has this information
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in its message header.

The rest of the code (Lines 189–205) is cleanup.

Implementation criticism: The byte-wise copy algorithm is highly inefficient. Word-wise copying should be
used as much as possible, and the loop should be unrolled.





Chapter 6

Other System Calls

No other L4 system call comes close to IPC in terms of complexity, although some display a fair degree of
messiness. They are discussed in this chapter one after the other.

6.1 id nearest

6.1.1 Introduction

The id nearest system call serves two purposes. With a zero argument it returns the caller’s thread ID (alias
myself ). Otherwise the argument is the TID of an intended destination thread, andid nearest returns the
ID of the nearestthread, which would actually receive a message sent to from the caller (source) to the argument
(destination) thread. This allows the caller to determine if redirection (via the clans-and-chiefs mechanism, see
Section 2.1.2page8) takes place. It also allows the determination of the actual sender, if a message has been
received withdeception.

The algorithm is based on the fact that tasks form a tree structure, and the task ID contains the nesting depth as
well as the task number of the chief. If the two tasks in question are at the same depth, then comparing their
chief numbers indicates whether they are in thesameclan or not. If they are, thenearestID is the same as the
destination ID.

If source and destination are not in the same clan, then either one is inside the other’s hierarchy or not. If the
source is deeper down than the destination, the destination is certain to beoutsideand thenearesttask is the
source’s chief.

If the destination is deeper in the hierarchy than the source, the destination can either be (directly or indirectly)
inside the source’s clan, or can be outside. This can be determined by following the chain of chiefs from the
destination, until the (direct or indirect) chief is at the same depth as the source. The two latter tasks may then
share a chief, which means that the destination isinsidethe source’s clan, and thenearesttask is the one in the
destination’s hierarchy whose chief is the source. Otherwise the destination isoutside, and thenearesttask is the
same as the source’s.

The system call consists of two sections of code: the main syscall entry pointsyscalls.S:k id nearest
handles themyself case and invokessyscalls.S:nchief to determine the redirection target. Thenchief
routine also contains internal entry points used by the IPC code.

Register usage for theid nearest code is summarised inTable 6.1. Registera0 contains the user-supplied
argument value, whilet8 has been loaded with the pointer to the caller’s TCB by the general exception handler.
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register type conf usage
IDN LINC INC

a0 I - - y destination TID
a7 - - I n source aschief in TID
t0 T T T n temporary
t1 T T T n temporary
t2 T I I n source TID
t8 I - - s source TCB pointer (+TCBO)
t9 T - - s destination TCB
v0 O O O n direction
v1 O I/O I/O y destination/nearest TID

Table 6.1: Register usage inid nearest andnchief code. The columnsIDN, LINC, INCrefer to usage for the
id nearest , long ipc nchief and ipc nchief , respectively; “-” indicates that the register is not used.
Theconf column indicates conflicts with IPC code: “y” = conflict, “n” = no conflict, “s” = same use. Registers
a1–a6 , t3 , s0 –s8 are not used, and should be left alone to avoid conflicts with IPC code.

As in all system calls,k0 still contains the base address of the kernel miscellaneous data.

6.1.2 id nearest

0 bne a0, zero, 1f
1 ld v1, T_MYSELF-TCBO(t8)
2 syscall_ret
3 1: jal nchief
4 syscall_ret

Listing 6.1: id nearest .

The id nearest code is shown inListing 6.1. It checks the argument and, if zero, returns the caller’s TID
throughv1 (Lines 0–2). Otherwise thenchief function is invoked to determine the real destination (Lines 3–4).
A function call is required here asnchief is also invoked by IPC code.

Note that themyself variant of the system call executes only two instructions (with all load and branch delay
slots filled). It does not cause TLB misses (the caller’s kernel stack has already been touched in the general
exception handler, seeListing 4.3, page28). Hence it is two cycles short of a true “null system call”, which makes
it an obvious operation to benchmark.

Implementation criticism: The myself operation leavesv0 undefined, which is supposed to return the
direction(inner, outeror same). However, instead of wasting a cycle, the reference manual [EHL99] should be
amended to specifyv0 as undefined in this case.

6.1.3 nchief

The nchief function is shown inListing 6.2. The labelslong ipc nchief and ipc nchief are entry
points used by the IPC code (seeListing 5.7andListing 5.13). This function implements the algorithm sketched
in Section 6.1.1.

The function starts off (Lines 0–3) by loadingt8 with the pointer to the caller’s TCB,t2 with the caller’s TID,
t9 with the destination’s TCB pointer, andv1 with the destination’s real TID (as supposed to the caller-supplied
one, where thenest andchief fields cannot be trusted). Line 3 may fault the destination’s TCB into existence.
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0 tcbtop(t8)
1 ld t2, T_MYSELF-TCBO(t8)
2 tid2tcb(a0, t9)
3 ld v1, T_MYSELF(t9)
4 long_ipc_nchief:
5 xor t0, v1, t2
6 dsll t0, t0, 4
7 dsrl t0, t0, 53
8 beq t0, zero, same_clan
9 dsll t0, v1, 32

10 xor t0, t0, t2
11 dsll t0, t0, 4
12 dsrl t0, t0, 53
13 beq t0, zero, outer_clan
14 dsll a7, t2, 32
15 1: xor t0, v1, a7
16 dsll t0, t0, 4
17 dsrl t0, t0, 53
18 beq t0, zero, inner_clan
19 xor t0, v1, t2
20 dsll t0, t0, 4
21 dsrl t0, t0, 53
22 beq t0, zero, inner_clan
23 ipc_nchief:
24 dsrl t0, v1, 60
25 dsrl t1, t2, 60
26 dsubu t1, t0, t1
27 blez t1, outer_clan
28 dli t1, TID_TASK_MASK
29 dsrl t0, v1, 32
30 and t0, t1, t0
31 tid2tcb(t0, t1)
32 b 1b
33 ld v1, T_MYSELF(t1)
34 outer_clan:
35 dli t1, TID_TASK_MASK
36 dsrl t0, t2, 32
37 and t0, t1, t0
38 tid2tcb(t0, t1)
39 dli v0, L4_NC_OUTER_CLAN
40 jr ra
41 ld v1, T_MYSELF(t1)
42 inner_clan:
43 jr ra
44 li v0, L4_NC_INNER_CLAN
45 same_clan:
46 jr ra
47 li v0, L4_NC_SAME_CLAN

Listing 6.2:nchief .
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Implementation criticism: Line 0 is redundant as this operation has already been done by the general exception
handler. Line 1 could be done cheaper by using the value loaded intov1 by Line 1 ofListing 6.1.

Line 4 is the entry point used by the IPC code when deception is attempted (Listing 5.13). It verifies that the deceit
is legal (“direction preserving”) by comparing the direction (inner vs.outer) of the deceiving send operation with
that of the operation that would actually be performed. The entry point expectst2 , t9 and v1 to be set up
appropriately.

Lines 5–8 compare thechief fields in the source and destination TID. If they match, the directionsameis
returned (Lines 45–47). Note that in this case thenearestthread is the intended destination, which is already in
the result registerv1 .

Lines 9–13 compare the source TID’schief field with the destination TID’stask field. If they match, the
directionoutermust be returned (Lines 34–41).

Implementation criticism: This case is handled sub-optimally. The code following theouter clan label
(Line 34) constructs the chief TID, which is unnecessary in this case, as the destinationis the chief and can be
returned as thenearestthread. Given that sending to one’s chief occurs frequently this would be worthwhile to
optimise.

The following code checks whether the destination is within the source’s clan. Registera7 is set up to contain the
source’s task number in thechief position, to match against the destination’s chief in the following loop.

Lines 15–18 match the source’s task number against thechief field in the destination. If successful, the source
is the destination’s chief, and the latter isinsidethe source’s clan. Lines 42–44 return the corresponding direction
throughv0 , v1 is already set up properly with the destination TID asnearest.

Lines 19–22 test whether source or destination have the same chief. This test is irrelevant during the first iteration
of the loop, as it has already been performed at Lines 5–8. However, during further iterations of the loop this test
will catch the case where the destination’s (indirect) chief is in the same clan as the source, without being inside
the source’s clan. Unlike Lines 5–8, this is not a case of directionsame, but of directioninner. Thenearestthread
in this case is the destination’s (indirect) chief which is in the same clan as the source.

