
Diss. ETH No. 9382

Design and Implementation

of a

Three-Dimensional,

General Purpose

Semi
ondu
tor Devi
e Simulator

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of

Do
tor of Te
hni
al S
ien
es

presented by

GERNOT HEISER

Master of S
ien
e, Bro
k University

born 7 July 1957

itizen of Germany

a

epted on the re
ommendation of

Prof. Dr. W. Fi
htner, examiner

Prof. Dr. H. Baltes,
o-examiner

1991

To my parents

A
knowledgements

I would �rst like to thank Prof. Wolfgang Fi
htner, who not only was my

supervisor for this thesis and the manager of the three dimensional devi
e

simulation proje
t, but who also very a
tively parti
ipated in the proje
t.

Without his pressing (whenever he felt it ne
essary) and his en
ouragement

(whenever I needed it) this proje
t would have never been su

essful, and

without the stimulating resear
h atmosphere he provided at the lab I would

never have started. I am grateful to Prof. Henry Baltes for a

epting to

o-examine the thesis and for reading it
arefully.

I am greatly indebted to Joseph B�urgler of the lab, whose profound

understanding of the theory were essential to the su

ess; the many, often

heated dis
ussions we had were extremely produ
tive. Many other people at

ETH
ontributed in one way or the other. Paolo Conti, who has been working

with me on the proje
t from the beginning, was a good
olleague and a reliable

fellow in many battles against boredom, al
ohol, and bureau
ra
y. Claude

Pommerell was the \
ompatible" interfa
e to the linear solver software,

and a great help in not-so-serious dis
ussions over a beer or two. The

graphi
s software written by Stephan Pas
hedag and Mar
 Westermann was

an indispensable help for debugging the simulator, and I am very grateful for

their speedy and ef�
ient
ooperation. Nan
y Hits
hfeld, Kevin Kells and

Doelf Aemmer
ontributed through many dis
ussions. Spe
ial thanks are due

to Peter Lamb, who not only kept the
omputers running, but whose expertise

in may �elds, in
luding various non-te
hni
al ones, made it always ex
iting

to talk to him.

My work was �nan
ially supported by Siemens AG, Berlin and M�un
hen,

and Cray Resear
h In
., Minneapolis. Roland Kir
her from Siemens supplied

the �rst examples for us to play with, and it was always a pleasure to talk to

him. Other sample data
ame from Mark Birrittella from Cray, Ri
hard Fair

v

vi A
knowledgements

from MCNC, and Prof. Don Rose from Duke University. Marius Orlowski

from Motorola In
. invited me for a �ve weeks stay in Austin, where I had

an ex
iting time on and off the job with Matt Noell, Sang-Kyu Park, Ravi

Subrahmanyan, and James Berry. Armin Friedli delayed the
on
lusion of the

thesis by giving me the
han
e to ben
hmark the world's fastest
omputers,

an experien
e I do not want to miss.

My very spe
ial thanks go to Trudy Weibel. Not only has she always been

supportive and en
ouraging, she also
onstantly reminded me that there were

other things than just work for whi
h it is worth living. En
ouragements also

ame from other dear friends, in parti
ular Hansruedi Heeb, Wes Petersen,

Klaus Hinri
hs and Edo Biagioni.

Abstra
t

Sin
e the early work by Gummel in the 1960s, numeri
al simulation of

semi
ondu
tor devi
es has developed into an indispensable tool for devi
e

engineers. So far, most devi
e simulations have been one or two dimensional.

With
ontinuously shrinking devi
e features truly three-dimensional (3d)

treatment of the semi
ondu
tor be
omes ne
essary.

A few 3d devi
e simulation programs exist sin
e the early 1980s, but their

appli
ability is limited by the fa
t that they
annot simulate really general

devi
e geometries. They all use grids that are tensor-produ
ts of one- and

two-dimensional meshes, whi
h leaves little
exibility in modelling the third

dimension.

This thesis des
ribes the design and implementation of Se
ond, a general-

purpose, 3d semi
ondu
tor devi
e simulator. Se
ond solves the traditional

drift-diffusion equations of the semi
ondu
tor. The partial differential equa-

tions are dis
retized with the box method on a general 3d mesh
onsisting

of a mixture of tetrahedra, quadrilateral pyramids, triangular prisms, and

parallel epipeds. The one dimensional S
harfetter-Gummel s
heme is used

for integrating the
urrent relations along grid edges. De
oupled (Gummel)

and
oupled (Newton) methods are implementeded for linearizing the dis
rete

equations. Iterative methods (pre
onditioned
onjugate-gradient type algo-

rithms) are used for the solution of the linear systems. A time dis
retization

with automati
 time step
ontrol, based on an estimate of the lo
al trun
ation

error, is used for transient simulations. Physi
al models implemented in
lude

doping and �eld dependent
arrier mobilities, surfa
e s
attering, band gap

narrowing, and generation and re
ombination models with doping dependent

arrier life times.

The
exibility of Se
ond is demonstrated on a few
ase studies. One

vii

viii Abstra
t

is an investigation of parasiti
 MOSFETs in a tren
h isolated sub-mi
ron

n-MOS devi
e. This study demonstrates how design rules may be drawn up

based on the results of 3d devi
e simulations. A se
ond example investigates

lat
hup in CMOS devi
es and
ontains a
omparison between two- and

three-dimensional simulation results. A third
ase is a study of the swit
hing

behaviour of a bipolar transistor.

Zusammenfassung

Seit den fr�uhen Arbeiten von Gummel in den se
hziger Jahren hat si
h

die numeris
he Simulation von Halbleiterbauelementen zu einem unverzi
ht-

baren Werkzeug f�ur den Entwurf neuer Bauelemente entwi
kelt. Bisher

waren die meisten Bauelementsimulationen ein- oder zweidimensional. Mit

zunehmender Reduktion der Gr�o�e der Bauelemente wird jedo
h eine e
ht

dreidimensionale (3d) Behandlung der Halbleiterstrukturen notwendig.

Einige wenige 3d Bauelementsimulationsprogramme existieren seit den

fr�uhen a
hziger Jahren, ihr Anwendungsberei
h ist jedo
h dur
h die Tat-

sa
he bes
hr�ankt, da� sie keine Behandlung wirkli
h allgemeiner Geometrien

erlauben. Dies ist vor allem darauf zur�u
kzuf�uhren, da� die von diesen

Programme verwendeten Gitter Tensorprodukte ein- und zweidimensionaler

Gitter sind, was nur eine wenig
exibile Modellierung der dritten Raumdi-

mension erlaubt.

Diese Dissertation bes
hreibt den Entwurf und die Implementierung

von Se
ond, einem dreidimensionalen Bauelementsimulator mit breitem

Anwendungsspektrum. Se
ond basiert auf der numeris
hen L�osung der

traditionellen Drift-Diffusionsglei
hungen f�ur Halbleiter. Diese partiellen

Differentialglei
hungen werden mittels der Box-Methode auf einem all-

gemeinen dreidimensionalen Gitter, bestehend aus Tetraedern, Viere
ks-

pyramiden, Dreie
ksprismen und Parallelepipeden, diskretisiert. F�ur die

Integration der Kantenstr�ome wird das eindimensionale S
harfetter-Gummel-

Verfahren benutzt. Zur Linearisierung der diskreten Glei
hungen wurden

entkoppelte (Gummel-) und gekoppelte (Newton-) Verfahren implemen-

tiert. Die resultierenden linearen Glei
hungssysteme werden mit itera-

tiven Verfahren, basierend auf der Methode der konjugierten Gradienten,

gel�ost. Die Zeitintegration verwendet eine automatis
he S
hrittweiten-

kontrolle basierend auf einer Abs
h�atzung des lokalen Diskretisierungs-

ix

x Zusammenfassung

fehlers. Die implementierten physikalis
hen Modelle beinhalten dotierungs-

und feldabh�angige Bewegli
hkeiten der Ladungstr�ager, Ober
�a
henstreuung,

Bandl�u
kenverengung, sowie Erzeugungs- und Rekombinationsmodelle mit

dotierungsabh�angigen Lebensdauern.

Die vielf�altige Verwendbarkeit von Se
ond wird anhand einiger Fall-

studien demonstriert: Eine Untersu
hung parasit�arer MOSFET-Elemente in

einem n-MOS-Transistor zeigt, wie aufgrund von Simulationsergebnissen

Designregeln f�ur integrierte S
haltungen aufgestellt werden k�onnen. Als wei-

teres Beispiel dient eine Studie von Lat
hup-Effekten in CMOS-Strukturen,

die au
h einen Verglei
h zwis
hen zwei- und dreidimensionalen Simulations-

ergebnissen pr�asentiert. Als letzter Fall wird das S
haltverhalten eines

Bipolartransistors untersu
ht.

Contents

Abstra
t vii

Zusammenfassung ix

0 Introdu
tion 1

1 The Semi
ondu
tor Modelling Problem 5

1.1 The Semi
ondu
tor Equations 5

1.2 Boundary Conditions . 8

1.2.1 External Boundaries 8

1.2.2 Internal Boundaries 11

1.3 S
aling . 11

1.4 Physi
al Models . 14

1.4.1 Intrinsi
 Con
entration andEffe
tive Intrinsi
 Con-

entration . 14

1.4.2 Mobility . 14

1.4.3 Re
ombination and Generation 15

2 Numeri
al Solution of the Semi
ondu
tor Equations 19

xi

xii Contents

2.1 Spatial Dis
retization of the Differential Equations . . . 19

2.1.1 The Box Dis
retization Method 20

2.1.2 Box Dis
retization of the Semi
ondu
tor Equations 21

2.1.3 Limitations of the box method 23

2.1.4 Other Spatial Dis
retization Methods 24

2.2 Time Dis
retization . 26

2.3 Non-linear Equation Solution 28

2.3.1 Damped Newton Iteration 28

2.3.2 Coupled and De
oupled Solution 30

2.3.3 Choi
e of Variables 31

2.4 Sparse Linear Systems 32

3 Semi
ondu
tor Devi
e Modelling in Three Dimensions 35

3.1 Previous Work . 35

3.2 What Makes 3D Harder Than 2D? 37

3.2.1 Computational Complexity 37

3.2.2 Numeri
al Aspe
ts 38

3.2.3 Geometry De�nition 39

3.2.4 Grid Generation 39

3.2.5 Visualization of Results 40

3.3 Our Approa
h . 40

4 Methods 43

4.1 Assembly . 43

4.1.1 Poisson's Equation 43

Contents xiii

4.1.2 Continuity Equations 44

4.2 Treatment of Boundary Conditions 46

4.2.1 Diri
hlet Boundaries 46

4.2.2 Neumann Boundaries 48

4.2.3 Internal Boundaries 48

4.3 Terminal Currents . 49

4.4 Ele
tri
 Field . 50

4.5 Initial Solution . 53

4.6 Stopping Criteria . 54

4.6.1 Non-linear Iterations 54

4.6.2 Linear Iterations 55

4.6.3 Transient Simulations 56

5 Implementation 57

5.1 Software Engineering Aspe
ts 57

5.1.1 Hardware and Software Environment 57

5.1.2 Drawba
ks of FORTRAN 58

5.1.3 Further Compli
ations 64

5.1.4 Prepro
essing 64

5.2 Des
ription of the Implementation 66

5.2.1 Modules and Files 66

5.2.2 Ma
ros for Portability and C/C++ Interfa
e . . . 68

5.2.3 Libraries and Tools 73

5.2.4 Program Stru
ture 80

xiv Contents

5.2.5 Data Stru
tures 84

5.2.6 Algorithms . 89

5.2.7 Availability and Portability 95

5.3 Integration Into a Simulation System 96

6 Results 99

6.1 Parasiti
 MOSFETs . 99

6.2 CMOS Lat
hup . 103

6.3 Transistor Swit
hing . 106

7 Con
lusions and Future Work 111

List of Figures 115

List of Programs 117

List of Tables 119

Bibliography 121

Index 129

Curri
ulum Vitae 135

0

Introdu
tion

Sin
e the invention of the transistor forty-four years ago, solid state ele
troni
s

has developed with a breathtaking pa
e, and has irreversibly transformed

te
hnology. The
omputer revolution, only possible with VLSI, is still at

its beginning and has the potential to even more signi�
ant
hanges. While

it may
ertainly be argued whether the so
ial impa
ts of these
hanges is

generally for the better or worse, many problems in
ontemporary so
iety
an

only be solved with the use of mi
roele
troni
s, even some of the problems

reated by this progress. Examples in
lude the use of sophisti
ated
ontrol

logi
 to improve energy ef�
ien
y of su
h diverse obje
ts as
ars, trains and

wind turbines, or better understanding of environmental pro
esses due to more

realisti
 numeri
al modelling with faster
omputers.

The �rst integrated
ir
uits, whi
h be
ame
ommer
ially available in the

early 1960s,
ontained only a few devi
es. In the year 1990, DRAM
hips

ontaining more than four million devi
es
ould be bought in the store, and

hips with sixteen times that number have already been fabri
ated in the

laboratory. The numbers go up by a fa
tor of four every two to three years.

Quantitatively speaking, this rate of progress is unrivaled in the history of

mankind.1

The in
reasing pa
king density of VLSI
hips implies shrinking devi
e

1The in
rease in
omputer power, whi
h o

urs at roughly the same rate, is but a result of the
advan
es in mi
roele
troni
s.

1

2 Introdu
tion

dimensions. Redu
ed feature size, on the other hand, requires more
ompli-

ated, and time
onsuming, manufa
turing pro
esses. This means that a pure

\trial-and-error" approa
h to devi
e optimization be
omes impossible sin
e

it is both too time
onsuming and too expensive. Simulation has therefore

be
ome an indispensable tool for the devi
e engineer. Besides offering the

possibility to \test" hypotheti
al devi
es that have not (or
ould not) yet

been manufa
tured, simulation offers unique insight into devi
e behaviour by

allowing the \observation" of entities that
annot be measured on real devi
es.

The �rst one dimensional (1d) devi
e simulations were performed by

Gummel [37℄ in 1964, based on the partial differential equations (PDEs)

of the semi
ondu
tor proposed by van Roosbroe
k [61℄. Soon after, two

dimensional (2d) simulations were performed, and during the 1970s, 2d

simulation developed into a standard tool for devi
e design.

3d-edg
ur.id
90 × 47 mm

Figure 0.1: Spreading of
urrent at devi
e edges
auses 3d effe
ts.

2D treatment of semi
ondu
tor devi
es be
omes unrealisti
 on
e
urrent

ow is no longer predominantly limited to a plane. The �rst sour
e of su
h

non-2d behaviour are edge effe
ts. In a MOSFET, for example,
arrier
ow

is two dimensional in the interiour. Near the sides of the
hannel, however,

the
urrent spreads outside the region between sour
e and drain (Figure 0.1).

This effe
t
an be negle
ted if the transistor is wide enough so that the edge

urrents do not matter; with shrinking devi
e dimensions this is no longer the

ase and 2d modelling
an no longer be a

urate.

A se
ond
lass of 3d effe
ts in
orporates various kinds of devi
e
ross

3

talk. A MOSFET that is isolated by an oxide tren
h may suffer from leakage

urrents due to parasiti
 devi
es that
an be partially turned on under
ertain

onditions. Operation of su
h devi
es is usually inherently 3d and
annot

be modelled in two dimensions. Lat
hup effe
ts in CMOS stru
tures are

impossible to model two dimensionally if the tubs are not arranged in line.

Leakage
urrents in DRAM tren
h
ells are 3d effe
ts sin
e the the tren
hes

as they are used in 4Mbit and 16Mbit
hips are too small to be reasonably

modelled in 2d [11℄.

Finally, CMOS lat
hup or DRAM upset
aused by ionizing radiation (e.g.

natural α a
tivity)
an only be modelled in 3d due to the small diameter of the

ionized
hannel [72℄.

The ne
essity to model su
h effe
ts lead to the �rst 3d devi
e simulators

in 1980 [14, 84℄. However, while general-purpose simulators are available for

2d problems, most of the
urrently available 3d devi
e simulators
an only

model a small
lass of unrealisti
 devi
es, and more general ones [17℄ are still

signi�
antly limited in the generality of devi
e geometries they
an handle.

The aim of this thesis is the
onstru
tion of a 3d devi
e simulation

program that is general enough to simulate arbitrary devi
e stru
tures under

general operating
onditions, in
luding transient analysis. In order to be

generally useful, the program must also be fast, \reasonable" in its memory

requirements, and user friendly. On the other side we restri
t ourselves to

onventional physi
al models as they have been used inmost devi
e simulators

so far. Provided a suf�
iently general design, more sophisti
ated models
an

be added at a later stage.

This work is stru
tured as follows: Chapter 1 will present the basi

physi
al problem that must be solved by a devi
e simulator. We restri
t

ourselves to the traditional drift-diffusion formulation of the semi
ondu
tor

equations. Chapter 2 dis
usses how this problem
an be solved numeri
ally

on a digital
omputer. We introdu
e methods for dis
retizing the PDEs,

fo
using on the box method whi
h has turned out to be the most su

essful

dis
retization s
heme in devi
e simulation.

In Chapter 3 the state of the art in 3d devi
e simulation is examined and

problems that are parti
ular to 3d are dis
ussed. Our approa
h tomodel general

3d devi
e geometries is outlined. Chapter 4 des
ribes the basi
 mathemati
al

and
omputational methods we use in our simulator in more detail. Chapter 5

des
ribes the a
tual software implementation of the devi
e simulator Se
ond,

4 Introdu
tion

starting with an assessment of software engineering problems in the \real

world" of s
ienti�

omputing, and presenting solutions to these problems.

The basi
 algorithms and data stru
tures used in Se
ond are then des
ribed.

The usability and
exibility of Se
ond is demonstrated in Chapter 6 by

means of a
tual simulations performed on a set of very different problems.

Chapter 7
on
ludes the thesis with an outlook on further work that
an be

done to enhan
e Se
ond's usefulness.

1

The Semi
ondu
tor Modelling

Problem

In this
hapter we present the basi
 problem to be solved in devi
e simulation.

The �rst se
tion introdu
es the partial differential equations (PDEs) used to

des
ribe the behaviour of a semi
ondu
tor. Se
tion 1.2 dis
usses the boundary

onditions for whi
h the equations are to be solved. Se
tion 1.3 shows how the

PDEs are s
aled for numeri
al treatment and Se
tion 1.4
ontains a dis
ussion

of the physi
al models used.

1.1 The Semi
ondu
tor Equations

A semi
ondu
tor is usually modelled as a medium with two kinds of mobile

arriers of
harge: ele
trons
arrying a
harge −q and holes
arrying a

positive
harge of the same magnitude. In addition there are impurities,

positively
harged donors and negatively
harged a

eptors. These are

immobile, however a donor
an re
ombine with an ele
tron, or an a

eptor

an re
ombine with a hole, to form an ele
tri
ally neutral impurity. We

assume in the following that all impurities are ionized in the temperature

ranges of interest to us (i.e. around room temperature).

Classi
al ele
trodynami
s (see e.g. [45℄) relates the ele
tri
 �eld E to the

5

6 The Semi
ondu
tor Modelling Problem

harge density ̺ by Poisson's equation

∇ · εε0E = ̺, (1.1)

where ε is the diele
tri

onstant of the material and ε0 the permittivity of

va
uum. Note that ε may vary throughout the devi
e but is assumed to be

independent of time or bias
onditions. In the
ase of a semi
ondu
tor we

have

̺ = q(p− n+N+
d −N−

a), (1.2)

where n and p denote the
on
entrations (densities) of ele
trons and holes

respe
tively, and N+
d and N−

a are the
on
entrations of ionized donors and

a

eptors. If we express the ele
tri
 �eld by the ele
trostati
 potential

E = −∇ψ and write N := N+
d − N−

a for the net impurity
on
entration,

Poisson's equation for the semi
ondu
tor be
omes

−∇ · εε0∇ψ − q(p− n+N) = 0. (1.3)

Conservation of
harge is expressed by the
ontinuity equation

∇ · J +
∂̺

∂t
= 0 (1.4)

for the
urrent density J , where t is the time. In our two
arrier model of

the semi
ondu
tor,
harge
onservation applies individually to the two
arrier

types ex
ept for re
ombination pro
esses. Therefore we obtain separate

ontinuity equations for both
arriers:

−∇ · Jn + q(R+
∂n

∂t
) = 0, (1.5)

∇ · Jp + q(R+
∂p

∂t
) = 0. (1.6)

Here Jn and Jp are the ele
tron and hole
urrent density, and R is the net

re
ombination rate, i.e. the rate at whi
h
arriers vanish due to re
ombination

pro
esses. Pair generation of
arriers gives a negative
ontribution to R.

In addition to the
ondu
tion
urrents there is the displa
ement
urrent

Jd = εε0Ė. These
urrents add up to the total
urrent:

J t = Jd + Jn + Jp. (1.7)

Taking the time derivative of Poisson's equation, we �nd the relation

∇ · Jd = ∇ · ∂
∂t
εε0E =

∂

∂t
q(p− n+N) = q(ṗ− ṅ). (1.8)

1.1. The Semi
ondu
tor Equations 7

Together with (1.5), (1.6) this yields

∇ · J t = 0 (1.9)

in a

ordan
e with Maxwell's se
ond equation [45℄.

In the drift-diffusion approximation usually employed in devi
e simulation,

the
urrent is assumed to be
omposed of a drift part, driven by the ele
tri

�eld, and a diffusion part, driven by the
on
entration gradient:

Jn = −qµnn∇ψ + qDn
∇n, (1.10)

Jp = −qµpp∇ψ − qDp
∇p. (1.11)

Here µn, µp are the mobilities whileDn,Dp are the diffusion
oef�
ients for

ele
trons and holes respe
tively. These are related by the Einstein relation

D = µ
kT

q
, (1.12)

where k denotes the Boltzmann
onstant and T the temperature.

If Boltzmann statisti
s is appli
able and the semi
ondu
tor is in thermal

equilibrium, the densities
an be des
ribed by the Fermi level EF as

n = ni exp
qψ − EF

kT
, (1.13)

p = ni exp
EF − qψ

kT
, (1.14)

where ni is the intrinsi

on
entration, whi
h has the property

n2
i = np. (1.15)

Away from equilibrium the above equations no longer hold, but we
an still

write the densities as

n = ni exp
q(ψ − φn)

kT
, (1.16)

p = ni exp
q(φp − ψ)

kT
, (1.17)

where φn and φp are the quasi-Fermi potentials (also
alled imrefs). These are
the driving for
es of the parti
le
urrents, as
an be seen by using Eqs. (1.16)

and (1.17) to rewrite (1.10), yielding

Jn = −qµnn∇φn, (1.18)

Jp = −qµpp∇φp, . (1.19)

8 The Semi
ondu
tor Modelling Problem

In thermal equilibrium the quasi-Fermi potentials be
ome equal to the Fermi

potential φF := EF /q (
f. [31℄).

Deviations from Boltzmann statisti
s due to degenera
ies are usually

treated by repla
ing the intrinsi

on
entration by an effe
tive intrinsi

on-

entration

nie = ni exp
∆Eg

2kT
, (1.20)

where ∆Eg represents the bandgap narrowing. Eqs (1.16) and (1.17) now

read

n = nie exp
q(ψ − φn)

kT
, (1.21)

p = nie exp
q(φp − ψ)

kT
, (1.22)

and in equilibrium, where φn = φp = EF ,

n2
ie = np (1.23)

holds. With the introdu
tion of the effe
tive intrinsi

on
entration Eqs (1.18)

and (1.19) remain the same, while (1.10) and (1.11) must be repla
ed by

Jn = −qµnn∇ψ + qDn
∇n− kTµn

∇ lnnie

= −qµnn∇(ψ +
∆Eg

2q
) + kTµn

∇n, (1.24)

Jp = −qµpp∇ψ − qDp
∇p+ kTµn

∇ lnnie

= −qµpp∇(ψ − ∆Eg

2q
)− kTµp

∇p. (1.25)

These equations have pre
isely the same form as (1.10) and (1.11) if we

repla
e the ele
trostati
 potential by an effe
tive potential ψn = ψ+∆Eg/2q
for ele
trons and ψp = ψ −∆Eg/2q for holes.

1.2 Boundary Conditions

1.2.1 External Boundaries

In order to solve the devi
e equations presented in the previous se
tion,

we have to spe
ify appropriate boundary
onditions. The boundary for a

1.2. Boundary Conditions 9

mosfet.id
77 × 51 mm

gate oxide (Ω ins)

silicon
substrate

source drain

contact contact

Figure 1.1: Simple MOSFET stru
ture showing sili
on, Ωsemi, oxide, Ωins,

and
onta
ts, Γ0

devi
e to be simulated (a simple example is shown in Fig. 1.1)
onsists of two

parts:
onta
ts and free boundary. We denote the whole domain as Ω, the i-th

onta
t as Γi and the remaining boundary as Γh:

∂Ω = Γh ∪ Γ0, (1.26)

where

Γ0 :=

NC
⋃

i=1

Γi, (1.27)

NC being the number of
onta
ts. Conta
ts are sour
es and sinks of
arriers

while no
arriers are allowed to
ross the free boundaries. This latter
ondition

means that the
urrent densities normal to the boundary must be zero,

n · Jn = n · Jp = 0 on Γh, (1.28)

where n is the outward unit normal ve
tor of the boundary. Be
ause of (1.18)

and (1.19) this implies that the gradients of the quasi-Fermi levels must vanish

in the dire
tion normal to the boundary. Under the
ondition of no surfa
e

harge, we impose the same
ondition on the ele
trostati
 potential [45℄, so

that we obtain on Γh a set of Neumann boundary
onditions

n ·∇φn = n ·∇φp = n ·∇ψ = 0 on Γh. (1.29)

Be
ause of (1.21) and (1.22) this implies

n ·∇n = n ·∇p = 0 on Γh, (1.30)

10 The Semi
ondu
tor Modelling Problem

provided that n ·∇nie is also zero on Γh.

At
onta
ts we require
harge neutrality

̺ = q(p− n+N) = 0 (1.31)

and lo
al thermal equilibrium (Eq. 1.23). The latter
ondition, be
ause of

(1.21), (1.22), (1.13) and (1.14), means that the quasi-Fermi potentials be
ome

equal to the Fermi potential

φn = φp =
EF

q
= φF on Γ0. (1.32)

Eq. (1.31), together with (1.21), (1.22) and (1.32), determines the ele
trostati

potential as a fun
tion of the Fermi potential

ψ = φF + sinh
N

2nie
on Γ0. (1.33)

The Fermi potential, however, must be equal to the applied voltage in an

ohmi

onta
t [71℄, so that we get a Diri
hlet
ondition on
onta
ts:

ψ − Ubi = φn = φp = Ui on Γi. (1.34)

Here Ui (\applied voltage") is the potential applied to
onta
t i. The voltage

Ubi := sinh
N

2nie
(1.35)

is
alled the built-in voltage.

It must be noted that these boundary
onditions are sensible only if they

do not in
uen
e the physi
al behaviour of the devi
e. This normally means

that the boundaries must be suf�
iently far away from physi
ally a
tive parts

of the devi
e, su
h as spa
e
harge regions or regions where the impurity

on
entration
hanges appre
iately in the dire
tion normal to the boundary.

There is one ex
eption to that rule: The nature of our boundary
onditions

for
es boundaries to behave like a symmetry plane between the simulated

devi
e and a \virtual" devi
e whose geometry and physi
al
omposition is a

mirror image of the \real" devi
e. One
an take advantage of this fa
t when

simulating devi
es with a symmetry plane: Only one half of the devi
e must

be simulated and the simulated
urrent densities will be exa
tly the same as if

the whole devi
e had been simulated.

1.3. S
aling 11

1.2.2 Internal Boundaries

Besides the external boundaries of the simulation domain Ω, there also exist

internal boundaries (or interfa
es) between different materials. In the
ase

of sili
on devi
es the only kind of interfa
e of interest is between insulator

(oxide) and semi
ondu
tor (sili
on).

In the insulator, Ωins , we assume that there are no
harges, neither mobile

nor immobile. This means that Poisson's equation is redu
ed to Lapla
e's

equation

−∇ · εinsε0∇ψ = 0 in Ωins , (1.36)

where εins is the diele
tri

onstant of the insulator. In the absen
e of

surfa
e
harges, the interfa
e
ondition is simply the
ontinuity of the ele
tri

displa
ement εε0∇ψ [45℄. Hen
e the normal
omponent of the ele
tri
 �eld

is dis
ontinuous:

n · εsemi∇ψ|Ωsemi
= n · εins∇ψ|Ωins

on ∂Ωsemi ∩ ∂Ωins , (1.37)

where εsemi is the diele
tri

onstant in the semi
ondu
tor region Ωsemi .

