Diss. ETH No. 9382

Design and Implementation
of a
Three-Dimensional,
General Purpose
Semiconductor Device Simulator

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

for the degree of
Doctor of Technical Sciences

presented by
GERNOT HEISER
Master of Science, Brock University
born 7 July 1957
citizen of Germany

accepted on the recommendation of
Prof. Dr. W. Fichtner, examiner
Prof. Dr. H. Baltes, co-examiner

1991

To my parents

Acknowledgements

I would first like to thank Prof. Wolfgang Fichtner, who not only was my
supervisor for this thesis and the manager of the three dimensional device
simulation project, but who also very actively participated in the project.
Without his pressing (whenever he felt it necessary) and his encouragement
(whenever I needed it) this project would have never been successful, and
without the stimulating research atmosphere he provided at the lab I would
never have started. I am grateful to Prof. Henry Baltes for accepting to
co-examine the thesis and for reading it carefully.

I am greatly indebted to Joseph Biirgler of the lab, whose profound
understanding of the theory were essential to the success; the many, often
heated discussions we had were extremely productive. Many other people at
ETH contributed in one way or the other. Paolo Conti, who has been working
with me on the project from the beginning, was a good colleague and a reliable
fellow in many battles against boredom, alcohol, and bureaucracy. Claude
Pommerell was the \compatible" interface to the linear solver software,
and a great help in not-so-serious discussions over a beer or two. The
graphics software written by Stephan Paschedag and Marc Westermann was
an indispensable help for debugging the simulator, and I am very grateful for
their speedy and efficient cooperation. Nancy Hitschfeld, Kevin Kells and
Doelf Aemmer contributed through many discussions. Special thanks are due
to Peter Lamb, who not only kept the computers running, but whose expertise
in may fields, including various non-technical ones, made it always exciting
to talk to him.

My work was financially supported by Siemens AG, Berlin and Miinchen,
and Cray Research Inc., Minneapolis. Roland Kircher from Siemens supplied
the first examples for us to play with, and it was always a pleasure to talk to
him. Other sample data came from Mark Birrittella from Cray, Richard Fair

Vi Acknowledgements

from MCNC, and Prof. Don Rose from Duke University. Marius Orlowski
from Motorola Inc. invited me for a five weeks stay in Austin, where I had
an exciting time on and off the job with Matt Noell, Sang-Kyu Park, Ravi
Subrahmanyan, and James Berry. Armin Friedli delayed the conclusion of the
thesis by giving me the chance to benchmark the world’s fastest computers,
an experience I do not want to miss.

My very special thanks go to Trudy Weibel. Not only has she always been
supportive and encouraging, she also constantly reminded me that there were
other things than just work for which it is worth living. Encouragements also
came from other dear friends, in particular Hansruedi Heeb, Wes Petersen,
Klaus Hinrichs and Edo Biagioni.

Abstract

Since the early work by Gummel in the 1960s, numerical simulation of
semiconductor devices has developed into an indispensable tool for device
engineers. So far, most device simulations have been one or two dimensional.
With continuously shrinking device features truly three-dimensional (3d)
treatment of the semiconductor becomes necessary.

A few 3d device simulation programs exist since the early 1980s, but their
applicability is limited by the fact that they cannot simulate really general
device geometries. They all use grids that are tensor-products of one- and
two-dimensional meshes, which leaves little flexibility in modelling the third
dimension.

This thesis describes the design and implementation of Second, a general-
purpose, 3d semiconductor device simulator. Second solves the traditional
drift-diffusion equations of the semiconductor. The partial differential equa-
tions are discretized with the box method on a general 3d mesh consisting
of a mixture of tetrahedra, quadrilateral pyramids, triangular prisms, and
parallel epipeds. The one dimensional Scharfetter-Gummel scheme is used
for integrating the current relations along grid edges. Decoupled (Gummel)
and coupled (Newton) methods are implementeded for linearizing the discrete
equations. Iterative methods (preconditioned conjugate-gradient type algo-
rithms) are used for the solution of the linear systems. A time discretization
with automatic time step control, based on an estimate of the local truncation
error, is used for transient simulations. Physical models implemented include
doping and field dependent carrier mobilities, surface scattering, band gap
narrowing, and generation and recombination models with doping dependent
carrier life times.

The flexibility of Second is demonstrated on a few case studies. One

viii Abstract

is an investigation of parasitic MOSFETs in a trench isolated sub-micron
n-MOS device. This study demonstrates how design rules may be drawn up
based on the results of 3d device simulations. A second example investigates
latchup in CMOS devices and contains a comparison between two- and
three-dimensional simulation results. A third case is a study of the switching
behaviour of a bipolar transistor.

Zusammenfassung

Seit den frithen Arbeiten von Gummel in den sechziger Jahren hat sich
die numerische Simulation von Halbleiterbauelementen zu einem unverzicht-
baren Werkzeug fiir den Entwurf neuer Bauelemente entwickelt. Bisher
waren die meisten Bauelementsimulationen ein- oder zweidimensional. Mit
zunehmender Reduktion der Grofle der Bauelemente wird jedoch eine echt
dreidimensionale (3d) Behandlung der Halbleiterstrukturen notwendig.

Einige wenige 3d Bauelementsimulationsprogramme existieren seit den
frithen achziger Jahren, ihr Anwendungsbereich ist jedoch durch die Tat-
sache beschrinkt, daf3 sie keine Behandlung wirklich allgemeiner Geometrien
erlauben. Dies ist vor allem darauf zuriickzufiihren, dafl die von diesen
Programme verwendeten Gitter Tensorprodukte ein- und zweidimensionaler
Gitter sind, was nur eine wenig flexibile Modellierung der dritten Raumdi-
mension erlaubt.

Diese Dissertation beschreibt den Entwurf und die Implementierung
von Second, einem dreidimensionalen Bauelementsimulator mit breitem
Anwendungsspektrum. Second basiert auf der numerischen Losung der
traditionellen Drift-Diffusionsgleichungen fiir Halbleiter. Diese partiellen
Differentialgleichungen werden mittels der Box-Methode auf einem all-
gemeinen dreidimensionalen Gitter, bestehend aus Tetraedern, Vierecks-
pyramiden, Dreiecksprismen und Parallelepipeden, diskretisiert. Fiir die
Integration der Kantenstrome wird das eindimensionale Scharfetter-Gummel-
Verfahren benutzt. Zur Linearisierung der diskreten Gleichungen wurden
entkoppelte (Gummel-) und gekoppelte (Newton-) Verfahren implemen-
tiert. Die resultierenden linearen Gleichungssysteme werden mit itera-
tiven Verfahren, basierend auf der Methode der konjugierten Gradienten,
gelost. Die Zeitintegration verwendet eine automatische Schrittweiten-
kontrolle basierend auf einer Abschidtzung des lokalen Diskretisierungs-

X Zusammenfassung

fehlers. Die implementierten physikalischen Modelle beinhalten dotierungs-
und feldabhingige Beweglichkeiten der Ladungstriger, Oberflichenstreuung,
Bandliickenverengung, sowie Erzeugungs- und Rekombinationsmodelle mit
dotierungsabhingigen Lebensdauern.

Die vielfiltige Verwendbarkeit von Second wird anhand einiger Fall-
studien demonstriert: Eine Untersuchung parasitirer MOSFET-Elemente in
einem n-MOS-Transistor zeigt, wie aufgrund von Simulationsergebnissen
Designregeln fiir integrierte Schaltungen aufgestellt werden konnen. Als wei-
teres Beispiel dient eine Studie von Latchup-Effekten in CMOS-Strukturen,
die auch einen Vergleich zwischen zwei- und dreidimensionalen Simulations-
ergebnissen prisentiert. Als letzter Fall wird das Schaltverhalten eines
Bipolartransistors untersucht.

Contents

Abstract
Zusammenfassung
0 Introduction

1 The Semiconductor Modelling Problem
1.1 The Semiconductor Equations
1.2 Boundary Conditions
1.2.1 ExternalBoundaries
1.2.2 Internal Boundaries
1.3 Scaling
1.4 PhysicalModels

1.4.1 Intrinsic Concentration and Effective Intrinsic Con-
centration

1.42 Mobilty 0.

1.4.3 Recombination and Generation

2 Numerical Solution of the Semiconductor Equations

vii

o o0 O O;

11
11
14

14
14
15

19

Xii Contents
2.1 Spatial Discretization of the Differential Equations . . . 19
2.1.1 The Box Discretization Method 20

2.1.2 Box Discretization of the Semiconductor Equations 21

2.1.3 Limitations of the box method 23

2.1.4 Other Spatial Discretization Methods 24

2.2 Time Discretization 26
2.3 Non-linear Equation Solution 28
2.3.1 Damped Newton lteration 28

2.3.2 Coupled and Decoupled Solution 30

2.3.3 Choice of Variables 31

2.4 SparselinearSystems 32

3 Semiconductor Device Modelling in Three Dimensions 35
3.1 PreviousWork oL 35
3.2 What Makes 3D Harder Than2D? 37
3.2.1 Computational Complexity 37

3.2.2 Numerical Aspects 38

3.2.3 Geometry Definition 39

3.2.4 Grid Generation 39

3.2.5 Visualizationof Results 40

3.3 OQurApproach 40

4 Methods 43
41 Assembly 43

4.1.1 Poisson’s Equation. 43

Contents

4.2

4.3
4.4
4.5
4.6

4.1.2 Continuity Equations

Treatment of Boundary Conditions

421

Dirichlet Boundaries

4.2.2 NeumannBoundaries

4.2.3

Internal Boundaries

Terminal Currents

Electric Field

Initial Solution

Stopping Criteria

4.6.1
4.6.2

Non-linear lterations

Linear lterations .

4.6.3 Transient Simulations

5 Implementation

5.1

5.2

Software Engineering Aspects

511

Hardware and Software Environment

5.1.2 Drawbacks of FORTRAN

5.1.3 Further Complications

51.4

Preprocessing . .

Description of the Implementation

5.2.1
5.2.2
523
5.2.4

Modules and Files

Macros for Portability and C/C++ Interface

Libraries and Tools

Program Structure

xiii

44
46
46
48
48
49
50
53
54
54
55
56

Xiv

52,5 Data Structures
5.2.6 Algorithms
5.2.7 Avaijlability and Portability

5.3 Integration Into a Simulation System

6 Results

6.1 Parasitic MOSFETs
6.2 CMOSLatchup

6.3 Transistor Switching

7 Conclusions and Future Work

List of Figures

List of Programs

List of Tables

Bibliography

Index

Curriculum Vitae

Contents

111

115

117

119

121

129

135

Introduction

Since the invention of the transistor forty-four years ago, solid state electronics
has developed with a breathtaking pace, and has irreversibly transformed
technology. The computer revolution, only possible with VLSI, is still at
its beginning and has the potential to even more significant changes. While
it may certainly be argued whether the social impacts of these changes is
generally for the better or worse, many problems in contemporary society can
only be solved with the use of microelectronics, even some of the problems
created by this progress. Examples include the use of sophisticated control
logic to improve energy efficiency of such diverse objects as cars, trains and
wind turbines, or better understanding of environmental processes due to more
realistic numerical modelling with faster computers.

The first integrated circuits, which became commercially available in the
early 1960s, contained only a few devices. In the year 1990, DRAM chips
containing more than four million devices could be bought in the store, and
chips with sixteen times that number have already been fabricated in the
laboratory. The numbers go up by a factor of four every two to three years.
Quantitatively speaking, this rate of progress is unrivaled in the history of
mankind.'

The increasing packing density of VLSI chips implies shrinking device

The increase in computer power, which occurs at roughly the same rate, is but a result of the
advances in microelectronics.

2 Introduction

dimensions. Reduced feature size, on the other hand, requires more compli-
cated, and time consuming, manufacturing processes. This means that a pure
\trial-and-error" approach to device optimization becomes impossible since
it is both too time consuming and too expensive. Simulation has therefore
become an indispensable tool for the device engineer. Besides offering the
possibility to \test" hypothetical devices that have not (or could not) yet
been manufactured, simulation offers unique insight into device behaviour by
allowing the \observation" of entities that cannot be measured on real devices.

The first one dimensional (1d) device simulations were performed by
Gummel [37] in 1964, based on the partial differential equations (PDEs)
of the semiconductor proposed by van Roosbroeck [61]. Soon after, two
dimensional (2d) simulations were performed, and during the 1970s, 2d
simulation developed into a standard tool for device design.

Figure 0.1: Spreading of current at device edges causes 3d effects.

2D treatment of semiconductor devices becomes unrealistic once current
flow is no longer predominantly limited to a plane. The first source of such
non-2d behaviour are edge effects. In a MOSFET, for example, carrier flow
is two dimensional in the interiour. Near the sides of the channel, however,
the current spreads outside the region between source and drain (Figure 0.1).
This effect can be neglected if the transistor is wide enough so that the edge
currents do not matter; with shrinking device dimensions this is no longer the
case and 2d modelling can no longer be accurate.

A second class of 3d effects incorporates various kinds of device cross

talk. A MOSFET that is isolated by an oxide trench may suffer from leakage
currents due to parasitic devices that can be partially turned on under certain
conditions. Operation of such devices is usually inherently 3d and cannot
be modelled in two dimensions. Latchup effects in CMOS structures are
impossible to model two dimensionally if the tubs are not arranged in line.
Leakage currents in DRAM trench cells are 3d effects since the the trenches
as they are used in 4 Mbit and 16 Mbit chips are too small to be reasonably
modelled in 2d [11].

Finally, CMOS latchup or DRAM upset caused by ionizing radiation (e.g.
natural o activity) can only be modelled in 3d due to the small diameter of the
ionized channel [72].

The necessity to model such effects lead to the first 3d device simulators
in 1980 [14, 84]. However, while general-purpose simulators are available for
2d problems, most of the currently available 3d device simulators can only
model a small class of unrealistic devices, and more general ones [17] are still
significantly limited in the generality of device geometries they can handle.

The aim of this thesis is the construction of a 3d device simulation
program that is general enough to simulate arbitrary device structures under
general operating conditions, including transient analysis. In order to be
generally useful, the program must also be fast, \reasonable" in its memory
requirements, and user friendly. On the other side we restrict ourselves to
conventional physical models as they have been used in most device simulators
so far. Provided a sufficiently general design, more sophisticated models can
be added at a later stage.

This work is structured as follows: Chapter 1 will present the basic
physical problem that must be solved by a device simulator. We restrict
ourselves to the traditional drift-diffusion formulation of the semiconductor
equations. Chapter 2 discusses how this problem can be solved numerically
on a digital computer. We introduce methods for discretizing the PDEs,
focusing on the box method which has turned out to be the most successful
discretization scheme in device simulation.

In Chapter 3 the state of the art in 3d device simulation is examined and
problems that are particular to 3d are discussed. Our approach to model general
3d device geometries is outlined. Chapter 4 describes the basic mathematical
and computational methods we use in our simulator in more detail. Chapter 5
describes the actual software implementation of the device simulator Second,

4 Introduction

starting with an assessment of software engineering problems in the \real
world" of scientific computing, and presenting solutions to these problems.
The basic algorithms and data structures used in Second are then described.

The usability and flexibility of Second is demonstrated in Chapter 6 by
means of actual simulations performed on a set of very different problems.
Chapter 7 concludes the thesis with an outlook on further work that can be
done to enhance Second’s usefulness.

The Semiconductor Modelling
Problem

In this chapter we present the basic problem to be solved in device simulation.
The first section introduces the partial differential equations (PDEs) used to
describe the behaviour of a semiconductor. Section 1.2 discusses the boundary
conditions for which the equations are to be solved. Section 1.3 shows how the
PDEs are scaled for numerical treatment and Section 1.4 contains a discussion
of the physical models used.

1.1 The Semiconductor Equations

A semiconductor is usually modelled as a medium with two kinds of mobile
carriers of charge: electrons carrying a charge —q and holes carrying a
positive charge of the same magnitude. In addition there are impurities,
positively charged donors and negatively charged acceptors. These are
immobile, however a donor can recombine with an electron, or an acceptor
can recombine with a hole, to form an electrically neutral impurity. We
assume in the following that all impurities are ionized in the temperature
ranges of interest to us (i.e. around room temperature).

Classical electrodynamics (see e.g. [45]) relates the electric field E to the

6 The Semiconductor Modelling Problem

charge density p by Poisson’s equation
V -ecoFE = p, (L.1)

where ¢ is the dielectric constant of the material and ¢y the permittivity of
vacuum. Note that € may vary throughout the device but is assumed to be
independent of time or bias conditions. In the case of a semiconductor we
have

0=q(p—n+NS —N;), (12)

where n and p denote the concentrations (densities) of electrons and holes
respectively, and N; and N, are the concentrations of ionized donors and
acceptors. If we express the electric field by the electrostatic potential

E = -V and write N := N ;’ — N_ for the net impurity concentration,
Poisson’s equation for the semiconductor becomes
— V.oV —g(p—n+N)=0. (1.3)

Conservation of charge is expressed by the continuity equation

do
V- J+——-=0 1.4
2 (1.4)
for the current density J, where ¢ is the time. In our two carrier model of
the semiconductor, charge conservation applies individually to the two carrier
types except for recombination processes. Therefore we obtain separate

continuity equations for both carriers:

—V-J"+q(R—|—aa—7tl) = 0, (1.5)
V-Jp+q(R+%) = 0. (1.6)

Here J" and J? are the electron and hole current density, and R is the net
recombination rate, i.e. the rate at which carriers vanish due to recombination
processes. Pair generation of carriers gives a negative contribution to R.

In addition to the conduction currents there is the displacement current
J4 = ey E. These currents add up to the total current:

J=Jt 4 g+ Jr. (1.7)

Taking the time derivative of Poisson’s equation, we find the relation

) B) o
V'Jd:V'aESOE: i —n+N)=q(p-7n). (18)

1.1. The Semiconductor Equations 7

Together with (1.5), (1.6) this yields
V-J'=0 (1.9)
in accordance with Maxwell’s second equation [45].

In the drift-diffusion approximation usually employed in device simulation,
the current is assumed to be composed of a drift part, driven by the electric
field, and a diffusion part, driven by the concentration gradient:

J* = —qu"nVi +qD"Vn, (1.10)
JP = —quPpVy — qDPVp. (1.11)

Here p™, uP are the mobilities while D™, DP are the diffusion coefficients for
electrons and holes respectively. These are related by the Einstein relation

p=u" (1.12)
q

where k denotes the Boltzmann constant and 7" the temperature.

If Boltzmann statistics is applicable and the semiconductor is in thermal
equilibrium, the densities can be described by the Fermi level Er as

qp — Er
n = n;exp T, (113)
Er —qy
p = n;exp w0 (1.14)
where n; is the intrinsic concentration, which has the property
ni = np. (1.15)

Away from equilibrium the above equations no longer hold, but we can still
write the densities as

e 10—)

n = mn;exp T (1.16)
A —)

p = mn;exp % (1.17)

where ¢" and ¢P are the quasi-Fermi potentials (also called imrefs). These are
the driving forces of the particle currents, as can be seen by using Egs. (1.16)
and (1.17) to rewrite (1.10), yielding
J" = —qu'nV¢", (1.18)
JP —quPpV P, . (1.19)

8 The Semiconductor Modelling Problem

In thermal equilibrium the quasi-Fermi potentials become equal to the Fermi
potential ¢ := Er/q (cf. [31]).

Deviations from Boltzmann statistics due to degeneracies are usually
treated by replacing the intrinsic concentration by an effective intrinsic con-
centration

AE,
e (1.20)

where AE, represents the bandgap narrowing. Eqs (1.16) and (1.17) now
read

Nje = Nj €XP

. q(y — ¢")

N = MNje€Xp T (1.21)
o q(¢* =)

P = MNieexp T (1.22)

and in equilibrium, where ¢" = ¢P = Ep,
n%@ =np (1.23)

holds. With the introduction of the effective intrinsic concentration Eqs (1.18)
and (1.19) remain the same, while (1.10) and (1.11) must be replaced by

JU = —qu"nVi +qD"Vn — ETu"V Inng,

= —qu"nV () + A;;g) + kETp"Vn, (1.24)
J? = —quPpVip — qDPVp+ kTu"V Inn;,

= —qu'pV (Y — A;;g) — kTuPVp. (1.25)

These equations have precisely the same form as (1.10) and (1.11) if we
replace the electrostatic potential by an effective potential Y™ = ¢+ AE,/2q
for electrons and Y? = ¢y — AE,/2q for holes.

1.2 Boundary Conditions

1.2.1 External Boundaries

In order to solve the device equations presented in the previous section,
we have to specify appropriate boundary conditions. The boundary for a

1.2. Boundary Conditions 9

contact gate oxide (Qijng) contact

silicon
substrate

Figure 1.1: Simple MOSFET structure showing silicon, Qepi, oxide, s,
and contacts, I'g

device to be simulated (a simple example is shown in Fig. 1.1) consists of two
parts: contacts and free boundary. We denote the whole domain as €2, the i-th
contact as I'; and the remaining boundary as I';:

o =Tp,UTly, (126)

where
N¢
Iy:= U T, (1.27)
=1

N¢ being the number of contacts. Contacts are sources and sinks of carriers
while no carriers are allowed to cross the free boundaries. This latter condition
means that the current densities normal to the boundary must be zero,

n-J"=n-J?”=00nT}, (1.28)

where n is the outward unit normal vector of the boundary. Because of (1.18)
and (1.19) this implies that the gradients of the quasi-Fermi levels must vanish
in the direction normal to the boundary. Under the condition of no surface
charge, we impose the same condition on the electrostatic potential [45], so
that we obtain on I'j, a set of Neumann boundary conditions

n-Vo"=n-V¢? =n-Vypy=0onT},. (1.29)
Because of (1.21) and (1.22) this implies
n-Vn=n-Vp=0onl}, (1.30)

10 The Semiconductor Modelling Problem

provided that n - Vn,, is also zero on I';,.

At contacts we require charge neutrality
o=qlp—n+N)=0 (1.31)

and local thermal equilibrium (Eq. 1.23). The latter condition, because of
(1.21), (1.22), (1.13) and (1.14), means that the quasi-Fermi potentials become
equal to the Fermi potential

A L (1.32)

Eq. (1.31), together with (1.21), (1.22) and (1.32), determines the electrostatic
potential as a function of the Fermi potential

N
¢:¢F+Sinh2 -

e

onT. (1.33)

The Fermi potential, however, must be equal to the applied voltage in an
ohmic contact [71], so that we get a Dirichlet condition on contacts:

1/J—Ubi=¢”:¢”:Ui onI‘i. (134)

Here U; (\applied voltage") is the potential applied to contact ¢. The voltage

N
Uyp; := sinh
2nie

(1.35)

is called the built-in voltage.

It must be noted that these boundary conditions are sensible only if they
do not influence the physical behaviour of the device. This normally means
that the boundaries must be sufficiently far away from physically active parts
of the device, such as space charge regions or regions where the impurity
concentration changes appreciately in the direction normal to the boundary.

There is one exception to that rule: The nature of our boundary conditions
forces boundaries to behave like a symmetry plane between the simulated
device and a \virtual" device whose geometry and physical composition is a
mirror image of the \real" device. One can take advantage of this fact when
simulating devices with a symmetry plane: Only one half of the device must
be simulated and the simulated current densities will be exactly the same as if
the whole device had been simulated.

1.3. Scaling 11

1.2.2 Internal Boundaries

Besides the external boundaries of the simulation domain 2, there also exist
internal boundaries (or interfaces) between different materials. In the case
of silicon devices the only kind of interface of interest is between insulator
(oxide) and semiconductor (silicon).

In the insulator, £2;,s, we assume that there are no charges, neither mobile
nor immobile. This means that Poisson’s equation is reduced to Laplace’s
equation

-V ginsco VY = 0in Qs (1.36)

where ¢;, is the dielectric constant of the insulator. In the absence of
surface charges, the interface condition is simply the continuity of the electric
displacement ey V1 [45]. Hence the normal component of the electric field
is discontinuous:

n- ssemivmﬂsemi =n- Einsvw\ﬂms on Oem; N Oyns, (1.37)
where €. 1S the dielectric constant in the semiconductor region Qge.n;.

Since we do not allow carriers in the insulator, there is no current across
the interface and the same Neumann boundary conditions (1.29) apply for the
quasi-Fermi levels (or the densities) as in the case of external boundaries.