Lines 24–27 compare the nesting depths of source and destination by subtracting the values of thenest fields in
the TIDs. If the destination’s depth is less than the source’s, the directionoutermust be returned, which is done
by branching to Line 34. Otherwise, Lines 28–33 construct the destination’s chief TID by shifting thechief
field into the task number location in the TID, and obtaining the corresponding task ID from its TCB. The result
replaces the destination ID inv1 . Line 32 branches back to the beginning of the loop.

Theoutercase is handled at Lines 34–41. The sender’s chief’s TCB is located and the TID loaded as thenearest
ID to be returned to the caller.Outer is returned as thedirectionvalue.

Line 23 is the entry point which is used by the short IPC code (Listing 5.7). Note that it is inside the loop, just
before the destination is replaced by its chief. The location of the entry point isafter all cases have been handled
where the destination is the same asnearest. In the context of the IPC code this means that all cases where no
redirection is required are taken care off, and the reminder of the code establishes the actual redirection target.
The cases of no redirection have been checked by the IPC code beforehand, to keep the fastest IPC path as short
as possible.

Bug/Restriction 10: Exiting id nearest may cause fatal TLB miss..
The implementation ofid nearest andnchief violates the rule that the TCB must be touched prior to
executing thesyscall ret code (Listing 4.4) to return to the user. The last VM references prior to thejr
instructions of Lines 40, 43 and 46 ofnchief are, in general, to the TCB of thenearestthread. Hence a TLB
miss is possible insyscall ret , with disastrous (and difficult-to-reproduce) results. A safe way to fix this
bug is by inserting an instruction such as

sw zero, -8(sp)
between Lines 3 and 4 ofListing 6.1.
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6.2 lthread ex regs

6.2.1 Introduction

The lthread ex regs() system call serves to inquire and modify a local thread’s program counter, stack
pointer, pager and excepter. It creates the target thread and its TCB as necessary. Register usage throughout the
code is summarised inTable 6.2. Registers marked as input (I) or input/output (I/O) are defined at the time the code
is invoked by the general exception handler. Registerk0 is also defined (with the base address ofkernel vars )
at invocation, all others are uninitialised.

register type usage
a0 I lthread number of target thread
a1 I/O target old/new IP
a2 I/O target old/new SP
a3 I/O target old/new excepter
a4 I/O target old/new pager
a5 T kernel base
s0 T caller TID†/target state
s1 T target TID
s2 T target TCB base
s3 T buddy TCB base†
s4 T target new IP (copy ofa1)
s5 T target new SP (copy ofa2)
s6 T target new excepter (copy ofa3)
s7 T target new pager (copy ofa4)
s8 T buddy TID†/thread context change indicator
v0 T various temporary

t0 –t3 T various temporary
t8 I caller TCB pointer (+TCBO)

Table 6.2: Register usage inlthread ex regs . Entries marked† are used during TCB initialisation only.
Registersa6 , a7 , v1 andt9 are not used.

6.2.2 Prologue

The beginning of thelthread ex regs code is shown inListing 6.3. Lines 0–3 copy the new thread attribute
values froma1–a4 to s4 –s7 , so the former can be overwritten with the original values. Lines 4–9 construct the
target TID from the caller’s TID and the local thread number argument (a0). Line 10 computes the target TCB
base address.

Lines 11–13 check thecoarse stateof the TCB. If a valid TCB is found (course state not equal to “invalid”)
execution continues at Line 62. Note that accessing the TCB will cause a page fault if the TCB (and its buddy)
has not been accessed before. That fault is handled by mapping the invalid TCB, see Lines 51–56 ofListing 4.9.

6.2.3 Thread creation

If the target TCB is found to be invalid, a proper TCB must be allocated and initialised, as shown inListing 6.4.
Line 14 calls the functionkmem:tcb frame alloc() . This callskmem:k frame alloc() to allocate a
new frame in the kernel heap and returns its physical address inv0 . Lines 15–20 invokevm:vm tcb insert ,
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0 move s4, a1
1 move s5, a2
2 move s6, a3
3 move s7, a4
4 ld s0, T_MYSELF-TCBO(t8)
5 andi a0, a0, 0177
6 dsll a0, a0, 10
7 dli s1, ˜(0177 << 10)
8 and s1, s0, s1
9 or s1, s1, a0

10 tid2tcb(s1, s2)
11 lw t1, T_COARSE_STATE(s2)
12 andi t0, t1, CS_INVALID_TCB
13 beq t0, zero, 1f

Listing 6.3: Prologue oflthread ex regs .

passing it the present task’s page table, the TCB base address and its physical address. The function inserts the
TCB mapping into the page table.

Each page in the TCB array holds two TCBs. Lines 21–27 determine the TID and TCB base address for the
destination thread’s buddy. Lines 28–29 determine the stack bases for both threads.

Lines 30–61 initialise the two new TCBs. An exception stack frame containing invalid IP and SP values and an
initial status byte is set up in Lines 30–37. Theinit tcb macro is used (Lines 38–39) to initialise most fields of
the TCB (with null values). Thefine statesare set to “inactive” (Lines 41–43) and the TIDs are initialised (Lines
44-45). The page table pointers, pager TIDs, excepter TIDs and ASIDs are initialised with the caller’s values
(Lines 46–57). Finally, the two new TCBs are inserted into thepresent listbehind the caller (Lines 58–61).

When Line 62 (Listing 6.5) is reached we have a valid TCB. Lines 62–64 check whether the thread has already
been activated, if yes, execution continues at Line 71. Otherwise the TCB has just been allocated, or has been al-
located earlier as the buddy of another thread but not yet activated. This is indicated by the fine state of “inactive”.

In this case the thread’s scheduling parameters are initialised: thetimesliceandremaining timesliceare both set to
the caller’s timeslice value (Lines 65–67) and thepriority andcurrent priority are both set to the caller’s priority
(Lines 68–70). This completes the initialisation of the TCB. (The MCP is not initialised as this is a task attribute
and is therefore only used for local thread zero.) All the thread now needs to be able to run is an instruction pointer
and a stack pointer value, both of which are arguments to this system call.

Bug/Restriction 11: ex regs incorrectly initialises pager and excepter.
The thread’s pager and excepter are initialised from the thread which caused the TCB to be initialised (which
could be the one which started the target thread’s buddy), not necessarily the one which actually activated the
thread.
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14 jal tcb_frame_alloc
15 tcbtop(s3)
16 ld a0, T_GPT_POINTER-TCBO(s3)
17 dli t0, ˜(L4_PAGESIZE-1)
18 and a1, s2, t0
19 move a2, v0
20 jal vm_tcb_insert
21 andi t0, s2, TCB_SIZE
22 bne t0, zero, 2f
23 daddiu s3, s2, TCB_SIZE
24 daddiu s8, s1, 1 << 10
25 b 3f
26 2: daddiu s3, s2, -TCB_SIZE
27 daddiu s8, s1, -(1 << 10)
28 3: daddiu t3, s2, TCB_SIZE
29 daddiu t2, s3, TCB_SIZE
30 dli t0, -1
31 sd t0, -8(t3)
32 sd t0, -8(t2)
33 sd t0, -16(t3)
34 sd t0, -16(t2)
35 li t1, INITIAL_THREAD_ST
36 sb t1, -24(t3)
37 sb t1, -24(t2)
38 init_tcb(s2)
39 init_tcb(s3)
40 tcbtop(t8)
41 li t0, FS_INACTIVE
42 sw t0, T_FINE_STATE(s2)
43 sw t0, T_FINE_STATE(s3)
44 sd s1, T_MYSELF(s2)
45 sd s8, T_MYSELF(s3)
46 ld t0, T_GPT_POINTER-TCBO(t8)
47 sd t0, T_GPT_POINTER(s2)
48 sd t0, T_GPT_POINTER(s3)
49 ld t0, T_PAGER_TID-TCBO(t8)
50 sd t0, T_PAGER_TID(s2)
51 sd t0, T_PAGER_TID(s3)
52 ld t0, T_EXCPT_TID-TCBO(t8)
53 sd t0, T_EXCPT_TID(s2)
54 sd t0, T_EXCPT_TID(s3)
55 ld t0, T_ASID-TCBO(t8)
56 sd t0, T_ASID(s2)
57 sd t0, T_ASID(s3)
58 ld t3, T_PRESENT_NEXT-TCBO(t8)
59 sd t3, T_PRESENT_NEXT(s3)
60 sd s3, T_PRESENT_NEXT(s2)
61 sd s2, T_PRESENT_NEXT-TCBO(t8)

Listing 6.4: Allocation and initialisation of new TCBs.