Sin
e we do not allow
arriers in the insulator, there is no
urrent a
ross

the interfa
e and the same Neumann boundary
onditions (1.29) apply for the

quasi-Fermi levels (or the densities) as in the
ase of external boundaries.

Sometimes we want to apply Diri
hlet boundary
onditions in the interior

of the devi
e, e.g. if we want to simulate a devi
e with a metalli

onta
t (of

zero thi
kness) that lies between semi
ondu
tor and oxide. This is really a

limiting
ase of a simulation domain with a hole, where the hole is part of

the Diri
hlet boundary. Hen
e we treat su
h \internal"
onta
ts as part of the

external boundary Γ0.

1.3 S
aling

When numeri
ally simulating physi
al phenomena it is
ustomary to s
ale the

physi
al entities. This has several reasons. The most important one is to shift

the order of magnitude of the variables as
losely to unity as possible, to avoid

problems with the �nite numeri
 range of digital
omputers. Other reasons

in
lude the \s
aling away" of
onstants to simplify formulae. Usually the

s
aled entities be
ome dimensionless.

12 The Semi
ondu
tor Modelling Problem

For our simulationswe use the s
aling proposed by deMari [50℄. As s
aling

fa
tors we de�ne: the intrinsi
 Debye length li, the intrinsi

on
entration

ni, the thermal voltage UT and a unit diffusivity D0 for lengths, voltages,

on
entrations and diffusion
oef�
ients respe
tively. These are de�ned as

li :=

(

εSiε0kT

q2ni

)
1
2
, (1.38)

UT :=
kT

q
, (1.39)

D0 := 1m2s−1, (1.40)

while for ni a phenomenologi
al formula for the temperature dependen
e is

used (see Se
tion 1.4.1).

Quantity S
aling fa
tor

Name Symbol Symbol Value

Displa
ement x li 3.3865×10−5 m

Con
entration n, p,N ni 1.4824×1016 m−3

Current density J qniD0l
−1
i 7.0135×101 Am−2

Voltage U,ψ, φ UT 2.5852×10−2 V

Ele
tri
 �eld E UT l
−1
i 7.6339×102 Vm−1

Time t s 1.1468×10−9 s

Current I qniliD0 8.0434×10−8 A

Mobility µ D0U
−1
T 3.8681×101 m2V−1s−1

Re
ombination rate R niD0l
−2
i 1.2926×1025 m−3s−1

Table 1.1: De Mari s
aling fa
tors for T = 300K.

From these de�nitions the s
aling fa
tors for all other relevant entities
an

be derived. The various s
aling fa
tors and their values are summarized in

Table 1.1. Table 1.2 summarizes the fundamental and material
onstants used

for determining the normalization fa
tors.

We use the symbols u, v, and w for the s
aled potentials ψ, φn and φp.
For all other quantities we use the same symbols irrespe
tive on whether or

not they are s
aled. Usually the potential variables are suf�
ient to indi
ate

that an equation assumes s
aled quantities.

1.3. S
aling 13

Quantity Symbol Value

Universal
onstants

Elementary
harge q 1.602 177 33 ×10−19 C

Boltzmann
onstant k 1.380 658 ×10−23 JK−1

Permittivity of va
uum ε0 8.854 187 818×10−12 Fm−1

Material
onstants

Diele
tri
ity of Si εSi 11.9

Diele
tri
ity of SiO2 εSiO2 3.9

Table 1.2: Fundamental
onstants (after Cohen and Taylor [20℄) and material

onstants (after Sze [71℄)

The s
aled semi
ondu
tor equations for a sili
on devi
e now read

−∇ ·∇u− (p− n+N) = 0, (1.41)

−∇ · Jn +R+
∂n

∂t
= 0, (1.42)

∇ · Jp +R+
∂p

∂t
= 0, (1.43)

where

Jn = −µn(n∇u+∇n) = −µnn∇v, (1.44)

Jp = −µp(p∇u −∇p) = −µpp∇w, (1.45)

n = niee
u−v, (1.46)

p = niee
w−u (1.47)

in the semi
ondu
tor, and

−∇ · εox
εsemi

∇u = 0 (1.48)

in the oxide. The boundary
onditions are

u− Ubi = v = w = Ui, (1.49)

on Diri
hlet, and

n ·∇u = n ·∇v = n ·∇w = n ·∇n = n ·∇p = 0 (1.50)

on Neumann boundaries.

14 The Semi
ondu
tor Modelling Problem

1.4 Physi
al Models

In this se
tion we present the models used for the quantities ni, nie, µ, and R.

1.4.1 Intrinsi
 Con
entration and Effe
tive Intrinsi

Con
entration

The intrinsi

on
entration in sili
on is given in [10℄, based on measurements

over a temperature range of 250{500K, as

ni = 3.87× 1022(T/K)1.5 exp(−7000K/T)m−3. (1.51)

For a temperature of 300K this gives the value of 1.4824 × 1016 m−3 in

Table 1.1.

The effe
tive intrinsi

on
entration is given by Eq. (1.20) as a fun
tion

of the bandgap narrowing. Bandgap narrowing is a phenomenologi
al way

to in
orporate deviations from Boltzmann statisti
s due to heavy doping

and quantum effe
ts. Therefore bandgap narrowing is an approximate

orre
tion that lumps several different physi
al phenomena together into a

single parameter. Sin
e this is only a
oarse approximation of the a
tual

devi
e physi
s, it is not surprising that more than one bandgap narrowing

model exists.

In Se
ond we use the model after Slotboom [67℄:

∆Eg = q 0.009V

[

ln

(|N |
1023 m−3

)

+

√

ln

(|N |
1023 m−3

)

+
1

2

]

, (1.52)

or alternatively the one after Gaur et al. [34℄:

∆Eg = 2kT

{

9.248 · 10−10(|N |/
m3)0.4678 for |N | < 5 · 1019/
m3

1.52 otherwise
.

(1.53)

1.4.2 Mobility

The
arrier mobilities in doped semi
ondu
tors are redu
ed from their intrinsi

values, µ0, due to s
attering at impurities, leading to doping dependent

1.4. Physi
al Models 15

mobilities µ(N). Caughey and Thomas [16℄ �tted experimental data to the

formula

µ(N) = µ0 +
µ1

1+N/Nr
. (1.54)

An ele
tri
 �eld does not a

elerate the
arriers to arbitrary velo
ities due

to velo
ity saturation. We model this after S
harfetter and Gummel [64℄ with

a mobility depending on the ele
tri
 �eld as

µ(N,E‖) = µ(N)

{

1+

[

µ(N)E‖

vs

]2

+

[

µ(N)E‖/vc
]2

µ(N)E‖/vc +G

}−1/2

, (1.55)

where E‖ is the
omponent of the ele
tri
 �eld parallel to the
arrier
urrent.

However, sin
e the
arrier
urrents are driven by the gradients of the quasi-

Fermi potentials (see Eqs. (1.18), (1.19)), it is preferable to use the magnitudes

of these gradients as the parallel ele
tri
 �eld:

En
‖ = |∇φn|, (1.56)

Ep
‖ = |∇φp|. (1.57)

In MOSFETs, where high
urrent densities
ow along insulator interfa
es,

surfa
e s
attering effe
ts be
ome important. Yamagu
hi [83℄ proposed to

model these as a fun
tion of the transverse ele
tri
 �eld as

µ(N,E‖, E⊥) = µ(N,E‖)

[

1+

(

E⊥

Ec

)c]−1

, (1.58)

where E⊥ is the
omponent of the ele
tri
 �eld orthogonal to the dire
tion

of the
urrent
ow. Table 1.3 summarizes the various
onstants used in

Eqs. (1.54), (1.55), and (1.58).

1.4.3 Re
ombination and Generation

Re
ombination is a phenomenon that works towards restoring equilibrium

(Eq. 1.23) under
onditions where an ex
ess of
arriers exists. In
ase of

arrier depletion (np < n2
ie), the same pro
esses lead to an in
rease of
arrier

on
entrations, i.e. generation. However, this generation is normally not

signi�
ant so that the pro
esses involved are generally
alled \re
ombination"

even though they may a
tually produ
e
arriers.

16 The Semi
ondu
tor Modelling Problem

quantity ele
trons holes units

µ0 0.00880 0.00543 m2V−1s−1

µ1 0.125 20 0.040 73 m2V−1s−1

Nr 143.2 267.0 1021m−3

vs 100.0 83.7 103 ms−1

vc 49 49 103 ms−1

Ec 30.32 15.30 106 Vm−1

c 0.657 0.617

G 8.8 1.6

Table 1.3: Mobility parameters for ele
trons and holes

The most important re
ombination pro
esses in sili
on are the Auger

pro
ess where an ele
tron-hole pair re
ombines and the re
ombination energy

is transferred to a third parti
le, and single level pro
esses where
arriers

re
ombine via isolated trap levels in the band gap.

Auger re
ombination produ
es the re
ombination rate

RAuger = (np− n2
ie)(nA

n
Aug + pAp

Aug), (1.59)

where AAug are the Auger
oef�
ients. These are usually
onsidered
onstant

with values ofAn
Aug = 0.5{2.8×10−43m6s−1 andAp

Aug = 0.99×10−43m6s−1

(a

ording to Pinto [57℄).

Single trap level re
ombination is usually treated a

ording to the Sho
kley-

Read-Hall model (
f. [71℄) as

RSRH =
pn− n2

ie

τp(n+ nie) + τn(p+ nie)
, (1.60)

where τn and τp are the ele
tron and hole lifetimes respe
tively. These are

usually modelled using the formula

τ =
τ0

1+
(

N
NSRH

)GSRH
. (1.61)

Table 1.4 gives typi
al values. It must be noted, however, that at least

the values of τ0
an vary signi�
antly between different devi
es. Often

1.4. Physi
al Models 17

τ0 NSRH GSRH

10−6 s 1021 m−3

ele
trons 40 3.0 0.5

holes 8 3.0 0.5

Table 1.4: Parameters for Sho
kley-Read-Hall re
ombination model

re
ombination
enters are deliberately inserted into a devi
e to
ontrol the

lifetime of the minority
arriers (lifetime engineering).

The main generation pro
ess is impa
t ionization, also
alled avalan
he

generation. This phenomenon o

urs when ele
tri
 �elds in a devi
e are

high enough to a

elerate
arriers to energies where
ollision with latti
e

atoms
an ionize the latter. This three-parti
le pro
ess is the inverse of Auger

re
ombination. The effe
t is modelled after Chynoweth [18℄ as

Rav = Rn
av +Rp

av , (1.62)

Rn
av = −1

q
|Jn|An

av exp(−En
crit/E

n
‖), (1.63)

Rp
av = −1

q
|Jp|Ap

av exp(−Ep
crit/E

p
‖). (1.64)

where

En
‖ :=

E · Jn

|Jn| , (1.65)

Ep
‖ :=

E · Jp

|Jp| . (1.66)

The minus sign in Eq. (1.63) and (1.64) indi
ates generation. The values

of the ionization
oef�
ients as experimentally determined by Grant [36℄ are

listed in Table 1.5.

18 The Semi
ondu
tor Modelling Problem

Aav Ecrit range for E‖

106 m−1 106 Vm−1 106 Vm−1

ele
trons 260 143 < 24

62 108 24{42

50 99 > 42

holes 200 197 < 51

56 132 > 51

Table 1.5: Grant's
oef�
ients for the impa
t ionization model after

Chynoweth

2

Numeri
al Solution of the

Semi
ondu
tor Equations

Having presented the equations des
ribing a semi
ondu
tor devi
e, we will

now dis
uss methods for their solution. Se
tion 2.1 will present the method

used for the spatial dis
retization, while the time dis
retization is dis
ussed in

Se
tion 2.2. In Se
tion 2.3 methods for the solution of the nonlinear equations

arising from dis
retization are presented, and Se
tion 2.4 �nally dis
usses the

solution of linear systems of equations.

2.1 Spatial Dis
retization of the Differential

Equations

In order to solve the boundary value problem (1.41{1.50) on a digital

omputer, the PDEs must be dis
retized, i.e. transformed into a system of

dis
rete equations. One method to do this is the box method (BM), �rst

presented by Varga [77℄, whi
h is also known as the
ontrol volume or �nite

volume method.

19

20 Numeri
al Solution of the Equations

2.1.1 The Box Dis
retization Method

Let us assume a PDE in divergen
e form, the
lassi
al form of
onservation

laws in physi
s,

∇ · F (x)− S(x) = 0, (2.1)

for some ve
tor �eld F and a s
alar sour
e term S in some domain Ω with a

plain fa
ed boundary ∂Ω. LetΩ be
overed by a grid
onsisting ofNv verti
es

xi ∈ Ω, i = 1, · · · , Nv ,
onne
ted by edges (see Figure 2.1). We
onstru
t for

ea
h vertex, i, a box, Ωi, delimited by the mid-perpendi
ulars of all the edges

terminating in vertex i. If the grid is
onstru
ted appropriately, the boxes will
form a partition of Ω:

Ω =

Nv
⋃

i=1

Ωi, (2.2)

V =

Nv
∑

i=1

Vi, (2.3)

where V :=
∫

Ω
dV is the volume of the domain Ω and Vi :=

∫

Ωi
dV the

volume of Ωi.

In order to obtain an equation for vertex i, we integrate (2.1) over Ωi and

apply Gauss's theorem, whi
h yields

∫

Ωi

[∇ · F (x)− S(x)]dV =

∫

∂Ωi

F (x) · dn(x)−
∫

Ωi

S(x)dV = 0, (2.4)

where dn(x) denotes the unit ve
tor normal to the box boundary ∂Ωi in x.

We approximate S(x) within Ωi by its value Si := S(xi) at the box
enter,

and F (x) within ea
h se
tor Ωij of the box by some average value F ij . The

above equation then be
omes

∑

j

∫

∂Ωij

F ij(x) · dn(x)−
∫

Ωi

SidV =
∑

j

FijAij − SiVi = 0, (2.5)

where Fij := |F ij |
os 6 (F ij , dn) is the proje
tion of F ij onto the edge ij,
and the sums run over all edge neighbours of vertex i. Edge neighbours of i
are all verti
es j
onne
ted with i by an edge of the grid. Aij is the area of

2.1. Spatial Dis
retization of the Differential Equations 21

box.id
70 × 66 mm

d ij

lij

i

j
Ω ij

∂Ω i

Figure 2.1: 2D example of a box

the part of the box surfa
e that is normal to ij. If we de�ne Aij to be zero if

verti
es i and j are not edge neighbours, we
an write Eq. (2.5) as

Nv
∑

j=1
j 6=i

FijAij − SiVi =:
∑

j 6=i

FijAij − SiVi = 0. (2.6)

This is the dis
retized form of Eq. (2.1): one dis
rete equation for ea
h grid

point i.

2.1.2 Box Dis
retization of the Semi
ondu
tor Equa-

tions

Poisson's equation

To apply the box method (BM) to Poisson's equation (1.41), we have to

identify in Eq. (2.1) F with E = −∇u and S with ̺ = p − n + N . This

22 Numeri
al Solution of the Equations

results in the dis
retization

∑

j 6=i

EijAij − Vi(pi − ni +Ni) = 0, (2.7)

with the underlying approximation that p = pi := p(xi), n = ni := n(xi),
N = Ni := N(xi) are
onstant in Ωi, and the proje
tion Eij of E onto

the edge ij is
onstant. Under these
onditions we obtain as the potential

differen
e along the edge

uji = uj − ui = −E · (xj − xi), (2.8)

and hen
e

− uji
lji

= E · lji

|lji|
= Eij , (2.9)

with lji := xj − xi and lij := |lji|. Substituting this into Eq. (2.7) results in
the �nal form of the BM dis
retization for Poisson's equation:

Fu
i := −

∑

j 6=i

Aij

lij
uij − Vi(pi − ni +Ni) = 0, (2.10)

where we have used lij = lji and uij = −uji. Consequently, in the oxide,

the dis
retization of Lapla
e's equation (1.48) reads

∑

j 6=i

(− εox
εsemi

Aij

lij
uij) = 0. (2.11)

At interfa
es, the appropriate equation, Eq. (2.10) or Eq. (2.11), must be

hosen separately for the semi
ondu
tor and the insulator part of the box.

Continuity equations

For the
ontinuity equations (1.42,1.43), Eq. (2.6) translates into

−
∑

j 6=i

AijJ
n
ij + Vi(Ri + ṅi) = 0, (2.12)

∑

j 6=i

AijJ
p
ij + Vi(Ri + ṗi) = 0. (2.13)

2.1. Spatial Dis
retization of the Differential Equations 23

To determine Jn
ij , the
omponent of the ele
tron
urrent density along an edge,

we use the 1d solution �rst derived by S
harfetter and Gummel [64℄: We

onsider Eq. (1.44) on the edge ij:

Jn
ij = µn

ij(nEij −
dn

dl
). (2.14)

Under the assumption that Jn
ij , µ

n
ij , and Eij are
onstant on that edge, we

an integrate the ordinary differential equation (ODE) (2.14) and obtain the

solution

Jn
ij =

µn
ij

lij
[njB(uji)− niB(uij)], (2.15)

with the Bernoulli fun
tion

B(x) =
x

ex − 1
. (2.16)

The hole
ontinuity equation (1.43)
an be treated in an analogous fashion,

yielding a 1d hole
urrent density of

Jp
ij =

µp
ij

lij
[pjB(uij)− piB(uji)], (2.17)

Substituting this into Eqs. (2.12,2.13) results in the dis
retized
ontinuity

equations

Fn
i := −

∑

j 6=i

Aij

lij
µn
ij [njB(uji)− niB(uij)] + Vi(Ri + ṅi) = 0, (2.18)

F p
i := −

∑

j 6=i

Aij

lij
µp
ij [pjB(uij) − piB(uji)] + Vi(Ri + ṗi) = 0. (2.19)

2.1.3 Limitations of the box method

In Se
tion 2.1.1 we postulated that the boxes delimited by the mid-perpendi
-

ulars of the edges form a partition of the simulation domain. This imposes a

serious restri
tion on the grid, the well-known obtuse angle problem of the BM

(see e.g. Pinto [57℄). In 2d the restri
tion is that the sum of opposite angles

of adja
ent triangles must not ex
eed π/2, and a similar
hara
terization of a

well shaped grid exists in 3d [21℄.

24 Numeri
al Solution of the Equations

While in prin
iple the BM allows the use of grids that
an model general

geometries, and allows good adjustment of the point density, it is quite dif�
ult

to
onstru
t irregular grids that are well shaped. Sophisti
ated grid generation

algorithms are required for truly 3d grids (see Conti et al. [23℄).

2.1.4 Other Spatial Dis
retization Methods

Finite differen
es

The simplest (and probably most straight-forward) method for solving a PDE

is by �nite differen
es (FD, for a detailed presentation see Smith [68℄). This

method is based on repla
ing differential operators by differen
e operators.

For example the 2d Lapla
e equation

∂2f(x, y)

∂x2 +
∂2f(x, y)

∂y2
= 0 (2.20)

is, at point (xi, yj) = (ih, jh) of a uniform grid, repla
ed by the differen
e

equation

f(xi−1)− 2f(xi) + f(xi+1)

h2 +
f(yi−1)− 2f(yi) + f(yi+1)

h2 = 0. (2.21)

If the grid is non-uniform, but still regular, a similar but signi�
antly messier

expression holds.

For the
ontinuity equations this simple s
heme is not useful, be
ause

the exponential variation of the
arrier densities is poorly �tted by the linear

approximation underlying FD. Higher order differen
e methods are possible

but of not mu
h help in this
ase. The 1d S
harfetter-Gummel solution of the

urrent equations must therefore be used along the edges as in the
ase of the

BM (
f. Se
tion 2.1.2). On a re
tangular mesh the BM is a
tually equivalent

to FD, so that the former
an be
onsidered a generalization of the latter.

Standard FD requires a regular (though not ne
essarily uniform) grid

onsisting of points (xi, yj , . . .), i = 1, . . . , Nx, j = 1, . . . , Ny , . . . Sin
e su
h

d dimensional grids are the tensor produ
t of d one-dimensional grids, they

are often
alled tensor produ
t grids.

The regularity of tensor produ
t grids is re
e
ted in a regularity of the

stru
ture of the sparse linear systems emerging from the dis
retization|they

2.1. Spatial Dis
retization of the Differential Equations 25

exhibit a simple band stru
ture (d bands at either side of the main diagonal).

This allows for the use of very simple sparse data stru
tures and algorithms

whi
h
an be implemented very ef�
iently with little effort, making FD

methods very appealing from the implementation point of view.

The drawba
k of FD is the poor
ontrol one has over the point density of

the grid|in order to have a suf�
iently high point density in the physi
ally

a
tive devi
e regions one gets many more points than are a
tually needed in

other regions, an effe
t that is drasti
ally worse in 3d than in 2d. Sin
e the

number of grid points determine both, memory and CPU time requirements of

a simulation, this seriously limits the utility of FD. Furthermore it is dif�
ult

to a

urately model non-re
tangular devi
e features with purely re
tangular

grids.

One possibility to redu
e the number of grid points is to allow terminating

grid lines. The resulting variant of FD is often
alled �nite boxes, see Franz

et al. [33℄ for details. Terminating lines, however, immediately destroy the

regularity of the stru
ture of the resulting systems of linear equations, thus

giving away the main advantage of the FD method. Moreover, as Pinto [57℄

has shown, severe limitations are posed on the aspe
t ratios of the boxes

ontaining a termination node, seriously restri
ting the
exibility of varying

the point density. It is therefore questionable whether �nite boxes have any

real advantage over the BM, and the method does not seem to be in widespread

use.

Finite element methods

The �nite element method (FEM), originally introdu
ed for the numeri
al

solution of problems in stru
tural me
hani
s, has established itself in the last

two or three de
ades as one of the most popular methods for solving PDEs.

The basi
 idea behind FEM is to repla
e a PDE by an equivalent variational

problem. The domain Ω is partitioned into elements Ωi, and a solution of the

variational problem is then sought by solving it approximately within ea
h

element (see Strang and Fix [70℄ for details).

The advantage of the FEM is that no hard restri
tions,
omparable to the

angle
onditions of the BM, are imposed on the grid. (There do exist \soft"

angle
onditions in that the solution error in
reases with a de
rease of the

smallest angle [70℄, but this is far less restri
tive than the angle
ondition in

26 Numeri
al Solution of the Equations

the BM.)

The disadvantage is that the interpolation fun
tions used within the ele-

ments, whi
h are usually linear or of low polynomial order, are unsuitable

for the exponentially varying densities in the
ontinuity equations. Var-

ious attempts to use exponential interpolation have apparently not been

su

essful [65, 57℄. Other approa
hes, like hybrid methods or upwinding

s
hemes [13℄, have failed to provide solutions general enough to allow sim-

ulating devi
es under arbitrary operating
onditions. They all suffer from

trun
ation problems when potential differen
es a
ross elements ex
eed a few

UT . This for
es extremely high point densities when simulating reversely

biased p-n-jun
tions, e.g. in MOSFETs.

Be
ause of these problems, FEM based methods are not
ommon in the

�eld of devi
e simulation. We are not aware of any general-purpose devi
e

simulator using FEM.

2.2 Time Dis
retization

The spatially dis
retized semi
ondu
tor equations (2.10, 2.11, 2.18, 2.19)
an

be written as

F (z(t)) = q̇(z(t)) + f(z(t)) = 0, (2.22)

where f = (fν), ν = u, n, p stands for the terms arising from the spatial

dis
retization of the stationary devi
e equations (ṅ = ṗ = 0) and F = (F ν)
for the full (transient) equations,

z(t) :=





u(t)
v(t)
w(t)



 (2.23)

is the transient solution, with u = (ui), v = (vi), and w = (wi), and

q(t) :=





0

(Vini)
(Vipi)



 . (2.24)

Various methods are known for integrating equations like (2.22), for ex-

ample the Euler or ba
kward Euler methods or the trapezoidal rule (TR) [35℄.

2.2. Time Dis
retization 27

The problem is that Eq (2.22) is extremely stiff, i.e. the time
onstants vary

over several orders of magnitude. For the usual one-step methods, whi
h are

typi
ally used in
onjun
tion with a (repeated) Ri
hardson extrapolation, this

results in an una

eptably small time step.

Another major
on
ern is the stability of the algorithm. An often used

riterion is A stability [35℄: a one-step method

yn+1 = A(hλ)yn, (2.25)

where (hopefully) yn ≈ y(nh), is one stable if, applied to the test problem

dy

dt
= λy (2.26)

with Reλ < 0, it satis�es the
ondition

|A(hλ)| < 1. (2.27)

The se
ond order TR is the A-stable multistep method with the smallest lo
al

trun
ation error [26℄. However, A-stability is not suf�
ient for very stiff

problems sin
e it does not prevent os
illations in the
omputed solution unless

the time step be
omes very small. We therefore require the quadrature method

to be L stable [47℄, where a method is said to be L stable if it is A stable and

|A(hλ)| → 0 as |hλ| → 0. (2.28)

This is the
ase for the method proposed by Bank et al. [7℄: They use a

time step
omposed of a TR step of length γhn followed by a se
ond order

ba
kward differential formula (BDF2) step of length (1 − γ)hn to go from

time t to tn+1 := tn + hn. For the TR step one has to solve

F n+γ := fn+γ + fn +
2

γhn
(qn+γ − qn) = 0 (2.29)

and for the BDF2 step

F n+1 := fn+1 +
2− γ

(1− γ)hn
qn+1 −

1

γ(1− γ)hn
qn+γ +

1− γ

γhn
qn = 0.

(2.30)
Here we have written qn for q(z(tn)) et
. It turns out that the optimal value

of γ = 2 −
√
2 minimizes the lo
al trun
ation error (LTE) of the
omposite

s
heme. The advantage of this method is that the
omposite s
heme is se
ond

28 Numeri
al Solution of the Equations

order, yet a one-step algorithm that does not need several previous time steps

for (re)starting.

Bank et al. also propose a s
heme for
ontrolling the size of the time step

based on an estimate of the LTE de�ned as

τ = 2Chn

[

fn

γ
−

fn+γ

γ(1− γ)
+

fn+1

(1− γ)

]

, (2.31)

where

C =
−3γ2 + 4γ − 2

12(2− γ)
. (2.32)

From the previous step size, hn, a
andidate step size, h̃, is determined as

h̃ = hnr
−1/3, (2.33)

where

r2 =
1

N

∑

i

(

τi
ei

)2

, (2.34)

and

ei = ǫR|qn+1,i|+ ǫA, (2.35)

with the absolute and relative error parameters ǫR and ǫA. If r ≤ 5 the time

step is a

epted and the s
heme
ontinues with the next step hn+1 := h̃,
otherwise the step is reje
ted and repeated with hn := 0.9h̃. If the nonlinear
solver does not
onverge (within a given number of iterations) the time step is

also reje
ted and repeated with hn := hn/2.

2.3 Non-linear Equation Solution

2.3.1 Damped Newton Iteration

The dis
retized equations are nonlinear and are linearized for numeri
al

solution. The usual linearization pro
edure is the (quadrati
ally
onvergent)

Newton method. Given a nonlinear system of equations

F (z) = 0, (2.36)

the Newton pro
edure iteratively
omputes a new solution

zk+1
i := zki + δzki (2.37)

2.3. Non-linear Equation Solution 29

from an old one zk, where the update δzk is obtained as the solution of the

linear system
∑

j

∂Fi(z
k)

∂zkj
δzkj = −Fi(z

k). (2.38)

This basi
 Newton pro
edure suffers from a phenomenon
alled overshoot:

the update δz frequently overestimates (often by many orders of magnitude)

the differen
e to the solution of (2.36). If su
h an ex
essive update is applied,

the resulting intermediate solution may lie outside of the
onvergen
e region

of the Newton pro
edure, or numeri
al problems (like exponent over
ow)

may prevent
onvergen
e.

To
ontrol this overshoot, damping is introdu
ed: Eq. (2.37) is repla
ed

by

zk+1
i := zki + skδzki , (2.39)

where a damping fa
tor sk, 0 < sk ≤ 1 is introdu
ed. The question remains

how to determine that damping fa
tor. Bank and Rose [8℄ showed that, under

ertain
onditions, global and quadrati

onvergen
e is a
hieved if sk satis�es
the suf�
ient de
rease
ondition

1− ‖F k+1‖
‖F k‖

≥ ǫsk, (2.40)

where ǫ > 0 is some �xed, small value, usually taken to be the ma
hine

epsilon. Note that this algorithm will still
onverge if some reasonable

approximation is used instead of the exa
t Ja
obian ∂Fi(z)/∂zj .