Sometimes we want to apply Dirichlet boundary conditions in the interior
of the device, e.g. if we want to simulate a device with a metallic contact (of
zero thickness) that lies between semiconductor and oxide. This is really a
limiting case of a simulation domain with a hole, where the hole is part of
the Dirichlet boundary. Hence we treat such \internal" contacts as part of the
external boundary T'y.

1.3 Scaling

When numerically simulating physical phenomena it is customary to scale the
physical entities. This has several reasons. The most important one is to shift
the order of magnitude of the variables as closely to unity as possible, to avoid
problems with the finite numeric range of digital computers. Other reasons
include the \scaling away" of constants to simplify formulae. Usually the
scaled entities become dimensionless.

12 The Semiconductor Modelling Problem

For our simulations we use the scaling proposed by de Mari [50]. As scaling
factors we define: the intrinsic Debye length [;, the intrinsic concentration
n;, the thermal voltage Ur and a unit diffusivity Dy for lengths, voltages,
concentrations and diffusion coefficients respectively. These are defined as

1
cokT 2
I, = (‘”f") : (1.38)
q-n;
kT
Ur = —, (1.39)
q
Dy = 1m’s7!, (1.40)

while for n; a phenomenological formula for the temperature dependence is
used (see Section 1.4.1).

Quantity Scaling factor
Name Symbol | Symbol Value
Displacement x I; 3.3865x10° m
Concentration n,p, N | n 1.4824%10"m~3
Current density J quol;1 7.0135%10" Am~2
Voltage U,¢ | Ur 2.5852x1072V
Electric field E Url; 7.6339x10? Vm™!
Time t s 1.1468x107° s
Current I qn;il; Do 8.0434x 108 A
Mobility m DoUL* 3.8681x10' m>V~ls~!
Recombination rate R n; Dol 2 1.2926x10* m—3s~!

Table 1.1: De Mari scaling factors for T' = 300 K.

From these definitions the scaling factors for all other relevant entities can
be derived. The various scaling factors and their values are summarized in
Table 1.1. Table 1.2 summarizes the fundamental and material constants used
for determining the normalization factors.

We use the symbols u, v, and w for the scaled potentials i, ¢™ and ¢P.
For all other quantities we use the same symbols irrespective on whether or
not they are scaled. Usually the potential variables are sufficient to indicate
that an equation assumes scaled quantities.

1.3. Scaling 13

Quantity Symbol Value
Universal constants

Elementary charge q 1.60217733 x107C

Boltzmann constant k 1.380658 x 10~ B JK !

Permittivity of vacuum ¢y 8.854187818x 10~ '2Fm™!
Material constants

Dielectricity of Si €5i 11.9

Dielectricity of Si0, €Si0, 3.9

Table 1.2: Fundamental constants (after Cohen and Taylor [20]) and material
constants (after Sze [71])

The scaled semiconductor equations for a silicon device now read

-V-Vu—(p—n+N) = 0, (1.41)

0
—V-J”—i—R—i—a—? — 0, (1.42)

0
v.JP+rRr+ 2 — o, (1.43)

ot

where

J" = —u"(nVu+Vn) = —pu"nVo, (1.44)
J? = —uP(pVu —Vp) = —pPpVuw, (1.45)
= pget, (1.46)
= mnieV " (1.47)

in the semiconductor, and

V-2 v =0 (1.48)

Esemi

in the oxide. The boundary conditions are
u—Uy=v=w=U; (1.49)
on Dirichlet, and
n-Vu=n-Vvo=n-Vw=n-Vn=n-Vp=0 (1.50)

on Neumann boundaries.

14 The Semiconductor Modelling Problem

1.4 Physical Models

In this section we present the models used for the quantities n;, 1., i, and .

1.4.1 Intrinsic Concentration and Effective Intrinsic
Concentration

The intrinsic concentration in silicon is given in [10], based on measurements
over a temperature range of 250{500K, as

n; = 3.87 x 102(T/K)' exp(—7000 K/T) m . (1.51)

For a temperature of 300K this gives the value of 1.4824 x 10'm™—3 in
Table 1.1.

The effective intrinsic concentration is given by Eq. (1.20) as a function
of the bandgap narrowing. Bandgap narrowing is a phenomenological way
to incorporate deviations from Boltzmann statistics due to heavy doping
and quantum effects. Therefore bandgap narrowing is an approximate
correction that lumps several different physical phenomena together into a
single parameter. Since this is only a coarse approximation of the actual
device physics, it is not surprising that more than one bandgap narrowing
model exists.

In Second we use the model after Slotboom [67]:

In L 4+ In & +l
1083 m—3 1083 m—3 2

or alternatively the one after Gaur et al. [34]:

AE, = q0.009V

9.248 - 107 1°(|N|/cm?)0478 for IN| < 5-10" /cm?

AB, = 2kT{ 1.52 otherwise

(1.53)

1.4.2 Mobility

The carrier mobilities in doped semiconductors are reduced from their intrinsic
values, pg, due to scattering at impurities, leading to doping dependent

1.4. Physical Models 15

mobilities p(N). Caughey and Thomas [16] fitted experimental data to the
formula

H1
N) = _m 1.54
p(N) ’u0+1+N/NT (1.54)

An electric field does not accelerate the carriers to arbitrary velocities due
to velocity saturation. We model this after Scharfetter and Gummel [64] with
a mobility depending on the electric field as

, 5 N —1)2
u(N)E|] L rIN)E) /ve] } . (1.55)

M(N,E|):H(N){1+ |: W(N)E/ve + G

Vs

where F)| is the component of the electric field parallel to the carrier current.
However, since the carrier currents are driven by the gradients of the quasi-
Fermi potentials (see Eqs. (1.18), (1.19)), it is preferable to use the magnitudes
of these gradients as the parallel electric field:

o= Ve, (1.56)

By (VP (1.57)

In MOSFETs, where high current densities flow along insulator interfaces,
surface scattering effects become important. Yamaguchi [83] proposed to
model these as a function of the transverse electric field as

w(N, Ey, EL) = u(N, E)) [1 + (%)] l, (1.58)

where E| is the component of the electric field orthogonal to the direction
of the current flow. Table 1.3 summarizes the various constants used in
Eqgs. (1.54), (1.55), and (1.58).

1.4.3 Recombination and Generation

Recombination is a phenomenon that works towards restoring equilibrium
(Eq. 1.23) under conditions where an excess of carriers exists. In case of
carrier depletion (np < n?,), the same processes lead to an increase of carrier
concentrations, i.e. generation. However, this generation is normally not
significant so that the processes involved are generally called \recombination"
even though they may actually produce carriers.

16 The Semiconductor Modelling Problem

quantity | electrons holes units
Lo 0.00880 0.00543 m2V Tt
n 0.12520 0.04073 m2V_ls—!
N, 1432 267.0 102'm—3
Vs 100.0 83.7 10° ms!
Ve 49 49 10° ms—!
E, 30.32 15.30 10° V™!
c 0.657 0.617
G 8.8 1.6

Table 1.3: Mobility parameters for electrons and holes

The most important recombination processes in silicon are the Auger
process where an electron-hole pair recombines and the recombination energy
is transferred to a third particle, and single level processes where carriers
recombine via isolated trap levels in the band gap.

Auger recombination produces the recombination rate
RA“QCT = (Tlp - nge)(nA’Zug + pAiug)’ (159)

where A 4,4 are the Auger coefficients. These are usually considered constant
withvalues of A%, - = 0.5{2.8x 10~*m6s~! and Afi‘ug =0.99x10"¥mds~!
(according to Pinto [57]).

Single trap level recombination is usually treated according to the Shockley-
Read-Hall model (cf. [71]) as

2
pn — ng,

TP(n 4 Nie) + 7P + Nie)’

Rsry = (1.60)

where 7™ and 7P are the electron and hole lifetimes respectively. These are
usually modelled using the formula
= T (1.61)

GSrH '
N
1+ (NSRH>

Table 1.4 gives typical values. It must be noted, however, that at least
the values of 7y can vary significantly between different devices. Often

1.4. Physical Models 17

0 Nsrn Gsru
107%s 10! m~3
electrons 40 3.0 0.5
holes 8 3.0 0.5

Table 1.4: Parameters for Shockley-Read-Hall recombination model

recombination centers are deliberately inserted into a device to control the
lifetime of the minority carriers (lifetime engineering).

The main generation process is impact ionization, also called avalanche
generation. This phenomenon occurs when electric fields in a device are
high enough to accelerate carriers to energies where collision with lattice
atoms can ionize the latter. This three-particle process is the inverse of Auger
recombination. The effect is modelled after Chynoweth [18] as

Ruw = R +RE, (1.62)
Rl = = |T"|A% exp(~El/B]). (1.63)
Rh, = = |J7IA0, exp(~ Bl /EY) (1.64)
where
n o= L}J—;f'n (1.65)
Eﬁ) = IT"];,]lp. (1.66)

The minus sign in Eq. (1.63) and (1.64) indicates generation. The values
of the ionization coefficients as experimentally determined by Grant [36] are
listed in Table 1.5.

18 The Semiconductor Modelling Problem

A E it range for)
10°m=" 10°Vm~" 10°Vm™!
electrons 260 143 <24
62 108 24{42
50 99 > 42
holes 200 197 <51
56 132 > 51

Table 1.5: Grant’s coefficients for the impact ionization model after
Chynoweth

Numerical Solution of the
Semiconductor Equations

Having presented the equations describing a semiconductor device, we will
now discuss methods for their solution. Section 2.1 will present the method
used for the spatial discretization, while the time discretization is discussed in
Section 2.2. In Section 2.3 methods for the solution of the nonlinear equations
arising from discretization are presented, and Section 2.4 finally discusses the
solution of linear systems of equations.

2.1 Spatial Discretization of the Differential
Equations

In order to solve the boundary value problem (1.41{1.50) on a digital
computer, the PDEs must be discretized, i.e. transformed into a system of
discrete equations. One method to do this is the box method (BM), first
presented by Varga [77], which is also known as the control volume or finite
volume method.

-l

Numerical Solution of the Equations

2.1.1 The Box Discretization Method

Let us assume a PDE in divergence form, the classical form of conservation
laws in physics,

V. F(z) - S(z) =0, (2.1)

for some vector field F' and a scalar source term .S in some domain €2 with a
plain faced boundary 0. Let £ be covered by a grid consisting of N, vertices
x; € Qi=1,---,N,, connected by edges (see Figure 2.1). We construct for
each vertex, i, a box,);, delimited by the mid-perpendiculars of all the edges
terminating in vertex 4. If the grid is constructed appropriately, the boxes will
form a partition of Q.

2

0 = 0, 2.2)

.
21
e —

Vo= Vi, 2.3)
1

.
Il

where V' := [, dV is the volume of the domain Q and V; := [, dV the
volume of €2;.

In order to obtain an equation for vertex i, we integrate (2.1) over €2; and
apply Gauss’s theorem, which yields

/[V - F(x) — S(x)]dV = / F(x)- dn(x) — /S(a})dV =0, (24)
o9, Q;

Q;

where dn(x) denotes the unit vector normal to the box boundary 9€2; in «.
We approximate .S(x) within €; by its value S; := S(«;) at the box center,
and F'(x) within each sector €;; of the box by some average value F';;. The
above equation then becomes

> / Fii(z) - dn(z) — /SidV =" FyAi - SVi=0, (2.5)
I o0, Q J
where F;; := |F;;| cos Z(F;j,dn) is the projection of F;; onto the edge ij,

and the sums run over all edge neighbours of vertex i. Edge neighbours of ¢
are all vertices j connected with ¢ by an edge of the grid. A;; is the area of

2.1. Spatial Discretization of the Differential Equations 21

Figure 2.1: 2D example of a box

the part of the box surface that is normal to ij. If we define A;; to be zero if
vertices ¢ and j are not edge neighbours, we can write Eq. (2.5) as

NU

Z FijAZ'j — Sz‘/z =: Z Fiinj — Sl‘/2 =0. (26)
j=1 Jj#i

i

This is the discretized form of Eq. (2.1): one discrete equation for each grid
point :.

2.1.2 Box Discretization of the Semiconductor Equa-
tions

Poisson’s equation

To apply the box method (BM) to Poisson’s equation (1.41), we have to
identify in Eq. (2.1) F with E = —Vu and S with ¢ = p —n + N. This

Numerical Solution of the Equations

results in the discretization

> E; —n; + N;) =0, (2.7)

J#i

with the underlying approximation that p = p; := p(x;), n = n; = n(x;),
N = N; := N(«;) are constant in €);, and the projection E;; of E onto
the edge ij is constant. Under these conditions we obtain as the potential
difference along the edge

sz' = Uj — U; = —FE- ($j — (137;)7 (28)
and hence
_Yi_g. R, (2.9)
Lji |Lji]

with l; := x; — x; and [;; := |l;;|. Substituting this into Eq. (2.7) results in
the final form of the BM discretization for Poisson’s equation:

Ay
F' .= _ZT-]“” —Vi(pi —ni + N;) =0, (2.10)
g#i Y
where we have used /;; = [l;; and u;; = —u;;. Consequently, in the oxide,

the discretization of Laplace’s equation (1.48) reads

Z(—E&@uij) 0. (2.11)

i Esems lij

At interfaces, the appropriate equation, Eq. (2.10) or Eq. (2.11), must be
chosen separately for the semiconductor and the insulator part of the box.

Continuity equations

For the continuity equations (1.42,1.43), Eq. (2.6) translates into

=D AGIE 4 Vi(Ri+) = 0, (2.12)
J#i
> AJL+ Vi(Ri+pi) = 0. (2.13)

J#i

2.1. Spatial Discretization of the Differential Equations 23

To determine J;, the component of the electron current density along an edge,
we use the 1d solution first degved by Scharfetter and Gummel [64]: We
consider Eq. (1.44) on the edge 7j:

dn

Jii = pis(nEi; — E)

(2.14)

Under the assumption that Ji"j, ,u?j, and E;; are constant on that edge, we
can integrate the ordinary differential equation (ODE) (2.14) and obtain the
solution
14
Jii = ﬁ[”jB(Uji) —n; B(uiz)], (2.15)
ij

with the Bernoulli function

B(z) = exx_ - (2.16)

The hole continuity equation (1.43) can be treated in an analogous fashion,
yielding a 1d hole current density of

JP = 2 p; B(uij) — piB(uj)), (2.17)

S

=
S

Substituting this into Egs. (2.12,2.13) results in the discretized continuity
equations

, Aij .
Fro==Y" Tﬁugj [n; B(uji) — n:B(uij)] + Vi(Ri + 1) =0, (2.18)
j#i

F? ::—Z

i

A .
l__],ufj[ij(uij) —piB(uji)] + Vi(Ri +pi) =0. (2.19)
)

2.1.3 Limitations of the box method

In Section 2.1.1 we postulated that the boxes delimited by the mid-perpendic-
ulars of the edges form a partition of the simulation domain. This imposes a
serious restriction on the grid, the well-known obtuse angle problem of the BM
(see e.g. Pinto [57]). In 2d the restriction is that the sum of opposite angles
of adjacent triangles must not exceed 7 /2, and a similar characterization of a
well shaped grid exists in 3d [21].

Numerical Solution of the Equations

While in principle the BM allows the use of grids that can model general
geometries, and allows good adjustment of the point density, it is quite difficult
to construct irregular grids that are well shaped. Sophisticated grid generation
algorithms are required for truly 3d grids (see Conti et al. [23]).

2.1.4 Other Spatial Discretization Methods
Finite differences

The simplest (and probably most straight-forward) method for solving a PDE
is by finite differences (FD, for a detailed presentation see Smith [68]). This
method is based on replacing differential operators by difference operators.
For example the 2d Laplace equation

RSy | PIy)
ox? Oy?

=0 (2.20)

is, at point (z;,y;) = (ih, jh) of a uniform grid, replaced by the difference
equation

f(@ic1) = 2f(z:) + f(ig1) n fyiz1) = 2f(yi) + f(yit1)
h? h?

If the grid is non-uniform, but still regular, a similar but significantly messier
expression holds.

=0. (221)

For the continuity equations this simple scheme is not useful, because
the exponential variation of the carrier densities is poorly fitted by the linear
approximation underlying FD. Higher order difference methods are possible
but of not much help in this case. The 1d Scharfetter-Gummel solution of the
current equations must therefore be used along the edges as in the case of the
BM (cf. Section 2.1.2). On a rectangular mesh the BM is actually equivalent
to FD, so that the former can be considered a generalization of the latter.

Standard FD requires a regular (though not necessarily uniform) grid
consisting of points (x;, y;,...),i=1,..., Ny, j=1,..., N, ... Since such
d dimensional grids are the tensor product of d one-dimensional grids, they

are often called tensor product grids.

The regularity of tensor product grids is reflected in a regularity of the
structure of the sparse linear systems emerging from the discretizationlthey

2.1. Spatial Discretization of the Differential Equations 25

exhibit a simple band structure (d bands at either side of the main diagonal).
This allows for the use of very simple sparse data structures and algorithms
which can be implemented very efficiently with little effort, making FD
methods very appealing from the implementation point of view.

The drawback of FD is the poor control one has over the point density of
the gridlin order to have a sufficiently high point density in the physically
active device regions one gets many more points than are actually needed in
other regions, an effect that is drastically worse in 3d than in 2d. Since the
number of grid points determine both, memory and CPU time requirements of
a simulation, this seriously limits the utility of FD. Furthermore it is difficult
to accurately model non-rectangular device features with purely rectangular
grids.

One possibility to reduce the number of grid points is to allow terminating
grid lines. The resulting variant of FD is often called finite boxes, see Franz
et al. [33] for details. Terminating lines, however, immediately destroy the
regularity of the structure of the resulting systems of linear equations, thus
giving away the main advantage of the FD method. Moreover, as Pinto [57]
has shown, severe limitations are posed on the aspect ratios of the boxes
containing a termination node, seriously restricting the flexibility of varying
the point density. It is therefore questionable whether finite boxes have any
real advantage over the BM, and the method does not seem to be in widespread
use.

Finite element methods

The finite element method (FEM), originally introduced for the numerical
solution of problems in structural mechanics, has established itself in the last
two or three decades as one of the most popular methods for solving PDE:s.

The basic idea behind FEM is to replace a PDE by an equivalent variational
problem. The domain () is partitioned into elements €2;, and a solution of the
variational problem is then sought by solving it approximately within each
element (see Strang and Fix [70] for details).

The advantage of the FEM is that no hard restrictions, comparable to the
angle conditions of the BM, are imposed on the grid. (There do exist \soft"
angle conditions in that the solution error increases with a decrease of the
smallest angle [70], but this is far less restrictive than the angle condition in

Numerical Solution of the Equations

the BM.)

The disadvantage is that the interpolation functions used within the ele-
ments, which are usually linear or of low polynomial order, are unsuitable
for the exponentially varying densities in the continuity equations. Var-
ious attempts to use exponential interpolation have apparently not been
successful [65, 57]. Other approaches, like hybrid methods or upwinding
schemes [13], have failed to provide solutions general enough to allow sim-
ulating devices under arbitrary operating conditions. They all suffer from
truncation problems when potential differences across elements exceed a few
Ur. This forces extremely high point densities when simulating reversely
biased p-n-junctions, e.g. in MOSFETs.

Because of these problems, FEM based methods are not common in the
field of device simulation. We are not aware of any general-purpose device
simulator using FEM.

2.2 Time Discretization

The spatially discretized semiconductor equations (2.10, 2.11, 2.18, 2.19) can
be written as

F(z(t) = q(z(t)) + f(2(t)) = 0, (2.22)

where f = (f”),v = u,n,p stands for the terms arising from the spatial
discretization of the stationary device equations (7 = p = 0) and F' = (F")
for the full (transient) equations,

z(t) = o) (2.23)

is the transient solution, with u = (u;), v = (v;), and w = (w;), and
0

qit) =1 (Ving) |. (2.24)
(Vip:)

Various methods are known for integrating equations like (2.22), for ex-
ample the Euler or backward Euler methods or the trapezoidal rule (TR) [35].

2.2. Time Discretization

The problem is that Eq (2.22) is extremely stiff, i.e. the time constants vary
over several orders of magnitude. For the usual one-step methods, which are
typically used in conjunction with a (repeated) Richardson extrapolation, this
results in an unacceptably small time step.

Another major concern is the stability of the algorithm. An often used
criterion is A stability [35]: a one-step method

Ynt1 = AR) yn, (2.25)

where (hopefully) y,, = y(nh), is one stable if, applied to the test problem

dy
= =)\ 2.26
priaAl (2.26)
with Re\ < 0, it satisfies the condition
|A(hA)| < 1. (2.27)

The second order TR is the A-stable multistep method with the smallest local
truncation error [26]. However, A-stability is not sufficient for very stiff
problems since it does not prevent oscillations in the computed solution unless
the time step becomes very small. We therefore require the quadrature method
to be L stable [47], where a method is said to be L stable if it is A stable and

|A(hN)| — 0 as |hA| — 0. (2.28)

This is the case for the method proposed by Bank et al. [7]: They use a
time step composed of a TR step of length yh,, followed by a second order
backward differential formula (BDF2) step of length (1 — ¥)h,, to go from
time ¢ to t,,+1 := t,, + hy,. For the TR step one has to solve

2
Fﬂ+'Y = fn+’y + -fn + ’)/T(qn+7 - qn) =0 (229)
and for the BDF2 step

2—v 1 1—7

T S

F = B ————— N,
= P T, e T ST)

q, =0.
(2.30)
Here we have written g,, for g(z(t,,)) etc. It turns out that the optimal value
of ¥ = 2 — /2 minimizes the local truncation error (LTE) of the composite
scheme. The advantage of this method is that the composite scheme is second

Numerical Solution of the Equations

order, yet a one-step algorithm that does not need several previous time steps
for (re)starting.

Bank et al. also propose a scheme for controlling the size of the time step
based on an estimate of the LTE defined as

& fn+'y + -fn+l

T S S T =) @31
where 32 4 dy—2
C= W (2.32)
From the previous step size, h,,, a candidate step size, l~1, is determined as
b= hyr='/3, (2.33)
where
2 1 T 2
= Z (e—) , (2.34)
and

e;, = €R|Qn+l,i| + €4, (235)

with the absolute and relative error parameters ep and € 4. If r < 5 the time
step is accepted and the scheme continues with the next step h,y; = h,
otherwise the step is rejected and repeated with h,, 1= 0.9h. If the nonlinear
solver does not converge (within a given number of iterations) the time step is
also rejected and repeated with h,, := h,, /2.

2.3 Non-linear Equation Solution

2.3.1 Damped Newton lteration

The discretized equations are nonlinear and are linearized for numerical
solution. The usual linearization procedure is the (quadratically convergent)
Newton method. Given a nonlinear system of equations

F(z) =0, (2.36)
the Newton procedure iteratively computes a new solution

PARREEP Ly, P (2.37)

2.3. Non-linear Equation Solution

from an old one z*, where the update 82" is obtained as the solution of the
linear system
OF; (2")
() 5. = _py(2h). (2.38)

Iz J
- 8zj

This basic Newton procedure suffers from a phenomenon called overshoot:
the update dz frequently overestimates (often by many orders of magnitude)
the difference to the solution of (2.36). If such an excessive update is applied,
the resulting intermediate solution may lie outside of the convergence region
of the Newton procedure, or numerical problems (like exponent overflow)
may prevent convergence.

To control this overshoot, damping is introduced: Eq. (2.37) is replaced
by
2Pl = ok sheak, (2.39)

where a damping factor s¥, 0 < s¥ < 1 is introduced. The question remains
how to determine that damping factor. Bank and Rose [8] showed that, under
certain conditions, global and quadratic convergence is achieved if s* satisfies
the sufficient decrease condition

k+1
— % > esh, (2.40)

where € > 0 is some fixed, small value, usually taken to be the machine
epsilon. Note that this algorithm will still converge if some reasonable
approximation is used instead of the exact Jacobian 0F;(2)/0z;.