82 6.2 lthread ex regs

62 1: lw t0, T_FINE_STATE(s2)
63 andi t0, t0, FS_INACTIVE
64 beq t0, zero, 1f
65 lhu t0, T_TIMESLICE-TCBO(t8)
66 sh t0, T_REM_TIMESLICE(s2)
67 sh t0, T_TIMESLICE(s2)
68 lbu t0, T_TSP-TCBO(t8)
69 sb t0, T_CTSP(s2)
70 sb t0, T_TSP(s2)

Listing 6.5: Initialisation of new thread’s scheduling parameters.
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6.2.4 Exchanging register values

71 1: daddiu t3, s2, TCB_SIZE
72 dli t0, -1
73 move s8, zero
74 beq s7, t0, 1f
75 ld a4, T_PAGER_TID(s2)
76 sd s7, T_PAGER_TID(s2)
77 1: beq s6, t0, 1f
78 ld a3, T_EXCPT_TID(s2)
79 sd s6, T_EXCPT_TID(s2)
80 1: beq s5, t0, 1f
81 ld a2, -8(t3)
82 sd s5, -8(t3)
83 move s8, t0
84 1: beq s4, t0, 4f
85 ld a1, -16(t3)
86 sd s4, -16(t3)
87 move s8, t0

Listing 6.6: Exchanging thread attribute values.

When Line 71 (Listing 6.6) is reached we are ready to do the proper exchange of the thread attributes specified
as parameters to the system call. Lines 71–73 set upt3 as a pointer to the target thread’s kernel stack,t0 with
the value of -1, indicating aninvalid address, ands8 to zero, to indicate that the thread’s context has not been
changed yet.

Line 75 loads the present pager value intoa4 , the register used to return this value to the caller, and Lines 74
and 76 set the thread’s pager to the one specified in the system call, if the latter is not invalid. Note that Line 75
is executed in Line 74’s branch delay slot, and thus comes logically before Lines 74. Lines 77–79 perform the
same operation with the excepter, Lines 80–82 with the stack pointer and Lines 84–86 with the instruction pointer.
Lines 83 and 87 sets8 to indicate that the SP or IP were changed.

6.2.5 Cleanup: Terminating pending or running IPCs

88 4: ld t0, T_SNDQ_START(s2)
89 lui a5, KERNEL_BASE
90 beq t0, zero, 3f
91 rem_sendq(t0, s2, t1)
92 dli v0, L4_IPC_SECANCELED
93 make_busy(t0, v0)
94 ins_busy_list(t0, a5, t2)
95 b 4b

Listing 6.7: Cancelling pending IPCs.

Lines 88–95 check whether there are any send operations pending to the target thread. Line 91 removes such a
sender from the doubly-linked pending queue. This is done using therem sendq macro, which is straightfor-
ward and does not need further examination. Themake busy macro (Listing 7.1) is used to make the formerly
pending thread runnable, forcing its IPC completion code toSECANCELLEDto indicate that the send operation
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96 3: lui a5, KERNEL_BASE
97 lw s0, T_FINE_STATE(s2)
98 andi t1, s0, FS_LOCKS
99 beq t1, zero, 4f

100 ld t1, T_COMM_PARTNER(s2)
101 lw t2, T_FINE_STATE(t1)
102 andi a1, t2, FS_POLL
103 beq a1, zero, 5f
104 ld t3, T_COMM_PARTNER(t1)
105 rem_sendq(t1, t3, a2)
106 5: li a2, L4_IPC_REABORTED
107 make_busy(t1, a2)
108 ins_busy_list(t1, a5, t0)
109 sw zero, T_STACKED_FINE_STATE(t1)
110 li a2, L4_IPC_SEABORTED
111 make_busy(s2, a2)
112 ins_busy_list(s2, a5, t0)
113 b 1f
114 4: andi t1, s0, FS_LOCKR
115 beq t1, zero, 4f

Listing 6.8: Target thread state wasLOCKS.

failed (Lines 92–93). Theins busy list macro (Listing 7.3) is used in Line 94 to insert the thread into the
appropriate scheduling queue and give it a time slice.

When reaching Line 96 (Listing 6.8) we know that no sends are pending to the target. What remains to be done is
to examine the target thread’s state (Lines 96–97) for any pending or on-going IPC, which needs to be terminated.

Lines 98–113 deal with the stateLOCKS, which means that the target is in the middle of a send operation. The
partner state must beLOCKR(pre-empted during long IPC) or blocked on a receive page fault. Lines 100–103
examine the state of the thread’s communication partner (i.e., the thread the target thread is presently sending a
message to). If it isPOLL the partner is presently blocked on an IPC to its pager. Lines 104–105 cancel this page
fault IPC by removing the partner from its pager’s send queue.

Independent of what the partner’s state was, it is now made runnable, and its completion code set to indicate that
the receive part of the IPC was aborted (Lines 106–108). Line 109 resets the thread’sstacked fine state .
This gets set when a nested IPC call is performed, such as on a page fault during long IPC (seeListing 4.10). As
theex regs operation aborts the original IPC, any nested IPC is implicitly terminated too. Resetting the stacked
state is essential as some code (such as that inListing 6.9) uses that thread attribute to check for a nested IPC.

The target thread is then made runnable with a completion code indicating an aborted send operation (Lines
110–113).

Bug/Restriction 12: ex regs return values trashed if terminating IPC.
Line 102 trashesa1 , which contains the old instruction pointer that is to be returned to the caller. Lines 105,
106, 110 and 111 trasha1 , returning the old stack pointer. Other code up to Line 162 does the same. Registers
a6 anda7 could safely be used.

Lines 114–129 deal with the situation of the target thread state beingLOCKR(preempted long IPC receive); the
partner must then be in stateLOCKSor again blocked on a receive page fault. The code is completely analogous
to what has just been discussed, except that the completion codes are reversed.
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129 b 1f
130 4: lw t0, T_STACKED_FINE_STATE(s2)
131 andi t1, t0, FS_LOCKS
132 beq t1, zero, 4f
133 ld t1, T_STACKED_COMM_PRTNR(s2)
134 lw t2, T_FINE_STATE(t1)
135 li a2, L4_IPC_REABORTED
136 make_busy(t1, a2)
137 ins_busy_list(t1, a5, t0)
138 sw zero, T_STACKED_FINE_STATE(t1)
139 andi t0, s0, FS_POLL
140 beq zero, t0, 5f
141 ld t1, T_COMM_PARTNER(s2)
142 rem_sendq(s2, t1, t2)
143 5: li a2, L4_IPC_SEABORTED
144 make_busy(s2, a2)
145 ins_busy_list(s2, a5, t0)
146 b 1f
147 4: andi t1, t0, FS_LOCKR
148 beq t1, zero, 4f

Listing 6.9: Target thread’sstackedstate wasLOCKS.

Alternatively, the target thread may itself be blocked on a page fault during long IPC. This means that the thread is
in the middle of a nested IPC and the state of the primary IPC is saved in the TCB fieldstacked fine state .
If this state isLOCKS, the (stacked) partner’s would once more beLOCKRor POLL.

The handling of this case is shown in Lines 130–146 (Listing 6.9). Lines 130–132 determine that the target state is
indeedLOCKS. Lines 133–138 make the stacked partner busy with a completion code ofREABORTED, indicating
that its receive operation was terminated half way through.

Lines 139–142 check whether the target’s own state isPOLL, which indicates it is waiting to send to its pager. If
so, the target from the current partner’s send queue (Lines 143–146). Remember that the case where the present
IPC in progress has been handled above. Hence the present partner’s state remains unaffected.

Lines 143–145 make the target busy with a completion code ofSEABORTED, indicating that its send operation
was terminated half way through.

Bug/Restriction 13: Stacked state not reset if in recursive IPC.
The target’s stacked state should be reset to zero. This omission can lead to misbehaviour of futureex regs
operations on the same target.

Note that the above code is very similar to Lines 97–113. The main difference is that here the polling target is
being unblocked, while above it is the partner’s partner.