To determine a damping fa
tor satisfying Eq. (2.40) without a large number

of evaluations of F k+1, Coughran et al. [25℄ propose the following s
heme:

An initial damping fa
tor sk+1 for a new step is determined from the last

su

essful one as

sk+1 :=
sk

sk + 0.2(1− sk)‖F k+1‖/‖F k‖
. (2.41)

If this step does not satisfy (2.40), the following values are tried in turn:

sk+1 := sk
(

ǫ‖zk‖
δz

)j2/l2

, j = 1, . . . , l. (2.42)

30 Numeri
al Solution of the Equations

2.3.2 Coupled and De
oupled Solution

For the stationary
ase (ṅ = ṗ = 0), the dis
retized equations (2.10, 2.18,

2.19)
an be summarized as

Fu
i (u,n,p) = 0, (2.43)

Fn
i (u,n,p) = 0, (2.44)

F p
i (u,n,p) = 0. (2.45)

These are three timesNv equations in 3Nv unknowns, whereNv is the number

of grid points. One possibility to solve the equations is by applying the above

Newton pro
edure to the whole 3N -dimensional system. This is
alled the

oupled solution or full Newton approa
h.

Alternatively one
an �rst solve (2.43) for u, use the new u and the

original n and p to solve (2.44) for n, and use the new values of u and n

together with the original p to solve (2.45) for p. This must then be iterated

until a self-
onsistent solution is a
hieved, effe
tively performing a nonlinear

blo
k Gauss-Seidel iteration. The method is usually
alled de
oupled solution

or Gummel or plugin iteration.

The advantage of the
oupled s
heme is that the
oupling between the

PDEs is fully taken into a

ount and
onvergen
e is generally mu
h faster

than with the Gummel method. On the other hand, when the
oupling is

weak (low inje
tion
ase), the Gummel method may a
tually
onverge just as

qui
kly as the full Newton s
heme. In that
ase it is
ertainly preferable to

use the former, sin
e the latter requires far more memory due to the fa
t that

the linear system to be solved have three times the number of unknowns.

Experien
e shows that the full Newton method only
onverges if started

from a reasonably good initial solution. For a truly general purpose devi
e

simulator, a good initial guess is not possible without signi�
ant effort

(
omparable to the total solution effort,
f. Se
tion 4.5). Hen
e it must be

possible to start the simulation from a poor initial guess. This is possible

with the Gummel iteration, whi
h
onverges for a very wide range of starting

values. The Gummel method is therefore indispensable for a general purpose

devi
e simulator.

On the other hand, the de
oupled s
heme does
onverge very slowly

(or not at all) if the PDEs are strongly
oupled (high inje
tion
ase). Here

one is for
ed to use the full Newton iteration. The same holds true for

2.3. Non-linear Equation Solution 31

transient simulations. Hen
e, both methods must be implemented in the

devi
e simulator.

2.3.3 Choi
e of Variables

The
hoi
e of the variables strongly in
uen
es the nonlinear
onvergen
e.

So far we have expressed most equations in terms of the variables (u, n, p).
Alternatives are to use quasi-Fermi levels in pla
e of the densities, (u, v, w),
or the Slotboom variables (u, ν := exp(−v), ω := exp(w)).

At a �rst glan
e, the variable set (u, n, p) seems attra
tive for the de-

oupled method, sin
e the equations (2.10, 2.18, 2.19) are linear (ignoring

the dependen
e of the mobilities and re
ombination rates on the variables).

However, it turns out that the Gummel iteration does in most pra
ti
al
ases

not
onverge in these variables [57℄. Using the set (u, v, w) for Poisson's

equation results in a stable Gummel iteration. Note that for the de
oupled

method there is no need to use the same set of variables for the different

equations, it is therefore possible to use the
arrier densities for the
ontinuity

equations and thus keep these linear.

In the
oupled
ase, the equations be
ome nonlinear, even when expressed

in densities, due to the Bernoulli fun
tions in Eqs. (2.44, 2.45). When using

quasi-Fermi levels we have in addition the exponential dependen
ies on the

variables in the density terms of all three equations. It is therefore to be

expe
ted that the variable set (u, n, p) is preferable in the
oupled
ase, whi
h
is exa
tly what Pinto [57℄ �nds.

There is a problem, however, in the s
aling of the variables. While u
typi
ally varies over one or two orders of magnitude, the
arrier densities

vary over ten to twenty orders of magnitude. This
auses severe problems

when linear systems are solved by iterative methods (see next se
tion). A

linear solver will in general not be able to resolve the small variations in the

potential when solving for densities at the same time. This essentially renders

the
on
entration variables useless when performing a full Newton iteration

while using iterative linear solvers. One might hope that some smart s
aling

of the equation
ould help, but
urrently no su
h s
aling is known. The

quasi-Fermi levels, on the other hand, are s
aled
omparably to the potential

and are therefore appropriate for the full Newton s
heme.

The Slotboom variables have the advantage that the
ontinuity equations

32 Numeri
al Solution of the Equations

be
ome self-adjoined and symmetri
 positive de�nite, a property the other

sets of variables do not have. However, their s
aling is even worse than that

of the densities, so that they are of no help in the
oupled
ase.1

To summarize this dis
ussion, we found that the variable set (u, n, p)
works well for solving the
ontinuity equations in de
oupled mode, while

for Poisson's equation and in the
oupled
ase the variables of
hoi
e are

(u, v, w).

2.4 Sparse Linear Systems

Owing to the fa
t that the box dis
retization produ
es
oupling between

different grid points only if the points are edge neighbours, the linear system

of equations, e.g. (2.38), are very sparse. We found that with the irregular

grids we are using, there are in average only about eight non-zeros in ea
h

row of the
oef�
ient matrix. In order to keep time and memory requirements

of the linear solves within reasonable limits, it is mandatory to employ

algorithms and data stru
tures that make use of the sparsity, so-
alled sparse

linear solvers. Sin
e the
omputer time required for a simulation is usually

dominated by the time needed for linear solves, it is mandatory to use the

fastest methods available.

The linear systems
an be solved by sparse dire
t methods (i.e. variants of

Gaussian elimination) [29, 28, 9, 4, 1℄ or by sparse iterative methods, usually

generalization of the basi

onjugate gradient method (CG) [44℄.

Dire
t methods have traditionally been used in devi
e simulation, and

enjoy
ontinued popularity in 2d [57℄. The major reason is that they

reliably produ
e a solution, while most iterative methods
annot handle the

ill-
onditioned matri
es arising in devi
e simulation. However, due the huge

grid sizes typi
al for 3d devi
e simulations, problems with memory size made

the use of iterative methods a ne
essity.

The memory requirements of an iterative method are �xed, known in

advan
e, and fairly low. Only a few ve
tors of length N are required

as working spa
e (typi
ally between three and twelve, depending on the

1Pinto reports typi
al
ondition numbers of 1015 to 1016 for densities, up to 1020 for Slotboom
variables, and as low as 103 for quasi-Fermi levels. This is a
lear indi
ation that only the latter

hoi
e is useful when applying iterative solvers.

2.4. Sparse Linear Systems 33

method), plus, in the
ase of no-�ll in
omplete fa
torization pre
onditioning,

one matrix with the same sparsity pattern as the original system matrix. For

dire
t methods, the memory requirements depend highly on the stru
ture of

the matrix and parti
ularly on the ordering of the rows in the matrix. Although

there are heuristi
s to redu
e the �ll,2 like the minimum degree algorithm or

bandwidth redu
tion te
hniques like the reverse Cuthill-M
Kee s
heme [58℄,

the storage requirements for dire
t solvers on general sparse matri
es are

unpredi
table and grow superlinearly with the problem size. The differen
e in

the storage requirements of dire
t and iterative solvers is depi
ted in Fig. 2.2,

based on experimental data.

memory.ps
108 × 65 mm

iterative

direct

memory [bytes]

number of unknowns2

5

1E+05

2

5

1E+06

2

5

1E+07

2

5

1E+08

3 1E+03 3 1E+04 3 1E+05

Figure 2.2: Memory requirements of dire
t and iterative solvers as a fun
tion

of problem size

If we extrapolate the
urves to, say, 300 000 unknowns (
orresponding to

a
oupled solve with a 100 000 point grid) we expe
t memory requirements in

the 10 to 100Gbyte range, whi
h is more than even the biggest ma
hines
an

offer today. It is obvious that dire
t methods
an no longer be used on
e the

grid sizes ex
eed some ten or twenty thousand points.

Time
onsiderations also favor iterative methods for large problems. The

2Non-zero entries in the obtained fa
tor matrix at positions where the original matrix was zero
are
alled �ll.

34 Numeri
al Solution of the Equations

time to solve a general linear system by a dire
t method is as unpredi
table

as its storage requirements (with an upper limit of n3/3). For a given matrix

stru
ture and row ordering, however, this time is �xed, it does not depend on

the a
tual numeri
al values in the matrix. Conversely, an iterative method

requires a �xed amount of work per iteration, and the number of iterations

required to a
hieve a
ertain pre
ision depends strongly on the numeri
al

values of the
oef�
ients. As a result, dire
t methods are usually faster on

small problems. For large problems the iterative methods tend to be faster due

to the fa
t that for a given problem the required number of iterations depends

only weakly on the problem size Nv .
3

The use of iterative s
hemes has only re
ently be
ome a topi
 for devi
e

simulation [60, 74℄) and the performan
e of these methods has often been

disappointing. However, in the last few years signi�
ant progress has been

made and
urrently the CG variants BiCG [32℄, CGS [69℄ and espe
ially

CGSTAB [79℄, all in
ombination with ILU pre
onditioning [52, 53℄, seem to

be most promising. For a detailed
omparison of iterative methods in devi
e

simulation see Heiser et al. [43℄.

3The meaning of \small" and \large" here depends on the ma
hine used for the
al
ulation.

3

Semi
ondu
tor Devi
e Modelling in

Three Dimensions

In this
hapter we dis
uss semi
ondu
tor devi
e simulation from the viewpoint

of 3d modelling. The �rst se
tion reviews the most important 3d simulation

proje
ts published so far. The next se
tion illustrates the problems that are

parti
ular to devi
e simulation in 3d. The last se
tion of the
hapter outlines

the approa
h we have taken with our simulator Se
ond.

3.1 Previous Work

The oldest published a

ounts of 3d devi
e simulation seems to be on the

FIELDAY program developed by Buturla et al. [14, 63℄ at IBM, and the work

done by Yoshii et al. [84, 46℄ at NTT.

FIELDAY is a 1, 2 and 3-dimensional FEM
ode. For 3d simulations a

grid
onsisting of triangular prisms is used. This grid is obtained as a tensor

produ
t of a 2d triangular mesh and a 1d grid. The approa
h
hosen allows

good modelling of devi
e features, in
luding non-re
tangular boundaries, in

two dimensions, while in the third dimension the grid is regular (and possesses

translational symmetry).

FIELDAY already allowed the steady-state or transient solution of the

35

36 Semi
ondu
tor Devi
e Modelling in 3D

semi
ondu
tor equations, using either a full Newton s
heme or a Gummel

iteration. To save
omputing time it allowed suppressing one or both
ontinuity

equations in
ases where
arrier
ow is unipolar or negligible. The program's

appli
ability was mainly limited by the fa
t that dire
t methods were used for

the solution of linear systems, apparently due to the poor reliability of the

iterative methods available at that time, parti
ularly in the
ase of irregular

FEM grids. This, together with memory sizes available ten years only allowed

simulation of grids
ontaining no more than a few thousand points.

Conversely, the NTT effort used a FD method (with regular grids). Only

steady state solutions using the Gummel iteration were possible. An analyti
al

(linear) approximation of the variation of the ele
trostati
 potential was used

within the oxide for MOSFET simulations. Linear systems were solved by

relaxation methods, whi
h allowed grid sizes of up to 20 000 nodes.

The TOPMOST MOSFET simulator by Dang et al. from Toshiba [27, 66℄

was the �rst to use pre
onditioned CG to solve the linear equations. This

purportedly required them to use Slotboom variables for the
ontinuity

equations, with all the adverse effe
ts these variables have on the
ondition of

the linear systems (
f. Se
tion 2.3.3). The authors also report using the BM,

however their grids are purely tensor produ
t type, and the BM is only used

in order to treat some non-re
tangular boundaries. An interesting feature of

TOPMOST is that it also in
orporates a 3d pro
ess simulator [55℄.

Toyabe et al. [51, 74℄ from Hita
hi, with their program CADDETH, were

the �rst to report the use of CG-based methods for solving non-symmetri

linear systems, namely BiCG and CR [62℄. Usage of tensor produ
t grids

enabled them to highly ve
torize their
ode. Their simulator
an model

avalan
he breakdown of MOSFETs and has been extensively used in the

investigation of α-parti
le indu
ed soft errors [72℄.

Notable re
ent work in
ludes the SMART program by Odanaka et al. [54℄

from Matsushita, whi
h also
ombines 3d pro
ess and devi
e simulation,

and whi
h
an simulate GaAs-MESFETs [76℄. The well-known MOSFET

simulator MINIMOS by Selberherr et al. from the Te
hni
al University of

Vienna, whi
h in
ludes energy balan
e [38℄, has been extended to 3d [73℄

and re
ently also to GaAs-MESFETs [49℄ and to non-re
tangular Si-SiO2
interfa
es [75℄. SMART and MINIMOS both use tensor produ
t grids.

The SIERRA program by Chern et al. [17℄ from Texas Instruments is a

3d extension of the well established Pis
es-II simulator [56℄. It uses the BM

3.2. What Makes 3D Harder Than 2D? 37

with prismati
 elements for stationary and transient simulations as well as

small signal analysis. The geometry spe
i�
ation is extra
ted from layout and

pro
ess des
riptions. This is probably the most versatile 3d devi
e simulator

published to date. However, the usage of prismati
 grids still signi�
antly

restri
ts the generality of devi
es that
an be modelled. The HFIELDS-3D

simulator by Ba

arani et al. [19℄ from the University of Bologna also uses

prismati
 grids.

If we
ompare the re
ent publi
ations with the oldest ones, we
an see

that re
ent progress has
hie
y been made in two areas: improved numeri
al

methods, in parti
ular improved iterative solvers, have made 3d simulation

more pra
ti
al. Improved physi
al models have made them more realisti

(energy balan
e) or appli
able to a wider range of problems (GaAs).

With respe
t to geometri
al generality the improvements have been rather

modest: while some progress has been made by allowing some limited form

of non-re
tangular geometries, all proje
ts use grids that are essential tensor

produ
ts of one- or two-dimensional meshes and are therefore not well suited

to model truly 3d geometry and devi
e features. The result is a grid that is

mu
h bigger (in terms of the number of grid points) than what is really needed

and wanted, resulting in ex
essive memory
onsumption of the simulator.

Furthermore the grids are still essentially 1+1+1 dimensional (re
tangular

grids) or 1+2 dimensional (prismati
 grids), implying limited
apability to

model general devi
e geometries.

3.2 What Makes 3D Harder Than 2D?

In this se
tion we will examine some of the main dif�
ulties that are inherent

in 3d devi
e simulation.

3.2.1 Computational Complexity

As
an be seen from Figure 2.2, the memory requirements of an iterative linear

solver grow approximately linearly with the problem size, i.e. the number

of unknowns. The same holds true for the devi
e simulator in general, so

that one
an say that the required memory size is proportional to the grid

size. Similarly, the time per iteration of the linear solver is proportional to

the number of equations. Sin
e the
ondition of the linear systems tends to

38 Semi
ondu
tor Devi
e Modelling in 3D

deteriorate with in
reasing number of unknowns, the time required for the

simulation grows in general superlinearly with the grid size. Note that this

is only a rough \ba
k of the envelope"
al
ulation, sin
e the
ondition of the

linear systems will also depend on the grid geometry, sometimes a simulation

may a
tually be faster on a bigger grid than on a smaller one. This, however,

is ex
eptional. The general tenden
y of a slightly superlinear dependen
e of

simulation time on grid size is
ertainly
orre
t.

The transition from 2d to 3d is obviously
onne
ted with a huge in
rease in

grid sizes. Typi
al 2d simulations with irregular grids use several hundred up

to a few thousand points, and for simulations with regular grids a few thousand

points are
ertainly a ne
essity for non-trivial devi
e geometries. If we assume

symmetri
 treatment of all spa
e dimensions, the transition from 2d to 3d will

in
rease the grid size by a power of 3/2, that is from 1 000 to 30 000 or from

4 000 to 80 000. Su
h grid sizes are suf�
ient to �ll the memories of the

largest super
omputers available today, and typi
al super
omputer run times

for a grid with
lose to 100 000 points are of the order of hours for stationary

and days for transient simulations, whi
h is at the edge or beyond of what
an

be
onsidered pra
ti
al or \tra
table". For smaller ma
hines, like mainframes

or mini-super
omputers, the maximum size of \tra
table" problems is maybe

four times smaller than for super
omputers.

3.2.2 Numeri
al Aspe
ts

We have already pointed out in Se
tion 2.4 that dire
t linear solvers
annot

be used for realisti
 3d simulations sin
e their time and spa
e
omplexity is

too high. This poses new problems. The linear systems arising from the

dis
retization of the semi
ondu
tor equations are notoriously ill-
onditioned

(
f. Se
tion 2.3.3), and the
ondition tends to deteriorate with in
reasing grid

size. The use of pre
onditioned solver algorithms is therefore mandatory.

Be
ause of the long run times typi
ally asso
iated with 3d devi
e simula-

tions, it is imperative to make optimal use of the hardware, in parti
ular the

parallel pro
essing
apabilities of ve
tor or multipro
essor
omputers. How-

ever, as Heiser et al. [43℄ have shown, the reordering of unknowns required

to a
hieve this goal
an be
ounterprodu
tive|
ondition deteriorates further

and the number of iterations required for
onvergen
e is in
reased, sometimes

onvergen
e is even fully destroyed.

Hen
e, to perform realisti
 3d simulations we need very stable iterative

3.2. What Makes 3D Harder Than 2D? 39

solvers that
an handle ill-
onditioned systems, and \good" grids, that prevent

the
ondition number from be
oming too big.

3.2.3 Geometry De�nition

There is a qualitative differen
e in the dif�
ulty of spe
ifying the geometry of

a 2d or a 3d obje
t. While a 2d geometry
an basi
ally be de�ned by a simple

drawing (e.g. using a mouse and a graphi
 display) this is not the
ase in 3d.

Sophisti
ated geometri
 modelling tools are required, and even with a good

solid modeller
onstru
tion of a 3d devi
e geometry is mu
h more dif�
ult

and time
onsuming than it is in 2d.

Another problem is
aused by the need to use pro
ess simulator output or

measured doping data. 3D pro
ess simulators are not yet widely available,

even 2d simulation is not yet generally done in pro
ess modelling. The

problem is worse with experimental data|it is dif�
ult (and ina

urate) to

measure doping pro�les in 1d and measured 2d pro�les are an ex
eption.

Hen
e for the purpose of devi
e simulation, the 3d impurity information must

be
onstru
ted out of 1d or 2d pro
ess simulation or measurement data.

3.2.4 Grid Generation

Sin
e 3d grids are generally mu
h bigger than 2d grids, and sin
e 3d simulation

is at the limit of today's
omputers, every attempt must be made to keep the

number of grid points as small as possible. This is only possible if irregular

grids are used, otherwise many grid points are wasted in devi
e regions where

a low point density suf�
es.

The generation of grids adapted to needs in three dimensions is by itself

a dif�
ult problem. While in 2d it is possible (in prin
iple) to pla
e points

manually, this is not possible in 3d. The grid generation pro
ess must be fully

automated. The angle
onditions imposed by the BM add enormously to that

dif�
ulty, sin
e it is a hopeless task to \regularize" a grid that does not ful�ll

these
onditions. The grid generation pro
ess must take the angle
onditions

into a

ount right from the beginning [21℄. Furthermore the elements of the

grids must have bounded aspe
t ratios to avoid unne
essarily poor
ondition

numbers in the linear systems resulting from the dis
retization.

40 Semi
ondu
tor Devi
e Modelling in 3D

3.2.5 Visualization of Results

Visualization of 3d simulation results is both important and dif�
ult. While

it may be possible to examine 1d results in the form of tables or simple

urves, this be
omes already impra
ti
al in 2d. In 3d the sheer amount of data

ne
essitates some
ondensed graphi
al representation.

On the other hand, there is again a qualitative differen
e between the

visualization of 2d and 3d results. A s
alar fun
tion on a 2d domain produ
es

a surfa
e embedded in a 3d spa
e, whi
h is relatively easy to visualize sin
e

the world we experien
e is three dimensional. In the same way a fun
tion on a

3d domain would require a four dimensional representation, whi
h is beyond

the imagination of most humans. New approa
hes must therefore been taken

for the visualization of 3d results.

3.3 Our Approa
h

In the pre
eding se
tions we attempted to give the reader an impression of

the dif�
ulties involved in
onstru
ting a truly general 3d devi
e simulation

system, mu
h more than a single person
an handle within a reasonable

amount of time. It is therefore ne
essary to break the whole problem into

several parts. However, the full extend of the problem must be kept in mind

when going about to solve the partial problems.

We will from now on fo
us our attention ba
k on the \simulator proper",

i.e. the program that, when supplied with a suitable des
ription of the devi
e

to be simulated, in
luding the grid, will solve the semi
ondu
tor equations

and produ
e results in a form whi
h allows their visualization using the

appropriate tools. We will take another look at the
omplete simulation

system in Se
tion 5.3.

The reader surely
ouldn't help noti
ing our view that
urrently only the

BM allows modelling general devi
e geometries while being appli
able to

arbitrary devi
e operating
onditions|we therefore adopted the BM for our

simulator system. In order to have suf�
ient
exibility we allow grids to

be
omposed of four element types (\shapes"): tetrahedra, quadrilateral

pyramids (with a parallelogram base), triangular prisms, and parallelepipeds

(sheared
uboids).

3.3. Our Approa
h 41

With these elements every plane fa
ed devi
e geometry (or internal

interfa
e)
an be modelled. Furthermore, they allow to interpolate between

(quasi-regular) grid regions of various
oarseness, thus permitting the point

density of the grid to vary in all dire
tions. While this would be possible

by using tetrahedra alone (all the other elements
an be divided into at most

�ve tetrahedra), by using
uboids we
an signi�
antly redu
e the number of

elements and edges in the grid.

The admissible element shapes are de�ned su
h that the type and three

edge ve
tors are suf�
ient to de�ne ea
h element [41℄. This permits the use

of ef�
ient data stru
tures for des
ribing the grid within the simulator.

4

Methods

In this
hapter we des
ribe some of the methods used in the a
tual implemen-

tation of the
on
epts presented in the previous
hapters.

4.1 Assembly

At the very heart of the simulation lies the problem of solving the linear

equations (2.38) arising from the Newton pro
edure. Before su
h a system

an a
tually be solved it must �rst be assembled, i.e. the
oef�
ient matrix

(LHS) and the right hand sides (RHS) must be
omputed.

4.1.1 Poisson's Equation

From the dis
retized Poisson's and Lapla
e's equations (2.10, 2.11) we obtain

the LHS as

− ∂Fu
i

∂uk
= ε

Aik

lik
+ δik

∑

j 6=i

ε
Aij

lij
− δikVi(ni + pi). (4.1)

Here, ε = 1 within sili
on, while within the oxide, the
harge terms δikVi(ni+
pi) are to be omitted, and ε = εox/εsemi . Obviously the �rst two terms in (4.1)

43

44 Methods

only depend on the grid, not the
urrent values of the unknowns. This part,

whi
h represents the dis
retized Lapla
e operator,
an therefore be
omputed

on
e for the whole simulation.

When setting up this matrix, whi
h we denote (aij), one has to make sure

that the proper value of ε is used for ea
h edge. If the box se
tion Aij does

not fully belong to a single material (e.g. if the edge is on a material interfa
e)

the box parts from the different materials must be multiplied with the proper

value of ε and added together.

On
e the matrix (aij) is set up, the LHS for the Poisson equation
an

be assembled by simply
opying (aij) and adding the
harge terms to the

diagonal. The RHS then be
omes

Fu
i =

∑

j

aijuk + (ni − pi)Vi −NiVi. (4.2)

The last term on the right is again independent of the solution and
an be

pre
omputed. Sin
e doping values are not needed afterwards, there is no

storage penalty for this prepro
essing. The box volumes Vi
an also be

pre
omputed as

Vi =
∑

j 6=i

Aij lij/6, (4.3)

so that the assembly of the RHS of the Poisson equation redu
es to a sparse

matrix-times-ve
tor operation plus a few very simple ve
tor operations.

4.1.2 Continuity Equations

The BM dis
retization of the
ontinuity equations (2.18, 2.19) is expressed

ompletely in u, n, and p. This is an appropriate form for the RHS if we use

this set of variables (
f. Se
tion 2.3.3). The LHS then take the form

− ∂Fn
i

∂nk
=
A′

ik

lik
µn
ikB(uki)− δik





∑

j 6=i

A′
ij

lij
µn
ijB(uij) + V ′

i

∂Ri

∂ni



 , (4.4)

− ∂F p
i

∂pk
=
A′

ik

lik
µp
ikB(uik)− δik





∑

j 6=i

A′
ij

lij
µp
ijB(uji) + V ′

i

∂Ri

∂pi



 , (4.5)

4.1. Assembly 45

where

V ′
i =

∑

j 6=i

A′
ij lij/6, (4.6)

and A′
ij is the part of the box se
tion that lies within the semi
ondu
ting

material; A′
ij is zero for edges that lie
ompletely within insulating material.

If we use the variables u, v, and w, we prefer a form of the dis
rete

equations that is expressed in these variables. Substituting v andw for n and p
in Eq. (2.18, 2.19) and making use of the properties of the Bernoulli fun
tions,

we obtain the alternative forms

F v
i = −

∑

j 6=i

A′
ij

lij
µn
ijniB(uij)(e

vij − 1) + V ′
iRi, (4.7)

Fw
i = −

∑

j 6=i

A′
ij

lij
µp
ijpiB(uji)(e

wji − 1) + V ′
iRi, (4.8)

−∂F
v
i

∂vk
= −A

′
ik

lik
µn
ikniB(uik)e

vik

+ δik





∑

j 6=i

A′
ij

lij
µn
ijniB(uij) + V ′

i ni
∂Ri

∂ni



 , (4.9)

−∂F
w
i

∂wk
= +

A′
ik

lik
µp
ikpiB(uki)e

wki

+ δik





∑

j 6=i

A′
ij

lij
µn
ijpiB(uji) + V ′

i pi
∂Ri

∂pi



 , (4.10)

with vij := vi − vj and wij := wi − wj . We
an remove most dire
t

referen
es to the densities in these equations by s
aling them with the

appropriate densities. That way we obtain for the linear systems

(RHS)vi = +
1

ni
F v
i , (4.11)

(RHS)wi = +
1

pi
Fw
i , (4.12)

(LHS)vik = − 1

ni

∂F v
i

∂vk
, (4.13)

(LHS)wik = − 1

pi

∂Fw
i

∂wk
. (4.14)

46 Methods

Unlike Poisson's equation, the LHS of the
ontinuity equations depend

on the solution, not just the grid. However, the matrix elements
ontain the

invariant fa
tors A′
ik/lik. The matrix (A′

ik/lik), whi
h is different from the

matrix (aij) that is used for Poisson's equation,
an again be pre-
omputed.

TheS
harfetter-Gummel dis
retization of the
ontinuity equations assumes

the mobilities to be
onstant along an edge. Be
ause we
an
ompute the

mobilities at the grid points, we approximate the mobility along an edge as

the average of the nodal values at the edge's end points:

µij =
1

2
(µi + µj). (4.15)

The Bernoulli fun
tions and the terms ex − 1 must be evaluated very

a

urately, otherwise the
urrents will not be
onserved. Trun
ation of

signi�
ant digits make the
omputation of exp(x)− 1 ina

urate for |x| ≪ 1.

We therefore use a polynomial expansion [39℄ of B(x) and ex − 1 for small

values of x.

4.2 Treatment of Boundary Conditions

4.2.1 Diri
hlet Boundaries

AtDiri
hlet boundary points (
alledDiri
hlet points from now on) the solution

is known from the beginning. The treatment of su
h grid points within the

PDE solver thus
onsists of two parts:

1. setting up the initial solution so that it satis�es the Diri
hlet boundary

ondition, and

2. ensuring that the values of the unknowns at the Diri
hlet points do not

hange.