To determine a damping factor satisfying Eq. (2.40) without a large number
of evaluations of F¥T!, Coughran et al. [25] propose the following scheme:
An initial damping factor s**! for a new step is determined from the last
successful one as

k

k+1 . 5
L . 2.41
sk 4+ 0.2(1 — %) | FF1 /|| F*| 240

If this step does not satisfy (2.40), the following values are tried in turn:

k jZ/IZ
shHl .= gk (6”(; ”) =1, (2.42)

Numerical Solution of the Equations

2.3.2 Coupled and Decoupled Solution

For the stationary case (n = p = 0), the discretized equations (2.10, 2.18,
2.19) can be summarized as

Fr(un,p) = 0, (2.43)
EF'(u,n,p) = 0, (2.44)
F’(u,n,p) = 0. (2.45)

These are three times N, equations in 3V,, unknowns, where N, is the number
of grid points. One possibility to solve the equations is by applying the above
Newton procedure to the whole 3/N-dimensional system. This is called the
coupled solution or full Newton approach.

Alternatively one can first solve (2.43) for u, use the new w and the
original m and p to solve (2.44) for n, and use the new values of w and n
together with the original p to solve (2.45) for p. This must then be iterated
until a self-consistent solution is achieved, effectively performing a nonlinear
block Gauss-Seidel iteration. The method is usually called decoupled solution
or Gummel or plugin iteration.

The advantage of the coupled scheme is that the coupling between the
PDE:s is fully taken into account and convergence is generally much faster
than with the Gummel method. On the other hand, when the coupling is
weak (low injection case), the Gummel method may actually converge just as
quickly as the full Newton scheme. In that case it is certainly preferable to
use the former, since the latter requires far more memory due to the fact that
the linear system to be solved have three times the number of unknowns.

Experience shows that the full Newton method only converges if started
from a reasonably good initial solution. For a truly general purpose device
simulator, a good initial guess is not possible without significant effort
(comparable to the total solution effort, cf. Section 4.5). Hence it must be
possible to start the simulation from a poor initial guess. This is possible
with the Gummel iteration, which converges for a very wide range of starting
values. The Gummel method is therefore indispensable for a general purpose
device simulator.

On the other hand, the decoupled scheme does converge very slowly
(or not at all) if the PDEs are strongly coupled (high injection case). Here
one is forced to use the full Newton iteration. The same holds true for

2.3. Non-linear Equation Solution 31

transient simulations. Hence, both methods must be implemented in the
device simulator.

2.3.3 Choice of Variables

The choice of the variables strongly influences the nonlinear convergence.
So far we have expressed most equations in terms of the variables (u, n, p).
Alternatives are to use quasi-Fermi levels in place of the densities, (u, v, w),
or the Slotboom variables (u,v := exp(—v),w := exp(w)).

At a first glance, the variable set (u,n,p) seems attractive for the de-
coupled method, since the equations (2.10, 2.18, 2.19) are linear (ignoring
the dependence of the mobilities and recombination rates on the variables).
However, it turns out that the Gummel iteration does in most practical cases
not converge in these variables [57]. Using the set (u, v, w) for Poisson’s
equation results in a stable Gummel iteration. Note that for the decoupled
method there is no need to use the same set of variables for the different
equations, it is therefore possible to use the carrier densities for the continuity
equations and thus keep these linear.

In the coupled case, the equations become nonlinear, even when expressed
in densities, due to the Bernoulli functions in Eqs. (2.44, 2.45). When using
quasi-Fermi levels we have in addition the exponential dependencies on the
variables in the density terms of all three equations. It is therefore to be
expected that the variable set (u, n, p) is preferable in the coupled case, which
is exactly what Pinto [57] finds.

There is a problem, however, in the scaling of the variables. While u
typically varies over one or two orders of magnitude, the carrier densities
vary over ten to twenty orders of magnitude. This causes severe problems
when linear systems are solved by iterative methods (see next section). A
linear solver will in general not be able to resolve the small variations in the
potential when solving for densities at the same time. This essentially renders
the concentration variables useless when performing a full Newton iteration
while using iterative linear solvers. One might hope that some smart scaling
of the equation could help, but currently no such scaling is known. The
quasi-Fermi levels, on the other hand, are scaled comparably to the potential
and are therefore appropriate for the full Newton scheme.

The Slotboom variables have the advantage that the continuity equations

Numerical Solution of the Equations

become self-adjoined and symmetric positive definite, a property the other
sets of variables do not have. However, their scaling is even worse than that
of the densities, so that they are of no help in the coupled case.'

To summarize this discussion, we found that the variable set (u,n,p)
works well for solving the continuity equations in decoupled mode, while
for Poisson’s equation and in the coupled case the variables of choice are
(u, v, w).

2.4 Sparse Linear Systems

Owing to the fact that the box discretization produces coupling between
different grid points only if the points are edge neighbours, the linear system
of equations, e.g. (2.38), are very sparse. We found that with the irregular
grids we are using, there are in average only about eight non-zeros in each
row of the coefficient matrix. In order to keep time and memory requirements
of the linear solves within reasonable limits, it is mandatory to employ
algorithms and data structures that make use of the sparsity, so-called sparse
linear solvers. Since the computer time required for a simulation is usually
dominated by the time needed for linear solves, it is mandatory to use the
fastest methods available.

The linear systems can be solved by sparse direct methods (i.e. variants of
Gaussian elimination) [29, 28, 9, 4, 1] or by sparse iterative methods, usually
generalization of the basic conjugate gradient method (CG) [44].

Direct methods have traditionally been used in device simulation, and
enjoy continued popularity in 2d [57]. The major reason is that they
reliably produce a solution, while most iterative methods cannot handle the
ill-conditioned matrices arising in device simulation. However, due the huge
grid sizes typical for 3d device simulations, problems with memory size made
the use of iterative methods a necessity.

The memory requirements of an iterative method are fixed, known in
advance, and fairly low. Only a few vectors of length N are required
as working space (typically between three and twelve, depending on the

IPinto reports typical condition numbers of 10" to 10'¢ for densities, up to 10%° for Slotboom
variables, and as low as 10? for quasi-Fermi levels. This is a clear indication that only the latter
choice is useful when applying iterative solvers.

2.4. Sparse Linear Systems

method), plus, in the case of no-fill incomplete factorization preconditioning,
one matrix with the same sparsity pattern as the original system matrix. For
direct methods, the memory requirements depend highly on the structure of
the matrix and particularly on the ordering of the rows in the matrix. Although
there are heuristics to reduce the fill,? like the minimum degree algorithm or
bandwidth reduction techniques like the reverse Cuthill-McKee scheme [58],
the storage requirements for direct solvers on general sparse matrices are
unpredictable and grow superlinearly with the problem size. The difference in
the storage requirements of direct and iterative solvers is depicted in Fig. 2.2,
based on experimental data.

memory [bytes)
1E+08 - Tterative
5 ! direct ™
2 B
1E+07 ~
: .

5 —="

number of unknowns
3 1E+03 3 1E+04 3 1E+05

Figure 2.2: Memory requirements of direct and iterative solvers as a function
of problem size

If we extrapolate the curves to, say, 300 000 unknowns (corresponding to
a coupled solve with a 100 000 point grid) we expect memory requirements in
the 10 to 100 Gbyte range, which is more than even the biggest machines can
offer today. It is obvious that direct methods can no longer be used once the
grid sizes exceed some ten or twenty thousand points.

Time considerations also favor iterative methods for large problems. The

2Non-zero entries in the obtained factor matrix at positions where the original matrix was zero
are called fill.

Numerical Solution of the Equations

time to solve a general linear system by a direct method is as unpredictable
as its storage requirements (with an upper limit of n*/3). For a given matrix
structure and row ordering, however, this time is fixed, it does not depend on
the actual numerical values in the matrix. Conversely, an iterative method
requires a fixed amount of work per iferation, and the number of iterations
required to achieve a certain precision depends strongly on the numerical
values of the coefficients. As a result, direct methods are usually faster on
small problems. For large problems the iterative methods tend to be faster due
to the fact that for a given problem the required number of iterations depends
only weakly on the problem size N,,.?

The use of iterative schemes has only recently become a topic for device
simulation [60, 74]) and the performance of these methods has often been
disappointing. However, in the last few years significant progress has been
made and currently the CG variants BiCG [32], CGS [69] and especially
CGSTAB [79], all in combination with ILU preconditioning [52, 53], seem to
be most promising. For a detailed comparison of iterative methods in device
simulation see Heiser et al. [43].

3The meaning of \small" and \large" here depends on the machine used for the calculation.

Semiconductor Device Modelling in
Three Dimensions

In this chapter we discuss semiconductor device simulation from the viewpoint
of 3d modelling. The first section reviews the most important 3d simulation
projects published so far. The next section illustrates the problems that are
particular to device simulation in 3d. The last section of the chapter outlines
the approach we have taken with our simulator Second.

3.1 Previous Work

The oldest published accounts of 3d device simulation seems to be on the
FIELDAY program developed by Buturla et al. [14, 63] at IBM, and the work
done by Yoshii et al. [84, 46] at NTT.

FIELDAY is a 1, 2 and 3-dimensional FEM code. For 3d simulations a
grid consisting of triangular prisms is used. This grid is obtained as a tensor
product of a 2d triangular mesh and a 1d grid. The approach chosen allows
good modelling of device features, including non-rectangular boundaries, in
two dimensions, while in the third dimension the grid is regular (and possesses
translational symmetry).

FIELDAY already allowed the steady-state or transient solution of the

S

Semiconductor Device Modelling in 3D

semiconductor equations, using either a full Newton scheme or a Gummel
iteration. To save computing time it allowed suppressing one or both continuity
equations in cases where carrier flow is unipolar or negligible. The program’s
applicability was mainly limited by the fact that direct methods were used for
the solution of linear systems, apparently due to the poor reliability of the
iterative methods available at that time, particularly in the case of irregular
FEM grids. This, together with memory sizes available ten years only allowed
simulation of grids containing no more than a few thousand points.

Conversely, the NTT effort used a FD method (with regular grids). Only
steady state solutions using the Gummel iteration were possible. An analytical
(linear) approximation of the variation of the electrostatic potential was used
within the oxide for MOSFET simulations. Linear systems were solved by
relaxation methods, which allowed grid sizes of up to 20 000 nodes.

The TOPMOST MOSFET simulator by Dang et al. from Toshiba [27, 66]
was the first to use preconditioned CG to solve the linear equations. This
purportedly required them to use Slotboom variables for the continuity
equations, with all the adverse effects these variables have on the condition of
the linear systems (cf. Section 2.3.3). The authors also report using the BM,
however their grids are purely tensor product type, and the BM is only used
in order to treat some non-rectangular boundaries. An interesting feature of
TOPMOST is that it also incorporates a 3d process simulator [55].

Toyabe et al. [51, 74] from Hitachi, with their program CADDETH, were
the first to report the use of CG-based methods for solving non-symmetric
linear systems, namely BiCG and CR [62]. Usage of tensor product grids
enabled them to highly vectorize their code. Their simulator can model
avalanche breakdown of MOSFETs and has been extensively used in the
investigation of a-particle induced soft errors [72].

Notable recent work includes the SMART program by Odanaka et al. [54]
from Matsushita, which also combines 3d process and device simulation,
and which can simulate GaAs-MESFETs [76]. The well-known MOSFET
simulator MINIMOS by Selberherr et al. from the Technical University of
Vienna, which includes energy balance [38], has been extended to 3d [73]
and recently also to GaAs-MESFETs [49] and to non-rectangular Si-SiO,
interfaces [75]. SMART and MINIMOS both use tensor product grids.

The SIERRA program by Chern et al. [17] from Texas Instruments is a
3d extension of the well established Pisces-II simulator [56]. It uses the BM

3.2. What Makes 3D Harder Than 2D?

with prismatic elements for stationary and transient simulations as well as
small signal analysis. The geometry specification is extracted from layout and
process descriptions. This is probably the most versatile 3d device simulator
published to date. However, the usage of prismatic grids still significantly
restricts the generality of devices that can be modelled. The HFIELDS-3D
simulator by Baccarani et al. [19] from the University of Bologna also uses
prismatic grids.

If we compare the recent publications with the oldest ones, we can see
that recent progress has chiefly been made in two areas: improved numerical
methods, in particular improved iterative solvers, have made 3d simulation
more practical. Improved physical models have made them more realistic
(energy balance) or applicable to a wider range of problems (GaAs).

With respect to geometrical generality the improvements have been rather
modest: while some progress has been made by allowing some limited form
of non-rectangular geometries, all projects use grids that are essential tensor
products of one- or two-dimensional meshes and are therefore not well suited
to model truly 3d geometry and device features. The result is a grid that is
much bigger (in terms of the number of grid points) than what is really needed
and wanted, resulting in excessive memory consumption of the simulator.
Furthermore the grids are still essentially 1+1+1 dimensional (rectangular
grids) or 1+2 dimensional (prismatic grids), implying limited capability to
model general device geometries.

3.2 What Makes 3D Harder Than 2D?

In this section we will examine some of the main difficulties that are inherent
in 3d device simulation.

3.2.1 Computational Complexity

As can be seen from Figure 2.2, the memory requirements of an iterative linear
solver grow approximately linearly with the problem size, i.e. the number
of unknowns. The same holds true for the device simulator in general, so
that one can say that the required memory size is proportional to the grid
size. Similarly, the time per iteration of the linear solver is proportional to
the number of equations. Since the condition of the linear systems tends to

Semiconductor Device Modelling in 3D

deteriorate with increasing number of unknowns, the time required for the
simulation grows in general superlinearly with the grid size. Note that this
is only a rough \back of the envelope" calculation, since the condition of the
linear systems will also depend on the grid geometry, sometimes a simulation
may actually be faster on a bigger grid than on a smaller one. This, however,
is exceptional. The general tendency of a slightly superlinear dependence of
simulation time on grid size is certainly correct.

The transition from 2d to 3d is obviously connected with a huge increase in
grid sizes. Typical 2d simulations with irregular grids use several hundred up
to a few thousand points, and for simulations with regular grids a few thousand
points are certainly a necessity for non-trivial device geometries. If we assume
symmetric treatment of all space dimensions, the transition from 2d to 3d will
increase the grid size by a power of 3/2, that is from 1000 to 30 000 or from
4000 to 80000. Such grid sizes are sufficient to fill the memories of the
largest supercomputers available today, and typical supercomputer run times
for a grid with close to 100 000 points are of the order of hours for stationary
and days for transient simulations, which is at the edge or beyond of what can
be considered practical or \tractable". For smaller machines, like mainframes
or mini-supercomputers, the maximum size of \tractable" problems is maybe
four times smaller than for supercomputers.

3.2.2 Numerical Aspects

We have already pointed out in Section 2.4 that direct linear solvers cannot
be used for realistic 3d simulations since their time and space complexity is
too high. This poses new problems. The linear systems arising from the
discretization of the semiconductor equations are notoriously ill-conditioned
(cf. Section 2.3.3), and the condition tends to deteriorate with increasing grid
size. The use of preconditioned solver algorithms is therefore mandatory.

Because of the long run times typically associated with 3d device simula-
tions, it is imperative to make optimal use of the hardware, in particular the
parallel processing capabilities of vector or multiprocessor computers. How-
ever, as Heiser et al. [43] have shown, the reordering of unknowns required
to achieve this goal can be counterproductivelcondition deteriorates further
and the number of iterations required for convergence is increased, sometimes
convergence is even fully destroyed.

Hence, to perform realistic 3d simulations we need very stable iterative

3.2. What Makes 3D Harder Than 2D?

solvers that can handle ill-conditioned systems, and \good" grids, that prevent
the condition number from becoming too big.

3.2.3 Geometry Definition

There is a qualitative difference in the difficulty of specifying the geometry of
a 2d or a 3d object. While a 2d geometry can basically be defined by a simple
drawing (e.g. using a mouse and a graphic display) this is not the case in 3d.
Sophisticated geometric modelling tools are required, and even with a good
solid modeller construction of a 3d device geometry is much more difficult
and time consuming than it is in 2d.

Another problem is caused by the need to use process simulator output or
measured doping data. 3D process simulators are not yet widely available,
even 2d simulation is not yet generally done in process modelling. The
problem is worse with experimental datalit is difficult (and inaccurate) to
measure doping profiles in 1d and measured 2d profiles are an exception.
Hence for the purpose of device simulation, the 3d impurity information must
be constructed out of 1d or 2d process simulation or measurement data.

3.2.4 Grid Generation

Since 3d grids are generally much bigger than 2d grids, and since 3d simulation
is at the limit of today’s computers, every attempt must be made to keep the
number of grid points as small as possible. This is only possible if irregular
grids are used, otherwise many grid points are wasted in device regions where
a low point density suffices.

The generation of grids adapted to needs in three dimensions is by itself
a difficult problem. While in 2d it is possible (in principle) to place points
manually, this is not possible in 3d. The grid generation process must be fully
automated. The angle conditions imposed by the BM add enormously to that
difficulty, since it is a hopeless task to \regularize" a grid that does not fulfill
these conditions. The grid generation process must take the angle conditions
into account right from the beginning [21]. Furthermore the elements of the
grids must have bounded aspect ratios to avoid unnecessarily poor condition
numbers in the linear systems resulting from the discretization.

Semiconductor Device Modelling in 3D

3.2.5 Visualization of Results

Visualization of 3d simulation results is both important and difficult. While
it may be possible to examine 1d results in the form of tables or simple
curves, this becomes already impractical in 2d. In 3d the sheer amount of data
necessitates some condensed graphical representation.

On the other hand, there is again a qualitative difference between the
visualization of 2d and 3d results. A scalar function on a 2d domain produces
a surface embedded in a 3d space, which is relatively easy to visualize since
the world we experience is three dimensional. In the same way a function on a
3d domain would require a four dimensional representation, which is beyond
the imagination of most humans. New approaches must therefore been taken
for the visualization of 3d results.

3.3 Our Approach

In the preceding sections we attempted to give the reader an impression of
the difficulties involved in constructing a truly general 3d device simulation
system, much more than a single person can handle within a reasonable
amount of time. It is therefore necessary to break the whole problem into
several parts. However, the full extend of the problem must be kept in mind
when going about to solve the partial problems.

We will from now on focus our attention back on the \simulator proper",
i.e. the program that, when supplied with a suitable description of the device
to be simulated, including the grid, will solve the semiconductor equations
and produce results in a form which allows their visualization using the
appropriate tools. We will take another look at the complete simulation
system in Section 5.3.

The reader surely couldn’t help noticing our view that currently only the
BM allows modelling general device geometries while being applicable to
arbitrary device operating conditionslwe therefore adopted the BM for our
simulator system. In order to have sufficient flexibility we allow grids to
be composed of four element types (\shapes"): tetrahedra, quadrilateral
pyramids (with a parallelogram base), triangular prisms, and parallelepipeds
(sheared cuboids).

3.3. Our Approach 41

With these elements every plane faced device geometry (or internal
interface) can be modelled. Furthermore, they allow to interpolate between
(quasi-regular) grid regions of various coarseness, thus permitting the point
density of the grid to vary in all directions. While this would be possible
by using tetrahedra alone (all the other elements can be divided into at most
five tetrahedra), by using cuboids we can significantly reduce the number of
elements and edges in the grid.

The admissible element shapes are defined such that the type and three
edge vectors are sufficient to define each element [41]. This permits the use
of efficient data structures for describing the grid within the simulator.

Methods

In this chapter we describe some of the methods used in the actual implemen-
tation of the concepts presented in the previous chapters.

4.1 Assembly

At the very heart of the simulation lies the problem of solving the linear
equations (2.38) arising from the Newton procedure. Before such a system
can actually be solved it must first be assembled, i.e. the coefficient matrix
(LHS) and the right hand sides (RHS) must be computed.

4.1.1 Poisson’s Equation

From the discretized Poisson’s and Laplace’s equations (2.10, 2.11) we obtain
the LHS as

oOF}!

%
G = o e
(’)uk !

il

— ZkV Tll erl) (4.1)

Here, ¢ = 1 within silicon, while within the oxide, the charge terms d; V; (n; +
p;) are to be omitted, and € = €, /€5emi- Obviously the first two terms in (4.1)

AN

Methods

only depend on the grid, not the current values of the unknowns. This part,
which represents the discretized Laplace operator, can therefore be computed
once for the whole simulation.

When setting up this matrix, which we denote (a;;), one has to make sure
that the proper value of ¢ is used for each edge. If the box section A;; does
not fully belong to a single material (e.g. if the edge is on a material interface)
the box parts from the different materials must be multiplied with the proper
value of € and added together.

Once the matrix (a;;) is set up, the LHS for the Poisson equation can
be assembled by simply copying (a;;) and adding the charge terms to the
diagonal. The RHS then becomes

Z aggur, + (ni — pi)Vi — N;Vi. (4.2)

The last term on the right is again independent of the solution and can be
precomputed. Since doping values are not needed afterwards, there is no
storage penalty for this preprocessing. The box volumes V; can also be
precomputed as

V= Ayl /6, (4.3)
J#i
so that the assembly of the RHS of the Poisson equation reduces to a sparse
matrix-times-vector operation plus a few very simple vector operations.

4.1.2 Continuity Equations

The BM discretization of the continuity equations (2.18, 2.19) is expressed
completely in u, n, and p. This is an appropriate form for the RHS if we use
this set of variables (cf. Section 2.3.3). The LHS then take the form

OFf _ Ay, OR;

_ 2 ik 1 Bug;) — 05 Ay ™ B(u; / 4.4
o~ T (uki) — ik % » pi; B(uij) +V; o | 4.4
OFF Al OR;

— b Tk P By, 5 E A B(uj; ! 4.
Opk Lik ’ulk (u k) ik = l 'u'z] U‘J tVig 8p1 ;@3

4.1. Assembly

where
=D Ajili; /6, (4.6)
i
and A’ is the part of the box section that lies within the semiconducting
materlal A is zero for edges that lie completely within insulating material.

If we use the variables u, v, and w, we prefer a form of the discrete
equations that is expressed in these variables. Substituting v and w for n and p
in Eq. (2.18, 2.19) and making use of the properties of the Bernoulli functions,
we obtain the alternative forms

Fo= =) l” pimBlug) (" = 1) + VIR @)
J#i
Fro= =y l” WpiBlug)(@ — 1) + VIR, (48)
J#i
8Fiv A;, n v
Tow l-:” s)€
2 aRz
+ dik]u?jm (uij) + Vin , 49
.7751 l 8nL
aFiw A; W4
TTwy T T, B
Al OR;
+ 0 | L JMUPzB(uﬂ) + Vipi i (410
| J#i pi
with v;; = v; — v; and w;; = w; — w;. We can remove most direct

references to the densities in these equations by scaling them with the
appropriate densities. That way we obtain for the linear systems

1

(RHS); = +;Fiv, 4.11)
1

(RHS)Y = +—F", (4.12)
Pi
1 OF?

LHS)}, = ——— 4.13

()zk ni avku ()
1 OFY

(LHS)Y, = _LoF" (4.14)

pi Owy,

Methods

Unlike Poisson’s equation, the LHS of the continuity equations depend
on the solution, not just the grid. However, the matrix elements contain the
invariant factors Al /l;;. The matrix (A}, /l;;), which is different from the
matrix (a;;) that is used for Poisson’s equation, can again be pre-computed.

The Scharfetter-Gummel discretization of the continuity equations assumes
the mobilities to be constant along an edge. Because we can compute the
mobilities at the grid points, we approximate the mobility along an edge as
the average of the nodal values at the edge’s end points:

1

pig = 5 (1 + 1)- (4.15)

The Bernoulli functions and the terms e* — 1 must be evaluated very
accurately, otherwise the currents will not be conserved. Truncation of
significant digits make the computation of exp(x) — 1 inaccurate for |z| < 1.
We therefore use a polynomial expansion [39] of B(x) and e* — 1 for small
values of .

4.2 Treatment of Boundary Conditions

4.2.1 Dirichlet Boundaries

At Dirichlet boundary points (called Dirichlet points from now on) the solution
is known from the beginning. The treatment of such grid points within the
PDE solver thus consists of two parts:

1. setting up the initial solution so that it satisfies the Dirichlet boundary
condition, and

2. ensuring that the values of the unknowns at the Dirichlet points do not
change.

The first point is straightforward and needs no further explanation. The
second implies that in the Newton update step

PR L P (4.16)

4.2. Treatment of Boundary Conditions

all the components i, i € I'g of d z that correspond to Dirichlet points are zero.
Since § z is the solution of a linear system

J

this means that we already know part of the solution to Eq. (4.17). Let us
assume that the equations are numbered such that Dirichlet points have the
highest numbers, i.e.