Lines 147–162 treat the equivalent case of the target’s stacked state beingLOCKR.

At this point any pending sends have been cancelled and any on-going IPC has been aborted. We now need to
check whether the target thread is blocked on a send or receive operation (which hasn’t commenced yet).

Line 163 test for theWAIT state, indicating that the target is blocked on a receive operation. If so, it is simply
unblocked with a completion code indicating a cancelled receive (Lines 164–167). Line 169 tests for thePOLL
state, indicating that the target is blocked on a send. If so, it is removed from the recipient’s send-queue (Lines
170–172) and is unblocked with a completion code indicating a cancelled send (Lines 173–175).

Line 177 tests for theINACTIVE state, meaning that the thread has never been activated before. Line 179 checks
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the value ofs8 for an indication of the thread’s SP or IP having been set by the call (c.f. Lines 83 and 87), in
which case the thread is to be activated. This is done in Lines 180–182.

Implementation criticism: Explicitly setting the completion code (which becomes the target’s initialv0 value)
to zero in Line 180 is presumably to prevent a covert channel. However, the same could be achieved by using
s8 , which is known to contain a value of -1, in the macro invocation of Line 181, saving Line 180 (and one
cycle).

Implementation criticism: The source contains a comment“thread was waiting”between Lines 178 and 179.
This is obviously a cut-and-paste error. The comment should be removed.

The final test in Line 184 is for theBUSYstate, indicating the target thread was ready to run. Nothing more needs
to be done for this case. Any other state represents a kernel bug and leads to a kernel panic (Lines 185–187). Note
that the only legal state not explicitly tested isDYING. This state can only occur while a task is being deleted
(seeListing 6.17), and nolthread ex regs call is possible in that case due to the non-preemptability of task
deletion (which should be fixed!)

162 b 1f
163 4: andi t0, s0, FS_WAIT
164 beq zero, t0, 2f
165 dli a0, L4_IPC_RECANCELED
166 make_busy(s2, a0)
167 ins_busy_list(s2, a5, t0)
168 b 1f
169 2: andi t0, s0, FS_POLL
170 beq zero, t0, 2f
171 ld t1, T_COMM_PARTNER(s2)
172 rem_sendq(s2, t1, t2)
173 dli a0, L4_IPC_SECANCELED
174 make_busy(s2, a0)
175 ins_busy_list(s2, a5, t0)
176 b 1f
177 2: andi t0, s0, FS_INACTIVE
178 beq zero, t0, 2f
179 beq s8, zero, 1f
180 move a0, zero
181 make_busy(s2, a0)
182 ins_busy_list(s2, a5, t0)
183 b 1f
184 2: andi t0, s0, FS_BUSY
185 bne zero, t0, 1f
186 dla a0, msg_tcb_state
187 j panic
188 1: syscall_ret

Listing 6.10: Target thread was blocked or ready.

Implementation criticism: None of the code of Lines 88–187 should be executed if the thread’s IP and SP
were not changed (in contrast to only checking at Line 170). This would enable a non-destructive check of a
state’s state. Note that this is not a bug, as the implemented behaviour is required by the then L4 specification
(which has since changed).
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The implementation oftask new consists of the largest single piece of assembly language code in the kernel
(600 lines of sparsely commented source code, expanding into more than 700 instructions). It is (for historical
reasons) calledcreate thread .

Most of this code is only moderately time-critical (evidenced e.g. by many redundant recalculations of caller’s
the TCB address), and should really be written in C. Rather than going through it line-by-line, we list it “as-is”,
including most of the original comments, and only give a rough description. The attentive reader will be able to

follow it easily
..

^. Table 6.3lists register allocations used in the code.

register type usage
a0 I/T initial IP for l0 of new task/temporary
a1 I/T pager of l0 of new task/caller TID
a2 I initial SP value for l0 of new task
a3 I task ID
a4 I MCP/new chief of task
a5 I excepter of l0 of new task
a6 T temporary
s0 T copy of initiala0 value
s1 T temporary/TCB pointer for new task
s2 T copy of initiala4 value
s3 T various temporary
s4 T copy of initiala1 value
s5 T copy of initiala2 value
s6 T copy of initiala3 value/target TCB adr
s7 T new TID/temporary
s8 T temporary TCP pointer
t0 T chief pointer/various temporary

t1 –t3 T various temporary
t8 I caller TCB pointer (+TCBO)
t9 T destination TCB pointer (+TCBO)
v0 T/O various temporary/new task ID
v1 T temporary
gp T copy of initiala5 value

Table 6.3: Register usage intask create . Registersa7 , v1 are not

The prologue code is shown inListing 6.11. As the comment indicates, the registers containing the system call
arguments (a0–a5) are copied to “callee-saved” register so they will not get lost during later invocations of C
code. Line 7 shows a macro used for tracing kernel code (for kernel debugging).

0 /* put args in save registers so we can call C */
1 move s0, a0
2 move s4, a1 /* a1 has pager id */
3 move s5, a2
4 move s6, a3
5 move s2, a4
6 move gp, a5
7 trace(crth)

Listing 6.11:task new (create thread ) part 0.
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8 /* first check validity of task */
9 tid2ttable(s6, t0)

10 lw t1, (t0)
11 li t2, TT_INACTIVE_MASK
12 and t2, t2, t1
13 beq zero, t2, active_task
14
15 the_after_life:
16 /* we have invalid task, check chief okay */
17 li t2, TT_CHIEF_MASK
18 and t3, t2, t1
19 tcbtop(a0)
20 ld a1, T_MYSELF-TCBO(a0)
21 beq t3, zero, 1f
22 xor a2, t1, a1
23 and a2, a2, t2
24 beq a2, zero, 1f
25 /* chief mismatch -> permision denied */
26 move v0, zero
27 b ct_ret
28
29 1: /* chief okay, check pager */
30 bne s4, zero, 1f
31 /* pager invalid, change chief and return */
32 li a3, TID_TASK_MASK
33 and a6, s2, a3 /* a6 has new chief */
34 li a4, ˜TT_CHIEF_MASK
35 and a5, t1, a4
36 or a5, a5, a6
37 sw a5, (t0) /* new chief stored in task table */
38 dsll v0, a6, 32
39 and v1, s6, a3
40 or v0, v0, v1
41 b ct_ret

Listing 6.12:task new (create thread ) part 1.

Part 1 is shown inListing 6.12. First we determine whether the target task is presentlyactiveor not. Lines 9–13
do this using the kernel’stask ID table(TID table, seeSection 3.2.4, page22). Thetid2ttable macro extracts
the task number from the caller-specified TID and returns the address of the corresponding entry in the TID table.
If the task is found active, we continue at labelactive task (Line 182,Listing 6.17, to kill the task first. If
successful, execution will return to labelthe after life here, which deals with inactive tasks.

Lines 17–27 perform the permission check: A task can only be deactivated by its chief, unless the task has never
been assigned a chief (indicated by an inactive task with a zero chief), in which case anyone can claim it. If
the permission check fails, a zero task ID is returned to indicate failure. (Thect ret label only contains the
syscallretacro, see Line 180.)

Lines 30–41 handle the case where a zero pager TID was supplied (by the caller ina1), which means that the task
is left inactive. This operation has the side effect of donating the task to a new chief, specified in theMCP/new
chief argument (originally ina4). The new chief is recorded in the TID table and the new task ID is constructed
and returned to the user.