The �rst point is straightforward and needs no further explanation. The

se
ond implies that in the Newton update step

zk+1 := zk + skδzk (4.16)

4.2. Treatment of Boundary Conditions 47

all the
omponents i, i ∈ Γ0 of δz that
orrespond to Diri
hlet points are zero.

Sin
e δz is the solution of a linear system

∑

j

Aijδzj = bi, (4.17)

this means that we already know part of the solution to Eq. (4.17). Let us

assume that the equations are numbered su
h that Diri
hlet points have the

highest numbers, i.e.

∀i ∈ Γ0 : ∀j 6∈ Γ0 : i > j. (4.18)

We
an now drop all
oef�
ients of (Aij) whi
h are multiplied with the

Diri
hlet
omponents of the solution, sin
e their removal will not
hange the

solution of the system. These are the
omponents (Aij) with j ≥ ND, if ND

is the Diri
hlet point with the smallest number. In the s
hemati
 representation

of Figure 4.1 this in
ludes all the
oef�
ients in blo
k II of the matrix.





















I II

III IV





















·





















V

VI





















=





















VII

VIII











































non-Diri
hlet

}

Diri
hlet

Figure 4.1: S
hemati
 view of Diri
hlet and non-Diri
hlet regions in the

linear system of equations

The dropping of these
oef�
ients in fa
t
ompletely de
ouples the

equations for the non-Diri
hlet points from the equations for the Diri
hlet

points. Hen
e it is no longer ne
essary to solve the equations for the Diri
hlet

points at all, rather than solving the N × N system (4.17) we
an solve the

redu
ed ND × ND system whi
h is obtained from (4.17) by dropping the

last (N − ND) equations and the last (N − ND)
olumns of the
oef�
ient

matrix. Alternatively we
an zero all the
oef�
ients in regions II and III of

Figure 4.1, make region IV a unit matrix, and set the right hand sides in region

VIII to zero.

48 Methods

box-bound.id
82 × 30 mm

i
∂Ω

Ω i

∂Ω i

Figure 4.2: Box of a boundary point

4.2.2 Neumann Boundaries

Neumann boundary
onditions are even easier to treat|they basi
ally

look after themselves. If we fo
us on Eq. (2.4), the integral
∫

∂Ωi
F · dn gives

a zero
ontribution on ∂Ωi ∩ Γh, the part of the box boundary that
oin
ides

with the Neumann boundary; due to the fa
t that F · dn = 0 by de�nition.

In the dis
retized equation (2.6) this is ensured automati
ally, sin
e no edges

orrespond to the box boundary se
tion ∂Ωi ∩ Γh, and therefore no term in

(2.6)
orresponds to that part of the boundary (see also Fig. 4.2). In other

words, Neumann verti
es
an be treated exa
tly like internal verti
es.

4.2.3 Internal Boundaries

The situation is basi
ally the same for internal boundaries between different

materials (so-
alled internal interfa
es). The only kind of internal interfa
es

we have to deal with are the boundaries between semi
ondu
ting material

and insulator. The interfa
e
ondition for the
ontinuity equations is that no

urrent
an
ow a
ross the interfa
e, whi
h is a Neumann boundary
ondition

for the
ontinuity equations (
f. Se
tion 1.2.2).

For Poisson's equation, the interfa
e
ondition in the absen
e of surfa
e

harges is the
ontinuity of the ele
tri
 displa
ement D = εE. This is again

satis�ed automati
ally due to the fa
t that the
harge density, whi
h determines

the ele
tri
 displa
ement, is
ontinuous. Hen
e internal boundaries require no

spe
ial treatment.

4.3. Terminal Currents 49

4.3 Terminal Currents

As has been shown by B�urgler [13℄, the
urrent In,pi
owing out of the i-th

onta
t due to ele
tron or hole
ondu
tion
an be obtained by summing the

right hand sides obtained when assembling the
ontinuity equations:

In,pi = −
∑

ωj⊂Ri

Fn,p
j . (4.19)

Here Ri is a region (part) of the devi
e that
ontains
onta
t i but no other

onta
t. Note that here we need to use the RHS as assembled independent

of the Diri
hlet boundary
onditions. In other words, if we treat Diri
hlet

boundary
onditions as suggested in Se
tion 4.2.1, wemust do the
omputation

of the terminal
urrents a

ording to Eq. (4.19) before setting the RHS to zero

for Diri
hlet points.

A

ording to B�urgler the total
urrent (in
luding the displa
ement
urrent

in transient simulations)
an be obtained by solving

∇ · Jn +∇ · Jp −∇ · ε∇u̇ = 0. (4.20)

The linear system resulting from the dis
retization of this equation has the

RHS

F t
i := fni + fpi +

∑

j

aij u̇k, (4.21)

while the LHS is, ex
ept for the sign, equal to the dis
retized Lapla
ian (
f.

Se
tion 4.1.1).

After solving Eq. (4.20) we
an obtain the total
urrent through
onta
t i
as

Iti =
∑

ωj⊂Ri

F t
j (4.22)

just as in the
ase of the
ondu
tion
urrents. The displa
ement
urrent is then

the differen
e of the total and
ondu
tion
urrents:

Idi = Iti − (Ini + Ipi). (4.23)

50 Methods

4.4 Ele
tri
 Field

The physi
al models employed in devi
e simulation often
ontain referen
es

to the ele
tri
 �eld or the ele
tron and hole
urrent densities (
f. Se
tion 1.4).

We must therefore �nd a way to
ompute these entities at the grid points.

As shown in Se
tion (2.1.2), under the assumption of a
onstant ele
tri

�eld, the proje
tion Eij = E · lij/|lij | of E onto the edge ij is known to be

−uji/lji. The problem now is to re
onstru
t the ve
torE from its proje
tions.

e�eld-elt.id
61 × 54 mm

E
x1

x2

x0 p1

p2

Figure 4.3: Ele
tri
 �eld ve
tor within an element

Consider the situation in Figure 4.3: In d spa
e dimensions (d = 2 in the

Figure) we have a
orner of an element where d edges meet. The proje
tions,

pi, of the ve
tor E onto the edges are

pi = E · li0

|li0|
=

d
∑

j=1

Ej
li,j
|li0|

, (4.24)

where li,j is the j-th
oordinate of li0.

Sin
e the ve
tors li0 are assumed to be linearly independent, the matrix

(li,j/|li0|) is regular and has an inverse (aij) := (li,j/|li0|)(−1) with the

4.4. Ele
tri
 Field 51

property

d
∑

i=1

aki
li,j
|li0|

= δkj . (4.25)

Multiplying (4.24) with this inverse from the left we obtain

d
∑

i=1

akipi =
d

∑

j=1

d
∑

i=1

aki
li,j
|li0|

Ej =
d

∑

j=1

δkjEj = Ek. (4.26)

This means that we
an
ompute the ele
tri
 �eld ve
tor as

Ek = −
d

∑

i=1

aki
ui − u0

|li0|
. (4.27)

If the ele
tri
 �eld is not
onstant, (4.27) holds only approximately, and

the value obtained for E will depend on the d-tuple of edges used; none of

these values will, in general, be equal to the \true" value of E. However,

if the grid suf�
iently resolves the physi
s of the devi
e, the values obtained

should be a reasonable approximation.

The question remains how to obtain a value for E at a grid point. The

obvious approa
h is to
ompute in ea
h element, ω, that is in
ident in the

vertex, x, an approximation, Eω , to the ele
tri
 �eld ve
tor a

ording to

(4.27). We
an then get an approximation to the �eld as a weighted average

of the values obtained for the individual elements:

E(x) =
1

S

∑

ω∋x

sωEω, (4.28)

where

S :=
∑

ω∋x

sω. (4.29)

Note that in general Eω depends on the
orner of ω at whi
h it is evaluated.

Within ea
h element ω, the value of the
orner
orresponding to vertex xmust

be taken.

As weight fa
tors sω we
hoose the angle spanned by ω. In 3d this means

omputing the solid angle spanned by three ve
tors a, b and c. A

ording

52 Methods

to [12℄ this angle is equal to

sω = 4 ar
tan

(

tan
α+ β + γ

4

× tan
−α+ β + γ

4
tan

α− β + γ

4
tan

α+ β − γ

4

)
1
2
, (4.30)

where α, β and γ are the (2d) angles en
losed between ea
h pair of edges.

This
hoi
e of sω yields

S = 4π. (4.31)

An additional
ompli
ation exists if there are 3d elements whi
h have

verti
es where more than three edges meet | as is the
ase at the tip of our

quadrilateral pyramids. We
an handle this
ase by (temporarily) treating su
h

a pyramid as two tetrahedra. A more symmetri
 treatment is to
ompute a

value of Eω for ea
h of the four triples of edges, and extending the sum in

(4.28) over all four subelements. In this
ase we must divide the weight sω by

two, sin
e ea
h part of the element is used twi
e.

We
an summarize the ele
tri
 �eld
omputation as

Ei(x) = − 1

S

∑

ω∋x

sω
d

∑

j=1

aij

|lωj |
[u(xω

j)− u(x)]. (4.32)

In 3d this is rather expensive to
ompute, due to the many inversions of 3× 3

matri
es required. It is therefore advantageous to a

umulate all the fa
tors

(s/S)(a/|l|) in a matrix bijk. The storage requirement for this matrix is d
times the number of edges. On
e the matrix is set up, the ele
tri
 �eld in all

verti
es
an be
omputed as a simple linear transformation of the potential

differen
es along the edges:

Ei(xj) =
∑

k 6=i

bijkujk. (4.33)

The
urrent density ve
tors at the grid points
an be
omputed in the

same fashion: The S
harfetter-Gummel solutions (2.15,2.17) are in fa
t the

proje
tions of the
urrent densities onto the grid edges. We
an therefore

ompute the
urrent densities at the grid points by means of the same

transformation (4.33). However, sin
e there exist no
urrent densities within

the insulator, an additional weight fa
tor must be used for points at the

interfa
e.

4.5. Initial Solution 53

4.5 Initial Solution

If we want to simulate a devi
e we need some initial solution to start the

iteration. Physi
al reasoning and experien
e
an often be used to determine

an approximation to the �nal solution. Su
h an approximation
an in prin
iple

be used as an initial guess in a devi
e simulator. While this may be feasible

in the
ase of a spe
ial purpose simulator, building su
h \intelligen
e" into a

truly general program is a task whose
omplexity is at least
omparable to the

onstru
tion of the remainder of the simulator. It must also be remembered

that determination of the initial guess should be
heap (in terms of
omputing

time)
ompared to the solution of the full problem. We are therefore for
ed to

use a rather
oarse initial guess that is easy to
ompute.

A frequently used method to start up a simulation is to solve �rst for

thermal equilibrium, i.e. no applied bias, and then step the terminal voltages

up to the required bias
onditions. Pinto [57℄, however, reports that the

\lo
al quasi-Fermi" guess leads to a faster
onvergen
e. Hen
e the majority

quasi-Fermi potential in ea
h devi
e region is set equal to the bias applied to

that region, while the minority quasi-Fermi potential is set su
h that minimum

minority
arrier densities result. This is a
hieved by setting the ele
tron

quasi-Fermi potential in p-regions to the maximum applied voltage Vmax ,

while in n-regions the hole quasi-Fermi potential is set to the minimum voltage

Vmin . The ele
trostati
 potential is set su
h that the majority
arrier density

equals the lo
al impurity
on
entration, whi
h means that the potential is set

to the applied voltage plus the built-in voltage.

This initial guess, while signi�
antly better than the thermal equilibrium

solution, is not suf�
ient for good
onvergen
e under all
onditions. If the

applied bias is too high, the nonlinear iteration may not
onverge from this

starting solution, or may
onverge very slowly. In su
h a
ase it is ne
essary

to �rst solve for some redu
ed bias value and step from there up to the required

bias.

Often a simulation is not started from s
rat
h, but from the results of an

earlier simulation. Sin
e the previous simulation will in general have been

performed with different bias
onditions, we need to adjust the solution before

using it as an initial guess for the new simulation run. For this we use a

method similar to the initial guess: If a
onta
t voltage is
hanged by a
ertain

amount, the ele
trostati
 potential and the majority quasi-Fermi potential is

hanged by the same amount at all points in the devi
e region belonging to

54 Methods

that
onta
t. Minority quasi-Fermi potentials are left unmodi�ed if this does

not in
rease the minority
arrier density, otherwise they are
hanged by the

same amount as the ele
trostati
 and the majority quasi-Fermi potential (thus

keeping the minority
arrier densities
onstant).

Note that this way of adjusting an earlier result to obtain an initial guess

works well if applied voltages are in
reased in the new simulation (so the

old bias values represent something like an intermediate working point). It

will perform worse if the applied voltage range is a
tually redu
ed in the new

simulation, and may fail miserably if going from forward to reverse bias or

vi
e versa.

4.6 Stopping Criteria

4.6.1 Non-linear Iterations

An important aspe
t of any iterative algorithm is the de
ision of when the

iteration is
onsidered
onverged and
an therefore be stopped. There are

prin
ipally two kinds of stopping
riteria: relative and absolute.

For the Newton iteration (
f. Se
tion 2.3.1) a relative
riterion would be

‖δzk‖
‖zk‖ ≤ ǫr, (4.34)

while an absolute
riterion might read

‖δzk‖ ≤ ǫa, (4.35)

where ǫr, ǫa are the relative and absolute error limits rese
tively.

Obviously, an absolute error
riterion does not make mu
h sense for the

on
entration variables, whi
h vary over ten to twenty orders of magnitude,

and even if only majority
arriers are
onsidered, the range is still at least

six orders of magnitude. In regions where the (majority)
arrier densities are

relatively small, the (absolute)
u
tuations of the densities near
onvergen
e

are so small that an absolute
onvergen
e
riterion sensitive to these
hanges

would, in regions where the densities are large, translate into a relative error

of, say, 10−10 or smaller. It may not even be possible to obtain su
h a high

a

ura
y.

4.6. Stopping Criteria 55

An absolute error
riterion
an still be applied if the error is monitored in

terms of the quasi-Fermi levels. This is easily possible, even if the iteration is

a
tually performed in terms of the
arrier densities. For quasi-Fermi levels,

as for the ele
trostati
 potential, a (uniform) absolute error
riterion makes

sense, and reasonable values are in the range 10−3UT · · · 10−2UT .

We generally use a
ombination of both kinds of
riteria: an iteration is

onsidered
onverged if either the relative or the absolute
riterion is met. For

the relative
riterion, usual values are 10−6 · · · 10−4. We use the l2 (Eu
lid)
norm for relative, and the l∞ (maximum) norm for absolute error
riteria.

Pinto [57℄ re
ommends an absolute stopping
riterion of 10−5UT , reason-

ing that, due to the quadrati

onvergen
e of the Newton method, this does

not really
ost mu
h
omputing time. For VLSI appli
ations, where typi
al

voltages are of the order of 5V ≈ 200UT , this
orresponds to a relative

toleran
e of 5 × 10−8. The linear solver error (see next se
tion) should, of

ourse, not be greater than the nonlinear toleran
e, otherwise the latter does

not make sense. That implies that linear systems must be solved to at least the

same toleran
e of 5× 10−8. This is no problem when using dire
t solvers, an

iterative solver, however, may take very many iterations or not
onverge at all

when trying to solve a system so a

urately. For that reason we have to use a

less stri
t nonlinear stopping
riterion.

4.6.2 Linear Iterations

When using iterative linear solvers, the question arises how a

urately the

linear systems are to be solved. Clearly, an insuf�
iently
onverged linear

solve may prevent
onvergen
e of the nonlinear solve. We generally require

a relative error for the linear solve that is by a fa
tor 0.1 · · · 0.5 smaller than

the nonlinear toleran
e expe
ted.

At the beginning of a Newton iteration, when the variables are still far

away from the solution values, it seems a waste of effort to solve the linear

systems too a

urately. Indeed, as Bank and Rose [8℄ have shown, the

quadrati

onvergen
e of the Newton iteration is preserved, if, in the k-th
Newton step, the linear solver error is less than

αk := α0
‖F k−1‖
‖F 0‖

, (4.36)

56 Methods

for some α0 ∈ (0, 1). We have found when that using α0 = 0.5 for Poisson's
equation, the Newton iteration usually
onverged in the same number of

iterations as if all linear solves were performed with high a

ura
y, and up to

50% of
omputing time was saved. For
oupled solves we found the value

α0 = 0.1 to be safer.

In order to avoid requiring unreasonable linear solver toleran
es, a lower

limit for the toleran
e of the linear solver is taken, if the toleran
e as required

by the above formula be
omes too small. This minimum toleran
e is user

settable, its default value is one tenth of the nonlinear toleran
e.

In transient simulations the Newton iteration often
onverges in one or two

iterations. In su
h a
ase the toleran
e determined by Eq. (4.36) is a
tually

too big and may lead to unne
essarily large errors, resulting in an in
rease of

Newton iterations. It is then advisable to turn off the automati
 adjustment of

linear solver toleran
es by setting α0 to a very small value. Sin
e the linear

solver toleran
e is limited to a minimum, setting α0 = 0 will do.

4.6.3 Transient Simulations

In transient simulations, the time step is
ontrolled by the error parameters ǫR
and ǫA in Eq. (2.35). We usually set the former to ten times the nonlinear

toleran
e, while the latter is set to

ǫA =
ǫ2R‖V ‖2√

2Nv

, (4.37)

where V = (Vi) is the ve
tor of box volumes. These are, admittedly, purely

heuristi

riteria, but they seem to work.

5

Implementation

This
hapter des
ribes the implementation of Se
ond in some detail.

5.1 Software Engineering Aspe
ts

5.1.1 Hardware and Software Environment

The design and implementation of Se
ond was strongly in
uen
ed by
ertain

onstraints imposed by hard- and software.

The
ode was developed at the Integrated Systems Laboratory at ETH

Z�uri
h, where a variety of hardware exists ranging from Sun workstations to

Alliant (and later also Convex) mini-super
omputers, plus in the later phase

a

ess to ETH's Cray X-MP and Cray-2 super
omputers. These ma
hines

differ widely in ar
hite
ture, performan
e (and pri
e), but all run the same

kind of operating system (all Berkeley UNIX or UNIX System V). Hen
e

the development environment was
hara
terized by very diverse hardware but

relatively homogeneous software.

On the other hand the
odewas supposed to run on otherma
hines available

to industrial partners, like a Siemens/Fujitsu VP-200 super
omputer running

MSP, an operating system largely
ompatible to IBM's MVS. Hen
e the

57

58 Implementation

appli
ation environment was
hara
terized by diverse hardware and software.

The traditional implementation language in the area of s
ienti�

omputing

is FORTRAN. Be
ause of its many short
omings, whi
h will be explained

in detail later on, we were seriously investigating the possibility of using a

different implementation language.

There were only two other
andidates: C and Pas
al. Both were

available on most UNIX systems, both were just be
oming available on

Cray super
omputers and both we
onsidered mu
h better languages than

FORTRAN. We did expe
t the C or Pas
al
ompilers to generate less ef�
ient

ode that the FORTRAN
ompilers, but felt that this
ould be handled by

writing the (usually quite simple) inner loops in FORTRAN.

The real problem were the industrial partners. On the VP-200 system

there was no C
ompiler. There was a ve
torizing Pas
al
ompiler announ
ed

for the �rst half or 1988, and, in fa
t, Siemens
oding regulations [78℄
alled

for all new software to be implemented in Pas
al.

Unfortunately, this Pas
al
ompiler never materialized, andwewere �nally

left with the
hoi
e between
ontinuing without the support from Siemens

or biting the bullet and writing in FORTRAN. The next se
tion attempts to

outline the impli
ations of that de
ision.

5.1.2 Drawba
ks of FORTRAN

The FORTRAN language was developed in the mid '50s by Ba
kus et

al. [6℄. The language has evolved sin
e, but even the most re
ent standard [2℄

des
ribes a rather ar
hai
 language that has roughly the power of Algol-60 [5℄

while
ompletely la
king the latter's elegan
e.

The three most frequently voi
ed reasons why people
ontinue to use

FORTRAN are

• the huge world-wide investment in FORTRAN
ode,

• the ef�
ien
y of the produ
ed ma
hine
ode, and

• the portability of FORTRAN programs.

5.1. Software Engineering Aspe
ts 59

The �rst of these points is obviously of little
onsequen
e for new software.

The se
ond one is indeed true and is due to the fa
t that FORTRAN is the

most frequently used programming language for problems where this kind

of ef�
ien
y is important. Consequently, the manufa
turers invest most

into optimizing FORTRAN
ompilers. This, of
ourse, leads to a vi
ious

ir
le|people use FORTRAN be
ause it's ef�
ient, and it's ef�
ient, be
ause

people use it a lot. However, at least in an environment like UNIX, where

inter-language
alls pose no unsurmountable problems, this argument is not

really a de
isive one, one
an
ode most of a system in another language and

fall ba
k on FORTRAN for the few really
riti
al algorithms.

The last point, portability, works really against FORTRAN, if we look

loser. There are various reasons for this.

Supersets

One is the proliferation of supersets that is typi
al for FORTRAN. Be
ause

FORTRAN la
ks so mu
h of the power of modern
omputer languages,

most manufa
turers implemented supersets of the standard language. These

supersets, of
ourse, differ between
ompilers from different manufa
turers,

and more often than not even between different
ompilers from the same

manufa
turer. Some of these non-standard features have a
tually developed

into \de fa
to-standards" whi
h many (if not most) users of the language

a
tually
onsider part of standard FORTRAN. The bad surprise often
omes

mu
h later when a relatively mature
ode is ported to a ma
hine whose

ompiler only supports the standard language, or an in
ompatible superset.

Be
ause these de fa
to-standards are so deeply entren
hed into the FOR-

TRAN
ommunity, writing portable FORTRAN
ode is quite dif�
ult. Most

of the programs one sees use non-standard features, most language manuals

do not
learly differentiate between standard features and extensions, most

ompilers do not
onsistently point out non-standard usage, and most people

who tea
h FORTRAN to their students do not know the differen
e either. The

only help
omes from [2℄, whi
h, of
ourse, is quite hard to read and one must

almost know it by heart in order to �nd all the portability
at
hes.

60 Implementation

Control- and data stru
tures

The reason for this notorious supersetting in FORTRAN implementations

originates from the fa
t that FORTRAN is su
h an old-fashioned language

la
king so many of the features that are natural for users of other
omputer

languages. One example is the la
k of support for everything that is
onsidered

\good" or \modern" programming style. FORTRAN is very poor in
ontrol

stru
tures, making it almost impossible to adopt a \stru
tured" programming

approa
h. The only
ontrol stru
tures available are blo
k IFs, a loop
onstru
t

with an iteration
ount that is established before exe
ution of the loop begins,

and unstru
tured GOTOs. The often needed WHILE loop
onstru
t is missing

ompletely and
an only be emulated with GOTO statements.

Mu
h more serious than the la
k of
ontrol stru
tures is the la
k of data

stru
tures. The only data types available are simple types (numeri
 and

LOGICAL) and arrays of simple types. Pointers and stru
tured types are

missing, not to mention any support for abstra
t data types. This means

that when programming in FORTRAN one has to forget all the advan
es in

omputer languages of the last thirty years, and map all data stru
tures onto

primitive obje
ts, a task that is nowadays
onsidered the
ompiler's job.

While su
h a \manual
ompilation" of data stru
tures is, of
ourse, always

possible, it defeats the purpose of using sophisti
ated data stru
tures in the

�rst pla
e. All advantages with respe
t to readability and maintainability

of the
ode is lost. The time required to write the
ode is in
reased, and

modi�
ations in the existing
ode are mu
h harder to do. But worst of all,

oding is signi�
antly more error-prone, and the bugs are mu
h harder to �nd.

Additional problems exist for writing large programs. Sin
e the \software

risis" has been per
eived in 1969 [15℄, modularization is
onsidered one of

themost potent weapons to
ounter the
risis. This, however, is onemore pla
e

where the FORTRAN language is no help at all. The only modules known in

FORTRAN are subprograms, whi
h
annot be nested. Data sharing between

program units is possible only via pro
edure parameters and COMMON

blo
ks.

Parameters are only of limited use, sin
e the la
k of stru
tured types and

pointers would require huge, unwieldy parameter lists. COMMON blo
ks,

on the other hand, make data
ompletely global, a

essible by any program

unit. There is no way to ensure that
ertain data
an easily be a

essed by a

group of related subprograms but remain hidden from others. This means in

5.1. Software Engineering Aspe
ts 61

parti
ular that there is no support for data abstra
tion and data hiding.

COMMON blo
ks are furthermore potentially dangerous, sin
e the pro-

grammer is largely responsible for their layout. This means that the de
laration

of a COMMON blo
k must be identi
ally repeated in ea
h program unit that

is to a

ess some data from the COMMON blo
k. The only reasonable means

to ensure this identi
al de�nition is to do it on
e in a �le and in
lude that

�le in all program units a

essing the COMMON blo
k. The problem is that

standard FORTRAN does not provide an in
lude statement. Of
ourse, every

implementation we are aware of provides some form of an in
lude statement,

but sin
e this is not part of the standard, the syntax (if not semanti
s) of

in
lude statements differ between implementations.

Numeri
 pre
ision

Standard FORTRAN supports two
oating point numeri
 types, REAL and

DOUBLE PRECISION. This re
e
ts the fa
t that most
omputers have a

word length (nowadays 32 bits, in the old days often 36 bits) that is insuf�
ient

for many numeri
al problems. Semi
ondu
tor devi
e simulation is su
h a

problem, where ill-
onditioned systems have to be solved and
oating point

numbers with a mantissa of at least 40 bits are required. Hen
e, on most

omputers a devi
e simulator requires the DOUBLE PRECISION type.

There exist, however, ma
hines with long words, most notably Cray

super
omputers with a word length of 64 bits (48 bit mantissa). On this

ma
hines the REAL type is obviously suf�
ient. Furthermore, sin
e DOUBLE

PRECISION operations are implemented in software on Cray ma
hines, their

usage is prohibitively expensive. Hen
e the programmust use REAL variables

on Crays and DOUBLE PRECISION variables on most other
omputers.

Obviously, a fully portable program is not possible in FORTRAN.

Most
ompilers support some kind of swit
h that instru
ts the
ompiler to

automati
ally treat every REAL de
laration as DOUBLE PRECISION. This

still does not solve the problem, sin
e many subprogram libraries (e.g. [48℄)

have entry points for both REAL and DOUBLE PRECISION parameters, and

the entry point name is used to differentiate between the pre
isions. This

means that, besides variable de
larations, the names used in subroutine
alls

have to be
hanged too.

Besides the problem of the
ontrol of the numeri
 pre
ision, there exists

62 Implementation

the problem of determining the numeri
 pre
ision that
an be a
hieved.

FORTRAN does not provide any standard means to allow a program to

determine the value of the ma
hine epsilon, whi
h is of utmost importan
e

for many numeri
al algorithms. Sin
e different
omputers use different

representations of
oating point numbers, the ma
hine epsilon
an differ by

more than a fa
tor of 500 between ma
hines, even if the same number of bits

are used to store a number.1

A

ess to environment

For any large program it is highly desirable, if not mandatory, to have some

a

ess to the
omputing environment. The most
ommonly used fun
tion

of this kind is the pro
essor time
onsumed by the program. This is

important information for tuning the
ode as well as for
omparing
omputers.

Furthermore it is desirable to have the program print a time stamp on its

output, and maybe even identify the
omputer system on whi
h the program

was run.

Information on pro
essor time
onsumption
an be important for an

entirely different reason. A 3d devi
e simulator will typi
ally run for several

hours even on a super
omputer. This implies that intera
tive usage is often not

possible, the program must be run through some kind of bat
h system, whi
h

usually means that the amount of pro
essor time that the program may use is

limited, and exe
ution is aborted when the limit is exhausted. A program abort

due to ex
eeded time limits means that some hours of pre
ious super
omputer

time may be wasted. Naturally, this must be avoided|the program must

terminate in an orderly fashion before it is aborted by the operating system.

To this end one may impose, via input data, some limit on the number of

iterations the program may perform in its outermost loop. However, su
h an

approa
h is not always pra
ti
al sin
e it is not always
lear a priori what a

reasonable limit would be. A better solution is to have the program monitor

its time
onsumption and
ompare with the allotted limit. The program must

then realize when it is about to ex
eed that limit and terminate in time. This,

of
ourse, requires that the program be able to determine the time limit.

For really long
omputations that must be broken not only in two or three,

but maybe in �ve or ten parts, it is preferable to automate the pro
ess of

1Example: ε for Cray in single pre
ision is 7.1 × 10−15 while on a VAX in D FLOATING
(double pre
ision) format it is 1.4× 10−17, both using 64 bits!