VieTy:Vj&Tlo:i>j. (4.18)

We can now drop all coefficients of (A;;) which are multiplied with the
Dirichlet components of the solution, since their removal will not change the
solution of the system. These are the components (A4,;) with j > Np, if Np
is the Dirichlet point with the smallest number. In the schematic representation
of Figure 4.1 this includes all the coefficients in block II of the matrix.

| i II \Y VII non-Dirichlet
I1I i v VI VI }Dirichlet

Figure 4.1: Schematic view of Dirichlet and non-Dirichlet regions in the
linear system of equations

The dropping of these coefficients in fact completely decouples the
equations for the non-Dirichlet points from the equations for the Dirichlet
points. Hence it is no longer necessary to solve the equations for the Dirichlet
points at all, rather than solving the N x NN system (4.17) we can solve the
reduced Np x Np system which is obtained from (4.17) by dropping the
last (N — Np) equations and the last (N — Np) columns of the coefficient
matrix. Alternatively we can zero all the coefficients in regions II and III of
Figure 4.1, make region IV a unit matrix, and set the right hand sides in region
VIII to zero.

Methods

Figure 4.2: Box of a boundary point

4.2.2 Neumann Boundaries

Neumann boundary conditions are even easier to treatlthey basically
look after themselves. If we focus on Eq. (2.4), the integral |, 20, F - dn gives
a zero contribution on 02; N I'},, the part of the box boundary that coincides
with the Neumann boundary; due to the fact that F' - dn = 0 by definition.
In the discretized equation (2.6) this is ensured automatically, since no edges
correspond to the box boundary section 9€); N I'y, and therefore no term in
(2.6) corresponds to that part of the boundary (see also Fig. 4.2). In other
words, Neumann vertices can be treated exactly like internal vertices.

4.2.3 Internal Boundaries

The situation is basically the same for internal boundaries between different
materials (so-called internal interfaces). The only kind of internal interfaces
we have to deal with are the boundaries between semiconducting material
and insulator. The interface condition for the continuity equations is that no
current can flow across the interface, which is a Neumann boundary condition
for the continuity equations (cf. Section 1.2.2).

For Poisson’s equation, the interface condition in the absence of surface
charges is the continuity of the electric displacement D = ¢FE. This is again
satisfied automatically due to the fact that the charge density, which determines
the electric displacement, is continuous. Hence internal boundaries require no
special treatment.

4.3. Terminal Currents

4.3 Terminal Currents

As has been shown by Biirgler [13], the current I;"” flowing out of the i-th
contact due to electron or hole conduction can be obtained by summing the
right hand sides obtained when assembling the continuity equations:

P = — Z Fr. (4.19)
quCRi

Here R; is a region (part) of the device that contains contact ¢ but no other
contact. Note that here we need to use the RHS as assembled independent
of the Dirichlet boundary conditions. In other words, if we treat Dirichlet
boundary conditions as suggested in Section 4.2.1, we must do the computation
of the terminal currents according to Eq. (4.19) before setting the RHS to zero
for Dirichlet points.

According to Biirgler the total current (including the displacement current
in transient simulations) can be obtained by solving

V- J"+V-JP -V .cVi=0. (4.20)
The linear system resulting from the discretization of this equation has the

RHS
Fli=f1+ P+ aijin, (4.21)
J

while the LHS is, except for the sign, equal to the discretized Laplacian (cf.
Section 4.1.1).

After solving Eq. (4.20) we can obtain the total current through contact ¢
as

If= Y F! (4.22)

UJjCRi

just as in the case of the conduction currents. The displacement current is then
the difference of the total and conduction currents:

If=10— (I +17). (4.23)

K2 (2

Methods

4.4 Electric Field

The physical models employed in device simulation often contain references
to the electric field or the electron and hole current densities (cf. Section 1.4).
We must therefore find a way to compute these entities at the grid points.

As shown in Section (2.1.2), under the assumption of a constant electric

field, the projection E;; = E - 1;;/|l;;] of E onto the edge ij is known to be
—uj; /1;;. The problem now is to reconstruct the vector E from its projections.

p2

g

x0 P

Figure 4.3: Electric field vector within an element

Consider the situation in Figure 4.3: In d space dimensions (d = 2 in the
Figure) we have a corner of an element where d edges meet. The projections,
p;, of the vector E onto the edges are

110 d L -
pi=E -— = E; L 4.24
[Liol ; ! Lol (424
where [; ; is the j-th coordinate of l;.

Since the vectors l;, are assumed to be linearly independent, the matrix
(Li j/|lio|) is regular and has an inverse (a;;) := (I;;/|lio])™" with the

4.4. Electric Field 51

property
d I
> agim = ;. (4.25)
= ol

Multiplying (4.24) with this inverse from the left we obtain

d
> akipi = Zza,ﬂ bij E Z(sk]E = E. (4.26)
=1

j=1i=l1

This means that we can compute the electric field vector as

Ep=— Z akiu. (4.27)

If the electric field is not constant, (4.27) holds only approximately, and
the value obtained for E' will depend on the d-tuple of edges used; none of
these values will, in general, be equal to the \true" value of E¥. However,
if the grid sufficiently resolves the physics of the device, the values obtained
should be a reasonable approximation.

The question remains how to obtain a value for E at a grid point. The
obvious approach is to compute in each element, w, that is incident in the
vertex, x, an approximation, E*, to the electric field vector according to
(4.27). We can then get an approximation to the field as a weighted average
of the values obtained for the individual elements:

E(x) = % > sYEY, (4.28)

wdL

where

Si=) s (4.29)

w L

Note that in general E“ depends on the corner of w at which it is evaluated.
Within each element w, the value of the corner corresponding to vertex & must
be taken.

As weight factors s we choose the angle spanned by w. In 3d this means
computing the solid angle spanned by three vectors a, b and ¢. According

Methods

to [12] this angle is equal to

a+ B+

s“ = 4arctan <tan 2

_a+ﬂ+7tana_ﬂ+7tana+ﬁ_7

t.
x Ty 4 4

) ' . (4.30)

where «, 8 and + are the (2d) angles enclosed between each pair of edges.
This choice of s“ yields
S =4n. (4.31)

An additional complication exists if there are 3d elements which have
vertices where more than three edges meet | as is the case at the tip of our
quadrilateral pyramids. We can handle this case by (temporarily) treating such
a pyramid as two tetrahedra. A more symmetric treatment is to compute a
value of E“ for each of the four triples of edges, and extending the sum in
(4.28) over all four subelements. In this case we must divide the weight s by
two, since each part of the element is used twice.

We can summarize the electric field computation as

S Z Z |;‘u§;| — u(x)). (4.32)

wSiL‘

In 3d this is rather expensive to compute, due to the many inversions of 3 x 3
matrices required. It is therefore advantageous to accumulate all the factors
(s/S)(a/|l]) in a matrix b;ji. The storage requirement for this matrix is d
times the number of edges. Once the matrix is set up, the electric field in all
vertices can be computed as a simple linear transformation of the potential
differences along the edges:

x;) = Zbijkujk- (4.33)

ki

The current density vectors at the grid points can be computed in the
same fashion: The Scharfetter-Gummel solutions (2.15,2.17) are in fact the
projections of the current densities onto the grid edges. We can therefore
compute the current densities at the grid points by means of the same
transformation (4.33). However, since there exist no current densities within
the insulator, an additional weight factor must be used for points at the
interface.

4.5. Initial Solution

4.5 Initial Solution

If we want to simulate a device we need some initial solution to start the
iteration. Physical reasoning and experience can often be used to determine
an approximation to the final solution. Such an approximation can in principle
be used as an initial guess in a device simulator. While this may be feasible
in the case of a special purpose simulator, building such \intelligence" into a
truly general program is a task whose complexity is at least comparable to the
construction of the remainder of the simulator. It must also be remembered
that determination of the initial guess should be cheap (in terms of computing
time) compared to the solution of the full problem. We are therefore forced to
use a rather coarse initial guess that is easy to compute.

A frequently used method to start up a simulation is to solve first for
thermal equilibrium, i.e. no applied bias, and then step the terminal voltages
up to the required bias conditions. Pinto [57], however, reports that the
\local quasi-Fermi" guess leads to a faster convergence. Hence the majority
quasi-Fermi potential in each device region is set equal to the bias applied to
that region, while the minority quasi-Fermi potential is set such that minimum
minority carrier densities result. This is achieved by setting the electron
quasi-Fermi potential in p-regions to the maximum applied voltage V44,
while in n-regions the hole quasi-Fermi potential is set to the minimum voltage
V.in- The electrostatic potential is set such that the majority carrier density
equals the local impurity concentration, which means that the potential is set
to the applied voltage plus the built-in voltage.

This initial guess, while significantly better than the thermal equilibrium
solution, is not sufficient for good convergence under all conditions. If the
applied bias is too high, the nonlinear iteration may not converge from this
starting solution, or may converge very slowly. In such a case it is necessary
to first solve for some reduced bias value and step from there up to the required
bias.

Often a simulation is not started from scratch, but from the results of an
earlier simulation. Since the previous simulation will in general have been
performed with different bias conditions, we need to adjust the solution before
using it as an initial guess for the new simulation run. For this we use a
method similar to the initial guess: If a contact voltage is changed by a certain
amount, the electrostatic potential and the majority quasi-Fermi potential is
changed by the same amount at all points in the device region belonging to

Methods

that contact. Minority quasi-Fermi potentials are left unmodified if this does
not increase the minority carrier density, otherwise they are changed by the
same amount as the electrostatic and the majority quasi-Fermi potential (thus
keeping the minority carrier densities constant).

Note that this way of adjusting an earlier result to obtain an initial guess
works well if applied voltages are increased in the new simulation (so the
old bias values represent something like an intermediate working point). It
will perform worse if the applied voltage range is actually reduced in the new
simulation, and may fail miserably if going from forward to reverse bias or
vice versa.

4.6 Stopping Criteria

4.6.1 Non-linear lterations

An important aspect of any iterative algorithm is the decision of when the
iteration is considered converged and can therefore be stopped. There are
principally two kinds of stopping criteria: relative and absolute.

For the Newton iteration (cf. Section 2.3.1) a relative criterion would be

162"

B €r, (4.34)
while an absolute criterion might read

162" < €. (4.35)

where €., €, are the relative and absolute error limits resectively.

Obviously, an absolute error criterion does not make much sense for the
concentration variables, which vary over ten to twenty orders of magnitude,
and even if only majority carriers are considered, the range is still at least
six orders of magnitude. In regions where the (majority) carrier densities are
relatively small, the (absolute) fluctuations of the densities near convergence
are so small that an absolute convergence criterion sensitive to these changes
would, in regions where the densities are large, translate into a relative error
of, say, 107!° or smaller. It may not even be possible to obtain such a high
accuracy.

4.6. Stopping Criteria

An absolute error criterion can still be applied if the error is monitored in
terms of the quasi-Fermi levels. This is easily possible, even if the iteration is
actually performed in terms of the carrier densities. For quasi-Fermi levels,
as for the electrostatic potential, a (uniform) absolute error criterion makes
sense, and reasonable values are in the range 103U --- 102U

We generally use a combination of both kinds of criteria: an iteration is
considered converged if either the relative or the absolute criterion is met. For
the relative criterion, usual values are 1076 --- 10~*. We use the I, (Euclid)
norm for relative, and the [, (maximum) norm for absolute error criteria.

Pinto [57] recommends an absolute stopping criterion of 103Uy, reason-
ing that, due to the quadratic convergence of the Newton method, this does
not really cost much computing time. For VLSI applications, where typical
voltages are of the order of 5V ~ 200Uy, this corresponds to a relative
tolerance of 5 x 1078, The linear solver error (see next section) should, of
course, not be greater than the nonlinear tolerance, otherwise the latter does
not make sense. That implies that linear systems must be solved to at least the
same tolerance of 5 x 1078, This is no problem when using direct solvers, an
iterative solver, however, may take very many iterations or not converge at all
when trying to solve a system so accurately. For that reason we have to use a
less strict nonlinear stopping criterion.

4.6.2 Linear Iterations

When using iterative linear solvers, the question arises how accurately the
linear systems are to be solved. Clearly, an insufficiently converged linear
solve may prevent convergence of the nonlinear solve. We generally require
a relative error for the linear solve that is by a factor 0.1 - - - 0.5 smaller than
the nonlinear tolerance expected.

At the beginning of a Newton iteration, when the variables are still far
away from the solution values, it seems a waste of effort to solve the linear
systems too accurately. Indeed, as Bank and Rose [8] have shown, the
quadratic convergence of the Newton iteration is preserved, if, in the k-th
Newton step, the linear solver error is less than

[Ea
Q= ag———, (4.36)
IF°]

Methods

for some ap € (0, 1). We have found when that using g = 0.5 for Poisson’s
equation, the Newton iteration usually converged in the same number of
iterations as if all linear solves were performed with high accuracy, and up to
50% of computing time was saved. For coupled solves we found the value
ag = 0.1 to be safer.

In order to avoid requiring unreasonable linear solver tolerances, a lower
limit for the tolerance of the linear solver is taken, if the tolerance as required
by the above formula becomes too small. This minimum tolerance is user
settable, its default value is one tenth of the nonlinear tolerance.

In transient simulations the Newton iteration often converges in one or two
iterations. In such a case the tolerance determined by Eq. (4.36) is actually
too big and may lead to unnecessarily large errors, resulting in an increase of
Newton iterations. It is then advisable to turn off the automatic adjustment of
linear solver tolerances by setting oy to a very small value. Since the linear
solver tolerance is limited to a minimum, setting ap = 0 will do.

4.6.3 Transient Simulations

In transient simulations, the time step is controlled by the error parameters €
and e4 in Eq. (2.35). We usually set the former to ten times the nonlinear
tolerance, while the latter is set to

2
6R”L ll2
= == 4.37
4 V2N, ’ ()

where V' = (V) is the vector of box volumes. These are, admittedly, purely
heuristic criteria, but they seem to work.

Implementation

This chapter describes the implementation of Second in some detail.

5.1 Software Engineering Aspects

5.1.1 Hardware and Software Environment

The design and implementation of Second was strongly influenced by certain
constraints imposed by hard- and software.

The code was developed at the Integrated Systems Laboratory at ETH
Ziirich, where a variety of hardware exists ranging from Sun workstations to
Alliant (and later also Convex) mini-supercomputers, plus in the later phase
access to ETH’s Cray X-MP and Cray-2 supercomputers. These machines
differ widely in architecture, performance (and price), but all run the same
kind of operating system (all Berkeley UNIX or UNIX System V). Hence
the development environment was characterized by very diverse hardware but
relatively homogeneous software.

On the other hand the code was supposed to run on other machines available
to industrial partners, like a Siemens/Fujitsu VP-200 supercomputer running
MSP, an operating system largely compatible to IBM’s MVS. Hence the

=

Implementation

application environment was characterized by diverse hardware and software.

The traditional implementation language in the area of scientific computing
is FORTRAN. Because of its many shortcomings, which will be explained
in detail later on, we were seriously investigating the possibility of using a
different implementation language.

There were only two other candidates: C and Pascal. Both were
available on most UNIX systems, both were just becoming available on
Cray supercomputers and both we considered much better languages than
FORTRAN. We did expect the C or Pascal compilers to generate less efficient
code that the FORTRAN compilers, but felt that this could be handled by
writing the (usually quite simple) inner loops in FORTRAN.

The real problem were the industrial partners. On the VP-200 system
there was no C compiler. There was a vectorizing Pascal compiler announced
for the first half or 1988, and, in fact, Siemens coding regulations [78] called
for all new software to be implemented in Pascal.

Unfortunately, this Pascal compiler never materialized, and we were finally
left with the choice between continuing without the support from Siemens
or biting the bullet and writing in FORTRAN. The next section attempts to
outline the implications of that decision.

5.1.2 Drawbacks of FORTRAN

The FORTRAN language was developed in the mid ’50s by Backus et
al. [6]. The language has evolved since, but even the most recent standard [2]
describes a rather archaic language that has roughly the power of Algol-60 [5]
while completely lacking the latter’s elegance.

The three most frequently voiced reasons why people continue to use
FORTRAN are

o the huge world-wide investment in FORTRAN code,
o the efficiency of the produced machine code, and

o the portability of FORTRAN programs.

5.1. Software Engineering Aspects

The first of these points is obviously of little consequence for new software.
The second one is indeed true and is due to the fact that FORTRAN is the
most frequently used programming language for problems where this kind
of efficiency is important. Consequently, the manufacturers invest most
into optimizing FORTRAN compilers. This, of course, leads to a vicious
circlelpeople use FORTRAN because it’s efficient, and it’s efficient, because
people use it a lot. However, at least in an environment like UNIX, where
inter-language calls pose no unsurmountable problems, this argument is not
really a decisive one, one can code most of a system in another language and
fall back on FORTRAN for the few really critical algorithms.

The last point, portability, works really against FORTRAN, if we look
closer. There are various reasons for this.

Supersets

One is the proliferation of supersets that is typical for FORTRAN. Because
FORTRAN lacks so much of the power of modern computer languages,
most manufacturers implemented supersets of the standard language. These
supersets, of course, differ between compilers from different manufacturers,
and more often than not even between different compilers from the same
manufacturer. Some of these non-standard features have actually developed
into \de facto-standards" which many (if not most) users of the language
actually consider part of standard FORTRAN. The bad surprise often comes
much later when a relatively mature code is ported to a machine whose
compiler only supports the standard language, or an incompatible superset.

Because these de facto-standards are so deeply entrenched into the FOR-
TRAN community, writing portable FORTRAN code is quite difficult. Most
of the programs one sees use non-standard features, most language manuals
do not clearly differentiate between standard features and extensions, most
compilers do not consistently point out non-standard usage, and most people
who teach FORTRAN to their students do not know the difference either. The
only help comes from [2], which, of course, is quite hard to read and one must
almost know it by heart in order to find all the portability catches.

Implementation

Control- and data structures

The reason for this notorious supersetting in FORTRAN implementations
originates from the fact that FORTRAN is such an old-fashioned language
lacking so many of the features that are natural for users of other computer
languages. One example is the lack of support for everything that is considered
\good" or \modern" programming style. FORTRAN is very poor in control

structures, making it almost impossible to adopt a \structured" programming
approach. The only control structures available are block IF's, a loop construct
with an iteration count that is established before execution of the loop begins,
and unstructured GOTOs. The often needed WHILE loop construct is missing
completely and can only be emulated with GOTO statements.

Much more serious than the lack of control structures is the lack of data
structures. The only data types available are simple types (numeric and
LOGICAL) and arrays of simple types. Pointers and structured types are
missing, not to mention any support for abstract data types. This means
that when programming in FORTRAN one has to forget all the advances in
computer languages of the last thirty years, and map all data structures onto
primitive objects, a task that is nowadays considered the compiler’s job.

While such a \manual compilation" of data structures is, of course, always
possible, it defeats the purpose of using sophisticated data structures in the
first place. All advantages with respect to readability and maintainability
of the code is lost. The time required to write the code is increased, and
modifications in the existing code are much harder to do. But worst of all,
coding is significantly more error-prone, and the bugs are much harder to find.

Additional problems exist for writing large programs. Since the \software
crisis" has been perceived in 1969 [15], modularization is considered one of
the most potent weapons to counter the crisis. This, however, is one more place
where the FORTRAN language is no help at all. The only modules known in
FORTRAN are subprograms, which cannot be nested. Data sharing between
program units is possible only via procedure parameters and COMMON
blocks.

Parameters are only of limited use, since the lack of structured types and
pointers would require huge, unwieldy parameter lists. COMMON blocks,
on the other hand, make data completely global, accessible by any program
unit. There is no way to ensure that certain data can easily be accessed by a
group of related subprograms but remain hidden from others. This means in

5.1. Software Engineering Aspects 61

particular that there is no support for data abstraction and data hiding.

COMMON blocks are furthermore potentially dangerous, since the pro-
grammer is largely responsible for their layout. This means that the declaration
of a COMMON block must be identically repeated in each program unit that
is to access some data from the COMMON block. The only reasonable means
to ensure this identical definition is to do it once in a file and include that
file in all program units accessing the COMMON block. The problem is that
standard FORTRAN does not provide an include statement. Of course, every
implementation we are aware of provides some form of an include statement,
but since this is not part of the standard, the syntax (if not semantics) of
include statements differ between implementations.

Numeric precision

Standard FORTRAN supports two floating point numeric types, REAL and
DOUBLE PRECISION. This reflects the fact that most computers have a
word length (nowadays 32 bits, in the old days often 36 bits) that is insufficient
for many numerical problems. Semiconductor device simulation is such a
problem, where ill-conditioned systems have to be solved and floating point
numbers with a mantissa of at least 40 bits are required. Hence, on most
computers a device simulator requires the DOUBLE PRECISION type.

There exist, however, machines with long words, most notably Cray
supercomputers with a word length of 64 bits (48 bit mantissa). On this
machines the REAL type is obviously sufficient. Furthermore, since DOUBLE
PRECISION operations are implemented in software on Cray machines, their
usage is prohibitively expensive. Hence the program must use REAL variables
on Crays and DOUBLE PRECISION variables on most other computers.
Obviously, a fully portable program is not possible in FORTRAN.

Most compilers support some kind of switch that instructs the compiler to
automatically treat every REAL declaration as DOUBLE PRECISION. This
still does not solve the problem, since many subprogram libraries (e.g. [48])
have entry points for both REAL and DOUBLE PRECISION parameters, and
the entry point name is used to differentiate between the precisions. This
means that, besides variable declarations, the names used in subroutine calls
have to be changed too.

Besides the problem of the control of the numeric precision, there exists

Implementation

the problem of determining the numeric precision that can be achieved.
FORTRAN does not provide any standard means to allow a program to
determine the value of the machine epsilon, which is of utmost importance
for many numerical algorithms. Since different computers use different
representations of floating point numbers, the machine epsilon can differ by
more than a factor of 500 between machines, even if the same number of bits
are used to store a number.!

Access to environment

For any large program it is highly desirable, if not mandatory, to have some
access to the computing environment. The most commonly used function
of this kind is the processor time consumed by the program. This is
important information for tuning the code as well as for comparing computers.
Furthermore it is desirable to have the program print a time stamp on its
output, and maybe even identify the computer system on which the program
was run.

Information on processor time consumption can be important for an
entirely different reason. A 3d device simulator will typically run for several
hours even on a supercomputer. This implies that interactive usage is often not
possible, the program must be run through some kind of batch system, which
usually means that the amount of processor time that the program may use is
limited, and execution is aborted when the limit is exhausted. A program abort
due to exceeded time limits means that some hours of precious supercomputer
time may be wasted. Naturally, this must be avoidedithe program must
terminate in an orderly fashion before it is aborted by the operating system.
To this end one may impose, via input data, some limit on the number of
iterations the program may perform in its outermost loop. However, such an
approach is not always practical since it is not always clear a priori what a
reasonable limit would be. A better solution is to have the program monitor
its time consumption and compare with the allotted limit. The program must
then realize when it is about to exceed that limit and terminate in time. This,
of course, requires that the program be able to determine the time limit.

For really long computations that must be broken not only in two or three,
but maybe in five or ten parts, it is preferable to automate the process of

'Example: & for Cray in single precision is 7.1 x 10~'5 while on a VAX in D_FLOATING
(double precision) format it is 1.4 x 10~!7, both using 64 bits!

5.1. Software Engineering Aspects

starting the next job after the successor has terminated. For that reason one
wishes to be able to determine, at the command language level, whether the
program terminated successfully, ran out of time, or encountered an error.
Hence the program should somehow signal its success to the command level.
On most operating systems this is done by some kind of exit status that can
be set by the program and tested at the command level. The mechanism for
setting is, of course, system dependent.

Furthermore, in order to make usage of the program as convenient as
possible, one would like to employ some machine specific means of passing
information, like input file names, to the program. Most systems have some
notion of \command line parameters" that specify file names or options.

None of the above features are a strict prerequisite for making a program
perform its task on a computer system. However, they are highly desired
to make the program truly useful for a wide range of applications and
environments. None of them are available in standard FORTRAN and in order
to implement them one has to refer to non-portable features.