Lines 43–48 increment the task version number. The kernel panics if the version number overflows. Theinvalid
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42 1: /* pager valid, inc version number*/
43 addiu t2, t1, 1
44 andi t3, t2, TT_OVRFLW_MASK
45 beq zero, t3, 1f
46 /* ran out of versions */
47 dla a0, nov_msg
48 j panic
49
50 1: /* mask out invalid bit in t table */
51 li t1, 0x7fffffff
52 and t2, t2, t1
53 sw t2, (t0)
54
55 andi t1, t2, 01777
56 srl t0, t2, 10
57 andi t0, t0, 017
58 sll t0, t0, 28
59 or t2, t1, t0 /* new version number in right place */
60 /* combine with task id */
61 dli t0, TID_TASK_MASK
62 and s7, t0, s6
63 or s7, s7, t2 /* s7 has new thread id */
64
65 and s6, a1, t0 /* combine with chief */
66 dsll s6, s6, 32
67 or s7, s7, s6
68
69 dsrl s6, a1, 60 /* set depth FIXME: > 15 */
70 daddiu s6, s6, 1
71 andi t2, s6, 020
72 beq t2, zero, 1f
73 dla a0, dp_msg
74 j panic
75
76 1: dsll s6, s6, 60
77 or s7, s7, s6
78 /* s7 has new thread id (inc chief and depth) */

Listing 6.13:task new (create thread ) part 2.

bit in the TID array is turned off (Lines 51–53). The new version number is extracted from the TID array entry
(and split into the two parts as required by the somewhat bizarre L4/MIPS TID format and inserted into the new
task ID (Lines 55–63). The caller’s task number is inserted as the chief (Lines 65–67) and the caller’s nesting
depth is incremented and inserted to leave the completed new TID ins7 . Again, the kernel panics if the depth
overflows. Note that thesitefield is undefined in the present L4 specification.

Bug/Restriction 14: Kernel panics on task version or nesting depth overflow.
The kernel should not panic in this case, but return a zero task ID to the user.
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79 tid2tcb(s7, s6) /* s6 has new tcb vaddress */
80 jal tcb_frame_alloc /* alloc a new frame for tcb */
81 tcbtop(t9)
82 ld a0, T_GPT_POINTER-TCBO(t9)
83 move a1, s6
84 move a2, v0
85 jal vm_tcb_insert
86
87 daddiu s1, s6, TCB_SIZE /* s1 now contains top of new stack */
88 move s8, s1 /* base of second TCB in pair */
89 daddiu t2, s8, TCB_SIZE
90
91 /* now build a stack to switch to */
92 dli t0, -1
93 sd s5, -8(s1) /* new thread sp */
94 sd t0, -8(t2)
95 sd s0, -16(s1) /* new thread start address */
96 sd t0, -16(t2)
97 li t1, INITIAL_THREAD_ST
98 sb t1, -24(s1)
99 sb t1, -24(t2)

100 daddiu s1,s1,-24
101
102 /* initialise most tcb vars */
103 init_tcb(s6)
104 init_tcb(s8)
105
106 sd s7, T_MYSELF(s6)
107 daddiu t0, s7, 1 << 10
108 sd t0, T_MYSELF(s8)
109
110 /* a4 contains syscall mcp, a1 will contain creator mcp */
111 tcbtop(t9)
112 lbu a1, T_MCP-TCBO(t9)
113 sub t2, a1, s2
114 blez t2, 1f /* if (creator.mcp > call.mcp) */
115 move t2, s2 /* new.mcp = call.mcp */
116 b 2f
117 1: move t2, a1 /* else new.mcp = creator.mcp */
118 2: sb t2, T_MCP(s6)

Listing 6.14:task new (create thread ) part 3.

A new TCB frame is allocated and mapped for the destination task (Lines 79–85). Registerss1 andt2 are set
up as the stack pointers for the two TCBs (of the new task’s l0 and l1) in Lines 87–89. An exception frame (see
Figure 4.1) is set up in the two TCBs, with the caller-supplied IP and SP for l0 and invalid values for l1 (Lines
92–99), l0’s stack pointer is set up ins1 , and the generic TCB variables (and TIDs) and are initialised (Lines
103–108). The new task’s MCP is set up as the lesser of caller’s MCP and caller-supplied value.
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119 lbu t2, T_TSP-TCBO(t9)
120 sb t2, T_CTSP(s6) /* dest.ctsp = src.tsp */
121 sb t2, T_TSP(s6) /* dest.tsp = src.tsp */
122 lhu t2, T_TIMESLICE-TCBO(t9)
123 sh t2, T_TIMESLICE(s6) /* timeslice = creator’s */
124 sh t2, T_REM_TIMESLICE(s6) /* rem_timeslice = timeslice */
125
126 /* init the gpt */
127 move a0, s6
128 jal vm_new_as
129 ld v0, T_GPT_POINTER(s6)
130 sd v0, T_GPT_POINTER(s8)
131 sd s4, T_PAGER_TID(s6)
132 sd s4, T_PAGER_TID(s8)
133 sd gp, T_EXCPT_TID(s6)
134 sd gp, T_EXCPT_TID(s8)
135
136 /* allocate an asid */
137 move a0, s7
138 jal asid_alloc /* ASID alloc uses t0, v0, AT, ra */
139 sd v0, T_ASID(s6)
140 sd v0, T_ASID(s8)
141
142 /* add new thread to run queue */
143 sd s1, T_STACK_POINTER(s6)
144 lui a2, KERNEL_BASE
145 ins_busy_list(s6, a2, t0)
146
147 /* init new present list for this task */
148 tcbtop(t9)
149 daddiu s3, t9, -TCBO
150 sd s8, T_PRESENT_NEXT(s6)
151 sd zero, T_PRESENT_NEXT(s8)
152 /* add new task as child of this task,
153 and move current child to sister of new task */
154 tcbtop(t0)
155 ld t0, T_MYSELF-TCBO(t0)
156 dli t1, TID_TASK_MASK
157 and t0, t0, t1
158 tid2tcb(t0, t1)
159 ld t0, T_CHILD_TASK(t1)
160 sd t0, T_SISTER_TASK(s6)
161 sd s6, T_CHILD_TASK(t1)

Listing 6.15:task new (create thread ) part 4.

The scheduling parameters (priority, current priority, time slice and remaining time slice) are initialised from the
caller’s TCB (Lines 119-124), while the pager and excepter of the destination’s l0 and l1 are set to the caller-
supplied values (Lines 131–134). A new page table is set up and recorded in both thread’s TCBs (Lines 127–130).
The functionvm new as , which is implemented in assembler, in spite of using the C calling convention, is
explained later (Listing 6.23).

An ASID is allocated for the new task and recorded in both thread’s TCBs (Lines 137–140). Thread l0 is linked
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into the busy list (Lines 143–145). The present list is initialised with the two initial TCBs (Lines 150–151) and
the new task is linked into the child task list of the caller (Lines 154–161). Note that this list is only maintained
once per task, so the code must first find the TCB of the calling task’s l0.

162 /* set running state */
163 li t2, FS_BUSY
164 sw t2, T_FINE_STATE(s6)
165 li t2, FS_INACTIVE
166 sw t2, T_FINE_STATE(s8)
167
168 /* stack state for parent return */
169 daddiu sp, sp, -16
170 dla t0, parent_thread_restart
171 sd s7, 8(sp)
172 sd t0, (sp)
173
174 /* make sure parent is in busy list */
175 ins_busy_list(s3, a2, t0)
176
177 tcbtop(t9)
178 thread_switch_fast(t9, s6, a2)
179 trace(ecrt)
180 ct_ret:
181 1: syscall_ret

Listing 6.16:task new (create thread ) part 5.

The new threads’ fine state is set as appropriate (Lines 164–166). The new task is now ready to run, and is
about to be dispatched. In order to set up the context switch, a restart record, consisting of a restart address
and the return value (new task ID) is pushed onto the caller’s kernel stack (Lines 169–172). The restart routine
parent thread restart will simply pop the restart value off the stack and return.

The ins busy list macro is used to insert the caller into the busy list (Line 175). Remember, due to lazy
scheduling during IPC it is possible that the caller is executing on a donated time slice not actually in the busy list.
A fast context switch is performed by thethread switch fast macro (which leaves registers unchanged) is
performed to the new task’s l0 and thesyscall ret macro returns to the new task, which is now alive.



CHAPTER 6. OTHER SYSTEM CALLS 93

182 active_task:
183 /* test if chief */
184 dli t3, TID_TASK_MASK
185 and t1, s6, t3
186 tid2tcb(t1,s1)
187 ld t1, T_MYSELF(s1)
188 tcbtop(a0)
189 ld a1, T_MYSELF-TCBO(a0)
190 dsrl t2, t1, 32
191 xor t2, t2, a1
192 and t2, t2, t3
193 beq t2, zero, 1f
194 /* not chief, return */
195 move v0, zero
196 b ct_ret
197
198 1: /* chief okay, check if task_new already running */
199 lw t1, T_FINE_STATE(s1)
200 andi t2, t1, FS_DYING
201 beq t2, zero, 1f
202 /* task already dying */
203 move v0, zero
204 b ct_ret
205
206 1: /* okay lets kill the task */
207 /* mark as dying */
208 li t0, ˜(FS_BUSY | FS_WAKEUP)
209 and t1, t1, t0
210 ori t1, t1, FS_DYING
211 sw t1, T_FINE_STATE(s1)
212 sd zero, T_MYSELF(s1)

Listing 6.17:task new (create thread ) part 6.