5.1. Software Engineering Aspe
ts 63

starting the next job after the su

essor has terminated. For that reason one

wishes to be able to determine, at the
ommand language level, whether the

program terminated su

essfully, ran out of time, or en
ountered an error.

Hen
e the program should somehow signal its su

ess to the
ommand level.

On most operating systems this is done by some kind of exit status that
an

be set by the program and tested at the
ommand level. The me
hanism for

setting is, of
ourse, system dependent.

Furthermore, in order to make usage of the program as
onvenient as

possible, one would like to employ some ma
hine spe
i�
 means of passing

information, like input �le names, to the program. Most systems have some

notion of \
ommand line parameters" that spe
ify �le names or options.

None of the above features are a stri
t prerequisite for making a program

perform its task on a
omputer system. However, they are highly desired

to make the program truly useful for a wide range of appli
ations and

environments. None of them are available in standard FORTRAN and in order

to implement them one has to refer to non-portable features.

Memory management

One of the most serious short
omings of the FORTRAN language is the la
k

of memory management. All storage assignment happens at
ompile, link or

load time; on
e a program has been loaded into a
omputer's main memory,

all variables have a �xed address. This makes the
ompiler's and linker's

job easy|on the programmer's and user's ba
k. The impli
ation is that all

arrays must be dimensioned with the maximum size they may ever assume.

Changing this maximum requires re
ompilation of at least one program unit.

This is, of
ourse, extremely impra
ti
al. For on
e it is not always possible to

know in advan
e how arrays are to be dimensioned as a fun
tion of the size of

the input data. For example, it is in general not possible to predi
t how mu
h

working storage is required to fa
torize a sparse input matrix with a given

rank and �ll. Thus one is fa
ed with the
hoi
e of either being
onservative,

and waste lots of
omputer memory in most
ases, or risk that the program

aborts in the middle of the
al
ulation due to insuf�
ient memory.

Another problem is that, sin
e the program size is �xed independently of

the input data, even
omputations with small data sets require the full amount

of memory set aside for the biggest jobs. This is
learly una

eptable for an

environment where the user pays for memory o

upan
y. Compiling different

64 Implementation

versions of the program for various data sizes is a makeshift measure, not a

solution of the problem.

Naming restri
tions

Variable, COMMON blo
k and program unit names are limited to six
hara
-

ters (letters or digits) in FORTRAN. This is one of the main reasons for the

poor readability of FORTRAN
ode. While six
hara
ters may often suf�
e

for lo
al variables, for global entities like subprograms this is
learly inappro-

priate. Any attempt to use meaningful names for writing \self do
umenting"

ode is doomed from the beginning.

Most FORTRAN
ompilers available today allow names up to at least 31

hara
ters in length. However, sin
e there are still many
ompilers that follow

the six
hara
ter rule, we
annot rely on the availability of long names.

5.1.3 Further Compli
ations

The pre
eding se
tion made it (hopefully) obvious that plain standard FOR-

TRAN
ode would not suf�
e for the implementation of a big program. On

the other hand, portability of the
ode was essential:

During the development phase it was frequently ne
essary to move the

ode to another ma
hine, e.g. for running larger test
ases on a faster
omputer.

This, together with the diversity of the target platforms, put high demands on

the portability of the
ode. The frequent re-installations require an automated

pro
ess for installation and
ompilation|manually editing the ported
ode to

produ
e a runnable version on the target system is out of the question. For

the required ease of installation we needed a fully portable sour
e
ode. With

\fully portable" we mean that, after some initial installation pro
edure, any

later version of the
ode
an be
opied to the target system, and
an there be

ompiled and run without any further
hanges.

5.1.4 Prepro
essing

In the pre
eding two se
tions we have seen that we had to re
on
ile two

on
i
ting obje
tives, the requirement for full portability on one side, and the

5.1. Software Engineering Aspe
ts 65

need for system dependent
ode on the other. The only reasonable solution to

that dilemma, short of dropping FORTRAN, is to use a prepro
essor.

The
hoi
e we had was whether to use the UNIX tools ratfor or m4,

the C language prepro
essor,
pp, or to write a new prepro
essor. While the

latter
hoi
e offers the greatest
exibility, it is also the most expensive version

and would make sense only if the other possibilities proved to be impra
ti
al.

The ratfor program was originally written to enhan
e FORTRAN-66.

It does not offer signi�
ant improvement over standard FORTRAN and was

therefore no help for our problem.

Between the remaining two alternatives we de
ided in favour of
pp, sin
e

this program is virtually guaranteed to be available on any UNIX system, and

be
ause it is already used by all C programs and it would be helpful when

interfa
ing FORTRAN with C.

Usage of the (UNIXish) C prepro
essor does not restri
t the simulator to

UNIX ma
hines. The prepro
essing does not need to be done on the target

system, any UNIX workstation will do, and the prepro
essor output
an then

be transferred to the target ma
hine.

By using a prepro
essor we were able to �nd reasonable solutions for most

of the problems mentioned above. Some of them are still quite
lumsy, and

the implementation of all these measures
ost a signi�
ant amount of time

and effort|all for things that are really the
ompiler's job. C, while not the

author's favourite language, provides all the features we
onsider essential for

a proje
t as ours, at no extra
ost.

Considering all the effort we had to invest to
ope with FORTRAN's

short
omings and pitfalls (not all of whi
h we have mentioned), even the

ef�
ien
y argument that is regularly used by FORTRAN advo
ates be
omes

dubious. In a time where
omputer power be
omes
heaper and
heaper at

an astonishing rate, and where programmer time be
omes more and more

expensive, it is more than questionable whether there is any overall ef�
ien
y

to be gained from using FORTRAN. We
ertainly feel that we would have

had a working program at least a year earlier if we had used a suitable

programming language.

66 Implementation

5.2 Des
ription of the Implementation

5.2.1 Modules and Files

As mentioned earlier, our development environment featured a variety of

different ma
hines all running UNIX operating systems. Consequently we

employed the usual UNIX
onventions for program sour
es. In parti
ular

we use the �le name extension \.F" for FORTRAN sour
e �les requiring

prepro
essing, \.f" for the prepro
essed sour
es, i.e. the \plain" FORTRAN

sour
es, and \.h" for \header" �les. The header �les are in
luded into

the sour
es by means of
pp #in
lude statements. They mainly
ontain

prepro
essor dire
tives,
ode that has to be inserted at several pla
es (like

COMMON blo
k de
larations) and
omments.

From now onwewill use the term \module" to designate a set of data stru
-

tures (in FORTRAN: COMMON blo
ks) and operations (SUBROUTINEs or

FUNCTIONs). In our
ase, a module typi
ally
onsists of three �les: a sour
e

�le modulename.F that
ontains the pro
edures, a header �le modulename.h

that
ontains de�nitions of ma
ros and data to support a

ess to the module

by
lient routines, and possibly another header �le modulename int.h that

ontains de�nitions for internal use by the module.

The
onvention is that the modulename.h header �le is all a
lient of

the module needs. In parti
ular this �le
ontains
omments des
ribing the

meaning of the exported data stru
tures and the
alling sequen
es for the

exported pro
edures.

The internal header �le should only be used (in
luded) by pro
edures

belonging to the module. Its main purposes is to de�ne data that are shared

between different parts of the module.

For illustration, Program 5.1 shows the header �le of a sample module

sumint. Program 5.2 shows the internal header �le and Program 5.3 shows

the sour
e �le. Finally, Program 5.4 shows a
lient module. The example

demonstrates how the data stru
tures
an be a

essed in the sour
e �les, after

in
luding the appropriate header �les.

The appropriate header �les must be in
luded by every pro
edure that is to

a

ess global data. This implies that in general a header �le is in
luded several

times by the same sour
e �le. Sin
e header �les also
ontain ma
ro de�nitions

5.2. Des
ription of the Implementation 67

/* sumint, a pa
kage for summing integers.

Data stru
tures:
the_sum: sum of all numbers pro
essed so far

Entry points:
add_this (I)
INTEGER I

adds I

FUNCTION the_average ()
returns the average value

*/
#ifdef INCLUDE_BODY

COMMON /sumint_
ommon/ SUM
INTEGER the_sum
SAVE /sumint_
ommon/

ifdef DEFINE_FUNCTIONS
REAL the_average

endif /* DEFINE_FUNCTIONS */
#endif /* INCLUDE_BODY */

Program 5.1: sumint.h

that must not be exe
uted more than on
e, a me
hanism is needed to ensure

that
ertain parts of the header �le are seen only on
e by the prepro
essor,

while others are seen several times.

To avoid problems with multiple in
lusions and to redu
e order-

dependen
e of the #in
ludes as mu
h as possible, we use the following

onvention: FORTRAN
ode (COMMON de�nitions) is only in
luded if the

ma
ro INCLUDE BODY is de�ned. This leads to the usage as demonstrated

in Programs 5.3 and 5.4: Header �les are in
luded for the �rst time in the

header of the sour
e �le, i.e. before any FORTRAN
ode, then the ma
ro

INCLUDE BODY is de�ned. All further #in
lude statements are in the

de
laration parts of the individual pro
edures.

A spe
ial
ase is the return type of FUNCTIONs. If a module exports a

FUNCTION, its return type should also be de
lared in the header �le. This
an

ause problems with BLOCK DATA subprograms, sin
e some
ompilers do

68 Implementation

#in
lude "sumint.h"
#ifdef INCLUDE_BODY

COMMON /sumint_private_
ommon/ NRINTS
INTEGER NRINTS
SAVE /sumint_private_
ommon/

#endif /* INCLUDE_BODY */

Program 5.2: sumint int.h

not allow the de
laration of non-COMMON variables in this kind of program

units. For that reason, FUNCTION return types will only be de
lared if the

ma
ro DEFINE FUNCTIONS is de�ned.

5.2.2 Ma
ros for Portability and C/C++ Interfa
e

All our ma
ros are based on a set of general-purpose ma
ros de�ned in the

header �le CF ma
ros.h. This header �le
ontains only ma
ro de�nitions,

no data de
larations. It is not part of a module, i.o.w. there does not exist a

orresponding sour
e �le. Be
ause it de�nes many ma
ros that are used in

other header �les, CF ma
ros.h should always be in
luded �rst. There is

no point of in
luding it more than on
e sin
e it does not de
lare any data.

CF ma
ros.h is the main vehi
le for the solution of the portability

problems mentioned in Se
tion 5.1.2. Furthermore it supports the interfa
e

between FORTRAN and C routines. To distinguish FORTRAN from C
ode,

the ma
ro FORTRAN must be de�ned. For this reason FORTRAN modules

in
lude the header �le F ma
ros.h, whi
h in turn de�nes FORTRAN and

in
ludes CF ma
ros.h.

With all these ma
ros,
are has been taken to assure that the string into

whi
h the ma
ro expands is at most as long as the ma
ro's name. This is

to avoid bad surprises with the FORTRAN 72
olumn limit: a ma
ro that

expands into a string longer than its name
ould
ause some of the generated

FORTRAN
ode to extend beyond
olumn 72 of the prepro
essed sour
e �le,

even when the original sour
e did not. This
ould result in obs
ure
ompiler

messages, or even in wrong
ode.

5.2. Des
ription of the Implementation 69

#in
lude "sumint_int.h"
#define INCLUDE_BODY

BLOCK DATA sumint_bd
#in
lude "sumint_int.h"

DATA SUM, NRINTS /2*0/
END

#define DEFINE_FUNCTIONS

SUBROUTINE add_this (I)
INTEGER I

#in
lude "sumint_int.h"
NRINTS = NRINTS + 1
SUM = SUM + I
END

FUNCTION the_average ()
#in
lude "sumint_int.h"

the_average = sum / REAL (NRINTS)
END

Program 5.3: sumint.F

Numeri
 pre
ision

As a remedy for the problem of
ontrolling the numeri
 pre
ision (see

Se
tion 5.1.2) CF ma
ros.h provides a ma
ro normal pre
ision

(NORMAL PRECISION for C programs). This should be used as a type

name when de
laring
oating point variables. It will expand into REAL on

Cray
omputers and into DOUBLE PRECISION on 32-bit ma
hines.

The ma
ros single pre
ision and double pre
ision are avail-

able for
ode that needs to use the maximum or minimum pre
ision available.

They should be used instead of the (normally equivalent) REAL and DOUBLE

PRECISION sin
e the ma
ros allow
onsistent use of non-standard types on

ma
hine that provide more than two
oating point types.

Other ma
ros serve to allow programs to a

ess the most important

ma
hine
hara
teristi
s. These are summarized in Table 5.1. The ma
ros

. . . normal pre
ision
orrespond to the normal pre
ision type.

70 Implementation

#in
lude "sumint.h"
#define INCLUDE_BODY
#define DEFINE_FUNCTIONS

PROGRAM
lient
#in
lude "sumint.h"

INTEGER I
REAL AV

DO 100 I = 1, 10
CALL add_this (I)

100 CONTINUE
PRINT *, 'sum = ', SUM
PRINT *, 'average = ', the_average ()
END

Program 5.4: Client module

There exist a few more ma
ros for supporting the use of the

normal pre
ision type: ints per real is the size of a

normal pre
ision datum in units of INTEGER words. The ma
ros

0 , 1 , 2 and 05 expand into proper normal pre
ision literals

representing the
onstants 0.0, 1.0, 2.0 and 0.5 respe
tively.

Long names

To improve readability of the program
ode it is desirable to make use of

long names (longer than the usually allowed six
hara
ters). Sin
e not all

ompilers support these, there must be a means for mapping long names onto

standard
onforming ones. However, we do not wish to do this mapping

un
onditionally, sin
e this implies that even on systems where long names

are legal, we would have to
ope with the unreadable six
hara
ter names

whenever we have to look at the prepro
essed sour
es, e.g. when using a

sour
e level debugger.

Therefore CF ma
ros.h de�nes the ma
ro LONG NAMES for
ompilers

that allow long names for variables, and LONG EXTERNALS on those systems

that also allow them for subprogram and COMMON blo
k names. Header

�les use these to
onditionally map long names onto short ones. Using these

we get the improved version of the sumint header �le (Program 5.5).

5.2. Des
ription of the Implementation 71

FORTRAN name C name typi
al value

max integer Max INTEGER 2 147 483 647

min integer Min INTEGER −2 147 483 647

max single pre
ision Max SINGLE PRECISION 3.4× 10+38

min single pre
ision Min SINGLE PRECISION −3.4× 10+38

least single pre
ision Least SINGLE PRECISION 1.2× 10−38

eps single pre
ision Eps SINGLE PRECISION 1.2× 10−7

max double pre
ision Max DOUBLE PRECISION 1.8× 10+308

min double pre
ision Min DOUBLE PRECISION −1.8× 10+308

least double pre
ision Least DOUBLE PRECISION 2.2× 10−308

eps double pre
ision Eps DOUBLE PRECISION 2.2× 10−16

max normal pre
ision Max NORMAL PRECISION 1.8× 10+308

min normal pre
ision Min NORMAL PRECISION −1.8× 10+308

least normal pre
ision Least NORMAL PRECISION 2.2× 10−308

eps normal pre
ision Eps NORMAL PRECISION 2.2× 10−16

Table 5.1: Ma
ros de�ning ma
hine
hara
teristi
s for use by FORTRAN

and C programs

Further portability support

The ma
ros std in, std out and std err expand into the FORTRAN

logi
al unit numbers for standard input, standard output and standard error

output respe
tively. Note that the �rst two of these are equivalent to the

implied units designated by the use of an asterisk in an I/O statement. The

ma
ros are mainly needed when a unit number must be passed as a parameter.

Most non-UNIX systems do not have a notion of a \standard error output"

�le, on su
h systems std err will be the same as std out.

impli
it none
an be used to disable the dangerous impli
it typing

in FORTRAN. For
ompilers that support this FORTRAN-8X [3℄ extension,

the ma
ro expands into IMPLICIT NONE, otherwise into IMPLICIT

CHARACTER*7 (A-Z).

In
ases where non-portable
onstru
ts are ne
essary, a ma
hine dependent

ma
ro
an be used to hide su
h a
onstru
t from other
ompilers. For

example, on the Alliant (and only there) the ma
ro alliant is de�ned.

This allows for the safe use of nonportable
ode by prote
ting it with

72 Implementation

#ifndef LONG_EXTERNALS
define add_this SIADD
define the_average SIAVER
define sumint_
ommon SICOMN
#endif /* LONG_EXTERNALS */

#ifndef LONG_NAMES
define the_sum SUM
#endif /* LONG_NAMES */

/* sumint, a pa
kage for summing integers.
. . . */

#ifdef INCLUDE_BODY
COMMON /sumint_
ommon/ the_sum
INTEGER the_sum
SAVE /sumint_
ommon/

ifdef DEFINE_FUNCTIONS
REAL the_average

endif /* DEFINE_FUNCTIONS */
#endif /* INCLUDE_BODY */

Program 5.5: An improved version of sumint.h

#ifdef alliant .

For testing purposes, non-standard features
an be disabled by de�ning

STANDARD ONLY prior to in
luding CF ma
ros.h. This will in parti
ular

prevent the de�nition of LONG EXTERNALS and LONG NAMES.

Optimization dire
tives

In order to fully exploit the power of ve
tor
omputers or multipro
essors, it

is often ne
essary to use
ompiler dire
tives, telling the
ompiler that it is safe

to optimize a
ertain loop. These dire
tives vary from
ompiler to
ompiler.

CF ma
ros.h provides a portable means for the insertion of these dire
tives.

It works by in
luding
ertain �les: If a loop
an be safely optimized by the

ompiler, the statement

#in
lude O_nodep.h

5.2. Des
ription of the Implementation 73

should be used immediately before the loop. Similarly, in
luding

O ve
tor.h instru
ts a ve
torizing
ompiler to ve
torize the loop, without

exploiting any other forms of parallelism, O
on
ur.h does the same for

on
urren
y, and O ve
t
on
.h tries to for
e both, ve
torization and

on
urren
y (provided the ma
hine is a ve
tor multipro
essor). O noopt.h

an be used to prevent optimization (useful e.g. in the
ase of nested loops to

prevent the
ompiler from optimizing the \wrong" loop).

C/C++ interfa
e

To solve the problems mentioned in Se
tion 5.1.2, it was ne
essary to
all

pro
edures written in C. Furthermore, other parts of the 3d simulation pa
kage

that are written in C++ should be able to
all the same libraries as Se
ond.

Therefore it was ne
essary to provide a portable means to interfa
e FORTRAN

to C and C++. This is done by providing the ma
ros fortran name and

fortran
ommon blo
k for de
laring FORTRAN entities in C or C++.

Their usage is demonstrated in Program 5.6 for a library routine that
an be

alled from either FORTRAN or C.

The ma
ros fortran name and fortran
ommon have two parame-

ters, the all-lower-
ase and the all-upper-
ase versions of the name used in the

FORTRAN program. This is ne
essary sin
e on some systems the FORTRAN

ompiler exports pro
edure names up-
ased, on others down-
ased. The same

holds for COMMON blo
ks.

Naturally there is no guarantee that the
hosen s
heme for theC/FORTRAN

interfa
e will work on all
omputers, not even on all UNIX systems. There are

too many possible variations in the way things might be done. The
urrently

implemented s
heme works at least on all the UNIX systems we know.

Wewould like to note here that the present implementation of Se
ond does

not depend on C
ode, it is possible to install a pure FORTRAN version|with

signi�
antly redu
ed
omfort.

5.2.3 Libraries and Tools

This Se
tion presents the library fun
tions used by Se
ond. They fall

into three
ategories: general-purpose FORTRAN utilities (f util), devi
e

74 Implementation

/* Simple plot module */
#ifndef _FORTRAN_
ifdef LONG_EXTERNALS
define Cur_pos fortran_
ommon(
ur_pos,CUR_POS)
define Move_to fortran_name(move_to,MOVE_TO)
else /* ! LONG_EXTERNALS */
define Cur_pos fortran_
ommon(dr
ups,DRCUPS)
define Move_to fortran_name(drmove,DRMOVE)
endif /* ! LONG_EXTERNALS */
fortran_
ommon_blo
k

stru
t {INTEGER x, y}

ommon_de
laration(Cur_pos);

Move_to (INTEGER *x, *y);
#else /* _FORTRAN_ */
ifndef LONG_EXTERNALS
define Cur_pos DRCUPS
define Move_to DRMOVE
endif /* ! LONG_EXTERNALS */
ifdef INCLUDE_BODY

COMMON /
urrent_pos/ X, Y
INTEGER X, Y
SAVE /
urrent_pos/

endif /* INCLUDE_BODY */
#endif /* _FORTRAN_ */

Program 5.6: Header �le for library routine
allable by both, FORTRAN and

C

simulation spe
i�
 utilities (sim util) and linear algebra kernels and sparse

linear solver pa
kages.

General-Purpose FORTRAN Utilities

The subprogram library f util
ontains pro
edures that are of general use

for FORTRAN programs, as well as routines that support a C/FORTRAN

interfa
e on a �le level. These library routines are dis
ussed in this se
tion.

5.2. Des
ription of the Implementation 75

Heap To solve the dynami
 memory problem (Se
tion 5.1.2) we imple-

mented a heap module. There are basi
ally two ways to implement a heap:

Purely in FORTRAN, using a big array as a heap, or outside FORTRAN,

e.g. by
alling the C fun
tion mallo
. The latter method is, of
ourse, not

portable to systems that do not have C, while the former has the disadvantage

that the heap is not really dynami
 and the total size of a program is still

independent of the data.

We therefore de
ided to implement both methods. The FORTRANmodule

heap allo
ates storage from a stati
 array. If no more spa
e is available, a

C fun
tion is
alled (module heap dyn), whi
h in turn
alls mallo
. On

systems where mallo
 is available, the stati
 heap array is made small so

that the C routines are used, otherwise the stati
 array is dimensioned big

enough and the C interfa
e is disabled.

#ifdef . . .
#define real_heap single_heap
#else
#define real_heap double_heap
#endif

SUBROUTINE allo
ate_real (SIZE, INDEX, ERROR)
INTEGER SIZE, INDEX, ERROR

SUBROUTINE deallo
ate_real (INDEX, ERROR)
INTEGER INDEX, ERROR

SUBROUTINE resize_real (NEWSZE, INDEX, ERROR)
INTEGER NEWSZE, INDEX, ERROR

SUBROUTINE print_heap_statisti
s ()
SUBROUTINE print_heap ()
SUBROUTINE set_heap_debug (DBGLEV, UNIT)

INTEGER DEGBLV, UNIT
C

INTEGER HEAPSZ, DHEAPS
PARAMETER (HEAPSZ = s_heap_size)
PARAMETER (DHEAPS = (HEAPSZ+1)/2)
COMMON /heap_
ommon/ double_heap
double_pre
ision double_heap (0:DHEAPS-1)
single_pre
ision single_heap (0:HEAPSZ-1)
EQUIVALENCE (single_heap,double_heap)

Program 5.7: Simpli�ed heap interfa
e

76 Implementation

Program 5.8 shows a simpli�ed interfa
e to the heap module (only

showing routines for allo
ating normal pre
ision data). The allo
ation

fun
tion allo
ate real returns, if su

essful, an index into the heap array

(real heap for type normal pre
ision) whi
h points to the �rst word

of the allo
ated segment. With deallo
ate real the allo
ated storage

an be returned, with resize real the size of an allo
ated segment
an be

in
reased or de
reased.

Corresponding
alls exist for the dynami
 allo
ation of INTEGER,

LOGICAL, single pre
ision or double pre
ision storage.

If the dynami
 heap option is used, the allo
ated storage segment is in

general not part of the heap array, rather the address returned by mallo
 is

onverted into an offset from the address of the array. This only works as long

as the system does not perform array bounds
he
king at run time. Sin
e su
h

he
ks are normally very expensive, they are not done by most FORTRAN

systems. There are ex
eptions, however, like on the Burroughs B-6700 series

where these
he
ks are automati
ally done by hardware. On su
h a ma
hine

our dynami
 memory management would not work, but on \normal" systems

there should be no problems.

The heap module also provides some
he
k and debug fun
tions. The

pro
edure print heap statisti
s prints statisti
s on the amount of

heap storage used and the amount of memory fragmentation. The usage

and fragmentation �gures only in
lude what was allo
ated by the heap

module, if any routines
all mallo
 dire
tly this storage will not be

ounted as \used" (and in
rease the \fragmentation" �gure). As a side-

effe
t print heap statisti
s performs a
onsisten
y
he
k of the heap

segment lists.

The pro
edure print heap prints the
urrent layout of the heap, i.e. the

list of free and used segments. This
an be useful for debugging a program

that overwrites storage. The pro
edure set heap debug turns debugging

on or off. A value greater than zero for DBGLEV turns on debugging output,

a zero or negative value turns debugging off. Debug output is written to the

logi
al unit designated by UNIT.

Program 5.8 shows the typi
al use of heap memory. Ma
ros are used to

a

ess dynami
ally allo
ated memory using the normal array notation. That

way the
ode looks exa
tly as if the arrays were \real" ones.

Note that a relatively long name is used for the array ma
ro (global . . .),

5.2. Des
ription of the Implementation 77

#define n_mat 3*n_ve

#define global_ve
(i)real_heap(x_ve
+i)
#define global_mat(i,j)real_heap(x_mat+3*i+j)

. . .
INTEGER n_ve
, x_ve
, x_mat, I, J

. . .
CALL allo
ate_real (n_ve
, x_ve
, ERR1)
CALL allo
ate_real (n_mat, x_mat, ERR2)

. . .
DO 100 I = 0, n_ve
-1

READ (*,*) global_ve
(I),
$ (global_mat(I,J), J=0,2)

100 CONTINUE
. . .

CALL deallo
ate_real (x_ve
, ERR1)
CALL deallo
ate_real (x_mat, ERR2)

Program 5.8: Typi
al usage of heap memory.

to prevent the expanded
ode from being longer than the original ma
ro
all.

This is easy to do for one dimensional arrays. For more dimensions the names

need to be quite long and be
ome unhandy. We therefore sti
k with the above

used names whi
h are safe in the
ase of one dimensional arrays and must

otherwise be used with
are.

Simbad The Simbad binary I/O interfa
e fa
ilitates data transfer between

C/C++ and FORTRAN programs on the �le level. It provides for hardware

independent binary �les and thus allows moving data in a
ompressed form

between dissimilar
omputers. Simbad is dis
ussed in detail in [40℄. The

module simbad.h implements the Simbad spe
i�
ations.

Smaller utility modules

f strings The module f strings supplies a few often needed string

pro
essing fun
tions. These in
lude a fun
tion returning the a
tual length of

a string, and pro
edures to remove extra spa
es in strings, to append strings,

78 Implementation

and to up- or down-
ase strings. Finally there is a pro
edure for extra
ting the

value of a keyword �eld set up by RCS.

tiny The module tiny exports a set of small utilities that help to

solve the problems pointed out in Se
tion 5.1.2. Most of them are a
tually

implemented in C, on non-UNIX systems these may return null values of a

kind that allow the
alling program to
ontinue in a reasonable fashion.

Pro
edures exported by tiny allow programs to inquire
ommand line

parameters, the total amount of pro
essor time
onsumed or remaining, or the

urrent date and time. Other entry points
ush output units or remove �les.

Fun
tions for determining whether or not standard input/output is from/to an

intera
tive terminal are provided, as is a fun
tion returning the identi�
ation

number of the
urrent pro
ess. Finally there is a pro
edure to terminate the

program with an indi
ation on the su

ess of the exe
ution (exit status), and

one to for
e a
ontrolled program
rash (produ
ing information that may be

helpful for debugging).

lo
k The module
lo
k provides a
onvenient interfa
e for timing

se
tions of a program. It exports a type time type and the pro
edures

init
lo
k, start
lo
k and stop
lo
k. To use the
lo
k, a

variable of type time typemust be de
lared, whi
h is initialized by passing

it to init
lo
k. After that, the
lo
k
an be started, stopped, re-started

et
. by
alling the pro
edures start
lo
k and stop
lo
k. The latter

will return the time sin
e the last time the
lo
k was started, the a

umulated

time during whi
h the
lo
k was running, and the number of intervals for

whi
h it was running.

By de�ning several time type variables a program
an use several

different stopwat
hes to time various parts of
ode.

arsinh The arsinh fun
tion is frequently needed in devi
e simulations,

but is not part of the set of standard FORTRAN intrinsi
 fun
tions. Hen
e the

module arsinh.h provides a (not parti
ularly a

urate) implementation of

arsinh.