Memory management

One of the most serious shortcomings of the FORTRAN language is the lack
of memory management. All storage assignment happens at compile, link or
load time; once a program has been loaded into a computer’s main memory,
all variables have a fixed address. This makes the compiler’s and linker’s
job easylon the programmer’s and user’s back. The implication is that all
arrays must be dimensioned with the maximum size they may ever assume.
Changing this maximum requires recompilation of at least one program unit.
This is, of course, extremely impractical. For once it is not always possible to
know in advance how arrays are to be dimensioned as a function of the size of
the input data. For example, it is in general not possible to predict how much
working storage is required to factorize a sparse input matrix with a given
rank and fill. Thus one is faced with the choice of either being conservative,
and waste lots of computer memory in most cases, or risk that the program
aborts in the middle of the calculation due to insufficient memory.

Another problem is that, since the program size is fixed independently of
the input data, even computations with small data sets require the full amount
of memory set aside for the biggest jobs. This is clearly unacceptable for an
environment where the user pays for memory occupancy. Compiling different

Implementation

versions of the program for various data sizes is a makeshift measure, not a
solution of the problem.

Naming restrictions

Variable, COMMON block and program unit names are limited to six charac-
ters (letters or digits) in FORTRAN. This is one of the main reasons for the
poor readability of FORTRAN code. While six characters may often suffice
for local variables, for global entities like subprograms this is clearly inappro-
priate. Any attempt to use meaningful names for writing \self documenting"
code is doomed from the beginning.

Most FORTRAN compilers available today allow names up to at least 31
characters in length. However, since there are still many compilers that follow
the six character rule, we cannot rely on the availability of long names.

5.1.3 Further Complications

The preceding section made it (hopefully) obvious that plain standard FOR-
TRAN code would not suffice for the implementation of a big program. On
the other hand, portability of the code was essential:

During the development phase it was frequently necessary to move the
code to another machine, e.g. for running larger test cases on a faster computer.
This, together with the diversity of the target platforms, put high demands on
the portability of the code. The frequent re-installations require an automated
process for installation and compilation/manually editing the ported code to
produce a runnable version on the target system is out of the question. For
the required ease of installation we needed a fully portable source code. With
\fully portable” we mean that, after some initial installation procedure, any
later version of the code can be copied to the target system, and can there be
compiled and run without any further changes.

5.1.4 Preprocessing

In the preceding two sections we have seen that we had to reconcile two
conflicting objectives, the requirement for full portability on one side, and the

5.1. Software Engineering Aspects

need for system dependent code on the other. The only reasonable solution to
that dilemma, short of dropping FORTRAN, is to use a preprocessor.

The choice we had was whether to use the UNIX tools ratfor or m4,
the C language preprocessor, cpp, or to write a new preprocessor. While the
latter choice offers the greatest flexibility, it is also the most expensive version
and would make sense only if the other possibilities proved to be impractical.

The rat for program was originally written to enhance FORTRAN-66.
It does not offer significant improvement over standard FORTRAN and was
therefore no help for our problem.

Between the remaining two alternatives we decided in favour of cpp, since
this program is virtually guaranteed to be available on any UNIX system, and
because it is already used by all C programs and it would be helpful when
interfacing FORTRAN with C.

Usage of the (UNIXish) C preprocessor does not restrict the simulator to
UNIX machines. The preprocessing does not need to be done on the target
system, any UNIX workstation will do, and the preprocessor output can then
be transferred to the target machine.

By using a preprocessor we were able to find reasonable solutions for most
of the problems mentioned above. Some of them are still quite clumsy, and
the implementation of all these measures cost a significant amount of time
and effortlall for things that are really the compiler’s job. C, while not the
author’s favourite language, provides all the features we consider essential for
a project as ours, at no extra cost.

Considering all the effort we had to invest to cope with FORTRAN’s
shortcomings and pitfalls (not all of which we have mentioned), even the
efficiency argument that is regularly used by FORTRAN advocates becomes
dubious. In a time where computer power becomes cheaper and cheaper at
an astonishing rate, and where programmer time becomes more and more
expensive, it is more than questionable whether there is any overall efficiency
to be gained from using FORTRAN. We certainly feel that we would have
had a working program at least a year earlier if we had used a suitable
programming language.

Implementation

5.2 Description of the Implementation

5.2.1 Modules and Files

As mentioned earlier, our development environment featured a variety of
different machines all running UNIX operating systems. Consequently we
employed the usual UNIX conventions for program sources. In particular
we use the file name extension \.F" for FORTRAN source files requiring
preprocessing, \. £" for the preprocessed sources, i.e. the \plain" FORTRAN

sources, and \.h" for \header" files. The header files are included into

the sources by means of cpp #include statements. They mainly contain
preprocessor directives, code that has to be inserted at several places (like
COMMON block declarations) and comments.

From now on we will use the term \module" to designate a set of data struc-
tures (in FORTRAN: COMMON blocks) and operations (SUBROUTINES or
FUNCTION:S). In our case, a module typically consists of three files: a source
file modulename . F that contains the procedures, a header file modulename . h
that contains definitions of macros and data to support access to the module
by client routines, and possibly another header file modulename_int . h that
contains definitions for internal use by the module.

The convention is that the modulename .h header file is all a client of
the module needs. In particular this file contains comments describing the
meaning of the exported data structures and the calling sequences for the
exported procedures.

The internal header file should only be used (included) by procedures
belonging to the module. Its main purposes is to define data that are shared
between different parts of the module.

For illustration, Program 5.1 shows the header file of a sample module
sumint. Program 5.2 shows the internal header file and Program 5.3 shows
the source file. Finally, Program 5.4 shows a client module. The example
demonstrates how the data structures can be accessed in the source files, after
including the appropriate header files.

The appropriate header files must be included by every procedure that is to
access global data. This implies that in general a header file is included several
times by the same source file. Since header files also contain macro definitions

5.2. Description of the Implementation

/* sumint, a package for summing integers.

Data structures:
the_sum: sum of all numbers processed so far

Entry points:
add_this (I)
INTEGER I

adds I

FUNCTION the_average ()
returns the average value

*/
#ifdef INCLUDE_BODY
COMMON /sumint_common/ SUM
INTEGER the_sum
SAVE /sumint_common/
ifdef DEFINE_FUNCTIONS
REAL the_average
endif /* DEFINE_FUNCTIONS */
#endif /* INCLUDE_BODY */

Program 5.1: sumint.h

that must not be executed more than once, a mechanism is needed to ensure
that certain parts of the header file are seen only once by the preprocessor,
while others are seen several times.

To avoid problems with multiple inclusions and to reduce order-
dependence of the #includes as much as possible, we use the following
convention: FORTRAN code (COMMON definitions) is only included if the
macro INCLUDE_BODY is defined. This leads to the usage as demonstrated
in Programs 5.3 and 5.4: Header files are included for the first time in the
header of the source file, i.e. before any FORTRAN code, then the macro
INCLUDE_BODY is defined. All further #include statements are in the
declaration parts of the individual procedures.

A special case is the return type of FUNCTIONS. If a module exports a
FUNCTION, its return type should also be declared in the header file. This can
cause problems with BLOCK DATA subprograms, since some compilers do

Implementation

#include "sumint.h"

#ifdef INCLUDE_BODY
COMMON /sumint_private_common/ NRINTS
INTEGER NRINTS
SAVE /sumint_private_common/

#endif /* INCLUDE_BODY */

Program 5.2: sumint_int.h

not allow the declaration of non-COMMON variables in this kind of program
units. For that reason, FUNCTION return types will only be declared if the
macro DEF INE_FUNCTIONS is defined.

5.2.2 Macros for Portability and C/C++ Interface

All our macros are based on a set of general-purpose macros defined in the
header file CF_macros.h. This header file contains only macro definitions,
no data declarations. It is not part of a module, i.0.w. there does not exist a
corresponding source file. Because it defines many macros that are used in
other header files, CF _macros.h should always be included first. There is
no point of including it more than once since it does not declare any data.

CFmacros.h is the main vehicle for the solution of the portability
problems mentioned in Section 5.1.2. Furthermore it supports the interface
between FORTRAN and C routines. To distinguish FORTRAN from C code,
the macro _FORTRAN_ must be defined. For this reason FORTRAN modules
include the header file F_macros.h, which in turn defines _-FORTRAN_ and
includes CF_macros.h.

With all these macros, care has been taken to assure that the string into
which the macro expands is at most as long as the macro’s name. This is
to avoid bad surprises with the FORTRAN 72 column limit: a macro that
expands into a string longer than its name could cause some of the generated
FORTRAN code to extend beyond column 72 of the preprocessed source file,
even when the original source did not. This could result in obscure compiler
messages, or even in wrong code.

Description of the Implementation

#include "sumint_int.h"
#define INCLUDE_BODY

BLOCK DATA sumint_bd
#include "sumint_int.h"

DATA SUM, NRINTS /2*0/

END

#define DEFINE_FUNCTIONS

SUBROUTINE add_this (I)
INTEGER I

#include "sumint_int.h"
NRINTS = NRINTS + 1
SUM = SUM + I
END

FUNCTION the_average ()

#include "sumint_int.h"
the_average = sum / REAL (NRINTS)
END

Program 5.3: sumint.F

Numeric precision

As a remedy for the problem of controlling the numeric precision (see
Section 5.1.2) CFmacros.h provides a macro normal_precision
(NORMAL_PRECISION for C programs). This should be used as a type
name when declaring floating point variables. It will expand into REAL on
Cray computers and into DOUBLE PRECISTION on 32-bit machines.

The macros single_precision and double_precision are avail-
able for code that needs to use the maximum or minimum precision available.
They should be used instead of the (normally equivalent) REAL and DOUBLE
PRECISION since the macros allow consistent use of non-standard types on
machine that provide more than two floating point types.

Other macros serve to allow programs to access the most important
machine characteristics. These are summarized in Table 5.1. The macros
....normal_precision correspond to the normal_precision type.

Implementation

#include "sumint.h"
#define INCLUDE_BODY
#define DEFINE_FUNCTIONS
PROGRAM client
#include "sumint.h"
INTEGER I
REAL AV

DO 100 T =1, 10
CALL add_this (I)

100 CONTINUE
PRINT *, ’‘sum = ', SUM
PRINT *, ’'average = ’, the_average ()
END

Program 5.4: Client module

There exist a few more macros for supporting the use of the
normal precision type: _ints._per._real_ is the size of a
normal _precision datum in units of INTEGER words. The macros
0, -1, _2_ and _05_ expand into proper normal_precision literals
representing the constants 0.0, 1.0, 2.0 and 0.5 respectively.

Long names

To improve readability of the program code it is desirable to make use of
long names (longer than the usually allowed six characters). Since not all
compilers support these, there must be a means for mapping long names onto
standard conforming ones. However, we do not wish to do this mapping
unconditionally, since this implies that even on systems where long names
are legal, we would have to cope with the unreadable six character names
whenever we have to look at the preprocessed sources, e.g. when using a
source level debugger.

Therefore CF_macros . h defines the macro LONG_NAMES for compilers
that allow long names for variables, and LONG_EXTERNALS on those systems
that also allow them for subprogram and COMMON block names. Header
files use these to conditionally map long names onto short ones. Using these
we get the improved version of the sumint header file (Program 5.5).

Description of the Implementation

71

FORTRAN name C name typical value
max_integer Max_INTEGER 2147483 647
min.integer Min.INTEGER —2147483 647
max.single_precision Max_SINGLE_PRECISION 3.4 x 10138
min.single_precision Min_SINGLE_PRECISION —3.4 x 1013#
least.singleprecision Least_SINGLE_PRECTSION 1.2 x 10738
eps-single_precision Eps-SINGLE_PRECISION 1.2 x 1077
max.double_precision Max_DOUBLE_PRECISION 1.8 x 101308
min.double_precision Min_DOUBLE_PRECISION —1.8 x 101308
least.double_precision Least.DOUBLE_PRECISION 2.2 x 10308
eps.double_precision Eps_DOUBLE_PRECISTON 22 x 10716
max.normal_precision Max_NORMAL_PRECISION 1.8 x 10+308
min_normal_precision Min_NORMAL_PRECISION —18 X 10+308
least_normal_precision Least_NORMAL_PRECISION 2.2 % 107308
eps_normal_precision Eps-NORMAL_PRECISION 2.2 % 10716

Table 5.1: Macros defining machine characteristics for use by FORTRAN
and C programs

Further portability support

The macros std-in, std_out and std_err expand into the FORTRAN
logical unit numbers for standard input, standard output and standard error
output respectively. Note that the first two of these are equivalent to the
implied units designated by the use of an asterisk in an I/O statement. The
macros are mainly needed when a unit number must be passed as a parameter.
Most non-UNIX systems do not have a notion of a \standard error output”
file, on such systems std_err will be the same as std_out.

implicit_none can be used to disable the dangerous implicit typing
in FORTRAN. For compilers that support this FORTRAN-8X [3] extension,
the macro expands into IMPLICIT NONE, otherwise into IMPLICIT
CHARACTER*7 (A-7).

In cases where non-portable constructs are necessary, a machine dependent
macro can be used to hide such a construct from other compilers. For
example, on the Alliant (and only there) the macro _alliant_ is defined.
This allows for the safe use of nonportable code by protecting it with

Implementation

#ifndef LONG_EXTERNALS

define add_this SIADD

define the_average SIAVER

define sumint_common SICOMN
#endif /* LONG_EXTERNALS */

#ifndef LONG_NAMES
define the_sum SUM
#endif /* LONG_NAMES */

/* sumint, a package for summing integers.

*/

#ifdef INCLUDE_BODY
COMMON /sumint_common/ the_sum
INTEGER the_sum
SAVE /sumint_common/
ifdef DEFINE_FUNCTIONS
REAL the_average
endif /* DEFINE_FUNCTIONS */
#endif /* INCLUDE_BODY */

Program 5.5: An improved version of sumint .h

#ifdef _alliant_.

For testing purposes, non-standard features can be disabled by defining
STANDARD_ONLY prior to including CF_macros.h. This will in particular
prevent the definition of LONG_EXTERNALS and LONG_NAMES.

Optimization directives

In order to fully exploit the power of vector computers or multiprocessors, it
is often necessary to use compiler directives, telling the compiler that it is safe
to optimize a certain loop. These directives vary from compiler to compiler.
CF_macros.h provides a portable means for the insertion of these directives.
It works by including certain files: If a loop can be safely optimized by the
compiler, the statement

#include O_nodep.h

5.2. Description of the Implementation

should be used immediately before the loop. Similarly, including
O_vector .h instructs a vectorizing compiler to vectorize the loop, without
exploiting any other forms of parallelism, O_concur .h does the same for
concurrency, and O_vect_conc.h tries to force both, vectorization and
concurrency (provided the machine is a vector multiprocessor). O_noopt .h
can be used to prevent optimization (useful e.g. in the case of nested loops to
prevent the compiler from optimizing the \wrong" loop).

C/C++ interface

To solve the problems mentioned in Section 5.1.2, it was necessary to call
procedures written in C. Furthermore, other parts of the 3d simulation package
that are written in C++ should be able to call the same libraries as Second.
Therefore it was necessary to provide a portable means to interface FORTRAN
to C and C++. This is done by providing the macros fortran_name and
fortran_common_block for declaring FORTRAN entities in C or C++.
Their usage is demonstrated in Program 5.6 for a library routine that can be
called from either FORTRAN or C.

The macros fortran_name and fortran_common have two parame-
ters, the all-lower-case and the all-upper-case versions of the name used in the
FORTRAN program. This is necessary since on some systems the FORTRAN
compiler exports procedure names up-cased, on others down-cased. The same
holds for COMMON blocks.

Naturally there is no guarantee that the chosen scheme for the C/FORTRAN
interface will work on all computers, not even on all UNIX systems. There are
too many possible variations in the way things might be done. The currently
implemented scheme works at least on all the UNIX systems we know.

We would like to note here that the present implementation of Second does
not depend on C code, it is possible to install a pure FORTRAN versionlwith
significantly reduced comfort.

5.2.3 Libraries and Tools

This Section presents the library functions used by Second. They fall
into three categories: general-purpose FORTRAN utilities (f_util), device

Implementation

/* Simple plot module */
#ifndef _FORTRAN_
ifdef LONG_EXTERNALS
define Cur_pos fortran_common (cur_pos, CUR_POS)
define Move_to fortran_name (move_to,MOVE_TO)
else /* ! LONG_EXTERNALS */
define Cur_pos fortran_common (drcups, DRCUPS)
define Move_to fortran_name (drmove, DRMOVE)
endif /* ! LONG_EXTERNALS */
fortran_common_block
struct {INTEGER x, y}
common_declaration (Cur_pos);
Move_to (INTEGER *x, *y);
#else /* _FORTRAN_ */
ifndef LONG_EXTERNALS
define Cur_pos DRCUPS
define Move_to DRMOVE
endif /* ! LONG_EXTERNALS */
ifdef INCLUDE_BODY
COMMON /current_pos/ X, Y
INTEGER X, Y
SAVE /current_pos/
endif /* INCLUDE_BODY */
#endif /* _FORTRAN_ */

#
#
#
#
#
#

#
#
#
#

Program 5.6: Header file for library routine callable by both, FORTRAN and
C

simulation specific utilities (sim_ut i1) and linear algebra kernels and sparse
linear solver packages.

General-Purpose FORTRAN Utilities

The subprogram library £_util contains procedures that are of general use
for FORTRAN programs, as well as routines that support a C/FORTRAN
interface on a file level. These library routines are discussed in this section.

5.2. Description of the Implementation

Heap To solve the dynamic memory problem (Section 5.1.2) we imple-
mented a heap module. There are basically two ways to implement a heap:
Purely in FORTRAN, using a big array as a heap, or outsidle FORTRAN,
e.g. by calling the C function malloc. The latter method is, of course, not
portable to systems that do not have C, while the former has the disadvantage
that the heap is not really dynamic and the total size of a program is still
independent of the data.

We therefore decided to implement both methods. The FORTRAN module
heap allocates storage from a static array. If no more space is available, a
C function is called (module heap_dyn), which in turn calls malloc. On
systems where malloc is available, the static heap array is made small so
that the C routines are used, otherwise the static array is dimensioned big
enough and the C interface is disabled.

#ifdef ...
#define real_heap single_heap
#else
#define real_heap double_heap
#endif
SUBROUTINE allocate_real (SIZE, INDEX, ERROR)
INTEGER SIZE, INDEX, ERROR
SUBROUTINE deallocate_real (INDEX, ERROR)
INTEGER INDEX, ERROR
SUBROUTINE resize_real (NEWSZE, INDEX, ERROR)
INTEGER NEWSZE, INDEX, ERROR
SUBROUTINE print_heap_statistics ()
SUBROUTINE print_heap ()
SUBROUTINE set_heap debug (DBGLEV, UNIT)
INTEGER DEGBLV, UNIT

INTEGER HEAPSZ, DHEAPS

PARAMETER (HEAPSZ = s_heap_size)
PARAMETER (DHEAPS = (HEAPSZ+1)/2)

COMMON /heap_common/ double_heap
double_precision double_heap (0:DHEAPS-1)
single_precision single_heap (0:HEAPSZ-1)
EQUIVALENCE (single_heap,double_heap)

Program 5.7: Simplified heap interface

Implementation

Program 5.8 shows a simplified interface to the heap module (only
showing routines for allocating normal_precision data). The allocation
function allocate_real returns, if successful, an index into the heap array
(real_heap for type normal_precision) which points to the first word
of the allocated segment. With deallocate_real the allocated storage
can be returned, with resize_real the size of an allocated segment can be
increased or decreased.

Corresponding calls exist for the dynamic allocation of INTEGER,
LOGICAL, single_precision or double_precision storage.

If the dynamic heap option is used, the allocated storage segment is in
general not part of the heap array, rather the address returned by malloc is
converted into an offset from the address of the array. This only works as long
as the system does not perform array bounds checking at run time. Since such
checks are normally very expensive, they are not done by most FORTRAN
systems. There are exceptions, however, like on the Burroughs B-6700 series
where these checks are automatically done by hardware. On such a machine
our dynamic memory management would not work, but on \normal" systems
there should be no problems.

The heap module also provides some check and debug functions. The
procedure print_heap_statistics prints statistics on the amount of
heap storage used and the amount of memory fragmentation. The usage
and fragmentation figures only include what was allocated by the heap
module, if any routines call malloc directly this storage will not be
counted as \used" (and increase the \fragmentation" figure). As a side-
effect print_heap_statistics performs a consistency check of the heap
segment lists.

The procedure pr int_heap prints the current layout of the heap, i.e. the
list of free and used segments. This can be useful for debugging a program
that overwrites storage. The procedure set_heap_debug turns debugging
on or off. A value greater than zero for DBGLEV turns on debugging output,
a zero or negative value turns debugging off. Debug output is written to the
logical unit designated by UNIT.

Program 5.8 shows the typical use of heap memory. Macros are used to
access dynamically allocated memory using the normal array notation. That
way the code looks exactly as if the arrays were \real" ones.

Note that a relatively long name is used for the array macro (global....),

5.2. Description of the Implementation

#define n_mat 3*n_vec
#define global_vec(i)real_heap(x_vec+i)
#define global_mat (i, j)real_heap (x_mat+3*i+7j)

INTEGER n_vec, X_vec, Xx_mat, I, J

CALL allocate_real (n_vec, Xx_vec, ERRI1)
CALL allocate_real (n_mat, x_mat, ERR2)

DO 100 I = 0, n_vec-1
READ (*,*) global_vec(I),
S (global_mat(I,J), J=0,2)
100 CONTINUE

CALL deallocate_real (x_vec, ERR1)
CALL deallocate_real (x_mat, ERR2)

Program 5.8: Typical usage of heap memory.

to prevent the expanded code from being longer than the original macro call.
This is easy to do for one dimensional arrays. For more dimensions the names
need to be quite long and become unhandy. We therefore stick with the above
used names which are safe in the case of one dimensional arrays and must
otherwise be used with care.

Simbad The Simbad binary I/O interface facilitates data transfer between
C/C++ and FORTRAN programs on the file level. It provides for hardware
independent binary files and thus allows moving data in a compressed form
between dissimilar computers. Simbad is discussed in detail in [40]. The
module simbad.h implements the Simbad specifications.

Smaller utility modules

f_strings The module f_strings supplies a few often needed string
processing functions. These include a function returning the actual length of
a string, and procedures to remove extra spaces in strings, to append strings,

Implementation

and to up- or down-case strings. Finally there is a procedure for extracting the
value of a keyword field set up by RCS.

tiny The module tiny exports a set of small utilities that help to
solve the problems pointed out in Section 5.1.2. Most of them are actually
implemented in C, on non-UNIX systems these may return null values of a
kind that allow the calling program to continue in a reasonable fashion.

Procedures exported by tiny allow programs to inquire command line
parameters, the total amount of processor time consumed or remaining, or the
current date and time. Other entry points flush output units or remove files.
Functions for determining whether or not standard input/output is from/to an
interactive terminal are provided, as is a function returning the identification
number of the current process. Finally there is a procedure to terminate the
program with an indication on the success of the execution (exit status), and
one to force a controlled program crash (producing information that may be
helpful for debugging).

clock The module clock provides a convenient interface for timing
sections of a program. It exports a type time_type and the procedures
init_clock, start_clock and stop_clock. To use the clock, a
variable of type t ime_t ype must be declared, which is initialized by passing
it to init_clock. After that, the clock can be started, stopped, re-started
etc. by calling the procedures start_clock and stop_clock. The latter
will return the time since the last time the clock was started, the accumulated
time during which the clock was running, and the number of intervals for
which it was running.

By defining several time_type variables a program can use several
different stopwatches to time various parts of code.

arsinh The arsinh function is frequently needed in device simulations,
but is not part of the set of standard FORTRAN intrinsic functions. Hence the
module arsinh.h provides a (not particularly accurate) implementation of
arsinh.

5.2. Description of the Implementation

Kernels and linear solvers

blas blas.h is a header file providing a generic interface to the Basic
Linear Algebra Subprograms (BLAS) [48]. These are a set of elementary
vector X vector operations. On most vector computers highly optimized
implementations of the BLAS are available in some system library. For those
systems only the header file blas.h is needed to compile the simulator. For
systems where no BLAS library is available, ready-to-compile sources are
supplied (source subdirectory blas).