Part 6 heads the code dealing with killing an existing task. Lines 184–196 verify that the caller is the chief of
the destination task and thus has the right to kill it. If not, the call returns with a zero TID value. The same
happens if the task is already marked as being killed (Lines 199–204). This could be the result of two user threads
concurrently attempting to kill the task (or its parent).

Now we have established that we can go ahead and kill the task. First its TCB is markedDYING to prevent
a concurrenttask new call from interfering (although that cannot happen with the present non-preemptable
implementation).



94 6.3 task new

213 /* now null FINE_STATE and MYSELF of threads in task
214 to prevent struggling while killing */
215 ld t1, T_PRESENT_NEXT(s1)
216 beq t1, zero, 1f
217 li t2, ˜(FS_BUSY | FS_WAKEUP)
218 2: lw t0, T_FINE_STATE(t1)
219 and t0, t0, t2
220 ori t0, t0, FS_DYING
221 sw t0, T_FINE_STATE(t1)
222 sd zero, T_MYSELF(t1)
223 ld t1, T_PRESENT_NEXT(t1)
224 bne t1, zero, 2b
225 /* now task and thread are unrunnable and invalid */
226 /* remove non-busy tcb’s from busy_list and
227 non-wake tcbs from wake lists */
228 1: jal process_lists
229
230 /* BEGIN BIG THREAD CLEANUP LOOP */
231 move a0, s1
232 2: lw t1, T_FINE_STATE(a0) /* remove if polling */
233 andi t1, t1, FS_POLL
234 beq t1, zero, 1f
235 ld t0, T_COMM_PARTNER(a0)
236 /* we are polling */
237 rem_sendq(a0, t0, t1)
238
239 1: /* now break off threads pending for this thread */
240 ld t0, T_SNDQ_START(a0)
241 beq t0, zero, 1f
242 rem_sendq(t0, a0, t1) /* pending thread */
243 /* restart them if they are not dying as well */
244 lw t3, T_FINE_STATE(t0)
245 andi t3, t3, FS_DYING
246 bne t3, zero, 1b
247 dla t1, pending_recv_killed
248 ld t2, T_STACK_POINTER(t0)
249 sd t1, (t2)
250 li t2, FS_BUSY
251 sw t2, T_FINE_STATE(t0)
252 lui t3, KERNEL_BASE
253 ins_busy_list(t0, t3, t2)
254 b 1b /* do any remaining in queue */

Listing 6.18:task new (create thread ) part 7.

The destination’s threads are now made non-runnable by setting their state toDYING. The present list is used to
find all allocated TCBs. The C functionprocess lists is then called to remove any of these threads (and
possible other blocked ones which were not removed due to lazy scheduling) from the busy lists and wait queues.

Line 232 is the beginning of a large loop, extending up to Line 433, which cleans up the destination’s threads
by traversing the present list. Lines 233–237 check whether the thread is in statePOLLING, in which case it
is removed from the send queue of the intended receiver. Next, any threads blocked on a send to the target
thread are removed and their IPC cancelled by processing the target’s send queue (Lines 240–242). The threads
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are then made runnable (unless markedDYING) by fixing up their state, replacing their restart procedure by
pending recv killed , and inserting them into the busy list (Lines 244–253). That restart procedure (defined
in exc.S ) returns with a status ofnon-existent destination thread.

255 1: /* check if LOCK (in fine state ) */
256 lw t0, T_FINE_STATE(a0)
257 andi t1, t0, FS_LOCKS
258 beq t1, zero, 4f
259
260 ld t1, T_COMM_PARTNER(a0)
261 lw t2, T_FINE_STATE(t1)
262 andi a1, t2, FS_POLL
263 beq a1, zero, 5f /* check if partner POLL (rcv pf) */
264
265 ld t3, T_COMM_PARTNER(t1)
266 rem_sendq(t1, t3, a2)
267
268 /* assume partner is LOCKR and make busy if not dying */
269 5: andi a1, t2, FS_DYING
270 bne a1, zero, 1f
271 li a2, L4_IPC_REABORTED
272 make_busy(t1, a2)
273 lui t3, KERNEL_BASE
274 ins_busy_list(t1, t3, t2)
275 sw zero, T_STACKED_FINE_STATE(t1)
276 b 1f

...
299 4: /* test stacked state */
300 lw t0, T_STACKED_FINE_STATE(a0)
301 andi t1, t0, FS_LOCKS

...
315 4: andi t1, t0, FS_LOCKR
316 beq t1, zero, 1f
317
318 ld t1, T_STACKED_COMM_PRTNR(a0)
319 lw t2, T_FINE_STATE(t1)
320 andi a1, t2, FS_DYING
321 bne a1, zero, 1f
322 li a2, L4_IPC_SEABORTED
323 make_busy(t1, a2)
324 lui t3, KERNEL_BASE
325 ins_busy_list(t1, t3, t2)
326 sw zero, T_STACKED_FINE_STATE(t1)
327
328 1: ld a0, T_PRESENT_NEXT(a0)
329 bne a0, zero, 2b
330 /* END BIG THREAD CLEANUP LOOP */

Listing 6.19:task new (create thread ) part 8.

Next the target thread’s state is checked for the valueLOCKS, which indicates that it is preempted during long
IPC. Processing of this condition (Lines 256–276) is almost identical to the corresponding IPC abort processing
during thelthread ex regs system call (seeListing 6.8). The only differences are an additional check for
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DYING in the partner’s state. As inlthread ex regs the corresponding processing is then performed for the
target thread stateLOCKR(not shown).

The case of the thread being blocked on a page fault during long IPC, indicated by astackedstate ofLOCKSor
LOCKR, the latter case is shown in Lines 315–326. Again, the handling is equivalent to that inlthread ex regs
(Listing 6.9), except that the case needs to be considered when the target isDYING, and that fixing up the target
state is not necessary. Lines 328, 329 terminate the loop over the destination task’s threads.

331 /* now clean up task specific stuff */
332
333 /* unmap gpt */
334 move a0, s1
335 dli a1, 63 << 2
336 dli a2, -1
337 jal vm_fpage_unmap
338
339 move a0, s1
340 jal vm_delete_as
341
342 /* flush asid from tlb (remove window mappings) */
343 ld a0, T_ASID(s1)
344 bltz a0, 7f
345 jal tlb_flush_asid
346
347 /* don’t need to flush the STLB as
348 - user pages are removed via the fpage_unmap
349 - window pages are never placed in the STLB
350
351 ld a0, T_ASID(s1)
352 jal asid_free

Listing 6.20:task new (create thread ) part 9.

Listing 6.20shows the cleanup of the task resources. Lines 334–337 call the C functionvm fpage unmap to
unmap (actually, flush) the whole address space. As this function is essentially the same as thefpage unmap
system call, it is not discussed here. SeeSection 6.6for details.

The functionvm delete as is then called to deallocate the page table. This is because unmapping only inval-
idates page table (and TLB) entries, without removing the entries from the page table, to speed up re-insertion.
Next tlb flush asid is called, which probes all TLB entries and invalidates them if they match the specified
ASID (the destination task’s). This is necessary, aswindow mappings, used in the temporary mapping area in
long IPC, are not entered into a page table, and are therefore not removed by the previous functions. Finally, the
destination’s ASID is inserted into the free ASID list.
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353 /* remove from current process hierarchy */
354 7: tcbtop(t0)
355 ld t1, T_SISTER_TASK(s1)
356 sd t1, T_CHILD_TASK-TCBO(t0)
357 /**************************************************************
358 * loop through children nailing them
359 */
360 #define start s1
361 #define x s7
362 move x, start
363 1: bne x, start, 2f
364 ld t0, T_CHILD_TASK(x)
365 beq t0, zero, 3f
366
367 2: ld t0, T_CHILD_TASK(x)
368 beq t0, zero, 4f
369 move x, t0
370 b 2b
371
372 4: ld t0, T_MYSELF(x)
373 dsrl t0, t0, 32
374 dli t1, TID_TASK_MASK
375 and t0, t0, t1
376 tid2tcb(t0, s8) /* s8 now has parent */
377 ld t1, T_SISTER_TASK(x)
378 sd t1, T_CHILD_TASK(s8)

Listing 6.21:task new (create thread ) part 10.