5.2. Des
ription of the Implementation 79

Kernels and linear solvers

blas blas.h is a header �le providing a generi
 interfa
e to the Basi

Linear Algebra Subprograms (BLAS) [48℄. These are a set of elementary

ve
tor × ve
tor operations. On most ve
tor
omputers highly optimized

implementations of the BLAS are available in some system library. For those

systems only the header �le blas.h is needed to
ompile the simulator. For

systems where no BLAS library is available, ready-to-
ompile sour
es are

supplied (sour
e subdire
tory blas).

BLAS routines
ome in four
ategories: REAL, DOUBLE PRECISION,

COMPLEX and, where available, DOUBLE COMPLEX. No
omplex data types

are used throughout the simulator, hen
e the latter two
ategories are of no

interest to us. For the other ones we require a interfa
e that is
onsistent with

our type normal pre
ision. This is provided by generi
 name ma
ros

like axpy, whi
h expands into SAXPY or DAXPY, depending on whether

normal pre
ision is the same as REAL or DOUBLE PRECISION.

De�ning these ma
ros is the main purpose of the header �le blas.h.

math aux The module math aux provides simple ve
tor operations

that are similar to, but not part of, the BLAS. These in
lude ve
tor assignment

operations (xi := a) and ternary ve
tor operations like zi := zi + xiyi. These

an be ef�
iently optimized on ve
tor
omputers. However, the main reason

for their existen
e is the wish to improve readability of the
ode by using

subroutine
alls for su
h basi
 operations rather than
luttering the
ode with

many loops.

solvers Finally there are subroutines for the solution of sparse linear

systems of equations. These are pa
kages of their own [9, 59℄ and are not

do
umented here.

Simulation-related utilities

General de�nitions Certain
onventions are required for the ef�
ient

internal or external storage of simulation grids. These
onventions are de�ned

80 Implementation

in Datex [41℄. For
onvenient a

ess by programs the
onventions are

spe
i�ed in the form of ma
ros in general.h.

The ma
ros de�ned in general.h in
lude
onstants identifying element

and fa
e types (shape
odes), vertex lo
ation types and material types.

Additional
onstants like Max elt
orners and Max fa
e
orners

are typi
ally used for de�ning arrays within
lient modules as well as the

general module.

Data stru
tures exported by general are arrays spe
ifying properties of

elements and element fa
es, su
h as the numbers as well as the start and end

points of edges.

The only pro
edure exported by the module is an initialization routine that

must be
alled before any of the arrays are being used. In addition, the C/C++

interfa
e de�nes types that are useful for pro
essing grid data.

data
odes The module data
odes
ontains ma
ros spe
ifying the

type
odes for various data that may be output from a simulation. This allows

using symboli
 names rather than the
onstants de�ned in [41℄.

Furthermore the module exports a pro
edure get data label, whi
h,

given a data type
ode, returns the fa
tor used to s
ale data of this kind

when externally stored in Datex �les. The pro
edure also returns strings for

representing the name of the datum in human readable form. This is useful

for labelling graphs or tables that are output of various tools.

5.2.4 Program Stru
ture

Figure 5.1 gives a rough representation of the overall stru
ture of Se
ond.

The meaning of the various symbols is as follows:

A box, like
module:

procedure , symbolizes one or more pro
edures. The bold,
olon

terminated string denotes the module name while the other string(s) give the

pro
edure name(s). We will frequently make use of the notation mod:pro
 to

designate that the pro
edure pro
 is exported from module mod.

5
.2
.
D
e
s

rip

tio
n
o
f
th
e
Im
p
le
m
e
n
ta
tio

n
8
1

stru
ture.id
86

×
157

m
m

driver:
MAIN

initialize:
init_data

time:
solve_transient

input:
input

initialize:
init_variables
re_init_variables

files:
save_to_file
write_output

files:
load_from_file

geometry:
init_geometry

.in
.geo .dop .sav

.cur .mvy

.sav .out

F
ig
u
re

5
.1
:
T
h
e
ro
u
g
h
stru

tu
re

o
f
S
e
o

n
d

82 Implementation

Bold solid arrows symbolize pro
edure
alls (pointing from the
aller to

the
allee), while dotted bold arrows designate indire
t
alls (i.e.
alls through

intermediate pro
edures). Thin solid lines denote data
ow, parti
ularly from

or to I/O units. The symbols , , and designate su
h I/O units:

input de
ks, output lists and mass storage units respe
tively. The symbols are

labelled with a string whi
h gives the
onventional �le name extension for

that kind of �le. These extensions are used to distinguish within a dire
tory

the various �les that are used in a parti
ular simulation run.

We use the \input de
k" symbol for human readable input �les that may

ome from a small �le or dire
tly from the terminal, or may be produ
ed

by another program. Similarly, the \output lists" stand for human readable

output �les. The \mass storage" symbol denotes �les that are generally large

and not human readable (i.e. stored in binary), su
h �les are used to pass large

amounts of data between different programs or between different runs of the

same program. Note that some of the \listing �les" are also read by other

programs, usually for some kind of post-pro
essing.

The input de
k that is read by the input pro
essor
ontains dire
tives to

the simulator. Its
ontents determine whi
h simulation is to be performed,

spe
ifying the grid to use, the bias
onditions and the physi
al models to apply

et
. It also spe
i�es what kind of output (e.g. for plotting the results) is to be

produ
ed. The
ontents of the input de
k,
alled parameter input, is des
ribed

in the User Manual [42℄.

The grid �le (extension .geo) and the doping �le (.dop)
ontain the

physi
al des
ription of the devi
e to be simulated, as well as a simulation grid.

These two �les are produ
ed by the grid generator Ω. The result �les (.out)
are used to plot the results with the graphi
 tool Pi
asso [82℄. More details

on the intera
tion between Se
ond and the various pre- and post-pro
essing

tools are given in Se
tion 5.3.

Save �les (.sav) are used to save the results of one simulation so that a

future simulation
an
ontinue from the point where an earlier one �nished.

The
urrent �le (.
ur) re
ords, in transient or quasi-stationary simulations,

the values of the terminal
urrents after every time step.

Several result �les may be written in the
ase of transient or quasi-

stationary simulations, provided the parameter �le says so. In that
ase a

movie �le (.mvy) re
ords the names of the intermediate result �les, together

with the simulated time to whi
h they belong.

5.2. Des
ription of the Implementation 83

The pro
edure time:solve transient is the root of the \real" PDE

solver. Its stru
ture is shown in Figure 5.2. Here the dashed boxes refer to

several different modules and the thin lines denote important data
ow.

solvestru
t.id
108 × 87 mm

time:

nonlin:

newton:

assembly:

geometry:

tables:

current:

linsolve:

timeass:

bernoulli:
expm1:
efield:
sparse:

utilities

mobil:
recomb:

physical models

Figure 5.2: Stru
ture and main data
ow of the PDE solver

The utility modules bernoulli and expm1 are fast and a

urate

implementations of the Bernoulli and ex − 1 fun
tions, and sparse only

ontains the pro
edure saxp whi
h multiplies a sparse matrix with a ve
tor.

efield
ontains pro
edures for the a

urate
omputation of the ele
tri
 �eld

and
urrent density ve
tors, as explained in Se
tion 4.4.

The module mobil
omputes the
arrier mobilities a

ording to one

of several available models, while re
omb
omputes
arrier re
ombination

and generation rates. The other modules will be dis
ussed in the following

se
tions.

84 Implementation

5.2.5 Data Stru
tures

The modules geometry and tables are the main
ontainers of global data

for the simulator. Further data of general interest are exported by the modules

par files, par math, and par physi
s. The modules assembly,

urrent, efield, mobil, and re
omb
ontain data that are of relevan
e

only for a few modules.

Geometry As the name implies, the geometry module
ontains data

des
ribing the geometry of the simulated obje
t. Almost every module needs

to a

ess some of these data.

Data exported by geometry fall in three
ategories: simple variables,

small, �xed size arrays, and large, dynami
 arrays. Variables of the �rst

ategory
ontain
ounts like the number of verti
es in the grid or the number

of
onta
ts in the devi
e. The se
ond kind of variables are quite similar: arrays

ontaining, for example, the number of elements of ea
h possible shape. The

third kind
ontains the a
tual geometry data, like the
oordinates or doping

values of the verti
es, or the shape
odes of the elements.

These arrays are initialized from the grid �le. Grid �le information is

also used to initialize other data, parti
ularly the arrays exported by tables.

After this initialization most of the dynami
 arrays in geometry are no

longer required and are hen
e deallo
ated.

Reordering of elements and verti
es In order to simplify some of

the algorithms (parti
ularly in the assembly of the linear equations) and to

improve ve
torization of several loops, the verti
es and elements are reordered

while reading the geometry �le. With a few (parti
ularly do
umented)

ex
eptions, all data stru
tures and algorithms of the simulator assume this

internal order. The only pla
es where the original order is used are the input

and output routines, and some initialization pro
edures.

The verti
es are internally ordered by material: �rst
ome all the verti
es

belonging to a semi
ondu
tor material (in
luding those at the interfa
es), then

all the verti
es in the insulator (if any), and �nally all the Diri
hlet (
onta
t)

verti
es irrespe
tive of the material. The entries in the array dom points

ontain the starting point numbers of ea
h of these domains. Figure 5.3

illustrates the internal order.

5.2. Des
ription of the Implementation 85

vert-ord.id
91 × 31 mm

dom_pts:

vertex numbers:

Si_dom SiO2_dom dir_dom dir_dom+1

0 N-1 N

Figure 5.3: Internal order of verti
es

Similarly the elements are ordered by shape, �rst all tetrahedra, followed

by all pyramids, followed by all prisms, followed by all
uboids. Within ea
h

shape the elements are ordered by material. The array shape elts
ontains

pointers to the beginning of ea
h part.

The permutation indi
es for verti
es and elements are
ontained in the ar-

rays global pt permut and global elt permut respe
tively. These

arrays a
tually
ontain both, the permutation from external to internal order

and the inverse. The element permutation is a
tually not needed by the pro-

gram, it is only stored for debugging purposes. At the end of the initialization

phase the element permutation array is deallo
ated. The vertex permutations

are needed for outputting results in external order and are therefore kept until

the end.

Tables The module tables
ontains the bulk of the global numeri
al data,

most of whi
h falls in two
ategories: ve
tors and sparse matri
es. Ve
tor

data, like the box volumes for ea
h vertex, are straightforward and need not

be dis
ussed in detail.

Sparse matrix representation Sparse matri
es must be stored in a

form that suppresses zero entries, otherwise the memory requirements as well

as the time needed for pro
essing the matri
es would be unreasonably large.

There is, however, no established standard for the representation of sparse

matri
es.

Sin
e they originate from the box dis
retization of a 3d mesh, ea
h non-

zero off-diagonal entry in our sparse matri
es
orresponds to an edge in the

86 Implementation

mesh. Therefore the sparsity stru
ture of our matri
es is equivalent to a list of

edges. If we have a data stru
ture for edges we
an interpret this as a sparse

matrix data format.

We
hoose the following
onventions for edges: Ea
h edge is identi�ed

by a starting and an ending vertex. For edges between non-Diri
hlet verti
es,

we take as the starting vertex the one with the smaller (internal) number, for

edges where at least one of the verti
es is a Diri
hlet point, the vertex with

the larger number is taken as the starting vertex. (We will see the advantages

of this
onvention shortly.) Edges are sorted by as
ending starting vertex

number, with as
ending ending vertex number as the minor sort key. This

uniquely determines the order of the edges.

We now de�ne the array global edg index to
ontain, at position i,

the number of the �rst edge whose starting index is i. Two further arrays

global edg pt and global edg oth pt
ontain ea
h edge's starting

index (i) and ending index (j) respe
tively. Figure 5.4 shows how the

off-diagonal elements of a sparse symmetri
 matrix are stored: the
oef�
ient

aij , whi
h
orresponds to the edge from vertex i to vertex j, is stored in an

array (here global edg fa
t) at the same position as the indi
es i and j

in their respe
tive arrays.

sparse-ds.id
101 × 53 mm

...0 1 i N-1 N...

global_edg_index:

0...0 ...1 ...i iglobal_edg_pt:

... j...global_edg_oth_pt:

a
ij

... ...global_edg_fact:

Figure 5.4: S
hemati
 representation of the sparse data stru
ture

Note that the array global edg pt is redundant. However, its avail-

ability often allows pro
essing of an entire sparse matrix in a single loop rather

5.2. Des
ription of the Implementation 87

than two nested loops (with an additional indire
tion). The one-loop variant,

when usable, leads to
ode that
an be ef�
iently ve
torized. Program 5.9

gives examples of pro
essing matri
es with our data stru
ture.

--
ompute duij = ui − uj

e_0:=global_edg_index[0℄
e_1:=global_edg_index[N℄
for e:=e_0 to e_1-1
i:=global_edg_pt[e℄
j:=global_edg_oth_pt[e℄
du[e℄:=u[i℄ - u[j℄

--
ompute bi =
∑

j
aijxj

off:=global_edg_index[N℄ -
global_edg_index[0℄

for i:=0 to N-1
e_0:=global_edg_index[i℄
e_1:=global_edg_index[i+1℄
for e:=e_0 to e_1-1

j :=global_edg_oth_pt[e℄
b[i℄:=b[i℄ + x[j℄*a[e℄
b[j℄:=b[j℄ + x[i℄*a[e+off℄

Program 5.9: Examples of sparse matrix usage: single loop version (left)

and nested loop version (right)

We observe that by virtue of our ordering of the edges, the previously

dis
ussed separation of non-Diri
hlet and Diri
hlet verti
es translates into a

orresponding separation of edges between non-Diri
hlet points and edges

that belong to at least one Diri
hlet point. This allows for easy and ef�
ient

treatment of the boundary
onditions (
f. Se
tion 4.2.1). In fa
t, the order

insulator-semi
ondu
tor-Diri
hlet points would be even more advantageous,

sin
e it would automati
ally separate insulator edges from semi
ondu
tor

edges and thus save additional IF statements in the assembly of the
ontinuity

equations. However, this would require a linear solver that allows vertex

numbers to start at an arbitrary value, whi
h is not supported by the linear

solvers we have at our disposal.

What has been said so far only explains how the off-diagonal
oef�
ients

of a symmetri
 matrix, or the stri
t upper triangle of a non-symmetri
 matrix,

are stored. The diagonal, whi
h is simply a ve
tor of lengthN , is either stored

separately, or immediately pre
eding the off diagonals (indi
es −N · · · − 1).

For non-symmetri
 matri
es we
an either use a two-dimensional array, or

simply store the
oef�
ients of the lower triangle after the upper triangle

(with a
onstant offset between the
oef�
ients aij and aji). This usage is

already demonstrated in Program 5.9. Most internally used sparse matri
es

are symmetri
, moreover most of them have zero diagonals.

Our sparse matrix data format is quite similar to the BLSMP data stru
-

88 Implementation

ture [9℄, whi
h is a variant of the YSMP format [30℄. The main differen
e

between the latter two is that BLSMP makes use of the stru
tural symmetry

of the matri
es and avoids storing redundant information when dealing with

symmetri
 matri
es. Our format differs from BLSMP in the use of zero-

relative indi
es and by avoiding the mixing of pointers and indi
es in the same

array.

Other arrays The
oef�
ient matrix of the linear systems,

assembly:global lhs, whi
h is non-symmetri
 and has a non-zero

diagonal, is kept in the BLSMP format di
tated by the linear solver.

Its sparsity stru
ture (BLSMP's notorious \JA" array) is
ontained in

global index list. The array global edg ja
 index serves to

translate between the two data stru
tures: the array
ontains the BLSMP in-

di
es of our edges. The array global dphi dphi
ontains the dis
retized

Lapla
e operator. This one is also kept in BLSMP format, be
ause that way it

only needs to be
opied when assembling the
oef�
ient matrix.

There are several temporary arrays that
ontain data in \external" vertex

order: global raw e ndx, global raw e oth et
. These are used to

hold the box information supplied in the grid �le, until enough of the simulator

data stru
tures are set up to store the box se
tions at their �nal pla
e. This is

done at the end of the initialization phase, the temporary arrays are afterwards

deallo
ated.

The arrays global ve
t trafo and global ve
t Si wgt are used

for the
omputation of ele
tri
 �elds and
urrent densities along the lines laid

out in Se
tion 4.4.

Other modules The module assembly exports the arrays to hold the

oef�
ient matri
es (LHS) and the residual ve
tors (RHS) of the sparse linear

systems to be solved. The LHS arrays are kept in BLSMP format (see above).

The module
urrent exports the array
ontaining the
urrent density

ve
tors for ele
trons and holes, while efield exports the ele
tri
 �eld as well

as the gradients of the ele
tron and hole quasi-Fermi potentials. Mobilities

are exported by mobilwhile re
ombinations, effe
tive intrinsi
 densities and

the bandgap narrowing values are exported by re
omb. These modules also

export pro
edures, some of whi
h will be dis
ussed in Se
tion 5.2.6.

5.2. Des
ription of the Implementation 89

5.2.6 Algorithms

Time Integration

-- time:solve transient
if not restarted from transient simulation

nonlin:solve_nonlinear()
forea
h time_interval do

-- time:time interval
time := start_time(time_interval)
while time<end_time(time_interval) do

if ex
eeded resour
es or step size limit
exit

-- time:time step
for step := TR_step, BDF2_step

set the
onta
t voltages for time
-- time:time extrapolation
extrapolate variables from previous to
urrent time
nonlin:solve_nonlinear()

estimate the LTE
if LTE<LTE_limit

time := time + time_step
time:write_
urrents()

else
reje
t time step

determine new time_step

Program 5.10: S
hemati

ontrol
ow for time integration

Program 5.10 shows s
hemati
ally the pro
edure for the time integration.

The
omments introdu
ed by \--" indi
ate whi
h pro
edure
ontains the

parti
ular se
tion of
ode. The algorithm follows the method laid out in

Se
tion 2.2.

The main work to be performed for the time integration is the solution

(spa
e integration) of the semi
ondu
tor equations for ea
h individual time

point. This solution is not different from the stationary
ase, ex
ept that some

terms are added to the arising linear systems of equations. This is done during

the linear equation assembly.

Quasi-stationary simulations are basi
ally performed as transient simula-

90 Implementation

tions without adding the transient
ontributions to the linear systems. An

arti�
ial time is used to
ontrol the speed with whi
h terminal voltages are

stepped up.

Nonlinear equation solution For the spa
e integration the pro
edure

nonlin:solve nonlinear is
alled. This performs a Gummel iteration,

alling newton:newton for ea
h individual equation, or a
oupled solve,

alling newton:newton on
e for the full system. In stationary simulations

Gummel iterations are always performed, usually followed by a
oupled

solve. Transient simulations only use
oupled iterations, and quasi-stationary

simulations
an be performed either way.

In order to keep the
ontrol over
onvergen
e
riteria all in one pla
e,

newton:newton uses the pro
edure nonlin:
omp rel err for
om-

puting the relative error. That pro
edure is passed as a parameter to

newton:newton. The pro
edure nonlin:extra
t old values (also

passed as a parameter) serves to pass the original values of the variables from

newton tononlin, so that
omp rel err
an
ompute the relative
hange

due to the last Newton iteration.

Program 5.11 shows the implementation of the damped Newton algorithm.

The damping s
heme has been dis
ussed in Se
tion 2.3.1, while the
ontrol of

the linear solver has been des
ribed in Se
tion 4.6.2.

A safeguard not shown in Program 5.11 is to impose an upper limit on

the damping fa
tor if some
omponents of the solution of the linear system

for potential variables (ele
trostati
 or quasi-Fermi potentials) be
ome too

big. We limit the damping fa
tor su
h that no potential
omponent may be

updated during a single Newton step by more than approximately one volt,

thus avoiding over
ow when
omputing the
arrier densities from the updated

potentials. This is a rather
oarse method that is suf�
ient for simulations

where applied voltages are in the one to ten volts range. For high voltage

devi
es it is inappropriate.

Assembly The real work for the solution of the differential equations is

done by the assembly pro
edures and by the sparse linear solver. The latter

is a separate pie
e of software and is not dis
ussed here in any detail. The

assembly pro
edures assemble RHS and assemble LHS are exported by

the module assembly.

5.2. Des
ription of the Implementation 91

assemble_RHS
rhsnrm := ‖rhs‖
oldnrm := rhsnrm
damp := 1
for it := 1, max_it

assemble_LHS
solve_sparse_system (lhs, rhs, dx)
dxnrm := ‖dx‖
damp := damp / (damp + ((1-damp) * rhsnrm) /

(10 * oldnrm))
oldnrm := rhsnrm
oldamp := damp
extra
t old values
for j := 1 to j_max

update_vars -- x := x + damp * dx
assemble_RHS
rhsnrm := ‖rhs‖

omp_rel_err
if
onverged

exit
else if 1-rhsnrm/oldnrm > damp*delta

exit
else

damp := oldamp*(delta/dxnrm)**((j/j_max)**2)
reset -- re
over old x

if
onverged
exit

Program 5.11: The damped Newton algorithm

RHS assembly The assembly of the RHS pro
eeds in several steps.

First the stationary RHS are assembled (without the re
ombination terms

in the
ase of the
ontinuity equations). Next the re
ombination terms are

evaluated and added. This means that in the
oupled
ase the re
ombination

rates are
omputed only on
e for both, the ele
tron and hole equations. The

next step is to
all timeass:time RHS to add the transient
ontributions,

if any. After that the terminal
urrents are extra
ted from the assembled RHS.

Finally the Diri
hlet boundary
onditions are in
orporated by zeroing the RHS

omponents belonging to Diri
hlet verti
es (
f. Se
tion 4.2.1).

As explained in Se
tion 4.1.1, assembling the RHS for Poisson's equation

92 Implementation

e_0 := global_edg_index[0℄
e_1 := global_edg_index[N℄
for e := e_0 to e_1-1

i := global_edg_pt[e℄
j := global_edg_oth_pt[e℄
fa
t := global_edg_fa
t[e℄*(mobil[i℄+mobil[j℄)/2
tmp[e℄ := -fa
t * (dens[j℄*B[0,e℄-dens[i℄*B[1,e℄)

for i := 0 to N-1
e_0 := global_edg_index[i℄
e_1 := global_edg_index[i+1℄
for e := e_0 to e_1-1

j := global_edg_oth_pt[e℄
RHS[i℄ := RHS[i℄ + tmp[e℄
RHS[j℄ := RHS[j℄ - tmp[e℄

Program 5.12: Simpli�ed RHS assembly for the ele
tron
ontinuity equation

(using densities). The Bernoulli fun
tion values B are pre
omputed

an be done by multiplying the dis
retized Lapla
ian with the solution ve
tor,

and adding a few ve
tors arising from the
harge terms, hen
e the dominating

operation is the sparse matrix-times-ve
tor produ
t. Program 5.12 shows that

the situation is similar for RHS assembly for the
ontinuity equations: First a

sparse matrix is
omputed, then the RHS is obtained by summing the rows of

that matrix. The
omputation of the matrix
an be very ef�
iently ve
torized,

so this part is rather fast, even though many operations are involved. The

se
ond part, the summing of the rows, is just a simpli�ed form of the

matrix-times-ve
tor produ
t (the ve
tor has all
omponents equal to one).

The sparse matrix-times-ve
tor type operations do not ve
torize well. The

inner loop runs over the non-zero entries of the upper triangular part of the

matrix, whi
h, owing to the extreme sparsity of our matri
es,2 makes a very

short loop. Due to data dependen
ies, the loops
annot be ex
hanged either.

Therefore this part of the algorithm exe
utes essentially at s
alar speed.

LHS Assembly The LHS assembly is quite similar. Looking at

Eqs. (4.4, 4.5, 4.9, 4.10), we see that the LHS for the
ontinuity equations has

2For the grids we are using, a vertex is in average in
ident in about seven edges, whi
h
means that the resulting sparse matri
es have in average eight non-zeros per row (in
luding the
diagonal), so that a loop over rows in a stri
t upper triangular matrix has in average 3.5 iterations.

5.2. Des
ription of the Implementation 93

the form

(LHS)ik = aik − δik





∑

j 6=i

aij + bi



 , (5.1)

where aik is a matrix with a zero diagonal. Assembling the LHS therefore

requires the
omputation of the matrix aik (whi
h, again,
an easily be

ve
torized), and adding two diagonal
ontributions, the �rst being the row

sum of aik, while the se
ond, arising from the re
ombination terms, is just a

ve
tor that does not
ause problems. As in the RHS assembly, the summing

of the rows of aik must be done essentially at s
alar speed.

Clearinghouse The
learinghouse
lear serves to avoid redundant eval-

uations of
ostly expressions. For example, when assembling the LHS, it is

not ne
essary to re
ompute the mobilities if the RHS has just been assembled

and the values of the unknowns did not
hange in the meantime.

If a quantity, su
h as the mobility, needs to be known, the pro
edure

must
ompute is
alled with one parameter spe
ifying the quantity to be

omputed and the other the quantities on whi
h the �rst quantity depends (i.e.

the \independent quantities"). The pro
edure returns false if the dependent

quantity is up-to-date, otherwise true is returned and the dependent quantity

must be re
omputed. Whenever one of the monitored quantities
hanges this

must be reported to the
learinghouse by
alling notify
hange.

The
learinghouse is implemented by maintaining a \modi�
ation time"

for ea
h monitored variable. This is an arti�
ial time value that starts with

zero and is in
remented on ea
h
all of notify
hange. Consequently,

must
ompute only needs to
he
k if any of the independent quantities are

\younger" than the dependent one.

Quantities are identi�ed by numbers that are all powers of two. They
an

therefore be treated as elements of a set. To spe
ify the set of independent

quantities, one only needs to add all their identi�ers. This makes the

learinghouse very
onvenient to use. However, it must be kept in mind that

FORTRAN does not really support sets|
are must be taken, that no identi�er

is spe
i�ed twi
e, sin
e this would result in the wrong \set".

other modules Besides data stru
tures (
f. Se
tion 5.2.5, page 84),

geometry also
ontains pro
edures, only one of them, init geometry,

94 Implementation

is exported. These pro
edures do all the input pro
essing of the grid and

doping �les, plus the setting up of many of the geometry data stru
tures,

in
luding the temporary ones. A
orresponding initialization pro
edure exists

in tables, this does the remaining initializations of the global data stru
tures,

parti
ularly those required for the equation assembly, plus the transformation

matrix for the
omputation of ele
tri
 �elds (
f. Se
tion 4.4). Other modules

are initialized by tables by
alling their respe
tive initialization
odes.

The module
urrent exports three routines: an initialization routine

alled by tables, and the routines
omp
urrents and get
ont
ur.

The former extra
ts the
onta
t
urrents from the assembled RHS as explained

in Se
tion 4.3, and saves them in internal arrays. The latter pro
edure then

returns the stored values.

All the physi
al models are implemented inmobil andre
omb, the latter

module also
ontains the evaluation of bandgap narrowing. The
ontributions

to the Ja
obian (LHS) due to derivatives of the re
ombination terms are also

omputed in re
omb. LHS
ontributions due to the �eld dependen
e of the

mobilities and the generation terms are
urrently ignored. The
omputation

of the ele
tri
 �eld, as well as the gradients of the quasi-Fermi levels, is done

in efield, using the method presented in Se
tion 4.4. Note that the ele
tri

�eld
omputation, like the assembly routines,
ontains a poorly ve
torizing

sparse matrix row sum.

Potential Future Improvements

We pointed out in Se
tion 5.2.6 (page 91) that parts of the assembly pro
edure

are sparse matrix-times-ve
tor operations or row sums of sparse matri
es and

do not ve
torize well. This has so far not been a serious problem, sin
e

CPU times of typi
al simulations are dominated by the linear solves (usually

to 70-98%). However, re
ent improvements in the solver algorithms have

lead to
ases where only about 60% of the time was used for linear solves,

assembly and ele
tri
 �eld
omputations being responsible for most of the

remainder.

The slow algorithms
ould be ve
torized (and hen
e speeded up by fa
tors

of ten or more) if they
ould be pro
essed in a different way (e.g. diagonal wise

rather than row wise). This is normally not possible sin
e data dependen
ies

would then prevent ve
torization
ompletely. However, the rows
an be

reordered in su
h a way that data dependen
ies are avoided and inner loops

5.2. Des
ription of the Implementation 95

with a large range result. This reordering is already done in the iterative

solver, so using the solver's order
ould signi�
antly speed up the assembly

routines (probably by some fa
tor of two to �ve).

So far this has not been worth the effort, sin
e assembly times were

usually only about 10% of the total simulation time. However, if progress

with the linear solver algorithms
ontinues, it may be a worthwhile task to

ta
kle. An improved linear solver interfa
e is needed though, whi
h would

be in
ompatible with our dire
t solver (whi
h has proved very important for

debugging).