BLAS routines come in four categories: REAL, DOUBLE PRECISION,
COMPLEX and, where available, DOUBLE COMPLEX. No complex data types
are used throughout the simulator, hence the latter two categories are of no
interest to us. For the other ones we require a interface that is consistent with
our type normal_precision. This is provided by generic name macros
like _axpy, which expands into SAXPY or DAXPY, depending on whether
normal_precision is the same as REAL or DOUBLE PRECISION.
Defining these macros is the main purpose of the header file blas.h.

math_aux The module math_aux provides simple vector operations
that are similar to, but not part of, the BLAS. These include vector assignment
operations (z; := a) and ternary vector operations like z; := z; + x;y;. These
can be efficiently optimized on vector computers. However, the main reason
for their existence is the wish to improve readability of the code by using
subroutine calls for such basic operations rather than cluttering the code with
many loops.

solvers Finally there are subroutines for the solution of sparse linear
systems of equations. These are packages of their own [9, 59] and are not
documented here.

Simulation-related utilities

General definitions Certain conventions are required for the efficient
internal or external storage of simulation grids. These conventions are defined

Implementation

in Datex [41]. For convenient access by programs the conventions are
specified in the form of macros in general.h.

The macros defined in general . h include constants identifying element
and face types (shape codes), vertex location types and material types.
Additional constants like Max_elt_corners and Max_face_corners
are typically used for defining arrays within client modules as well as the
general module.

Data structures exported by general are arrays specifying properties of
elements and element faces, such as the numbers as well as the start and end
points of edges.

The only procedure exported by the module is an initialization routine that
must be called before any of the arrays are being used. In addition, the C/C++
interface defines types that are useful for processing grid data.

data_codes The module data_codes contains macros specifying the
type codes for various data that may be output from a simulation. This allows
using symbolic names rather than the constants defined in [41].

Furthermore the module exports a procedure get_data_label, which,
given a data type code, returns the factor used to scale data of this kind
when externally stored in Datex files. The procedure also returns strings for
representing the name of the datum in human readable form. This is useful
for labelling graphs or tables that are output of various tools.

5.2.4 Program Structure

Figure 5.1 gives a rough representation of the overall structure of Second.
The meaning of the various symbols is as follows:

A box, like , symbolizes one or more procedures. The bold, colon
terminated string denotes the module name while the other string(s) give the
procedure name(s). We will frequently make use of the notation mod : proc to
designate that the procedure proc is exported from module mod.

'S 2an31y

PU0IIS J0 24mon.41s Y3nod 2y J

init_data

initialize:

q
5
§
$
$
d
$
$
$
d
$
§
$
$
$
$
$
§
$
§
Ed

driver:
MAIN

time:
sol ve_transi ent

. . . initialize:
i nput: geonetry: files: i, :
i nput init_geometry| |load fromfile| |!0t-variables
P -9 y - - re_init_variables

. dop

files:
save_to_file
write_output

uonejuawajdwy ay} jo uondusseq -2

18

Implementation

Bold solid arrows symbolize procedure calls (pointing from the caller to
the callee), while dotted bold arrows designate indirect calls (i.e. calls through
intermediate procedures). Thin solid lines denote data flow, particularly from
or to I/O units. The symbols], L4, and = designate such I/O units:
input decks, output lists and mass storage units respectively. The symbols are
labelled with a string which gives the conventional file name extension for
that kind of file. These extensions are used to distinguish within a directory
the various files that are used in a particular simulation run.

We use the \input deck" symbol for human readable input files that may
come from a small file or directly from the terminal, or may be produced
by another program. Similarly, the \output lists" stand for human readable
output files. The \mass storage" symbol denotes files that are generally large
and not human readable (i.e. stored in binary), such files are used to pass large
amounts of data between different programs or between different runs of the
same program. Note that some of the \listing files" are also read by other
programs, usually for some kind of post-processing.

The input deck that is read by the input processor contains directives to
the simulator. Its contents determine which simulation is to be performed,
specifying the grid to use, the bias conditions and the physical models to apply
etc. It also specifies what kind of output (e.g. for plotting the results) is to be
produced. The contents of the input deck, called parameter input, is described
in the User Manual [42].

The grid file (extension .geo) and the doping file (.dop) contain the
physical description of the device to be simulated, as well as a simulation grid.
These two files are produced by the grid generator). The result files (. out)
are used to plot the results with the graphic tool Picasso [82]. More details
on the interaction between Second and the various pre- and post-processing
tools are given in Section 5.3.

Save files (. sav) are used to save the results of one simulation so that a
future simulation can continue from the point where an earlier one finished.
The current file (. cur) records, in transient or quasi-stationary simulations,
the values of the terminal currents after every time step.

Several result files may be written in the case of transient or quasi-
stationary simulations, provided the parameter file says so. In that case a
movie file (.mvy) records the names of the intermediate result files, together
with the simulated time to which they belong.

5.2. Description of the Implementation

The procedure time : solve_transient is the root of the \real" PDE
solver. Its structure is shown in Figure 5.2. Here the dashed boxes refer to
several different modules and the thin lines denote important data flow.

geonetry:
l'insol ve:

current:

i bernoul li: ' mobi | :

i expmi: i i reconb:

iefield : Lo
sparse

Figure 5.2: Structure and main data flow of the PDE solver

The utility modules bernoulli and expml are fast and accurate
implementations of the Bernoulli and e — 1 functions, and sparse only
contains the procedure _saxp which multiplies a sparse matrix with a vector.
efield contains procedures for the accurate computation of the electric field
and current density vectors, as explained in Section 4.4.

The module mobil computes the carrier mobilities according to one
of several available models, while recomb computes carrier recombination
and generation rates. The other modules will be discussed in the following
sections.

Implementation

5.2.5 Data Structures

The modules geometry and tables are the main containers of global data
for the simulator. Further data of general interest are exported by the modules
par_files, par_math, and par_physics. The modules assembly,
current, efield, mobil, and recomb contain data that are of relevance
only for a few modules.

Geometry As the name implies, the geometry module contains data
describing the geometry of the simulated object. Almost every module needs
to access some of these data.

Data exported by geometry fall in three categories: simple variables,
small, fixed size arrays, and large, dynamic arrays. Variables of the first
category contain counts like the number of vertices in the grid or the number
of contacts in the device. The second kind of variables are quite similar: arrays
containing, for example, the number of elements of each possible shape. The
third kind contains the actual geometry data, like the coordinates or doping
values of the vertices, or the shape codes of the elements.

These atrays are initialized from the grid file. Grid file information is
also used to initialize other data, particularly the arrays exported by tables.
After this initialization most of the dynamic arrays in geometry are no
longer required and are hence deallocated.

Reordering of elements and vertices In order to simplify some of
the algorithms (particularly in the assembly of the linear equations) and to
improve vectorization of several loops, the vertices and elements are reordered
while reading the geometry file. With a few (particularly documented)
exceptions, all data structures and algorithms of the simulator assume this
internal order. The only places where the original order is used are the input
and output routines, and some initialization procedures.

The vertices are internally ordered by material: first come all the vertices
belonging to a semiconductor material (including those at the interfaces), then
all the vertices in the insulator (if any), and finally all the Dirichlet (contact)
vertices irrespective of the material. The entries in the array dom_points
contain the starting point numbers of each of these domains. Figure 5.3
illustrates the internal order.

Description of the Implementation

Si _dom Si O2_dom di r_dom di r_dom+l
dom pts: | | |

[/

Figure 5.3: Internal order of vertices

Similarly the elements are ordered by shape, first all tetrahedra, followed
by all pyramids, followed by all prisms, followed by all cuboids. Within each
shape the elements are ordered by material. The array shape_elts contains
pointers to the beginning of each part.

The permutation indices for vertices and elements are contained in the ar-
rays global pt_permut and global_elt_permut respectively. These
arrays actually contain both, the permutation from external to internal order
and the inverse. The element permutation is actually not needed by the pro-
gram, it is only stored for debugging purposes. At the end of the initialization
phase the element permutation array is deallocated. The vertex permutations
are needed for outputting results in external order and are therefore kept until
the end.

Tables The module tables contains the bulk of the global numerical data,
most of which falls in two categories: vectors and sparse matrices. Vector
data, like the box volumes for each vertex, are straightforward and need not
be discussed in detail.

Sparse matrix representation Sparse matrices must be stored in a
form that suppresses zero entries, otherwise the memory requirements as well
as the time needed for processing the matrices would be unreasonably large.
There is, however, no established standard for the representation of sparse
matrices.

Since they originate from the box discretization of a 3d mesh, each non-
zero off-diagonal entry in our sparse matrices corresponds to an edge in the

Implementation

mesh. Therefore the sparsity structure of our matrices is equivalent to a list of
edges. If we have a data structure for edges we can interpret this as a sparse
matrix data format.

We choose the following conventions for edges: Each edge is identified
by a starting and an ending vertex. For edges between non-Dirichlet vertices,
we take as the starting vertex the one with the smaller (internal) number, for
edges where at least one of the vertices is a Dirichlet point, the vertex with
the larger number is taken as the starting vertex. (We will see the advantages
of this convention shortly.) Edges are sorted by ascending starting vertex
number, with ascending ending vertex number as the minor sort key. This
uniquely determines the order of the edges.

We now define the array global_edg_index to contain, at position i,
the number of the first edge whose starting index is i. Two further arrays
global_edg._pt and global_edg_oth_pt contain each edge’s starting
index (i) and ending index (3j) respectively. Figure 5.4 shows how the
off-diagonal elements of a sparse symmetric matrix are stored: the coefficient
a;j, which corresponds to the edge from vertex i to vertex j, is stored in an
array (here global_edg_fact) at the same position as the indices i and j
in their respective arrays.

I —

gl obal _edg_pt: |o S0 i1~

gl obal _edg_i ndex:

gl obal _edg_ot h_pt: | e |

gl obal _edg_fact: |

e |

Figure 5.4: Schematic representation of the sparse data structure

Note that the array global_edg_pt is redundant. However, its avail-
ability often allows processing of an entire sparse matrix in a single loop rather

5.2. Description of the Implementation

than two nested loops (with an additional indirection). The one-loop variant,
when usable, leads to code that can be efficiently vectorized. Program 5.9
gives examples of processing matrices with our data structure.

—— compute b; = Zj ai;T;

—— compute du;; = u; — U off:=global_edg_index[N] -

e_0:=global_edg_index[0] global_edg_index[0]

e_l:=global_edg_index[N] for i:=0 to N-1

for e:=e_0 to e_1-1 e_0:=global_edg_index[1i]
i:=global_edg_ptle] e_l:=global_edg_index[i+1]
j:=global_edg_oth_ptle] for e:=e_0 to e_1-1
dule]:=ul[i] - ulj] J :=global_edg_oth_pt[el

b[i]l:=b[i] + x[j]*ale]
b[jl:=b[j] + x[i]*ale+off]

Program 5.9: Examples of sparse matrix usage: single loop version (left)
and nested loop version (right)

We observe that by virtue of our ordering of the edges, the previously
discussed separation of non-Dirichlet and Dirichlet vertices translates into a
corresponding separation of edges between non-Dirichlet points and edges
that belong to at least one Dirichlet point. This allows for easy and efficient
treatment of the boundary conditions (cf. Section 4.2.1). In fact, the order
insulator-semiconductor-Dirichlet points would be even more advantageous,
since it would automatically separate insulator edges from semiconductor
edges and thus save additional IF statements in the assembly of the continuity
equations. However, this would require a linear solver that allows vertex
numbers to start at an arbitrary value, which is not supported by the linear
solvers we have at our disposal.

What has been said so far only explains how the off-diagonal coefficients
of a symmetric matrix, or the strict upper triangle of a non-symmetric matrix,
are stored. The diagonal, which is simply a vector of length N, is either stored
separately, or immediately preceding the off diagonals (indices —N --- — 1).
For non-symmetric matrices we can either use a two-dimensional array, or
simply store the coefficients of the lower triangle after the upper triangle
(with a constant offset between the coefficients a;; and a;;). This usage is
already demonstrated in Program 5.9. Most internally used sparse matrices
are symmetric, moreover most of them have zero diagonals.

Our sparse matrix data format is quite similar to the BLSMP data struc-

Implementation

ture [9], which is a variant of the YSMP format [30]. The main difference
between the latter two is that BLSMP makes use of the structural symmetry
of the matrices and avoids storing redundant information when dealing with
symmetric matrices. Our format differs from BLSMP in the use of zero-
relative indices and by avoiding the mixing of pointers and indices in the same
array.

Other arrays The coefficient matrix of the linear systems,
assembly:global_lhs, which is non-symmetric and has a non-zero
diagonal, is kept in the BLSMP format dictated by the linear solver.
Its sparsity structure (BLSMP’s notorious \JA" array) is contained in
global_index_list. The array global_edg_jac_index serves to
translate between the two data structures: the array contains the BLSMP in-
dices of our edges. The array global_dphi_dphi contains the discretized
Laplace operator. This one is also kept in BLSMP format, because that way it
only needs to be copied when assembling the coefficient matrix.

There are several temporary arrays that contain data in \external" vertex
order: global_raw_e_ndx, global_raw_e_oth etc. These are used to
hold the box information supplied in the grid file, until enough of the simulator
data structures are set up to store the box sections at their final place. This is
done at the end of the initialization phase, the temporary arrays are afterwards
deallocated.

The arrays global_vect_trafoand global_vect_Si_wgt are used
for the computation of electric fields and current densities along the lines laid
out in Section 4.4.

Other modules The module assembly exports the arrays to hold the
coefficient matrices (LHS) and the residual vectors (RHS) of the sparse linear
systems to be solved. The LHS arrays are kept in BLSMP format (see above).

The module current exports the array containing the current density
vectors for electrons and holes, while e f 1 e 1d exports the electric field as well
as the gradients of the electron and hole quasi-Fermi potentials. Mobilities
are exported by mobil while recombinations, effective intrinsic densities and
the bandgap narrowing values are exported by recomb. These modules also
export procedures, some of which will be discussed in Section 5.2.6.

5.2. Description of the Implementation

5.2.6 Algorithms

Time Integration

—— time:solve_transient

if not restarted from transient simulation
nonlin:solve_nonlinear ()

foreach time interval do
—— time:time_interval
time := start_time(time_interval)
while time<end time(time interval) do

if exceeded resources or step size limit

exit
—— time:time_step
for step := TR_step, BDF2_step

set the contact voltages for time
—— time:time_extrapolation
extrapolate variables from previous to current time
nonlin:solve_nonlinear ()

estimate the LTE

if LTE<LTE_limit
time := time + time_step
time:write currents/()

else
reject time step

determine new time_step

Program 5.10: Schematic control flow for time integration

Program 5.10 shows schematically the procedure for the time integration.
The comments introduced by \--" indicate which procedure contains the
particular section of code. The algorithm follows the method laid out in
Section 2.2.

The main work to be performed for the time integration is the solution
(space integration) of the semiconductor equations for each individual time
point. This solution is not different from the stationary case, except that some
terms are added to the arising linear systems of equations. This is done during
the linear equation assembly.

Quasi-stationary simulations are basically performed as transient simula-

Implementation

tions without adding the transient contributions to the linear systems. An
artificial time is used to control the speed with which terminal voltages are
stepped up.

Nonlinear equation solution For the space integration the procedure
nonlin:solve_nonlinear iscalled. This performs a Gummel iteration,
calling newton:newton for each individual equation, or a coupled solve,
calling newton : newton once for the full system. In stationary simulations
Gummel iterations are always performed, usually followed by a coupled
solve. Transient simulations only use coupled iterations, and quasi-stationary
simulations can be performed either way.

In order to keep the control over convergence criteria all in one place,
newton:newton uses the procedure nonlin:comp_rel_err for com-
puting the relative error. That procedure is passed as a parameter to
newton:newton. The procedure nonlin:extract_old_values (also
passed as a parameter) serves to pass the original values of the variables from
newtontononlin,sothat comp_rel_err cancompute the relative change
due to the last Newton iteration.

Program 5.11 shows the implementation of the damped Newton algorithm.
The damping scheme has been discussed in Section 2.3.1, while the control of
the linear solver has been described in Section 4.6.2.

A safeguard not shown in Program 5.11 is to impose an upper limit on
the damping factor if some components of the solution of the linear system
for potential variables (electrostatic or quasi-Fermi potentials) become too
big. We limit the damping factor such that no potential component may be
updated during a single Newton step by more than approximately one volt,
thus avoiding overflow when computing the carrier densities from the updated
potentials. This is a rather coarse method that is sufficient for simulations
where applied voltages are in the one to ten volts range. For high voltage
devices it is inappropriate.

Assembly The real work for the solution of the differential equations is
done by the assembly procedures and by the sparse linear solver. The latter
is a separate piece of software and is not discussed here in any detail. The
assembly procedures assemble RHS and assemble_LHS are exported by
the module assembly.

5.2. Description of the Implementation 91

assemble_RHS

rhsnrm := | chs||
oldnrm := rhsnrm
damp =1

for it := 1, max_it

assemble_LHS
solve_sparse_system (lhs, rhs, dx)

dxnrm = | dx||
damp := damp / (damp + ((l-damp) * rhsnrm) /
(10 * oldnrm))
oldnrm := rhsnrm
oldamp := damp
extract_old_.values
for § := 1 to j_max
update_vars —-- x:=x+ damp *dx
assemble_RHS
rhsnrm := | rhs||

comp_rel_err
if converged
exit
elseif 1-rhsnrm/oldnrm > damp*delta

exit

else
damp := oldamp* (delta/dxnrm)** ((j/j_max) **2)
reset —— recoverold x

if converged
exit

Program 5.11: The damped Newton algorithm

RHS assembly The assembly of the RHS proceeds in several steps.
First the stationary RHS are assembled (without the recombination terms
in the case of the continuity equations). Next the recombination terms are
evaluated and added. This means that in the coupled case the recombination
rates are computed only once for both, the electron and hole equations. The
next step is to call timeass:time_RHS to add the transient contributions,
if any. After that the terminal currents are extracted from the assembled RHS.
Finally the Dirichlet boundary conditions are incorporated by zeroing the RHS
components belonging to Dirichlet vertices (cf. Section 4.2.1).

As explained in Section 4.1.1, assembling the RHS for Poisson’s equation

Implementation

e_0 := global_edg_index[0]
e_1l := global_edg_index[N]
for ¢ := e_0 to e_1-1
i := global_edg_ptle]
J := global_edg_oth_ptle]
fact := global_edg_fact[e] * (mobil[i]+mobil[j])/2
tmp[e] := -fact * (dens[j]*B[0,e]-dens[i]*B[1l,e])
for i := 0 to N-1
e_0 := global_edg_index[i]
e_1l := global_edg_index[i+1]
for e := e_0 to e_1-1
J := global_edg_oth_ptle]
RHS[1] := RHS[1i] + tmpl[e]
RHS[]] := RHS[]] - tmple]

Program 5.12: Simplified RHS assembly for the electron continuity equation
(using densities). The Bernoulli function values B are precomputed

can be done by multiplying the discretized Laplacian with the solution vector,
and adding a few vectors arising from the charge terms, hence the dominating
operation is the sparse matrix-times-vector product. Program 5.12 shows that
the situation is similar for RHS assembly for the continuity equations: First a
sparse matrix is computed, then the RHS is obtained by summing the rows of
that matrix. The computation of the matrix can be very efficiently vectorized,
so this part is rather fast, even though many operations are involved. The
second part, the summing of the rows, is just a simplified form of the
matrix-times-vector product (the vector has all components equal to one).

The sparse matrix-times-vector type operations do not vectorize well. The
inner loop runs over the non-zero entries of the upper triangular part of the
matrix, which, owing to the extreme sparsity of our matrices,> makes a very
short loop. Due to data dependencies, the loops cannot be exchanged either.
Therefore this part of the algorithm executes essentially at scalar speed.

LHS Assembly The LHS assembly is quite similar. Looking at
Egs. (4.4,4.5,4.9, 4.10), we see that the LHS for the continuity equations has

2For the grids we are using, a vertex is in average incident in about seven edges, which
means that the resulting sparse matrices have in average eight non-zeros per row (including the
diagonal), so that a loop over rows in a strict upper triangular matrix has in average 3.5 iterations.

5.2. Description of the Implementation

the form

(LHS)ir = air — S | > _ aij +bi | | (5.1)
J#i

where a;; is a matrix with a zero diagonal. Assembling the LHS therefore
requires the computation of the matrix a;; (which, again, can easily be
vectorized), and adding two diagonal contributions, the first being the row
sum of a;x, while the second, arising from the recombination terms, is just a
vector that does not cause problems. As in the RHS assembly, the summing
of the rows of a;; must be done essentially at scalar speed.

Clearinghouse The clearinghouse clear serves to avoid redundant eval-
uations of costly expressions. For example, when assembling the LHS, it is
not necessary to recompute the mobilities if the RHS has just been assembled
and the values of the unknowns did not change in the meantime.

If a quantity, such as the mobility, needs to be known, the procedure
must_compute is called with one parameter specifying the quantity to be
computed and the other the quantities on which the first quantity depends (i.e.
the \independent quantities"). The procedure returns false if the dependent
quantity is up-to-date, otherwise true is returned and the dependent quantity
must be recomputed. Whenever one of the monitored quantities changes this
must be reported to the clearinghouse by calling notify_change.

The clearinghouse is implemented by maintaining a \modification time"
for each monitored variable. This is an artificial time value that starts with
zero and is incremented on each call of notify_change. Consequently,
must_compute only needs to check if any of the independent quantities are
\younger" than the dependent one.

Quantities are identified by numbers that are all powers of two. They can
therefore be treated as elements of a set. To specify the set of independent
quantities, one only needs to add all their identifiers. This makes the
clearinghouse very convenient to use. However, it must be kept in mind that
FORTRAN does not really support setslcare must be taken, that no identifier
is specified twice, since this would result in the wrong \set".

other modules Besides data structures (cf. Section 5.2.5, page 84),
geometry also contains procedures, only one of them, init_geometry,

Implementation

is exported. These procedures do all the input processing of the grid and
doping files, plus the setting up of many of the geometry data structures,
including the temporary ones. A corresponding initialization procedure exists
in tables, this does the remaining initializations of the global data structures,
particularly those required for the equation assembly, plus the transformation
matrix for the computation of electric fields (cf. Section 4.4). Other modules
are initialized by tables by calling their respective initialization codes.

The module current exports three routines: an initialization routine
called by tables, and the routines comp_currents and get_cont_cur.
The former extracts the contact currents from the assembled RHS as explained
in Section 4.3, and saves them in internal arrays. The latter procedure then
returns the stored values.

All the physical models are implemented inmob1i 1 and recomb, the latter
module also contains the evaluation of bandgap narrowing. The contributions
to the Jacobian (LHS) due to derivatives of the recombination terms are also
computed in recomb. LHS contributions due to the field dependence of the
mobilities and the generation terms are currently ignored. The computation
of the electric field, as well as the gradients of the quasi-Fermi levels, is done
in efield, using the method presented in Section 4.4. Note that the electric
field computation, like the assembly routines, contains a poorly vectorizing
sparse matrix row sum.

Potential Future Improvements

We pointed out in Section 5.2.6 (page 91) that parts of the assembly procedure
are sparse matrix-times-vector operations or row sums of sparse matrices and
do not vectorize well. This has so far not been a serious problem, since
CPU times of typical simulations are dominated by the linear solves (usually
to 70-98 %). However, recent improvements in the solver algorithms have
lead to cases where only about 60 % of the time was used for linear solves,
assembly and electric field computations being responsible for most of the
remainder.

The slow algorithms could be vectorized (and hence speeded up by factors
of ten or more) if they could be processed in a different way (e.g. diagonal wise
rather than row wise). This is normally not possible since data dependencies
would then prevent vectorization completely. However, the rows can be
reordered in such a way that data dependencies are avoided and inner loops

5.2. Description of the Implementation

with a large range result. This reordering is already done in the iterative
solver, so using the solver’s order could significantly speed up the assembly
routines (probably by some factor of two to five).

So far this has not been worth the effort, since assembly times were
usually only about 10 % of the total simulation time. However, if progress
with the linear solver algorithms continues, it may be a worthwhile task to
tackle. An improved linear solver interface is needed though, which would
be incompatible with our direct solver (which has proved very important for
debugging).

With a new solver interface we would also have the chance to get rid of
the multiple sparse data structures that plague the present implementation.

5.2.7 Availability and Portability

Second has been implemented mainly on an Alliant FX-80 minisuper computer.
During most of the development phase up-to-date versions were maintained
on Cray X-MP and Cray-2 supercomputers, later also on a Convex C-220
minisuper. These were heavily used for testing the code and running examples.