Now the children of the destination task must be killed and cleaned up. Since it is necessary to clean up all
TCBs belonging to those tasks, and since the task hierarchy is represented by the TCB fieldschild task and
sister task , the cleanup must start at the leafes of the task tree. The algorithm is for depth-first processing
the task hierarchy is given as C code in comments, it is here extracted for clarity:

x = start; // Line 362
while (x != start || x->child != 0) { // Lines 363--365

while (x->child != 0) { // Lines 367--368
x = x->child; // Line 369

} // Line 370
x->parent->child = x->sister; // Lines 372--378
cleanup(x); // Lines 331--430
x = x->parent; // Line 432

} // Line 433

Note that the TCB contains no explicit parent pointer, so the chief field in the task ID is used to retrieve the parent
in Lines 372–378.
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414 7: /* set new chief to initial killer in process hierarchy */
415 tid2ttable(s3, t0)
416 lw t1, (t0)
417 tcbtop(a0)
418 ld a1, T_MYSELF-TCBO(a0)
419 li t2, ˜TT_CHIEF_MASK
420 and t1, t2, t1
421 li t2, TT_INACTIVE_MASK
422 or t1, t2, t1
423 li t2, TID_TASK_MASK
424 and a1, a1, t2
425 or t1, a1, t1
426 sw t1, (t0)
427
428 ld a0, T_GPT_POINTER-TCBO(a0)
429 move a1, x
430 jal vm_tcb_unmap
431
432 move x, s8
433 b 1b
434 3: /* END WHILE */
435 /*************************************************************/
436
437 tcbtop(t0)
438 ld a0, T_GPT_POINTER-TCBO(t0)
439 move a1, s1
440 jal vm_tcb_unmap
441 tid2ttable(s6, t0)
442 lw t1, (t0)
443 li t2, TT_INACTIVE_MASK
444 or t1, t2, t1
445 sw t1, (t0)
446 j the_after_life

Listing 6.22:task new (create thread ) final part.

Most of the cleanup code is identical to the cleanup of the original target task’s threads. It is simplified by the fact
that, after killing the parent, none of the threads can be in communication with a thread surviving the slaughter, a
consequence of the clans and chiefs mechanism. Also, the child address spaces do not need to be unmapped, as
they can only have received any mapping they have via their parent (directly or indirectly) — also a consequence
of clans and chiefs. This task cleanup code is not shown.

The remaining cleanup is shown inListing 6.22. Lines 415–426 update the task’s TID table entry, showing the
caller as the new chief, and setting the i-bit to show that the task is inactive.

Finally, vm tcb unmap is called to finish up cleaning up all remaining task memory.FIXME: Need to have a
good look at what this code really does, and what vm delete as does.

Outside the loop the cleanup of the target task is completed by callingvm tcb unmap and by marking its
TID table entry as inactive (Lines 437–445). Execution then continues with the task creation part (label
the after life , Listing 6.12).

Do vm new as .
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Listing 6.23:vm new as .

Discussion

task new() , specifically deleting a task, is the most expensive operation in L4, as can be appreciated from the
above discussion. The potentially costliest part, however, hasn’t even been discussed yet, it is the unmapping of
the address space, which will be discussed inSection 6.6. The total time taken for task deletion is essentially
unbounded due to the potentially very complex patterns of address-space mappings. A real-time system built on
top of L4 would need to understand this, and use tasks and mappings wisely.

Implementation criticism: All the task new code is run with interrupts disabled and is thus non preemptable.
While this is ok for pure task creation, it is unacceptable for task deletion. This should be obvious from the
discussion of the above code, even without a detailed look at the (potentially very time-consuming) unmapping
code. This clearly needs fixing. At the very least, preemption points should be introduced into the unmap code,
although that is probably not enough to make real-time guarantees.

Preemption in task deletion will require reconsideration of thelthread ex regs code, seeListing 6.2.5on
page86.
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6.4 thread schedule

Listing 6.24:thread schedule .

6.5 thread switch

The thread switch system call performs an explicit time-slice donation to a designated target thread. With a
null argument it performs ayield operation, i.e., the remainder of the present time slice is forfeit and the scheduler
is invoked to pick a new thread to run.

register type usage
a0 I target TID

t0 –t3 T various temporary
t8 I caller TCB pointer (+TCBO)

Table 6.4: Register usage inthread switch . No other registers are used (other thanra , sp ).

This is, by far, the simplest system call. Its register usage is shown inTable 6.4, the code is shown inListing 6.25.

0 daddiu t1, t8, -TCBO
1 daddiu sp, sp , -8
2 dla t0, k_thread_switch_restart
3 sd t0, (sp)
4 lui t2, KERNEL_BASE
5 ins_busy_list(t1,t2,t3)
6 beq a0, zero, 1f
7 tid2tcb(a0, a1)
8 lw t0, T_FINE_STATE(a1)
9 andi t0, t0, FS_BUSY

10 beq t0, zero, 1f
11 thread_switch_fast(t8, a1, t2)
12 ld ra,(sp)
13 jr ra
14 1: to_next_thread(t2)

Listing 6.25:thread switch .

Line 0 adjusts the TCB pointer to point to the beginning of the target TCB, as required byins busy list .
Lines 1–3 push the restart address on the stack. Lines 4 and 5 invokeins busy list to ensure that the caller
is in the busy list (it might have been executing on a donated time slice since being unblocked).

Lines 6–13 perform the switch to the designated target thread (if any). Lines 8–10 verify that the destination
is ready. If so, afast thread switch(seeSection 5.2.2) is performed to the target. Remember that this leaves all
registers as they are. The destination’s restart routine, which is invoked at Lines 12–13, is responsible for restoring
the destination’s context and returning to the user.

In the case of a yield operation (user-supplied destination TID is invalid, or the destination not ready to run),
Line 14 invokes the scheduler via theto next thread macro (Listing 5.8).
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The restart code for the donating thread is correspondingly trivial: It pops its own address off the stack and invokes
syscall ret . No user-level register context needs to be restored.

Implementation criticism: It could be argued that not restoring (or clearing) registers opens a covert channel.
This would be trivial to close, of course, at the expense of a few cycles.

6.6 fpage unmap
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Other Stuff (Provisional)

7.1 Scheduling

Discuss wakeup queue structure.

Blah blah blah...

7.1.1 make busy

The macromake busy is used to restart a thread blocked on an IPC which is being terminated due to the partner
being killed (or exreg-ed). It is only used within thetask new and lthread ex regs system calls and is
inevitably followed by an invocation of theins busy list macro.

The code is shown inListing 7.1. Thetcb parameter is a (R/O) register pointing to the target thread’s TCB. The
return code parameter is an input register which contains the error code which is to be returned from the IPC
system call which the target is presently performing.

0 daddiu AT, tcb, TCB_SIZE + ST_EX_V0
1 sd return_code, (AT)
2 daddiu AT, tcb, TCB_SIZE - ST_EX_SIZE -8
3 sd AT, T_STACK_POINTER(tcb)
4 dla return_code, preempt_ret
5 sd return_code, (AT)
6 li AT, FS_BUSY
7 sw AT, T_FINE_STATE(tcb)

Listing 7.1: The code generated by the macro invocationmake busy(tcb, return code) .

Lines 0 and 1 overwrite the stacked value ofv0 with the specified return code. This will forceother excpt ret
to return to the user with the specified return code.
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Bug/Restriction 15: Terminating nested IPC trashesv0 .
This way of forcing the system call to return an error code is incorrect. If the operation terminated is a page-fault
or exception IPC (which is performed by the kernel, transparently to the user, seeSection 4.2.4) all user-visible
registers must be conserved, includingv0 . The present implementation overwrites the user thread’sv0 with
the IPC error code.
The return code should go into the page-fault/exception IPC stack frame rather then original kernel stack frame.
One way to do this is not to stackv0 , but to store it in a fixed location in the TCB. Only on a nested IPC
(Listing 4.9) would the previously saved value be stacked. Themake busy macro would then overwrite the
v0 value saved at the fixed TCB location, which would have the desired effect for user-initiated IPCs while
conserving the user state for kernel-initiated IPCs.