With a new solver interfa
e we would also have the
han
e to get rid of

the multiple sparse data stru
tures that plague the present implementation.

5.2.7 Availability and Portability

Se
ond has been implementedmainly on anAlliant FX-80minisuper
omputer.

During most of the development phase up-to-date versions were maintained

on Cray X-MP and Cray-2 super
omputers, later also on a Convex C-220

minisuper. These were heavily used for testing the
ode and running examples.

The
ode was ported to various other UNIX ma
hines, in
luding NEC

SX-3 super
omputers, Multi
ow Tra
e and DECsystem mainframes and Sun

workstations. An older (FORTRAN only) version ran on Fujitsu VP-200 and

VP-2000 series super
omputers under both, the Super-UX (UNIX System V)

and MSP (
ompatible to IBM's MVS) operating systems.

The good portability of the
ode is unders
ored by the fa
t that installation

to a UNIX system on whi
h Se
ond has never been running before typi
ally

takes some three to �ve hours, in
luding all system dependent parts. Most of

this time is typi
ally used up waiting for
ompilations to �nish. The a
tual

task of
on�guring Se
ond for a new system typi
ally takes less than one

hour.

96 Implementation

5.3 Integration Into a Simulation System

environ.id
84 × 101 mm

Process Simulation

Idea

Ω

.dop .geo

.cur
.out

Second Picasso

Sepp

Figure 5.5: Embedding Se
ond into a simulation environment

Figure 5.5 shows how Se
ond �ts into the 3d devi
e simulation environ-

ment of the Integrated Systems Lab at ETH Z�uri
h. Idea [80℄ is an intera
tive

tool that allows the user to
onstru
t a devi
e out of simple building blo
ks.

Pro
ess simulation output
an be used to de�ne the doping pro�les within the

devi
e under
onstru
tion. (This feature is
urrently only rudimentary, the

orresponding part in Figure 5.5 is therefore dashed.)

The user also supplies to Idea information on how the initial simulation

grid is to be re�ned. This grid information, together with the
onstru
ted

geometry, is used by Idea to build an input �le for the grid generator Ω [24℄.

5.3. Integration Into a Simulation System 97

Ω
an then generate the grid, whi
h is deposited in the grid �le (.geo), while

the
orresponding doping information is written to the doping �le (.dop).

The grid and doping information is input to Se
ond, together with some

parameter input spe
ifying e.g. terminal voltages. Simulation results, i.e.

the values of physi
al quantities at the grid points, are written to result �les

(.out), while
onta
t
urrents are written to the
urrent �le (.
ur). The

dashed line between Ω and Se
ond indi
ates adaptive grid re�nement whi
h

is not yet implemented.

Two tools exist for the visualization of the simulation results. Sepp is

a small utility based on xgraph that reads the
urrent �le and plots I(V)

urves and similar graphs. Pi
asso [82℄ is a sophisti
ated and versatile 2d/3d

graphi
 tool. It uses the grid and result �les to render various representations

of simulation data. In parti
ular it allows the user to sele
t an arbitrary view

of the simulated obje
t and to view s
alar or ve
tor data on the surfa
e of

the obje
t. Colours are used to represent magnitudes. To examine data in

the devi
e interiour, an arbitrary plane
an be used to
ut away parts of the

obje
t, so that data be
ome visible on the
ut fa
e. Pi
asso has proved to be

an indispensable tool for both, the interpretation of simulation results and for

debugging Se
ond. All the plots in Chapter 6 were produ
ed with Sepp and

Pi
asso.

It is evident from Figure 5.5 that information is transferred between

programs mostly through �les. This may not always be the best method,

however in our
ase there is not mu
h of an alternative. Pi
asso will

typi
ally run on a workstation, while Se
ond requires a super
omputer for

large simulations, and often needs to be run in the ba
kground (e.g. over

night). Files are
urrently the only reasonable way to hand the simulation

results from Se
ond to Pi
asso.

6

Results

In this
hapter we present some typi
al results of 3d devi
e simulations. These

results are meant to show the wide range of possible appli
ations and the

exibility of Se
ond.

The �rst example in Se
tion 6.1 shows a study of parasiti
 MOSFETs

and demonstrates how design rules
an be drawn up based on the simulation

results. In the next example (Se
tion 6.2) we investigate different CMOS

designs with respe
t to their sus
eptibility to lat
hup. Se
tion 6.3 �nally

presents the examination of the swit
hing behaviour of a bipolar transistor.

6.1 Parasiti
 MOSFETs

In this se
tion we want to use an example ofMOSFET degradation by parasiti

devi
es to demonstrate the ne
essity and possibilities of 3d simulation.

Figure 6.1 shows an idealized view of a sub-mi
ron n-type MOSFET

isolated by an oxide tren
h.1 The
hannel between the sour
e and drain n+

regions is
ontrolled by a gate whi
h must be imagined to sit on top of the

devi
e, between sour
e and drain. Due to the devi
e geometry there exist

two parasiti
 n-MOS devi
es, both gated through the tren
h oxide: a lateral

1This example has been proposed by Marius Orlowski from Motorola In
., Austin.

99

100 Results

mos-s
hem.id
96 × 47 mm n+

n+-draintrench

n+-source

p-well

n-substrate

Figure 6.1: S
hemati
 view of a tren
h-isolated MOSFET

parasiti
 devi
e with the same sour
e and drain as the \proper" devi
e, and a

verti
al one whose \drain" is the substrate. If the n+ region outside the tren
h

is positively biased with respe
t to the p-well, a
hannel
an be
reated at the

surfa
e of the tren
h oxide. This parasiti

hannel
an
arry a leakage
urrent

whi
h may interfere with the normal transistor operation.

The \
hannel" of the lateral parasiti
 MOSFET will be a very thin layer

along the (verti
al) gate oxide interfa
e, while the \true" transistor
hannel

is, of
ourse, a very shallow layer along the (horizontal) gate oxide interfa
e.

Sin
e the two
hannels are in orthogonal planes it is impossible to simulate

their intera
tion two dimensionally.

For this matter-of-prin
iple investigation we make the simulation problem

more manageable with the help of a few simpli�
ations. First we restri
t

ourselves to examining the effe
t of the lateral parasiti
 MOSFET. In addition

we note that the devi
e as sket
hed in Figure 6.1 is symmetri
al|hen
e we

ignore the left half. Furthermore we noti
e that for the operation of the

lateral devi
e the front and ba
k parts of the tren
h do not play any signi�
ant

role|we ignore everything in front of the sour
e and behind the drain. Sin
e

we are only interested in the steady-state, we do not need to simulate the

substrate and the n+ region outside the tren
h. We therefore repla
e the n+

region by a
onta
t at the outside of the tren
h oxide, and the substrate by

a
onta
t at the bottom of the p-well. To make for a good
onta
t and to

suppress the parasiti
 verti
al MOSFET a
tion, we introdu
e a thin p+ layer

at the bottom of the p-well.

6.1. Parasiti
 MOSFETs 101

paras-dop.ps
37 × 40 mm

N [1/cm**3]

-1.0e+20

-8.7e+18

-7.6e+17

-6.6e+16

-5.7e+15

-1.0e+12

+5.7e+15

+6.6e+16

+7.6e+17

+8.7e+18

+1.0e+20

paras-dop-zoom.ps
61 × 44 mm

Figure 6.2: Geometry and doping distribution for the lateral parasiti

MOSFET simulation. The plot on the right shows the
hannel region

(in
luding the grid) viewed from the tren
h after removal of the tren
h oxide

The resulting devi
e is shown in Figure 6.2. We used a
hannel length

L = 0.5µm and a
hannel widthW = 0.5µm (meaning 0.25µm for our half

devi
e). The gate is 150 Å thi
k and the tren
h is T = 0.3µm wide. The

p-well doping is 1017cm−3.

paras-n.ps
80 × 52 mm

n [1/cm**3]

+1.0e+02

+4.0e+03

+1.6e+05

+6.3e+06

+2.5e+08

+1.0e+10

+4.0e+11

+1.6e+13

+6.3e+14

+2.5e+16

+1.0e+18

Figure 6.3: Ele
tron density plot showing the parasiti

hannel

102 Results

Figure 6.3 shows the ele
tron density in the devi
e with a gate voltage of

1V and 5V applied to the parasiti
 gate. The devi
e is
ut in the middle of

the
hannel, the
ut plane is orthogonal to the dire
tion of the
urrent
ow.

The parasiti

hannel
an be
learly seen at the tren
h oxide interfa
e.

In order to study the intera
tion of the parasiti
 devi
e with the proper

MOSFET we examine the effe
t of the parasiti
 gate bias on the threshold

voltage. The latter we de�ne as the gate bias for whi
h the drain voltage is

10−7 W
L A. Figure 6.4 shows the result of the simulation: applying a bias of 5V

to the parasiti
 gate shifts the transistors threshold voltage by approximately

200mV.

tren
h-Vth.ps
85 × 40 mm

threshold voltage [mV]

bias [V]
-500

-400

-300

-200

-100

0

-5 0 5 10

Figure 6.4: MOSFET threshold voltage as a fun
tion of parasiti
 gate bias

The devi
e engineer is interested in design rules that ensure save devi
e

operation. In our example the question of interest to the devi
e engineer might

be: Given a
ertain value of an a

eptable threshold shift, what are the
riti
al

values of the devi
e geometry?

To answer this question we varied the tren
h thi
kness T from 0.3 to

0.5µm. For ea
h geometry the shift of the threshold voltage (for in
reasing

the parasiti
 gate bias from 0 to 5V) was determined. The result, whi
h is

plotted in Figure 6.5, shows that the threshold shift de
reases with in
reasing

tren
h thi
kness. This is, of
ourse, expe
ted, sin
e the ele
tri
 �eld
reated

by the parasiti
 gate de
reases with in
reasing T .

These simulations were performed with grids
onsisting of between

15 000 and 24 000 verti
es. CPU times on a 6 pro
essor Alliant FX-80

mini-super
omputer were on the order of 20 minutes per bias point, when

6.2. CMOS Lat
hup 103

thresh.ps
88 × 43 mm

 threshold shift [mV]

T [nm]110

120

130

140

150

160

170

180

190

200

300 350 400 450 500

Figure 6.5: Threshold voltage shift as a fun
tion of tren
h width

the bias was stepped up smoothly. Approximately �ve to ten bias steps were

normally used to determine the threshold voltage for a given voltage applied

to the parasiti
 gate. The working point shown in Figure 6.3 was run from

s
rat
h (without stepping up voltages) in just over an hour. On a Cray-2

super
omputer the exe
ution times are typi
ally faster by a fa
tor of �ve.

6.2 CMOS Lat
hup

lat
h-
onf.id
98 × 46 mm

p+p+n+ n+

n-well

p-substrate

Figure 6.6: Simpli�ed CMOS lat
hup stru
ture

Lat
hup is an effe
t in CMOS devi
es where different parasiti
 bipolar

104 Results

transistors lo
k ea
h other in a high
urrent on-state. On
e lat
hup o

urs

the devi
e will be destroyed within mi
rose
onds due to the ex
essive heat

development. Shrinking devi
e dimensions ease devi
e
ross-talk and thus

make lat
hup more likely. The avoidan
e of lat
hup is a major design goal

when trying to produ
e even smaller devi
es. Simulation
an be a extremely

helpful in setting up lat
hup-proof design rules.

There are various possibilities for lat
hup to o

ur. We
on
entrate on

a part of a CMOS inverter, whi
h is the simplest
on�guration sus
eptible

to lat
hup. Figure 6.6 shows an idealized sket
h of the devi
es. The p+

diffusion, the n-well, and the p-substrate form a verti
al pnp transistor, while

the n+ diffusion, the substrate and the n-well form a lateral npn transistor.

Both are
oupled in a thyristor-like fashion.

Normally, both bipolar transistors are turned off sin
e under normal

operating
onditions the substrate is biased at 0V by the n+-plug and the

p-well is similarly held at VSS . The
onta
ts at the n
+- and p+-diffusions are

always between 0V and VSS , so that the base-emitter diode is never forward

biased. However, a voltage glit
h at one of the two emitters
an turn on the

orresponding transistor. If the transistor is
ondu
ting enough
urrent for a

suf�
ient amount of time, its
olle
tor
urrent may
ause a voltage drop along

the other transistor's base-emitter diode high enough to turn on that transistor

as well. If the two transistors have suf�
ient gain, they will lo
k ea
h other in

high inje
tion mode even as the glit
h that triggered the pro
ess is over, and

the devi
es are lat
hed.

In our experimentswe always tried to indu
e lat
hup by applying a negative

voltage pulse of 0.85V to the p+-diffusion, thus turning on the lateral npn

transistor. The length of the pulse varied, while the steepness of its
anks was

kept
onstant (1 ns rising time). Figure 6.7 shows the impurity
on
entrations

for the basi

on�guration, whi
h is in 1µm te
hnology, featuring a very

shallow (1.35µm) n-well. Minimum distan
es between a
tive regions o

ur

a
ross tub edges.

The �rst investigation (see also [43℄) was a
omparison between 2d and 3d

simulations. The former were also performed with Se
ond, but a \quasi-2D"

grid was obtained by repli
ating the front layer of the original 3d grid on
e

in the third dimension. The 3d grid
onsisted of 56 562 verti
es while the

resulting \2D" grid had 2× 2 247 points.

The result of the simulation with the triggering voltage pulse held for

6.2. CMOS Lat
hup 105

lat
h-1-dop.ps
95 × 62 mm

N [1/cm**3]

-1.0e+20

-8.7e+18

-7.6e+17

-6.6e+16

-5.7e+15

-9.6e+11

+5.7e+15

+6.6e+16

+7.6e+17

+8.7e+18

+1.0e+20

Figure 6.7: Impurity distribution for basi
 CMOS lat
hup example

ur-2d.ps
52 × 61 mm

Substrate

n-tub

p-n-tub

n-p-tub

p-tub

current [A] x 10-6

-9time [sec] x 10

-50.00

-45.00

-40.00

-35.00

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

-0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

0.00 1.00 2.00 3.00

ur-3d.ps
52 × 61 mm

Substrate

n-tub

p-n-tub

n-p-tub

p-tub

current [A] x 10-6

-9time [sec] x 10-300.00

-250.00

-200.00

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

200.00

0.00 2.00 4.00 6.00

Figure 6.8: Conta
t
urrents for 2d (left) and 3d (right) simulations

2.2 ns is shown in Figure 6.8. The
urve labels \p-n-tub" and \n-p-tub" refer

to the p+ and n+ diffusions respe
tively. It
an be
learly seen that a

ording

106 Results

to the 2d simulation lat
hup o

urs just as the voltage pulse is falling off after

3.2 ns, while a

ording to the 3d simulation, the npn transistor turns off very

qui
kly on
e the applied voltage goes towards zero. The voltage pulse needed

to be held for more than 5 ns for the 3d simulation to indi
ate lat
hup. This

is an example of the signi�
ant differen
es that
an o

ur between two and

three dimensional simulations.

tren
h-dop.ps
52 × 30 mm

shifted-dop.ps
52 × 30 mm

Figure 6.9: Doping for the tren
h isolated (left) and shifted (right) CMOS

stru
tures. The bla
k stru
ture is the oxide

Next we examined the effe
t of two design measures for inhibiting

lat
hup [22℄. One was to introdu
e a small oxide tren
h to isolate the a
tive

regions of the p-MOS and the n-MOS devi
es while the other was to shift one

transistor in the third dimension (Figure 6.9). Figure 6.10 shows the
urrents

for all three
ases when the pulse was held for 10 ns. The
urves
learly show

that both measures effe
tively prevented lat
hup in this
ase.

These simulations were performed partially on a Cray-2 super
omputer

and partially on a Convex C-220 minisuper. Typi
al run times were a few

hours on the Cray-2 or days on the Convex for grid sizes ranging from 18 500

to 24 000 points. Memory usage was of the order of 240Mbytes.

6.3 Transistor Swit
hing

Bipolar transistors
an be made to swit
h mu
h faster than CMOS devi
es, at

the expense of a higher power
onsumption (and hen
e heat dissipation). For

that reason they are used in
ases where speed matters more than pri
e, e.g.

for super
omputers.

Here we examine the swit
hing behaviour of a high-speed ECL transistor.

6.3. Transistor Swit
hing 107

lat
h-lin-
ur.ps
35 × 55 mm

current [A] x 10-6

time [n sec]

-400.00

-350.00

-300.00

-250.00

-200.00

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 5.00

lat
h-tren
h-
ur.ps
35 × 55 mm

Substrate
n-tub
p-n-tub
n-p-tub
p-tub

current [A] x 10-6

time [nsec]

-400.00

-350.00

-300.00

-250.00

-200.00

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 5.00 10.00

lat
h-shift-
ur.ps
35 × 55 mm

current [A] x 10-6

time [n sec]

-400.00

-350.00

-300.00

-250.00

-200.00

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 5.00

Figure 6.10: Conta
t
urrents for three CMOS stru
tures

bip-dop.ps
92 × 66 mm

N [1/cm**3]

-1.2e+20

-9.9e+18

-8.1e+17

-6.6e+16

-5.3e+15

+1.3e+14

+7.0e+15

+8.6e+16

+1.1e+18

+1.3e+19

+1.6e+20

Figure 6.11: Doping distribution for an ECL transistor

Figure 6.11 shows the doping distribution within the devi
e. Also visible

is an insulating oxide tren
h. The emitter is the bright region in the middle

top portion of the devi
e, the base is
onta
ted at the left and the
olle
tor

onta
t is at the right. The
olle
tor
urrent must therefore
ow around the

108 Results

tren
h. Note the slanted walls of that tren
h, whi
h Se
ond
an handle

without problems. We know of no other program that
an simulate su
h a

devi
e geometry.

We simulated the
urrent waveform of the transistor in a
ommon emitter

on�guration. The
olle
tor-emitter voltage, VCE , was kept
onstant at 5V

and the base-emitter bias, VBE , was initially at 0.8V, so that the transistor

was fully turned on. At t = 0 the devi
e was being turned off by ramping

VBE to 0V within 200 ps. At t = 300 ps the base voltage was again turned

on, rea
hing its old value of 0.8V at t = 500 ps. The simulation was then

arried on for another 500 ps.

bip-
ur.ps
86 × 51 mm

Base
Emitter
Collector

A x 10-6

-9s x 10
-100.00

-80.00

-60.00

-40.00

-20.00

-0.00

20.00

40.00

60.00

80.00

0.00 0.20 0.40 0.60 0.80 1.00

Figure 6.12: ECL transistor swit
hing waveform

Figure 6.12 shows the
omputed
onta
t
urrents. The dis
ontinuities

at 0, 200, 300, and 500 ps are due to the displa
ement
urrent, whi
h is

dis
ontinuous be
ause of the dis
ontinuous derivative of the applied voltage.

The terminal
urrents are dominated by the displa
ement
urrent after approx.

70 ps, meaning that the transistor is basi
ally turned off at that time.

The pi
ture is somewhat different when the devi
e is swit
hed on: The

terminal
urrent are
ompletely dominated by the displa
ement
urrent until

the base voltage has rea
hed its �nal value (VBE = 0.8V). After that, approx.
120 ps are needed until the
olle
tor
urrent
omes
lose to rea
hing the steady

state value.

Su
h a simulation may be used to optimize the swit
hing time of the

6.3. Transistor Swit
hing 109

transistor. To this end it is useful to observe the dynami
 operation of the

devi
e by monitoring physi
al entities in the devi
e interiour. Figure 6.13

shows a plot of the magnitude of the ele
tron
urrent density in the transistor

after 100 ps, that is halfway through the swit
h-off phase. The plot shows that

the a
tive region of the transistor is already basi
ally free of
urrent, while

arriers are still travelling through the highly doped
olle
tor and emitter

regions. This
lean-out time is obviously responsible for the laten
y of the

swit
h. Pi
tures like this one
an be very valuable for optimizing dynami

devi
e
hara
teristi
s.

bip-0.1.ps
108 × 77 mm

|j-| [A/cm**2]

+1.00e-02

+4.27e-02

+1.82e-01

+7.77e-01

+3.31e+00

+1.41e+01

+6.03e+01

+2.57e+02

+1.10e+03

+4.69e+03

+2.00e+04

Figure 6.13: Magnitude of the ele
tron
urrent density in the transistor during

swit
h-off

These
omputations were performed using a grid with 17 770 verti
es.

The simulations were run on a six pro
essor Alliant FX-80 in about one day.

Memory usage was 100Mbytes. Similar runs took about �ve hours on a

Cray-2.

7

Con
lusions and Future Work

In this thesis we dis
ussed the dif�
ulties asso
iated with the three dimensional

simulation of general semi
ondu
tor devi
es. We presented the design and

implementation of Se
ond, a program that
an be used to perform su
h

simulations. We demonstrated the programs usefulness by applying it to a

variety of different problems involving signi�
antly differing geometries and

operating
onditions.

The results presented in Chapter 6 are meant to give an indi
ation of the

problems that
an be approa
hed with Se
ond. However, they are only a

small sele
tion of a wide range of possible appli
ations.

Our examples prove that 3d simulations, even transient, are possible with

rather general devi
e geometries. The examples also show, however, that

these simulations are quite expensive in terms of CPU time and memory

requirements. Typi
al simulations run for hours on modern super
omputers

or days on minisupers. Optimizing a devi
e generally requires many single

simulations, in
reasing
omputer time requirements by another order of

magnitude. Memory requirements are in the hundreds of megabytes range,

whi
h
alls for big ma
hines. It therefore appears safe to say that 3d

simulation, while being a ne
essity for many problems, is not yet in a position

to
ompletely displa
e 2d simulation.

On the other hand, even running a super
omputer for days on a single

111

112 Con
lusions and Future Work

problem is
heap
ompared to the
ost of going through one more iteration

of
hip manufa
turing, whi
h
an take months and
ost millions. One has to

keep that in mind when looking at the
osts of 3d simulation. We would also

like to add that the high
osts are not a result of our general approa
h, the pri
e

we pay for generality is the size and
omplexity of the
ode, not the amount

of
omputer time. Indeed, our general 3d grids often allow us to work with

fewer mesh points than would be required by other programs, and hen
e save

omputer time.

Se
ond meets its design goals of being a \general purpose devi
e

simulator" in as far as it permits the simulation of general plane fa
ed

geometries|the generality of the possible devi
e geometries is only limited

by what the grid generator
an supply. No other 3d devi
e simulator published

so far supports su
h geometri
al generality.

In other respe
ts true generality is not yet a
hieved. Further improvements

are mainly possible in two ways: adaptive grid re�nement
an improve speed

and reliability of the simulation, and improved physi
al models
an in
rease

the domain of problems that
an be ta
kled with Se
ond.

Adaptive grid re�nement offers the possibility to simulate with grids that

are better adjusted to the problem than grids that are generated based on the

doping information (and possibly additional hints by the user). Implementation

of this feature requires two things: an improved interfa
e between Se
ond

and the grid generator must enable the former to instru
t the latter where the

point density is to be in
reased or redu
ed, also some means must be available

to interpolate data from the original to the revised grid. On the other hand,

riteria must be found so the simulator
an determine where it needs more

grid points and where it needs less. As B�urgler [13℄ has shown, this problem

is not easy to solve. The solution B�urgler has given is based on his new

dis
retization s
heme and is not appli
able to the BM. More theoreti
al work

must be done on error estimates before a good implementation of adaptive

grid re�nement is possible.

Various improvements are possible in the way physi
al devi
es are mod-

elled. Generalized boundary
onditions should in
lude external resistors,

apa
itors and indu
tan
es, as well as
urrent
ontrolled (in addition to volt-

age
ontrolled)
onta
ts. The treatment of external magneti
 �elds must

be possible for the simulation of magneti
 �eld sensors. Spe
ial devi
es

types, like thyristors, may require more sophisti
ated mobility and re
om-

bination models. Parti
ularly power devi
es require the solution of extra

113

equations for
arrier and latti
e temperature [81℄. Finally, the re
ent interest

in heterostru
tures
reates a demand for their simulation in 3d (
f. [49℄).

Most of these extensions follow work that has been done in 2d, sin
e

the physi
al models do not depend on the dimension. However, sin
e better

models generally imply an in
rease of the number of
al
ulations to be

done,
omputer speed poses a limit on what
an be done|parti
ularly for 3d

simulations whi
h are anyway at the edge of what is feasible with present-day

omputers.

It should �nally be pointed out that there are a number of possible

improvements in parts of the simulation system that are not dis
ussed in this

thesis. Improved grid generators
an lower simulation
osts by redu
ing the

number of grid points or by allo
ating them in a way that results in better

onditioned linear systems. In addition we
an expe
t signi�
ant redu
tions

in simulation
osts from improved linear solver algorithms. During the

development of Se
ond we already experien
ed a dramati
 improvement in

the available iterative linear equation solvers, and there is good reason to

expe
t further progress. Finally, the dramati
 in
rease in
omputer speed and

de
rease in
omputer pri
es will
ertainly help to transform 3d simulation into

a standard engineering tool.

114 Con
lusions and Future Work

List of Figures

0.1 Spreading of
urrent at devi
e edges
auses 3d effe
ts. 2

1.1 Simple MOSFET stru
ture showing sili
on, oxide, and

onta
ts. 9

2.1 2D example of a box 21

2.2 Memory requirements of dire
t and iterative solvers as

a fun
tion of problem size 33

4.1 S
hemati
 view of Diri
hlet and non-Diri
hlet regions in

the linear system of equations 47

4.2 Box of a boundary point 48

4.3 Ele
tri
 �eld ve
tor within an element 50

5.1 The rough stru
ture of Se
ond 81

5.2 Stru
ture and main data
ow of the PDE solver 83

5.3 Internal order of verti
es 85

5.4 S
hemati
 representation of the sparse data stru
ture . 86

5.5 Embedding Se
ond into a simulation environment . . . 96

6.1 S
hemati
 view of a tren
h-isolated MOSFET 100

115

116 List of Figures

6.2 Geometry and doping distribution for the lateral parasiti

MOSFET simulation . 101

6.3 Ele
tron density plot showing the parasiti

hannel . . . 101

6.4 MOSFET threshold voltage as a fun
tion of parasiti

gate bias . 102

6.5 Threshold voltage shift as a fun
tion of tren
h width . . 103

6.6 Simpli�ed CMOS lat
hup stru
ture 103

6.7 Impurity distribution for basi
 CMOS lat
hup example . 105

6.8 Conta
t
urrents for 2d and 3d simulations 105

6.9 Doping for the tren
h isolated and shifted CMOS stru
tures106

6.10 Conta
t
urrents for three CMOS stru
tures 107

6.11 Doping distribution for an ECL transistor 107

6.12 ECL transistor swit
hing waveform 108

6.13 Magnitude of the ele
tron
urrent density in the transistor

during swit
h-off . 109

List of Programs

5.1 sumint.h . 67

5.2 sumint int.h . 68

5.3 sumint.F . 69

5.4 Client module . 70

5.5 An improved version of sumint.h 72

5.6 Header �le for library routine
allable by both, FORTRAN

and C . 74

5.7 Simpli�ed heap interfa
e 75

5.8 Typi
al usage of heap memory. 77

5.9 Examples of sparse matrix usage: single loop version

and nested loop version 87

5.10 S
hemati

ontrol
ow for time integration 89

5.11 The damped Newton algorithm 91

5.12 Simpli�ed RHS assembly for the ele
tron
ontinuity

equation . 92

117

118 LIST OF PROGRAMS

List of Tables

1.1 De Mari s
aling fa
tors for T = 300K. 12

1.2 Fundamental and material
onstants 13

1.3 Mobility parameters for ele
trons and holes 16

1.4 Parameters for Sho
kley-Read-Hall re
ombination model 17

1.5 Grant's
oef�
ients for the impa
t ionization model after

Chynoweth . 18

5.1 Ma
ros de�ning ma
hine
hara
teristi
s for use by FOR-

TRAN and C programs 71

119

120 List of Tables

Bibliography

[1℄ P. R. Amestoy and I. S. Duff. Ve
torization of a multipro
essor multi-

frontal
ode. Int. J. Super
omp. Appl., 3(3):41{59, 1989.

[2℄ ANSI X3.9-1978. Ameri
an National Standard Programming Language

FORTRAN.

[3℄ ANSI X3J3. Fortran 8X draft. ACM SIGPLAN Fortran Forum, 8(4),

1989.

[4℄ C. C. Ash
raft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D.

Simon. Progress in sparse matrix methods for large linear systems on

ve
tor super
omputers. Inter. J. Super
omp. App., 1(4):10{30, 1987.