The code was ported to various other UNIX machines, including NEC
SX-3 supercomputers, Multiflow Trace and DECsystem mainframes and Sun
workstations. An older (FORTRAN only) version ran on Fujitsu VP-200 and
VP-2000 series supercomputers under both, the Super-UX (UNIX System V)
and MSP (compatible to IBM’s MVS) operating systems.

The good portability of the code is underscored by the fact that installation
to a UNIX system on which Second has never been running before typically
takes some three to five hours, including all system dependent parts. Most of
this time is typically used up waiting for compilations to finish. The actual
task of configuring Second for a new system typically takes less than one
hour.

Implementation

5.3 Integration Into a Simulation System

F—-— - - - = = =

|
I Process Smulation |

—_— - = = = =

Second Picasso

Figure 5.5: Embedding Second into a simulation environment

Figure 5.5 shows how Second fits into the 3d device simulation environ-
ment of the Integrated Systems Lab at ETH Ziirich. Idea [80] is an interactive
tool that allows the user to construct a device out of simple building blocks.
Process simulation output can be used to define the doping profiles within the
device under construction. (This feature is currently only rudimentary, the
corresponding part in Figure 5.5 is therefore dashed.)

The user also supplies to Idea information on how the initial simulation
grid is to be refined. This grid information, together with the constructed
geometry, is used by Idea to build an input file for the grid generator 2 [24].

5.3. Integration Into a Simulation System

Q2 can then generate the grid, which is deposited in the grid file (. geo), while
the corresponding doping information is written to the doping file (. dop).

The grid and doping information is input to Second, together with some
parameter input specifying e.g. terminal voltages. Simulation results, i.e.
the values of physical quantities at the grid points, are written to result files
(.out), while contact currents are written to the current file (. cur). The
dashed line between €2 and Second indicates adaptive grid refinement which
is not yet implemented.

Two tools exist for the visualization of the simulation results. Sepp is
a small utility based on xgraph that reads the current file and plots I (V)
curves and similar graphs. Picasso [82] is a sophisticated and versatile 2d/3d
graphic tool. It uses the grid and result files to render various representations
of simulation data. In particular it allows the user to select an arbitrary view
of the simulated object and to view scalar or vector data on the surface of
the object. Colours are used to represent magnitudes. To examine data in
the device interiour, an arbitrary plane can be used to cut away parts of the
object, so that data become visible on the cut face. Picasso has proved to be
an indispensable tool for both, the interpretation of simulation results and for
debugging Second. All the plots in Chapter 6 were produced with Sepp and
Picasso.

It is evident from Figure 5.5 that information is transferred between
programs mostly through files. This may not always be the best method,
however in our case there is not much of an alternative. Picasso will
typically run on a workstation, while Second requires a supercomputer for
large simulations, and often needs to be run in the background (e.g. over
night). Files are currently the only reasonable way to hand the simulation
results from Second to Picasso.

Results

In this chapter we present some typical results of 3d device simulations. These
results are meant to show the wide range of possible applications and the
flexibility of Second.

The first example in Section 6.1 shows a study of parasitic MOSFETSs
and demonstrates how design rules can be drawn up based on the simulation
results. In the next example (Section 6.2) we investigate different CMOS
designs with respect to their susceptibility to latchup. Section 6.3 finally
presents the examination of the switching behaviour of a bipolar transistor.

6.1 Parasitic MOSFETs

In this section we want to use an example of MOSFET degradation by parasitic
devices to demonstrate the necessity and possibilities of 3d simulation.

Figure 6.1 shows an idealized view of a sub-micron n-type MOSFET
isolated by an oxide trench.! The channel between the source and drain n*
regions is controlled by a gate which must be imagined to sit on top of the
device, between source and drain. Due to the device geometry there exist
two parasitic n-MOS devices, both gated through the trench oxide: a lateral

I'This example has been proposed by Marius Orlowski from Motorola Inc., Austin.

Fata)

100 Results

n*-source

p-well

n-substrate

Figure 6.1: Schematic view of a trench-isolated MOSFET

parasitic device with the same source and drain as the \proper" device, and a
vertical one whose \drain" is the substrate. If the n" region outside the trench
is positively biased with respect to the p-well, a channel can be created at the
surface of the trench oxide. This parasitic channel can carry a leakage current
which may interfere with the normal transistor operation.

The \channel" of the lateral parasitic MOSFET will be a very thin layer
along the (vertical) gate oxide interface, while the \true" transistor channel
is, of course, a very shallow layer along the (horizontal) gate oxide interface.
Since the two channels are in orthogonal planes it is impossible to simulate
their interaction two dimensionally.

For this matter-of-principle investigation we make the simulation problem
more manageable with the help of a few simplifications. First we restrict
ourselves to examining the effect of the lateral parasitic MOSFET. In addition
we note that the device as sketched in Figure 6.1 is symmetricallhence we
ignore the left half. Furthermore we notice that for the operation of the
lateral device the front and back parts of the trench do not play any significant
rolelwe ignore everything in front of the source and behind the drain. Since
we are only interested in the steady-state, we do not need to simulate the
substrate and the n* region outside the trench. We therefore replace the n™
region by a contact at the outside of the trench oxide, and the substrate by
a contact at the bottom of the p-well. To make for a good contact and to
suppress the parasitic vertical MOSFET action, we introduce a thin p™ layer
at the bottom of the p-well.

6.1. Parasitic MOSFETs 101

106120
_ +8.7e+18
~ +7.6e417
+6. 62416
_ +5.7e415

-1.0e+12

Figure 6.2: Geometry and doping distribution for the lateral parasitic
MOSFET simulation. The plot on the right shows the channel region
(including the grid) viewed from the trench after removal of the trench oxide

The resulting device is shown in Figure 6.2. We used a channel length
L = 0.5 ym and a channel width W = 0.5 ym (meaning 0.25 um for our half
device). The gate is 150 A thick and the trench is 7' = 0.3 ym wide. The

p-well doping is 107 em=3.

n [1/cnt+*3]
— +1.0e+18

— +2.5e+16
— +6.3e+14
— +1.6e+13
— +4.0e+11
+1. 0e+10
+2.5e+08
+6.3e+06
+1. 6e+05

+4. 0e+03

+1. 0e+02

Figure 6.3: Electron density plot showing the parasitic channel

102 Results

Figure 6.3 shows the electron density in the device with a gate voltage of
1V and 5V applied to the parasitic gate. The device is cut in the middle of
the channel, the cut plane is orthogonal to the direction of the current flow.
The parasitic channel can be clearly seen at the trench oxide interface.

In order to study the interaction of the parasitic device with the proper
MOSFET we examine the effect of the parasitic gate bias on the threshold
voltage. The latter we define as the gate bias for which the drain voltage is
1077 %A. Figure 6.4 shows the result of the simulation: applying a bias of 5V
to the parasitic gate shifts the transistors threshold voltage by approximately
200 mV.

threshold voltage [mV]

0

-100

-200

bias[V]

Figure 6.4: MOSFET threshold voltage as a function of parasitic gate bias

The device engineer is interested in design rules that ensure save device
operation. In our example the question of interest to the device engineer might
be: Given a certain value of an acceptable threshold shift, what are the critical
values of the device geometry?

To answer this question we varied the trench thickness 7' from 0.3 to
0.5 pm. For each geometry the shift of the threshold voltage (for increasing
the parasitic gate bias from 0 to 5V) was determined. The result, which is
plotted in Figure 6.5, shows that the threshold shift decreases with increasing
trench thickness. This is, of course, expected, since the electric field created
by the parasitic gate decreases with increasing 7.

These simulations were performed with grids consisting of between
15000 and 24000 vertices. CPU times on a 6 processor Alliant FX-80
mini-supercomputer were on the order of 20 minutes per bias point, when

6.2. CMOS Latchup

threshold shift [mV/]

200
190
180
170
160
150
140
130
120
110

300 350 400 450

103

T [nm]

Figure 6.5: Threshold voltage shift as a function of trench width

the bias was stepped up smoothly. Approximately five to ten bias steps were
normally used to determine the threshold voltage for a given voltage applied
to the parasitic gate. The working point shown in Figure 6.3 was run from
scratch (without stepping up voltages) in just over an hour.
supercomputer the execution times are typically faster by a factor of five.

6.2 CMOS Latchup

On a Cray-2

H ln+

n-well

p-substrate

Figure 6.6: Simplified CMOS latchup structure

Latchup is an effect in CMOS devices where different parasitic bipolar

104 Results

transistors lock each other in a high current on-state. Once latchup occurs
the device will be destroyed within microseconds due to the excessive heat
development. Shrinking device dimensions ease device cross-talk and thus
make latchup more likely. The avoidance of latchup is a major design goal
when trying to produce even smaller devices. Simulation can be a extremely
helpful in setting up latchup-proof design rules.

There are various possibilities for latchup to occur. We concentrate on
a part of a CMOS inverter, which is the simplest configuration susceptible
to latchup. Figure 6.6 shows an idealized sketch of the devices. The p*
diffusion, the n-well, and the p-substrate form a vertical pnp transistor, while
the n™ diffusion, the substrate and the n-well form a lateral npn transistor.
Both are coupled in a thyristor-like fashion.

Normally, both bipolar transistors are turned off since under normal
operating conditions the substrate is biased at 0V by the n*-plug and the
p-well is similarly held at Vs5. The contacts at the n*- and p™-diffusions are
always between 0V and Vgg, so that the base-emitter diode is never forward
biased. However, a voltage glitch at one of the two emitters can turn on the
corresponding transistor. If the transistor is conducting enough current for a
sufficient amount of time, its collector current may cause a voltage drop along
the other transistor’s base-emitter diode high enough to turn on that transistor
as well. If the two transistors have sufficient gain, they will lock each other in
high injection mode even as the glitch that triggered the process is over, and
the devices are latched.

In our experiments we always tried to induce latchup by applying a negative
voltage pulse of 0.85V to the pT-diffusion, thus turning on the lateral npn
transistor. The length of the pulse varied, while the steepness of its flanks was
kept constant (1 ns rising time). Figure 6.7 shows the impurity concentrations
for the basic configuration, which is in 1 um technology, featuring a very
shallow (1.35 pm) n-well. Minimum distances between active regions occur
across tub edges.

The first investigation (see also [43]) was a comparison between 2d and 3d
simulations. The former were also performed with Second, but a \quasi-2D"
grid was obtained by replicating the front layer of the original 3d grid once
in the third dimension. The 3d grid consisted of 56 562 vertices while the
resulting \2D" grid had 2 x 2247 points.

The result of the simulation with the triggering voltage pulse held for

6.2. CMOS Latchup

N [1/cnt*3]
_ +1.0e+20

- +8.7e+18

- +7.6e+17

-~ +6.6e+16

- +5.7e+15

-9.6e+11

-5.7e+15

-6.6e+16

-7.6e+17

-8.7e+18

- 1. 0e+20

105

Figure 6.7: Impurity distribution for basic CMOS latchup example

current [A] x 106

55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00
5.00
-0.00
-5.00
-10.00
-15.00

Substrate

0.00 100 2.00

|
!I
l
\
!
l
ik

[seq] x 109

current [A] x 106

200.00

50.00

0.00

-50.00

-100.00

-150.00

-200.00

-250.00

0.00

200

4.00

tmefsacrx 1079
6.00

Figure 6.8: Contact currents for 2d (left) and 3d (right) simulations

2.2 ns is shown in Figure 6.8. The curve labels \p-n-tub" and \n-p-tub" refer
to the p™ and n™ diffusions respectively. It can be clearly seen that according

106 Results

to the 2d simulation latchup occurs just as the voltage pulse is falling off after
3.2 ns, while according to the 3d simulation, the npn transistor turns off very
quickly once the applied voltage goes towards zero. The voltage pulse needed
to be held for more than 5ns for the 3d simulation to indicate latchup. This
is an example of the significant differences that can occur between two and
three dimensional simulations.

Figure 6.9: Doping for the trench isolated (left) and shifted (right) CMOS
structures. The black structure is the oxide

Next we examined the effect of two design measures for inhibiting
latchup [22]. One was to introduce a small oxide trench to isolate the active
regions of the p-MOS and the n-MOS devices while the other was to shift one
transistor in the third dimension (Figure 6.9). Figure 6.10 shows the currents
for all three cases when the pulse was held for 10 ns. The curves clearly show
that both measures effectively prevented latchup in this case.

These simulations were performed partially on a Cray-2 supercomputer
and partially on a Convex C-220 minisuper. Typical run times were a few
hours on the Cray-2 or days on the Convex for grid sizes ranging from 18 500
to 24 000 points. Memory usage was of the order of 240 Mbytes.

6.3 Transistor Switching

Bipolar transistors can be made to switch much faster than CMOS devices, at
the expense of a higher power consumption (and hence heat dissipation). For
that reason they are used in cases where speed matters more than price, e.g.
for supercomputers.

Here we examine the switching behaviour of a high-speed ECL transistor.

6.3. Transistor Switching

current [A] x 106 current [A] x 106

. Sibsirate
2000 : 2000 A
350.00 : 350.00 B
30000 I 30000
250,00 250,00
20000 i 20000
15000 4 15000
10000 / 10000 \

50.00 50.00 /
000 === =nat — 000 H====== ——

50,00 +— 50,00 |-
110000 \ -100.00 =
-150.00 s \ -150.00 —
20000 | 20000 S
25000 \ 25000
30000 . | -30000
-35000 ‘ -35000
40000 ! \‘ -400.00

' time [n seq] time [nsec]

000 500 000 500 1000

curre

400.00
350.00
300.00
250.00
200.00
150.00
100.00

50.00

-50.00

-100.00
-150.00
-200.00
-250.00
-300.00
-350.00
-400.00

107

ent [A] x 108

time [n sec]
0.00 5.00

Figure 6.10: Contact currents for three CMOS structures

N [1/cnt*3]
- t1.6e+20

- +1.3e+19

- t+1.1e+18

- 1+8.6e+16

= +7.0e+15

+1. 3e+14

-5.3e+15

-6.6e+16

-8. le+l7

-9.9e+18

-1.2e+20

Figure 6.11: Doping distribution for an ECL transistor

Figure 6.11 shows the doping distribution within the device. Also visible
is an insulating oxide trench. The emitter is the bright region in the middle
top portion of the device, the base is contacted at the left and the collector
contact is at the right. The collector current must therefore flow around the

108 Results

trench. Note the slanted walls of that trench, which Second can handle
without problems. We know of no other program that can simulate such a
device geometry.

We simulated the current waveform of the transistor in a common emitter
configuration. The collector-emitter voltage, Vg, was kept constant at 5V
and the base-emitter bias, Vg, was initially at 0.8 V, so that the transistor
was fully turned on. At ¢ = 0 the device was being turned off by ramping
VpE to 0V within 200 ps. At ¢ = 300 ps the base voltage was again turned
on, reaching its old value of 0.8 V at ¢ = 500 ps. The simulation was then
carried on for another 500 ps.

Ax106

80.00 | Erite

6000 Collector

sx 1079
0.00 0.20 0.40 0.60 0.80 1.00

Figure 6.12: ECL transistor switching waveform

Figure 6.12 shows the computed contact currents. The discontinuities
at 0, 200, 300, and 500ps are due to the displacement current, which is
discontinuous because of the discontinuous derivative of the applied voltage.
The terminal currents are dominated by the displacement current after approx.
70 ps, meaning that the transistor is basically turned off at that time.

The picture is somewhat different when the device is switched on: The
terminal current are completely dominated by the displacement current until
the base voltage has reached its final value (Vg = 0.8 V). After that, approx.
120 ps are needed until the collector current comes close to reaching the steady
state value.

Such a simulation may be used to optimize the switching time of the

6.3. Transistor Switching 109

transistor. To this end it is useful to observe the dynamic operation of the
device by monitoring physical entities in the device interiour. Figure 6.13
shows a plot of the magnitude of the electron current density in the transistor
after 100 ps, that is halfway through the switch-off phase. The plot shows that
the active region of the transistor is already basically free of current, while
carriers are still travelling through the highly doped collector and emitter
regions. This clean-out time is obviously responsible for the latency of the
switch. Pictures like this one can be very valuable for optimizing dynamic
device characteristics.

[i-1 [ANcm=*2]
- +2.00e+04

- 14.69e+03
- +1.10e+03
- t2.57e+02
= +6.03e+01
- +1.41e+01
+3. 31e+00
+7.77e-01

+1. 82e-01

+4. 27e-02

+1. 00e- 02

Figure 6.13: Magnitude of the electron current density in the transistor during
switch-off

These computations were performed using a grid with 17770 vertices.
The simulations were run on a six processor Alliant FX-80 in about one day.
Memory usage was 100 Mbytes. Similar runs took about five hours on a
Cray-2.

Conclusions and Future Work

In this thesis we discussed the difficulties associated with the three dimensional
simulation of general semiconductor devices. We presented the design and
implementation of Second, a program that can be used to perform such
simulations. We demonstrated the programs usefulness by applying it to a
variety of different problems involving significantly differing geometries and
operating conditions.

The results presented in Chapter 6 are meant to give an indication of the
problems that can be approached with Second. However, they are only a
small selection of a wide range of possible applications.

Our examples prove that 3d simulations, even transient, are possible with
rather general device geometries. The examples also show, however, that
these simulations are quite expensive in terms of CPU time and memory
requirements. Typical simulations run for hours on modern supercomputers
or days on minisupers. Optimizing a device generally requires many single
simulations, increasing computer time requirements by another order of
magnitude. Memory requirements are in the hundreds of megabytes range,
which calls for big machines. It therefore appears safe to say that 3d
simulation, while being a necessity for many problems, is not yet in a position
to completely displace 2d simulation.

On the other hand, even running a supercomputer for days on a single

PR

112 Conclusions and Future Work

problem is cheap compared to the cost of going through one more iteration
of chip manufacturing, which can take months and cost millions. One has to
keep that in mind when looking at the costs of 3d simulation. We would also
like to add that the high costs are not a result of our general approach, the price
we pay for generality is the size and complexity of the code, not the amount
of computer time. Indeed, our general 3d grids often allow us to work with
fewer mesh points than would be required by other programs, and hence save
computer time.

Second meets its design goals of being a \general purpose device
simulator" in as far as it permits the simulation of general plane faced
geometrieslthe generality of the possible device geometries is only limited
by what the grid generator can supply. No other 3d device simulator published
so far supports such geometrical generality.

In other respects true generality is not yet achieved. Further improvements
are mainly possible in two ways: adaptive grid refinement can improve speed
and reliability of the simulation, and improved physical models can increase
the domain of problems that can be tackled with Second.

Adaptive grid refinement offers the possibility to simulate with grids that
are better adjusted to the problem than grids that are generated based on the
doping information (and possibly additional hints by the user). Implementation
of this feature requires two things: an improved interface between Second
and the grid generator must enable the former to instruct the latter where the
point density is to be increased or reduced, also some means must be available
to interpolate data from the original to the revised grid. On the other hand,
criteria must be found so the simulator can determine where it needs more
grid points and where it needs less. As Biirgler [13] has shown, this problem
is not easy to solve. The solution Biirgler has given is based on his new
discretization scheme and is not applicable to the BM. More theoretical work
must be done on error estimates before a good implementation of adaptive
grid refinement is possible.

Various improvements are possible in the way physical devices are mod-
elled. Generalized boundary conditions should include external resistors,
capacitors and inductances, as well as current controlled (in addition to volt-
age controlled) contacts. The treatment of external magnetic fields must
be possible for the simulation of magnetic field sensors. Special devices
types, like thyristors, may require more sophisticated mobility and recom-
bination models. Particularly power devices require the solution of extra

113

equations for carrier and lattice temperature [81]. Finally, the recent interest
in heterostructures creates a demand for their simulation in 3d (cf. [49]).

Most of these extensions follow work that has been done in 2d, since
the physical models do not depend on the dimension. However, since better
models generally imply an increase of the number of calculations to be
done, computer speed poses a limit on what can be donelparticularly for 3d
simulations which are anyway at the edge of what is feasible with present-day
computers.

It should finally be pointed out that there are a number of possible
improvements in parts of the simulation system that are not discussed in this
thesis. Improved grid generators can lower simulation costs by reducing the
number of grid points or by allocating them in a way that results in better
conditioned linear systems. In addition we can expect significant reductions
in simulation costs from improved linear solver algorithms. During the
development of Second we already experienced a dramatic improvement in
the available iterative linear equation solvers, and there is good reason to
expect further progress. Finally, the dramatic increase in computer speed and
decrease in computer prices will certainly help to transform 3d simulation into
a standard engineering tool.

114

Conclusions and Future Work

List of Figures

0.1

1.1

2.1
2.2

4.1

4.2
43

5.1
5.2
5.3
54
55

6.1

Spreading of current at device edges causes 3d effects. 2

Simple MOSFET structure showing silicon, oxide, and

contacts.o 9
2D exampleofabox 21
Memory requirements of direct and iterative solvers as

a function of problemsize 33
Schematic view of Dirichlet and non-Dirichlet regions in

the linear system of equations 47
Box of aboundarypoint 48
Electric field vector within an element 50
The rough structure of Second 81

Structure and main data flow of the PDE solver 83
Internal order of vertices 85
Schematic representation of the sparse data structure . 86
Embedding Second into a simulation environment . . . 96

Schematic view of a trench-isolated MOSFET 100

a4 r

116

List of Figures

6.2 Geometry and doping distribution for the lateral parasitic
MOSFET simulation 101
6.3 Electron density plot showing the parasitic channel . . . 101
6.4 MOSFET threshold voltage as a function of parasitic
gatebias 102
6.5 Threshold voltage shift as a function of trench width . . 103
6.6 Simplified CMOS latchup structure 103
6.7 Impurity distribution for basic CMOS latchup example . 105
6.8 Contact currents for 2d and 3d simulations 105
6.9 Doping for the trench isolated and shifted CMOS structures106
6.10 Contact currents for three CMOS structures 107
6.11 Doping distribution for an ECL transistor 107
6.12 ECL transistor switching waveform 108

6.13 Magnitude of the electron current density in the transistor

during switch-off 109

List of Programs

51 sumint.h 67
52 sumintint.h 68
53 sumint.F 69
5.4 Clientmodule 70
5.5 Animproved version of sumint.h 72
5.6 Header file for library routine callable by both, FORTRAN

andC 74
5.7 Simplified heapinterface 75
5.8 Typical usage of heapmemory. 77
5.9 Examples of sparse matrix usage: single loop version

and nested loop version 87
5.10 Schematic control flow for time integration 89
5.11 The damped Newton algorithm 91

5.12 Simplified RHS assembly for the electron continuity

equation 92

o~y

118

LIST OF PROGRAMS

List of Tables

1.1
1.2
1.3
1.4
15

5.1

De Mari scaling factors for T=300K. 12
Fundamental and material constants 13
Mobility parameters for electrons and holes 16

Parameters for Shockley-Read-Hall recombination model 17

Grant’s coefficients for the impact ionization model after
Chynoweth 18

Macros defining machine characteristics for use by FOR-
TRANandCprograms. 71

a 4 n

120 List of Tables

Bibliography

(1]

(2]

(3]

(4]

(5]

[6]

(7]

(8]

[9]

P. R. Amestoy and I. S. Duff. Vectorization of a multiprocessor multi-
frontal code. Int. J. Supercomp. Appl., 3(3):41{59, 1989.

ANSI X3.9-1978. American National Standard Programming Language
FORTRAN.

ANSI X3J3. Fortran 8X draft. ACM SIGPLAN Fortran Forum, 8(4),
1989.

C. C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D.
Simon. Progress in sparse matrix methods for large linear systems on
vector supercomputers. Inter. J. Supercomp. App., 1(4):10{30, 1987.

J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur,
A. J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein,
A. van Wijngaarden, and M. Woodger. Revised report on the algorithmic
language ALGOL 60. Numer. Math., 4:420{453, 1963.

J. W. Backus et al. The FORTRAN automatic coding system. In Proc.
West Joint Comp. Conf., 1957.

R. E. Bank, W. M. Coughran, Jr., W. Fichtner, E. H. Grosse, D. J. Rose,
and R. K. Smith. Transient simulation of silicon devices and circuits.

IEEE Trans., CAD-4:436{451, 1985.