Lines 2 and 3 unwinds the stack to the original exception stack (discarding any frames belonging to nested IPCs).
The restart address is set topreempt ret (Lines 4, 5), and finally the thread is markedBUSY(Lines 6, 7).

0 daddiu sp, sp, 8
1 j other_excpt_ret

Listing 7.2: Thepreempt ret routine.

Thepreempt ret routine is trivial: It pops the restart address off the stack and jumps to the general exception
return codeother excpt ret (Listing 7.2).

Implementation criticism: Rather than performing another jump, and polluting the instruction cache, Line 0
of Listing 7.2should be prepended to the code ofother excpt ret .

7.1.2 ins busy list

Theins busy list macro is invoked to insert a thread into the busy list at the correct priority. This is generally
necessary when a thread has been created or has become unblocked (usually via an explicitmake busy ). It is
also required during message delivery (seeListing 5.2), or during preemption, when a thread may be running on
a donated time slice (lazy scheduling). The macro also is invoked if a thread’s scheduling parameters change, as
happens during athread schedule system call (Section 6.4).

The code is shown inListing 7.3. The tcb parameter is a (R/O) register pointing to the (beginning of the)
target thread’s TCB. Thekern base input register points to the kernel miscellaneous data, while thetemp reg
parameter designates a scratch register.

Lines 0–1 test thebusy link to see whether the thread is already in the busy list (although not necessarily at the
correct priority). If so execution continues at Line 16.

Otherwise, the thread’s timeslice value is obtained from the TCB (Line 2). If it is zero, the thread is not schedulable
(Line 3). Lines 4–8 use the thread’s priority value,TCB.tsp , to locate the appropriate ready queue, and make
it point at the target TCB. Each of the per-priority queues is circular. Hence, if the queue was previously empty,
the TCB is linked to itself (Lines 9–11). Otherwise the target TCB is linked into the existing list, behind the TCB
previously pointed to by the busy-list pointer, which is then redirected to point to the target TCB (Lines 13–15).
This inserts the TCB at the tail of the list (remember that the busy list array points to the tails of the lists).

The “remaining time slice” and “current priority” values of the target thread are then reset to the thread’s “normal”
time slice length and priority; they might have changed if the thread was preempted while executing on a donated
time slice. This ensures that the thread gets a new time slice next time it is scheduled.
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0 ld AT, T_BUSY_LINK(tcb)
1 bne AT, zero, 254f
2 lhu AT, T_TIMESLICE(tcb)
3 beq AT, zero, 255f
4 lbu temp_reg, T_TSP(tcb)
5 sll temp_reg, 3
6 daddu temp_reg, temp_reg, kern_base
7 ld AT, K_PRIO_BUSY_LIST(temp_reg)
8 sd tcb, K_PRIO_BUSY_LIST(temp_reg)
9 bne AT, zero, 253f

10 sd tcb, T_BUSY_LINK(tcb)
11 b 254f
12 nop
13 253: ld temp_reg, T_BUSY_LINK(AT)
14 sd temp_reg, T_BUSY_LINK(tcb)
15 sd tcb, T_BUSY_LINK(AT)
16 254: lhu temp_reg, T_TIMESLICE(tcb)
17 sh temp_reg, T_REM_TIMESLICE(tcb)
18 lbu temp_reg, T_TSP(tcb)
19 sb temp_reg, T_CTSP(tcb)
20 255:

Listing 7.3: The code generated by the macro invocationins busy list(tcb, kern base, temp reg) .

7.1.3 get next thread

The scheduler is theget next thread routine, which selects the next runnable thread, based on priority and
the round-robin policy. It is shown inListing 7.4.

The code first checks whether there is a thread which was preempted by an interrupt, if so, this one is chosen
(Lines 3–7). Otherwise it examines the busy list in decreasing priority order, skipping empty lists. Any non-BUSY
entries at the head of the list are removed from the list (Lines 13–18). A whole list may become empty this way,
in which case it is marked as such by inserting a null pointer (Lines 19–23). Finally, the thread at theheadof the
first non-empty list is returned as the next one to run. Note that this is the successor of the one pointed to by the
busy-list array (which points to the tail). It becomes the new tail (Line 26).

The existence of the idle thread guarantees that there is always a runnable thread to choose.

7.2 Interrupts

7.3 Initialisation

7.4 Sigma Zero
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0 tcb_t *get_next_thread(kernel_vars *k) {
1 tcb_t *t1,*t2;
2 short int i;

3 if (k->int_list != END_LIST) {
4 t2 = k->int_list;
5 k->int_list = t2->int_link;
6 return t2;
7 }
8 for(i = MAX_PRIORITY; i >= 0; i--) {
9 t1 = k->prio_busy_list[i];

10 if (t1 == 0)
11 continue;
12 t2 = t1->busy_link;
13 while((t2 != (tcb_t *)0) &&
14 ((t2->fine_state & FS_BUSY) == 0)) {
15 t1->busy_link = t2->busy_link;
16 t2->busy_link = 0;
17 t2 = t1->busy_link;
18 }
19 if (t2 == 0)
20 {
21 k->prio_busy_list[i] = 0;
22 continue;
23 }
24 break;
25 }
26 k->prio_busy_list[i] = t2;
27 return t2;
28 }

Listing 7.4: The scheduler functionget next thread .
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ready queue,seebusy list
receive fpage,8
receive only , 48, 51, 59, 62
redirection,seeIPC redirection
register,see alsocoprocessor register

HI/LO, 10, 11, 31
register message,8
rem sendq , 83
restart,33, 37, 42, 51, 52, 57, 59, 63, 65, 94
run queue,seebusy list

scheduler,95
scheduling,7, 19, 53, 59, 63

lazy,51, 63, 94
send queue,20, 51, 57, 59, 62
send only short , 38, 42, 48, 50, 55, 65
send only short restart , 55
sender restart receiving , 51, 59
sigma 0,seeσ0

σ0, 9, 19, 22, 29
spinner,seeidle thread
stacked commprtnr , 37, 85
stacked fine state , 37, 85
state

coarse,20
fine,21, 47, 66, 80, 84

string
direct,8, 47, 68, 70
indirect,8, 47, 70

synchronisation,6, 7
syscall ret , 30, 31, 42, 46, 49, 51, 52, 62, 91

task,6, 7–9, 20, 22, 25, 45, 47, 49, 52, 58, 65, 66
active,6
donation,6
ID table,22, 88
inactive,6, 22, 88
version number,22

task new, 6, 9, 21, 87–88, 93
TCB, 19, 20, 29, 30, 32, 34, 36, 39, 45, 47, 49, 51,

57, 60, 62, 64, 65, 67, 70–72
invalid, 34, 49, 58, 79

tcb frame alloc , 79
tcb t , 20
tcbtop , 57
temporary mapping area,13, 21, 36, 38, 39, 42, 66,

68, 71
thread,6, 9, 19, 27, 29, 31, 32, 34, 35, 37, 39, 41,

44, 45, 51–53, 62, 66, 67
ID, 6, 9, 34, 39, 45, 49, 51, 56, 57, 59, 60, 64,

65, 75
l0, 6, 9
state,seestate fine

thread ID,20, 62
thread schedule , 7, 91, 94
thread switch , 7, 91
thread switch fast , 41, 52, 52, 59
TID, seethread ID
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TID table,seetask ID table
tid2tcb , 49, 58, 64
tid2ttable , 88
time slice,7, 19, 55, 60, 63, 80

donation,7, 7, 21, 51, 53, 91, 94
remaining,80

timeout,7, 19, 33, 37, 38, 41, 43, 44, 49, 51, 53, 57,
59, 60, 63, 65

tlb2 miss , 25, 39
tlb2 sync shared , 35
to chief , 49, 57
to next thread , 51, 59, 62, 91

virtual sender,9, 34, 48, 56, 62, 64, 65
vm lookup pte , 39
vm map, 68
vm tcb insert , 34, 79

WAITING, 21
WAKEUP, 21
wdw map addr , 39, 67
wfor , 47
window fault,67
window fault , 37, 43, 67
window fault ret , 41

xtlb refill , 24
xtlb refill fail , 27

yield, 7, 91
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