[5℄ J. W. Ba
kus, F. L. Bauer, J. Green, C. Katz, J. M
Carthy, P. Naur,

A. J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein,

A. vanWijngaarden, andM.Woodger. Revised report on the algorithmi

language ALGOL 60. Numer. Math., 4:420{453, 1963.

[6℄ J. W. Ba
kus et al. The FORTRAN automati

oding system. In Pro
.

West Joint Comp. Conf., 1957.

[7℄ R. E. Bank, W. M. Coughran, Jr., W. Fi
htner, E. H. Grosse, D. J. Rose,

and R. K. Smith. Transient simulation of sili
on devi
es and
ir
uits.

IEEE Trans., CAD-4:436{451, 1985.

[8℄ R. E. Bank and D. J. Rose. Global approximate Newton methods.

Numer. Math., 37:279{295, 1981.

[9℄ R. E. Bank and R. K. Smith. General sparse elimination requires no

permanent integer storage. SIAM J. S
i. Stat. Comput., 8:574{584, 1987.

121

122 Bibliography

[10℄ W. E. Beadle, J. C. C. Tsai, and R. D. Plummer, editors. Qui
k Refern
e

Manual for Sili
on Integrated Cir
uit Te
hnology. Solid State Physi
s.

John Wiley & Sons, New York, 1985.

[11℄ W. Bergner and R. Kir
her. SITAR|an ef�
ient 3 d-simulator for

optimization of non-planar tren
h stru
tures (DRAMs). In G. Ba

arani

andM. Rudan, editors, SISDEP 3, pages 165{74. AlmaMater Studiorum

Sae
ularia Nona, Italy, 1988.

[12℄ I. N. Bronstein and K. A. Semendjajew. Tas
henbu
h der Mathematik.

Harri Deuts
h, 20th edition, 1981.

[13℄ J. F. B�urgler. Dis
retization and Grid Adaptation in Semi
ondu
tor

Devi
e Modeling. PhD thesis, ETH-Z�uri
h, 1990. Publ. by Hartung-

Gorre Verlag, Konstanz, Germany.

[14℄ E. M. Buturla, P. E. Cottrell, B. M. Grossman, K. A. Salsburg, M. B.

Lawlor, and C. T. M
Mullen. Three-dimensional �nite element simula-

tion of semi
ondu
tor devi
es. In ISSCC, pages 76{77. IEEE, 1980.

[15℄ J. N. Buxton and B. Randell, editors. Software Engineering Te
hniques,

Bruxelles, 1970. NATO S
ien
e Commitee.

[16℄ D. M. Caughey and R. E. Thomas. Carrier mobilities in sili
on empiri-

ally related to doping and �eld. Pro
. IEEE, pages 2192{93, 1967.

[17℄ J.-H. Chern, J. T. Maeda, L. A. Arledge, and J. P. Yang. SIERRA: a 3-D

devi
e simulator for reliability modeling. IEEE Trans., CAD-8:516{27,

1989.

[18℄ A. G. Chynoweth. Ionization rates for ele
trons and holes in sili
on.

Phys. Rev, 109:1537{1540, 1958.

[19℄ P. Ciampolini, A. Pierantoni, M. Melanotte, C. Ce

hetti, C. Lombardi,

and G. Ba

arani. Realisti
 devi
e simulation in three dimensions. In

IEDM, pages 131{134, 1989.

[20℄ E. R. Cohen and B. N. Taylor. The fundamental physi
al
onstants.

Physi
s Today, Aug 1989. After the 1986 CODATA report.

[21℄ P. Conti. Grid Generation for Three Dimensional Devi
e Simulation.

PhD thesis, ETH-Z�uri
h, 1991. Publ. by Hartung Gorre Verlag, Kon-

stanz, Germany.

Bibliography 123

[22℄ P. Conti, G. Heiser, and W. Fi
htner. Three dimensional transient

simulation of
omplex sili
on devi
es. Jap. J. Appl. Phys. Letters,

29(12), 1990.

[23℄ P. Conti, N. Hits
hfeld, and W. Fi
htner. Ω { an o
tree-based mixed

element grid allo
ator for adaptive 3D devi
e simulation. IEEE Trans.

CAD ICAS, to appear.

[24℄ P. Conti and H. Wa
hter. Ω User Manual. Integrated Systems Lab,

ETH-Z�uri
h, 1990.

[25℄ W. M. Coughran, Jr., E. Grosse, and D. J. Rose. CAzM: A
ir
uit

analyzer with ma
romodelling. IEEE Trans., ED-30:1207{1213, 1983.

[26℄ G. Dahlquist. A spe
ial stability problem for linear multistep methods.

BIT, 3:27{43, 1963.

[27℄ R. Dang, N. Shigyo, T. Wada, S. Onga, and M. Konaka. An analysis

of MOSFETs' narrow-
hannel effe
ts. In ICCC 82, pages 286{9. IEEE,

1982.

[28℄ S. C. Eisenstat, M. C. Gursky, M. H. S
hultz, and A. H. Sherman. Yale

sparse matrix pa
kage II: The nonsymmetri

odes. Resear
h Rep. 114,

Yale Univ. Comp. S
i. Dept., 1977.

[29℄ S. C. Eisenstat, M. C. Gursky, M. H. S
hultz, and A. H. Sherman. Yale

sparse matrix pa
kage I: The symmetri

odes. Int. J. Numer. Methods

in Eng., 18:1145{1151, 1982.

[30℄ S. C. Eisenstat, M. H. S
hultz, and A. H. Sherman. Considerations in

the design of software for sparse gaussian elimination. In Sparse Matrix

Computations. A
ademi
 Press, 1976.

[31℄ W. Fi
htner, D. J. Rose, and R. E. Bank. Semi
ondu
tor devi
e

simulation. IEEE Trans., ED-30:1018{30, 1983.

[32℄ R. Flet
her. Conjugate gradient methods for inde�nite systems. In G. A.

Watson, editor, Pro
. of the Dundee Biennal Conferen
e on Numeri
al

Analysis, pages 73{89, New York, 1975. Springer-Verlag.

[33℄ A. F. Franz, G. A. Franz, S. Selberherr, C. Ringhofer, and P. Markowi
h.

Finite boxes|a generalization of the �nite-differen
e method suitable

for semi
ondu
tor devi
e simulation. IEEE Trans., ED-30:1070{1083,

1983.

124 Bibliography

[34℄ S. P. Gaur, G. R. Srinivasan, and I. Antipov. Veri�
ation of heavy doping

parameters in semi
ondu
tor devi
e modeling. In IEDM, pages 276{79,

1980.

[35℄ C. W. Gear. Numeri
al Initial Value Problems in Ordinary Differential

Equations. Prenti
e Hall, 1971.

[36℄ W. N. Grant. Ele
tron and hole ionization rates in epitaxial sili
on and

high ele
tri
 �elds. Solid State Ele
., 16:1189{1203, 1973.

[37℄ H. K. Gummel. A self-
onsistent iterative s
heme for one-dimensional

steady state transistor
al
ulations. IEEE Trans., ED-27:1520{1532,

1964.

[38℄ W. H�ans
h and S. Selberherr. MINIMOS 3: A MOSFET simulator that

in
ludes energy balan
e. IEEE Trans., ED-34:1074{8, 1987.

[39℄ J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi,

J. R. Ri
e, J. Heny G. Tha
her, and C. Witzgall. Computer Approxima-

tions. Robert E. Krieger, Huntington, New York, 1978.

[40℄ G. Heiser. SIMBAD { a simple binary data format. Te
hni
al Report

88/24, Integrated Systems Lab, ETH-Z�uri
h, 1988. Spe
i�
ation and

user's guide.

[41℄ G. Heiser. Devi
e simulation: Supplementary do
uments. Te
hni
al

Report 90/10, Integrated Systems Lab, ETH-Z�uri
h, July 1990. Contains

DATEX format spe
i�
ation and Conventions for grid des
riptions.

[42℄ G. Heiser and K. Kells. Se
ond user manual. Te
hni
al Report 90/12,

Integrated Systems Lab, ETH-Z�uri
h, July 1990. Version 2.0.

[43℄ G. Heiser, C. Pommerell, J. Weis, and W. Fi
htner. Large-s
ale devi
e

simulation: Algorithms,
omputer ar
hite
tures, results. IEEE Trans.

CAD ICAS, to appear.

[44℄ M. R. Hestenes and E. Stiefel. Methods of
onjugate gradients for

solving linear systems. J. Res. Nat. Bur. Stand., 49:409{436, 1952.

[45℄ J. D. Ja
kson. Classi
al Ele
trodynami
s. John Wiley & Sons, 2d

edition, 1975.

[46℄ R. Kasai, K. Yokoyama, A. Yoshii, and T. Sudo. Threshold-voltage

analysis of short- and narrow-
hannel MOSFETs by three-dimensional

omputer simulation. IEEE Trans., ED-29:870{6, 1982.

Bibliography 125

[47℄ J. Lambert. Computational Methods in Ordinary Differential Equations.

Wiley, 1973.

[48℄ C. L. Lawson, R. J. Hanson, D. R. Kin
aid, and F. T. Krogh. Basi
 linear

algebra subprograms for FORTRAN usage. ACM TOMS, 5:308{323,

1979.

[49℄ P. Lindorfer and S. Selberherr. GaAs MESFET simulation with MIN-

IMOS. In 11th Annual GaAs IC Symposium, pages 277{80. IEEE,

1989.

[50℄ A. deMari. An a

urate numeri
al steady-state one-dimensional solution

of the p-n jun
tion. Solid-State Ele
tron., 11:33{58, 1968.

[51℄ H. Masuda, T. Toyabe, T. Haguwara, and Y. Ushiro. High-speed three-

dimensional devi
e simulator on a super
omputer: CADDETH. In

International Symposium on Cir
uits and Systems, pages 1163{6. IEEE,

1984.

[52℄ J. A. Meijerink and H. A. van der Vorst. An iterative solution method for

linear systems of whi
h the
oef�
ient matrix is a symmetri
 M-matrix.

Math. of Comp., 137:148{162, 1977.

[53℄ J. A. Meijerink and H. A. van der Vorst. Guidelines for the usage of

in
omplete de
ompositions in solving sets of linear equations as they

o

ur in pra
ti
al problems. J. Comp. Phys., 44:134{155, 1981.

[54℄ S. Odanaka, M. Wakabayashi, H. Umimoto, A. Hiroki, K. Ohe,

K. Moriyama, H. Iwasaki, and H. Esaki. Smart: three-dimensional

pro
ess/devi
e simulator integrated on a super-
omputer. In Intern.

Symp. Cir
. Syst., pages 534{7. IEEE, 1987.

[55℄ S. Onga, N. Shigoyo, M. Yoshimi, and K. Tanigu
hi. Analysis of

submi
ron MOS devi
e
hara
teristi
s using a
omposite full three-

dimensional pro
ess/devi
e simulation system. In Symp. VLSI Te
hn.,

pages 15{16. Japan So
. Appl. Phys., Tokyo, Japan, 1986.

[56℄ M. R. Pinto, C. S. Rafferty, and R.W. Dutton. PISCES-II User's Manual.

Stanford University, 1984.

[57℄ M. R. Pinto. Comprehensive Semi
ondu
tor Devi
e Simulation for

Sili
on ULSI. PhD thesis, Stanford, 1990.

[58℄ S. Pissanetzky. Sparse Matrix Te
hnology. A
ademi
 Press, 1984.

126 Bibliography

[59℄ C. Pommerell and W. Fi
htner. PILS: An iterative linear solver pa
kage

for ill-
onditioned systems. Subm. Super
omputing '91 (ACM), Mar
h

1991.

[60℄ C. S. Rafferty, M. R. Pinto, and R. W. Dutton. Iterative methods

in semi
ondu
tor devi
e simulation. IEEE Trans., ED-10:2018{2027,

1985.

[61℄ W. van Roosbroe
k. Theory of
ow of ele
trons and holes in germanium

and other semi
ondu
tors. Bell System Te
h. J., 29:560{607, 1950.

[62℄ Y. Saad. The Lan
zos biorthogonalization algorithm and other oblique

proje
tion methods for solving large unsymmetri
 systems. SIAM J.

Numer. Anal., 19:484{506, 1982.

[63℄ K. A. Salsburg, P. E. Cottrell, and E. M. Buturla. FIELDAY|�nite

element devi
e analysis. In P. Antognetti, D. A. Antoniadis, R. W.

Dutton, and W. G. Oldham, editors, Pro
. Dev. Sim MOS-VLSI Cir
.,

pages 582{619. Martinus Nijhoff, The Hague, Netherlands, 1983.

[64℄ D. S
harfetter and H. K. Gummel. Large-signal analysis of a sili
on

Read diode os
illator. IEEE Trans., ED-16:64{77, 1969.

[65℄ S. Selberherr. Analysis and Simulation of Semi
ondu
tor Devi
es.

Springer, 1984.

[66℄ N. Shigyo and R. Dang. Analysis of an anomalous subthreshold
urrent

in a fully re
essed oxide MOSFET using a three-dimensional devi
e

simulator. IEEE Trans., ED-32:441{5, 1985.

[67℄ J. W. Slotboom. The pn-Produ
t in Sili
on. Solid-State Ele
tron.,

20:279{83, 1977.

[68℄ G. D. Smith. Numeri
al Solution of Partial Differential Equations:

Finite Differen
e Methods. Oxford, 1978.

[69℄ P. Sonneveld. CGS, a fast Lan
zos-type solver for nonsymmetri
 linear

systems. SIAM J. S
i. Stat. Comput., 10(1):36{52, 1989.

[70℄ G. Strang and G. J. Fix. An Analysis of the Finite Element Method.

Prenti
e Hall, 1973.

[71℄ S. M. Sze. Physi
s of Semi
ondu
tor Devi
es. John Wiley & Sons, 2nd

edition, 1981.

Bibliography 127

[72℄ E. Takeda, K. Takeu
hi, D. Hisamoto, T. Toyabe, K. Ohshima, and

K. Itoh. A
ross se
tion of alpha -parti
le-indu
ed soft-error phenomena

in VLSIs. IEEE Trans., ED-36:2567{75, 1989.

[73℄ M. Thurner and S. Selberherr. The extension of MINIMOS to a three

dimensional simulation program. In Pro
. of NASECODE VConf., pages

327{332, 1987.

[74℄ T. Toyabe, H. Masuda, Y. Aoki, H. Shukuri, and T. Hagiwara. Three-

dimensional devi
e simulator CADDETHwith highly
onvergent matrix

solution algorithms. IEEE Trans., ED-32:2038{44, 1985.

[75℄ M. Turner, P. Lindorfer, and S. Selberherr. Numeri
al treatment of

nonre
tangular �eld-oxide for 3-d MOSFET simulation. IEEE Trans.,

CAD-9:1189{1197, 1990.

[76℄ T. Uenoyama, S. Odanaka, and T. Onuma. Analysis of narrow
hannel

effe
t in small-size GaAs MESFET. In W. T. Lindley, editor, Intern.

Symp. GaAs, pages 447{52. IEEE Ele
tro
hem. So
, 1986.

[77℄ R. S. Varga. Matrix Iterative Analysis. Prenti
e-Hall, Englewood Cliffs,

1962.

[78℄ VENUS Systemplanung. VENUS 2 Projektdokumentation. Siemens

ZTI, M�un
hen, O
t 1986.

[79℄ H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly
onverging

variant of CG{S for the solution of nonsymmetri
 linear systems. Subm.

SIAM J. S
i. Stat. Comput.

[80℄ H. Wa
hter. Idea User Manual. Integrated Systems Lab, ETH-Z�uri
h,

1991.

[81℄ G. K. Wa
hutka. Rigorous thermodynami
 treatment of heat generation

and
ondu
tion in semi
ondu
tor devi
e modeling. IEEE Trans., CAD-

9:1141{1149, 1990.

[82℄ M. Westermann. Pi
asso Referen
e Manual Version 1.0. Integrated

Systems Lab, ETH-Z�uri
h, February 1990.

[83℄ K. Yamagu
hi. A mobility model for
arriers in the MOS inversion

layer. IEEE Trans., ED-30:658{63, 1983.

128 Bibliography

[84℄ A. Yoshii, S. Horigu
hi, and T. Sudo. A numeri
al analysis for very

small semi
ondu
tor devi
es. In Intern. Solid-State Cir
. Conf., pages

80{1. IEEE, 1980.

Index

A stability 27

abstra
t data type 60

a

eptor 5

Algol-60 58

algorithm 4, 25, 29, 32, 38, 84, 89,

92, 94f

riti
al 59

iterative 54

minimum degree 33

Newton 91

numeri
al 62

reverse Cuthill-M
Kee 33

Alliant 57, 102, 109

applied voltage 10, 53, 55, 89f, 97,

102, 104, 108

array 60, 63, 75f, 80, 84, 86ff, 94

assembly 44, 84, 87ff, 94

Auger pro
ess 16

avalan
he generation 17

ba
kward differential formula 27

ba
kward Euler method 26

bandgap narrowing 8, 14, 88, 94

bandwidth redu
tion 33

Bernoulli fun
tion 23, 31, 45, 83,

92

BiCG 34

BLSMP 88

Bologna 37

Boltzmann
onstant 7

Boltzmann statisti
s 7

boundary 9, 20, 48

internal 11

plain fa
ed 20

boundary
ondition 8, 87, 112

Diri
hlet 10, 13, 46, 91

Neumann 9, 13, 48

box 20, 23, 48

box method 19, 21, 23, 25, 32, 36,

39, 44, 85, 112

built-in voltage 10, 53

Burroughs 76

C 58, 65, 68f, 71, 73ff, 77f, 80

C++ 68, 73, 77, 80

CADDETH 36

apa
itor 112

arrier
on
entration 6, 15, 31, 54

arrier density 6, 31, 53

arrier temperature 113

CG 32

CGS 34

CGSTAB 34

harge density 6, 48

CMOS 103

ode generation 58, 68

ompiler 58, 60, 64, 72f

omputer 1, 3, 11, 19, 32, 39, 59,

61ff, 69, 73, 113

multipro
essor 38, 72

ve
tor 38, 72, 79

omputer language 58, 60, 65

129

130 INDEX

on
entration

arrier 6, 15, 31, 54

impurity 6, 10, 39, 53, 104

intrinsi
 7, 12, 14, 88

effe
tive 8, 14

ondition

suf�
ient de
rease 29

ondition number 32, 36ff

ondu
tion
urrent 49

onjugate gradient method 32

onta
t 9, 112

ontinuity equation 6, 22, 24, 26,

31, 36, 44, 48f, 87, 91f

ontrol stru
ture 60

ontrol volume method 19

Convex 57, 106

oupled solution method 30, 56,

90

Cray 57, 61, 69, 103, 106, 109

uboids 40

urrent 7, 11, 15, 48f, 82, 91, 94,

97, 102, 106f

ondu
tion 49

displa
ement 6, 49, 108

total 6, 49

urrent
onservation 46

urrent density 6, 9, 15, 23, 50, 52,

83, 88

damping 29

data stru
ture 4, 25, 32, 41, 60,

66f, 80, 84, 86ff, 93, 95

sparse 86

data type 60

de
oupled solution method 30

degenera
y 8

density

arrier 6, 31, 53

harge 6, 48

urrent 6, 9, 15, 23, 50, 52,

83, 88

ele
tron 101

intrinsi
 7, 12, 14, 88

effe
tive 8, 14

point 25, 39, 41, 112

design rule 99, 102, 104

devi
e
ross-talk 104

diele
tri

onstant 6

diffusion
oef�
ient 7

dire
t linear solver 32, 38

Diri
hlet boundary
ondition 10,

13, 46, 91

dis
retisation

time 26

dis
retization 3, 19, 38, 44, 49,

112

box 85

S
harfetter-Gummel 23, 46,

52

spatial 19, 32

displa
ement
urrent 6, 49, 108

donor 5

doping 14, 39, 44, 82, 84, 94, 96,

101, 107, 112

DRAM 1

drift-diffusion 3, 7

dynami
 memory 63, 75

edge neighbour 20, 32

effe
tive intrinsi

on
entration 8,

14

effe
tive potential 8

ele
tri
 �eld 5, 50ff, 94

ele
tron density 101

ele
troni
s

solid state 1

ele
trostati
 potential 6, 8f, 22, 26,

31, 36, 52, 55, 90

element shape 40

INDEX 131

energy balan
e 36

environment 62, 66

equation

ontinuity 6, 22, 24, 26, 31,

36, 44, 48f, 87, 91f

Lapla
e's 11, 43

Poisson's 6, 11, 21, 43f, 46,

48, 56

semi
ondu
tor 2f, 5, 8, 19,

26, 30f, 36, 38, 40, 89

s
aled 13

equilibrium

thermal 7f, 53

lo
al 10

Euler method 26

Fermi level 7

Fermi potential 8, 10

FIELDAY 35

�ll 33

�nite boxes 25

�nite differen
es 24, 36

�nite elements 25, 35

�nite volumes 19

oating point representation 62

oating point type 61, 69

FORTRAN 58ff, 71, 73ff, 93, 95

full Newton method 30, 36

GaAs 36

gain 104

Gaussian elimination 32

generation 6, 15, 17, 83, 94

ode 58, 68

grid 24, 39, 82, 96, 112

geometry 10, 37ff, 84, 94, 96, 99,

108

plane fa
ed 41, 112

glit
h 104

grid 20, 23, 25, 35, 37, 39, 41, 46,

50f, 79f, 82, 84, 88, 92,

94, 96, 101, 104

irregular 24, 32, 36, 38f

quasi-regular 41

regular 24, 35ff

tensor produ
t 24, 35ff

well shaped 23

grid generation 24, 39, 82, 96, 112

grid re�nement

adaptive 112

Gummel iteration 30, 36

hardware 38, 57, 76

heap 75

heavy doping effe
ts 14

heterostru
ture 113

HFIELDS-3d 37

Hita
hi 36

hybrid method 26

IBM 35

Idea 96

ILU pre
onditioning 33f

impa
t ionization 17

impurity 5

impurity
on
entration 6, 10, 39,

53, 104

imref 7

indu
tan
e 112

insulator 11

integrated
ir
uit 1

interfa
e 11

inter-language
all 59

internal boundary 11

interpolation 26, 112

intrinsi

on
entration 7, 12, 14

intrinsi
 density 88

intrinsi
 Debye length 12

inverter 104

132 INDEX

ionization

impa
t 17

irregular grid 24, 32, 36, 38f

iterative linear solver 32, 37

Ja
obian 94

kernel 74

L stability 27

language

omputer 58, 60, 65

inter- |
all 59

Lapla
e's equation 11, 43

lat
hup 103

latti
e temperature 113

library 73

lifetime 16

lifetime engineering 17

linear solver 31, 55f, 74, 79, 87,

90, 94

dire
t 32, 38

iterative 32, 37

pre
onditioned 38

sparse 32

lo
al quasi-Fermi guess 53

ma
hine epsilon 62

ma
ro 66

magneti
 �eld 112

maintainability 60

mallo
 75

matrix 32, 43, 47, 50, 52, 93f

sparse 44, 63, 83, 85ff, 92,

94

Matsushita 36

memory 30, 36, 63

dynami
 63, 75

memory fragmentation 76

memory requirement 3, 25, 32f,

37, 85, 106, 109

MESFET 36

mi
roele
troni
s 1

MINIMOS 36

minimum degree algorithm 33

mini-super
omputer 38, 57, 102,

106

mobility 7, 14, 31, 46, 83, 93f, 112

model

physi
al 112

modularization 60

module 66, 80

MOSFET 9, 15, 26, 36, 99f, 103,

106

multipro
essor 38, 72

Neumann boundary
ondition 9,

13, 48

Newton algorithm 91

Newton method 28ff, 43, 46, 54ff,

90

full 30, 36

nonlinear solver 28

norm 55

Debye length

intrinsi
 12

NTT 35

number

ondition 32

numeri
 type 61

obtuse angle problem 23

Ω 82, 96

operating system 57

overshoot 29

oxide 9, 11, 13, 22, 36, 43, 99,

106f

parallel pro
essing 38

parallelepiped 40

partition 20, 23, 25

Pas
al 58

INDEX 133

permittivity 6

Pi
asso 97

Pis
es-II 36

plane fa
ed geometry 41, 112

plugin iteration 30

point density 25, 39, 41, 112

pointer 60

Poisson's equation 6, 11, 21, 43f,

46, 48, 56

portability 58, 64, 68

potential

effe
tive 8

ele
trostati
 6, 8f, 22, 26, 31,

36, 52, 55, 90

Fermi 8, 10

quasi-Fermi 7, 10, 15, 53, 88,

90

s
aled 12

pre
onditioned solver 38

pre
onditioning 36

ILU 33f

prepro
essor 65ff

prism

triangular 40

pro
ess simulation 96

pyramid

quadrilateral 40

quadrilateral pyramid 40

quasi-Fermi

lo
al | guess 53

quasi-Fermi level 9, 11, 31f, 55,

94

quasi-Fermi potential 7, 10, 15, 53,

88, 90

readability 60

re
ombination 6, 15, 31, 83, 88,

91, 93f, 112

Sho
kley-Read-Hall 16

region 49, 53

a
tive 25, 104, 106

onvergen
e 29

regular grid 24, 35f, 38

representation

oating point 62

resistor 112

reverse Cuthill-M
Kee algorithm

33

s
aling 11, 31

S
harfetter-Gummel dis
retization

23, 46, 52

Se
ond 3, 14, 35, 57, 73, 80, 82,

96, 99, 104, 108, 111

semi
ondu
tor 5ff, 11, 13f, 22, 35,

84, 87, 111

semi
ondu
tor equation 2f, 5, 8,

19, 26, 30f, 36, 38, 40,

89

s
aled 13

Sepp 97

Sho
kley-Read-Hall re
ombination

16

SIERRA 36

sili
on 11, 13f, 16, 43

Simbad 77

Slotboom variables 31, 36

SMART 36

software 57ff, 61, 90

software
risis 60

solid state ele
troni
s 1

solution method

oupled 30, 56, 90

de
oupled 30

solver

linear 31, 55, 74, 79, 87, 90,

94

iterative 37

sparse 32

134 INDEX

nonlinear 28

sparse linear solver 32

sparse matrix 44, 63, 83, 85ff, 92,

94

standard 58f, 61ff, 69f, 72, 78, 85

de fa
to 59

stiff equation 27

stopping
riterion

absolute 54f

nonlinear 55

relative 54

stru
tured type 60

suf�
ient de
rease
ondition 29

Sun workstation 57

super
omputer 38, 57, 61f, 97,

103, 106

mini 38, 57, 102, 106

surfa
e s
attering 15

temperature 7

arrier 113

latti
e 113

tensor produ
t grid 24, 35ff

tetrahedron 40

Texas Instruments 36

thermal equilibrium 7f, 53

lo
al 10

thermal voltage 12

threshold voltage 102

thyristor 104, 112

TOPMOST 36

Toshiba 36

total
urrent 6, 49

tra
table problem 38

transistor 1

bipolar 104, 106

ECL 106

lateral 104

MOS 9, 99, 103, 106

npn 104

pnp 104

verti
al 104

trapezoidal rule 26

tren
h 106

triangular prism 40

type 60

abstra
t 60

oating point 61, 69

numeri
 61

stru
tured 60

UNIX 57ff, 65f, 71, 73, 78

upwinding s
heme 26

utility 77

variables

hoi
e of 31

Slotboom 31, 36

variational problem 25

ve
tor
omputer 38, 72, 79

velo
ity saturation 15

Vienna 36

VLSI 1

voltage

applied 10, 53, 55, 89f, 97,

102, 104, 108

built-in 10, 53

thermal 12

voltage glit
h 104

well shaped grid 23

word length 61

Curri
ulum Vitae

I was born in M�ullheim, Germany, on July 7, 1957. At the same pla
e I

visited elementary s
hool and high s
hool (gymnasium), graduating with the

abitur in 1976. After 15 months of
ompulsory military servi
e I started to

study Physi
s and Mathemati
s at the University of Freiburg, Germany, where

I obtained the B.S
. degree in Physi
s in 1982. From 1981 to 1984 I was

studying Computer S
ien
e and Physi
s at Bro
k University, St. Catharines,

Canada, graduating with the M.S
. degree in Physi
s. Sin
e 1985 I am

working as a resear
her at ETH Z�uri
h, �rst in the Institut f�ur Informatik,

and sin
e 1987 at the Integrated Systems Laboratory with Prof. Dr. Wolfgang

Fi
htner. My publi
ations have appeared in Physi
al Review, IEEE Software,

the Japanese Journal of Applied Physi
s Letters and IEEE Transa
tions, as

well as in several
onferen
e pro
eedings.

135