R. E. Bank and D. J. Rose. Global approximate Newton methods.
Numer. Math., 37:279{295, 1981.

R. E. Bank and R. K. Smith. General sparse elimination requires no
permanent integer storage. SIAM J. Sci. Stat. Comput., 8:574{584, 1987.

PR.Y1

122 Bibliography

[10] W. E. Beadle, J. C. C. Tsai, and R. D. Plummer, editors. Quick Refernce
Manual for Silicon Integrated Circuit Technology. Solid State Physics.
John Wiley & Sons, New York, 1985.

[11] W. Bergner and R. Kircher. SITARIlan efficient 3 d-simulator for
optimization of non-planar trench structures (DRAMs). In G. Baccarani
and M. Rudan, editors, SISDEP 3, pages 165{74. Alma Mater Studiorum
Saecularia Nona, Italy, 1988.

[12] I. N. Bronstein and K. A. Semendjajew. Taschenbuch der Mathematik.
Harri Deutsch, 20" edition, 1981.

[13] J. F. Biirgler. Discretization and Grid Adaptation in Semiconductor
Device Modeling. PhD thesis, ETH-Ziirich, 1990. Publ. by Hartung-
Gorre Verlag, Konstanz, Germany.

[14] E. M. Buturla, P. E. Cottrell, B. M. Grossman, K. A. Salsburg, M. B.
Lawlor, and C. T. McMullen. Three-dimensional finite element simula-
tion of semiconductor devices. In ISSCC, pages 76{77. IEEE, 1980.

[15] J. N. Buxton and B. Randell, editors. Software Engineering Techniques,
Bruxelles, 1970. NATO Science Commitee.

[16] D. M. Caughey and R. E. Thomas. Carrier mobilities in silicon empiri-
cally related to doping and field. Proc. IEEE, pages 2192{93, 1967.

[17] J.-H. Chern, J. T. Maeda, L. A. Arledge, and J. P. Yang. SIERRA: a 3-D
device simulator for reliability modeling. IEEE Trans., CAD-8:516{27,
1989.

[18] A. G. Chynoweth. Ionization rates for electrons and holes in silicon.
Phys. Rev, 109:1537{1540, 1958.

[19] P. Ciampolini, A. Pierantoni, M. Melanotte, C. Cecchetti, C. Lombardi,
and G. Baccarani. Realistic device simulation in three dimensions. In
IEDM, pages 131{134, 1989.

[20] E. R. Cohen and B. N. Taylor. The fundamental physical constants.
Physics Today, Aug 1989. After the 1986 CODATA report.

[21] P. Conti. Grid Generation for Three Dimensional Device Simulation.
PhD thesis, ETH-Ziirich, 1991. Publ. by Hartung Gorre Verlag, Kon-
stanz, Germany.

Bibliography 123

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

P. Conti, G. Heiser, and W. Fichtner. Three dimensional transient
simulation of complex silicon devices. Jap. J. Appl. Phys. Letters,
29(12), 1990.

P. Conti, N. Hitschfeld, and W. Fichtner. Q { an octree-based mixed
element grid allocator for adaptive 3D device simulation. IEEE Trans.
CAD ICAS, to appear.

P. Conti and H. Wachter. Q) User Manual. Integrated Systems Lab,
ETH-Ziirich, 1990.

W. M. Coughran, Jr., E. Grosse, and D. J. Rose. CAzM: A circuit
analyzer with macromodelling. /EEE Trans., ED-30:1207{1213, 1983.

G. Dahlquist. A special stability problem for linear multistep methods.
BIT, 3:27{43, 1963.

R. Dang, N. Shigyo, T. Wada, S. Onga, and M. Konaka. An analysis
of MOSFETSs’ narrow-channel effects. In ICCC 82, pages 286{9. IEEE,
1982.

S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale
sparse matrix package II: The nonsymmetric codes. Research Rep. 114,
Yale Univ. Comp. Sci. Dept., 1977.

S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale
sparse matrix package I: The symmetric codes. Int. J. Numer. Methods
in Eng., 18:1145{1151, 1982.

S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Considerations in
the design of software for sparse gaussian elimination. In Sparse Matrix
Computations. Academic Press, 1976.

W. Fichtner, D. J. Rose, and R. E. Bank. Semiconductor device
simulation. IEEE Trans., ED-30:1018{30, 1983.

R. Fletcher. Conjugate gradient methods for indefinite systems. In G. A.
Watson, editor, Proc. of the Dundee Biennal Conference on Numerical
Analysis, pages 73{89, New York, 1975. Springer-Verlag.

A. F. Franz, G. A. Franz, S. Selberherr, C. Ringhofer, and P. Markowich.
Finite boxesla generalization of the finite-difference method suitable
for semiconductor device simulation. IEEE Trans., ED-30:1070{ 1083,
1983.

124 Bibliography

[34] S.P.Gaur, G.R. Srinivasan, and I. Antipov. Verification of heavy doping
parameters in semiconductor device modeling. In /JEDM, pages 276{79,
1980.

[35] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential
Equations. Prentice Hall, 1971.

[36] W. N. Grant. Electron and hole ionization rates in epitaxial silicon and
high electric fields. Solid State Elec., 16:1189{1203, 1973.

[37] H. K. Gummel. A self-consistent iterative scheme for one-dimensional
steady state transistor calculations. [EEE Trans., ED-27:1520{1532,
1964.

[38] W. Héansch and S. Selberherr. MINIMOS 3: A MOSFET simulator that
includes energy balance. IEEE Trans., ED-34:1074{8, 1987.

[39] J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi,
J. R. Rice, J. Heny G. Thacher, and C. Witzgall. Computer Approxima-
tions. Robert E. Krieger, Huntington, New York, 1978.

[40] G. Heiser. SIMBAD { a simple binary data format. Technical Report
88/24, Integrated Systems Lab, ETH-Ziirich, 1988. Specification and
user’s guide.

[41] G. Heiser. Device simulation: Supplementary documents. Technical
Report 90/10, Integrated Systems Lab, ETH-Ziirich, July 1990. Contains
DATEX format specification and Conventions for grid descriptions.

[42] G. Heiser and K. Kells. Second user manual. Technical Report 90/12,
Integrated Systems Lab, ETH-Ziirich, July 1990. Version 2.0.

[43] G. Heiser, C. Pommerell, J. Weis, and W. Fichtner., Large-scale device
simulation: Algorithms, computer architectures, results. IEEE Trans.
CAD ICAS, to appear.

[44] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for
solving linear systems. J. Res. Nat. Bur. Stand., 49:409{436, 1952.

[45] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, 2d
edition, 1975.

[46] R. Kasai, K. Yokoyama, A. Yoshii, and T. Sudo. Threshold-voltage
analysis of short- and narrow-channel MOSFETs by three-dimensional
computer simulation. /EEE Trans., ED-29:870{6, 1982.

Bibliography 125

[47] J. Lambert. Computational Methods in Ordinary Differential Equations.
Wiley, 1973.

[48] C.L.Lawson, R.J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for FORTRAN usage. ACM TOMS, 5:308{323,
1979.

[49] P. Lindorfer and S. Selberherr. GaAs MESFET simulation with MIN-
IMOS. In [1th Annual GaAs IC Symposium, pages 277{80. IEEE,
1989.

[50] A.deMari. Anaccurate numerical steady-state one-dimensional solution
of the p-n junction. Solid-State Electron., 11:33{58, 1968.

[51] H. Masuda, T. Toyabe, T. Haguwara, and Y. Ushiro. High-speed three-
dimensional device simulator on a super computer: CADDETH. In

International Symposium on Circuits and Systems, pages 1163{6. IEEE,
1984.

[52] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for

linear systems of which the coefficient matrix is a symmetric M-matrix.
Math. of Comp., 137:148{162, 1977.

[53] J. A. Meijerink and H. A. van der Vorst. Guidelines for the usage of
incomplete decompositions in solving sets of linear equations as they
occur in practical problems. J. Comp. Phys., 44:134{155, 1981.

[54] S. Odanaka, M. Wakabayashi, H. Umimoto, A. Hiroki, K. Ohe,
K. Moriyama, H. Iwasaki, and H. Esaki. Smart: three-dimensional
process/device simulator integrated on a super-computer. In Infern.
Symp. Circ. Syst., pages 534{7. IEEE, 1987.

[55] S. Onga, N. Shigoyo, M. Yoshimi, and K. Taniguchi. Analysis of
submicron MOS device characteristics using a composite full three-
dimensional process/device simulation system. In Symp. VLSI Techn.,
pages 15{16. Japan Soc. Appl. Phys., Tokyo, Japan, 1986.

[56] M. R. Pinto, C. S. Rafferty, and R. W. Dutton. PISCES-II User’s Manual.
Stanford University, 1984.

[57] M. R. Pinto. Comprehensive Semiconductor Device Simulation for
Silicon ULSI. PhD thesis, Stanford, 1990.

[58] S. Pissanetzky. Sparse Matrix Technology. Academic Press, 1984.

126

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Bibliography

C. Pommerell and W. Fichtner. PILS: An iterative linear solver package
for ill-conditioned systems. Subm. Supercomputing ‘91 (ACM), March
1991.

C. S. Rafferty, M. R. Pinto, and R. W. Dutton. Iterative methods
in semiconductor device simulation. IEEE Trans., ED-10:2018{2027,
1985.

W. van Roosbroeck. Theory of flow of electrons and holes in germanium
and other semiconductors. Bell System Tech. J., 29:560{607, 1950.

Y. Saad. The Lanczos biorthogonalization algorithm and other oblique
projection methods for solving large unsymmetric systems. SIAM J.
Numer. Anal., 19:484{506, 1982.

K. A. Salsburg, P. E. Cottrell, and E. M. Buturla. FIELDAYlfinite
element device analysis. In P. Antognetti, D. A. Antoniadis, R. W.
Dutton, and W. G. Oldham, editors, Proc. Dev. Sim MOS-VLSI Circ.,
pages 582{619. Martinus Nijhoff, The Hague, Netherlands, 1983.

D. Scharfetter and H. K. Gummel. Large-signal analysis of a silicon
Read diode oscillator. IEEE Trans., ED-16:64{77, 1969.

S. Selberherr. Analysis and Simulation of Semiconductor Devices.
Springer, 1984.

N. Shigyo and R. Dang. Analysis of an anomalous subthreshold current
in a fully recessed oxide MOSFET using a three-dimensional device
simulator. IEEE Trans., ED-32:441{5, 1985.

J. W. Slotboom. The pn-Product in Silicon. Solid-State Electron.,
20:279{83, 1977.

G. D. Smith. Numerical Solution of Partial Differential Equations:
Finite Difference Methods. Oxford, 1978.

P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear
systems. SIAM J. Sci. Stat. Comput., 10(1):36{52, 1989.

G. Strang and G. J. Fix. An Analysis of the Finite Element Method.
Prentice Hall, 1973.

S. M. Sze. Physics of Semiconductor Devices. John Wiley & Sons, 2™
edition, 1981.

Bibliography 127

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

E. Takeda, K. Takeuchi, D. Hisamoto, T. Toyabe, K. Ohshima, and
K. Itoh. A cross section of alpha -particle-induced soft-error phenomena
in VLSIs. IEEE Trans., ED-36:2567{75, 1989.

M. Thurner and S. Selberherr. The extension of MINIMOS to a three
dimensional simulation program. In Proc. of NASECODE 'V Conf., pages
327{332, 1987.

T. Toyabe, H. Masuda, Y. Aoki, H. Shukuri, and T. Hagiwara. Three-
dimensional device simulator CADDETH with highly convergent matrix
solution algorithms. IEEE Trans., ED-32:2038{44, 1985.

M. Turner, P. Lindorfer, and S. Selberherr. Numerical treatment of
nonrectangular field-oxide for 3-d MOSFET simulation. IEEE Trans.,
CAD-9:1189{1197, 1990.

T. Uenoyama, S. Odanaka, and T. Onuma. Analysis of narrow channel
effect in small-size GaAs MESFET. In W. T. Lindley, editor, Intern.
Symp. GaAs, pages 447{52. IEEE Electrochem. Soc, 1986.

R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs,
1962.

VENUS Systemplanung. VENUS 2 Projektdokumentation. Siemens
ZTI, Miinchen, Oct 1986.

H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging
variant of CG{S for the solution of nonsymmetric linear systems. Subm.
SIAM J. Sci. Stat. Comput.

H. Wachter. Idea User Manual. Integrated Systems Lab, ETH-Ziirich,
1991.

G. K. Wachutka. Rigorous thermodynamic treatment of heat generation
and conduction in semiconductor device modeling. IEEE Trans., CAD-
9:1141{1149, 1990.

M. Westermann. Picasso Reference Manual Version 1.0. Integrated
Systems Lab, ETH-Ziirich, February 1990.

K. Yamaguchi. A mobility model for carriers in the MOS inversion
layer. IEEE Trans., ED-30:658{63, 1983.

128 Bibliography

[84] A. Yoshii, S. Horiguchi, and T. Sudo. A numerical analysis for very
small semiconductor devices. In Intern. Solid-State Circ. Conf., pages
80{1. IEEE, 1980.

Index

A stability 27
abstract data type 60
acceptor 5
Algol-60 58
algorithm 4, 25, 29, 32, 38, 84, 89,
92, 94f
critical 59
iterative 54
minimum degree 33
Newton 91
numerical 62
reverse Cuthill-McKee 33
Alliant 57, 102, 109
applied voltage 10, 53, 55, 89f, 97,
102, 104, 108
array 60, 63, 75f, 80, 84, 86ff, 94
assembly 44, 84, 87ff, 94
Auger process 16
avalanche generation 17

backward differential formula 27

backward Euler method 26

bandgap narrowing 8, 14, 88, 94

bandwidth reduction 33

Bernoulli function 23, 31, 45, 83,
92

BiCG 34

BLSMP 88

Bologna 37

Boltzmann constant 7

Boltzmann statistics 7

boundary 9, 20, 48
internal 11
plain faced 20
boundary condition 8, 87, 112
Dirichlet 10, 13, 46, 91
Neumann 9, 13, 48
box 20, 23, 48
box method 19, 21, 23, 25, 32, 36,
39,44, 85,112
built-in voltage 10, 53
Burroughs 76

C 58, 65, 68f, 71, 73ff, 77f, 80

C++ 68, 73, 77, 80

CADDETH 36

capacitor 112

carrier concentration 6, 15, 31, 54

carrier density 6, 31, 53

carrier temperature 113

CG 32

CGS 34

CGSTAB 34

charge density 6, 48

CMOS 103

code generation 58, 68

compiler 58, 60, 64, 72f

computer 1, 3, 11, 19, 32, 39, 59,

611f, 69, 73, 113

multiprocessor 38, 72
vector 38, 72,79

computer language 58, 60, 65

a M

130

concentration
carrier 6, 15, 31, 54
impurity 6, 10, 39, 53, 104
intrinsic 7, 12, 14, 88
effective 8, 14
condition
sufficient decrease 29
condition number 32, 36ff
conduction current 49
conjugate gradient method 32
contact 9, 112
continuity equation 6, 22, 24, 26,
31, 36, 44, 48f, 87, 91f
control structure 60
control volume method 19
Convex 57, 106
coupled solution method 30, 56,
90
Cray 57, 61, 69, 103, 106, 109
cuboids 40
current 7, 11, 15, 48f, 82, 91, 94,
97, 102, 106f
conduction 49
displacement 6, 49, 108
total 6, 49
current conservation 46
current density 6, 9, 15, 23, 50, 52,
83, 88

damping 29
data structure 4, 25, 32, 41, 60,
66f, 80, 84, 86ff, 93, 95
sparse 86
data type 60
decoupled solution method 30
degeneracy 8
density
carrier 6, 31, 53
charge 6, 48

NDEX

current 6, 9, 15, 23, 50, 52,
83, 88
electron 101
intrinsic 7, 12, 14, 88
effective 8, 14
point 25, 39, 41, 112
design rule 99, 102, 104
device cross-talk 104
dielectric constant 6
diffusion coefficient 7
direct linear solver 32, 38
Dirichlet boundary condition 10,
13, 46,91
discretisation
time 26
discretization 3, 19, 38, 44, 49,
112
box 85
Scharfetter-Gummel 23, 46,
52
spatial 19, 32
displacement current 6, 49, 108
donor 5
doping 14, 39, 44, 82, 84, 94, 96,
101, 107, 112
DRAM 1
drift-diffusion 3, 7
dynamic memory 63, 75

edge neighbour 20, 32

effective intrinsic concentration 8,
14

effective potential 8

electric field 5, 50ff, 94

electron density 101

electronics

solid state 1

electrostatic potential 6, 8f, 22, 26,
31, 36, 52, 55, 90

element shape 40

DEX

energy balance 36
environment 62, 66
equation
continuity 6, 22, 24, 26, 31,
36, 44, 48f, 87, 91f
Laplace’s 11, 43
Poisson’s 6, 11, 21, 43f, 46,
48, 56
semiconductor 2f, 5, 8, 19,
26, 30f, 36, 38, 40, 89
scaled 13
equilibrium
thermal 7f, 53
local 10
Euler method 26

Fermi level 7

Fermi potential 8, 10
FIELDAY 35

fill 33

finite boxes 25

finite differences 24, 36

finite elements 25, 35

finite volumes 19

floating point representation 62
floating point type 61, 69
FORTRAN 58ff, 71, 73ff, 93, 95
full Newton method 30, 36

GaAs 36
gain 104
Gaussian elimination 32
generation 6, 15, 17, 83, 94

code 58, 68

grid 24, 39, 82,96, 112
geometry 10, 37ff, 84, 94, 96, 99,

108

plane faced 41, 112

glitch 104

131

grid 20, 23, 25, 35, 37, 39, 41, 46,
50f, 791, 82, 84, 88, 92,
94, 96, 101, 104
irregular 24, 32, 36, 38f
quasi-regular 41
regular 24, 35ff
tensor product 24, 35ff
well shaped 23
grid generation 24, 39, 82, 96, 112
grid refinement
adaptive 112
Gummel iteration 30, 36

hardware 38, 57, 76
heap 75

heavy doping effects 14
heterostructure 113
HFIELDS-3d 37
Hitachi 36

hybrid method 26

IBM 35

Idea 96

ILU preconditioning 33f

impact ionization 17

impurity 5

impurity concentration 6, 10, 39,
53, 104

imref 7

inductance 112

insulator 11

integrated circuit 1

interface 11

inter-language call 59

internal boundary 11

interpolation 26, 112

intrinsic concentration 7, 12, 14

intrinsic density 88

intrinsic Debye length 12

inverter 104

132

ionization

impact 17
irregular grid 24, 32, 36, 38f
iterative linear solver 32, 37

Jacobian 94
kernel 74

L stability 27
language
computer 58, 60, 65
inter- | call 59
Laplace’s equation 11, 43
latchup 103
lattice temperature 113
library 73
lifetime 16
lifetime engineering 17
linear solver 31, 55f, 74, 79, 87,
90, 94
direct 32, 38
iterative 32, 37
preconditioned 38
sparse 32
local quasi-Fermi guess 53

machine epsilon 62
macro 66
magnetic field 112
maintainability 60
malloc 75
matrix 32, 43, 47, 50, 52, 93f
sparse 44, 63, 83, 85ff, 92,
94
Matsushita 36
memory 30, 36, 63
dynamic 63, 75
memory fragmentation 76
memory requirement 3, 25, 32f,
37, 85, 106, 109

NDEX

MESEFET 36

microelectronics 1

MINIMOS 36

minimum degree algorithm 33

mini-supercomputer 38, 57, 102,
106

mobility 7, 14, 31, 46, 83, 93f, 112

model

physical 112

modularization 60

module 66, 80

MOSEET 9, 15, 26, 36, 99f, 103,
106

multiprocessor 38, 72

Neumann boundary condition 9,
13,48
Newton algorithm 91
Newton method 28ff, 43, 46, 54ff,
90
full 30, 36
nonlinear solver 28
norm 55
Debye length
intrinsic 12
NTT 35
number
condition 32
numeric type 61

obtuse angle problem 23

Q82,96

operating system 57

overshoot 29

oxide 9, 11, 13, 22, 36, 43, 99,
106f

parallel processing 38
parallelepiped 40
partition 20, 23, 25
Pascal 58

DEX

permittivity 6
Picasso 97
Pisces-1I 36
plane faced geometry 41, 112
plugin iteration 30
point density 25, 39, 41, 112
pointer 60
Poisson’s equation 6, 11, 21, 43f,
46, 48, 56
portability 58, 64, 68
potential
effective 8
electrostatic 6, 8f, 22, 26, 31,
36,52, 55,90
Fermi &, 10
quasi-Fermi 7, 10, 15, 53, 88,
90
scaled 12
preconditioned solver 38
preconditioning 36
ILU 33f
preprocessor 65ff
prism
triangular 40
process simulation 96
pyramid
quadrilateral 40

quadrilateral pyramid 40
quasi-Fermi
local | guess 53
quasi-Fermi level 9, 11, 31f, 55,
94
quasi-Fermi potential 7, 10, 15, 53,
88, 90

readability 60
recombination 6, 15, 31, 83, 88,
91, 93f, 112
Shockley-Read-Hall 16

133

region 49, 53
active 25, 104, 106
convergence 29
regular grid 24, 35f, 38
representation
floating point 62
resistor 112
reverse Cuthill-McKee algorithm
33

scaling 11, 31
Scharfetter-Gummel discretization
23,46, 52
Second 3, 14, 35, 57, 73, 80, 82,
96, 99, 104, 108, 111
semiconductor 5ff, 11, 13f, 22, 35,
84,87, 111
semiconductor equation 2f, 5, 8,
19, 26, 30f, 36, 38, 40,
89
scaled 13
Sepp 97
Shockley-Read-Hall recombination
16
SIERRA 36
silicon 11, 13f, 16, 43
Simbad 77
Slotboom variables 31, 36
SMART 36
software 57ff, 61, 90
software crisis 60
solid state electronics 1
solution method
coupled 30, 56, 90
decoupled 30
solver
linear 31, 55, 74, 79, 87, 90,
94
iterative 37
sparse 32

134

nonlinear 28
sparse linear solver 32
sparse matrix 44, 63, 83, 85ff, 92,
94
standard 58f, 61ff, 69f, 72, 78, 85
de facto 59
stiff equation 27
stopping criterion
absolute 54f
nonlinear 55
relative 54
structured type 60
sufficient decrease condition 29
Sun workstation 57
supercomputer 38, 57, 61f, 97,
103, 106
mini 38, 57, 102, 106
surface scattering 15

temperature 7
carrier 113
lattice 113
tensor product grid 24, 35ff
tetrahedron 40
Texas Instruments 36
thermal equilibrium 7f, 53
local 10
thermal voltage 12
threshold voltage 102
thyristor 104, 112
TOPMOST 36
Toshiba 36
total current 6, 49
tractable problem 38
transistor 1
bipolar 104, 106
ECL 106
lateral 104
MOS 9, 99, 103, 106
npn 104

NDEX

pnp 104
vertical 104
trapezoidal rule 26
trench 106
triangular prism 40
type 60
abstract 60
floating point 61, 69
numeric 61
structured 60

UNIX 57ff, 65f, 71, 73, 78
upwinding scheme 26
utility 77

variables
choice of 31
Slotboom 31, 36
variational problem 25
vector computer 38, 72, 79
velocity saturation 15
Vienna 36
VLSI 1
voltage
applied 10, 53, 55, 89f, 97,
102, 104, 108
built-in 10, 53
thermal 12
voltage glitch 104

well shaped grid 23
word length 61

Curriculum Vitae

I was born in Miillheim, Germany, on July 7, 1957. At the same place |
visited elementary school and high school (gymnasium), graduating with the
abitur in 1976. After 15 months of compulsory military service I started to
study Physics and Mathematics at the University of Freiburg, Germany, where
I obtained the B.Sc. degree in Physics in 1982. From 1981 to 1984 I was
studying Computer Science and Physics at Brock University, St. Catharines,
Canada, graduating with the M.Sc. degree in Physics. Since 1985 I am
working as a researcher at ETH Ziirich, first in the Institut fiir Informatik,
and since 1987 at the Integrated Systems Laboratory with Prof. Dr. Wolfgang
Fichtner. My publications have appeared in Physical Review, IEEE Software,
the Japanese Journal of Applied Physics Letters and IEEE Transactions, as
well as in several conference proceedings.

a e

