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Abstra
t

Sin
e the early work by Gummel in the 1960s, numeri
al simulation of

semi
ondu
tor devi
es has developed into an indispensable tool for devi
e

engineers. So far, most devi
e simulations have been one or two dimensional.

With 
ontinuously shrinking devi
e features truly three-dimensional (3d)

treatment of the semi
ondu
tor be
omes ne
essary.

A few 3d devi
e simulation programs exist sin
e the early 1980s, but their

appli
ability is limited by the fa
t that they 
annot simulate really general

devi
e geometries. They all use grids that are tensor-produ
ts of one- and

two-dimensional meshes, whi
h leaves little 
exibility in modelling the third

dimension.

This thesis des
ribes the design and implementation of Se
ond, a general-

purpose, 3d semi
ondu
tor devi
e simulator. Se
ond solves the traditional

drift-diffusion equations of the semi
ondu
tor. The partial differential equa-

tions are dis
retized with the box method on a general 3d mesh 
onsisting

of a mixture of tetrahedra, quadrilateral pyramids, triangular prisms, and

parallel epipeds. The one dimensional S
harfetter-Gummel s
heme is used

for integrating the 
urrent relations along grid edges. De
oupled (Gummel)

and 
oupled (Newton) methods are implementeded for linearizing the dis
rete

equations. Iterative methods (pre
onditioned 
onjugate-gradient type algo-

rithms) are used for the solution of the linear systems. A time dis
retization

with automati
 time step 
ontrol, based on an estimate of the lo
al trun
ation

error, is used for transient simulations. Physi
al models implemented in
lude

doping and �eld dependent 
arrier mobilities, surfa
e s
attering, band gap

narrowing, and generation and re
ombination models with doping dependent


arrier life times.

The 
exibility of Se
ond is demonstrated on a few 
ase studies. One
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is an investigation of parasiti
 MOSFETs in a tren
h isolated sub-mi
ron

n-MOS devi
e. This study demonstrates how design rules may be drawn up

based on the results of 3d devi
e simulations. A se
ond example investigates

lat
hup in CMOS devi
es and 
ontains a 
omparison between two- and

three-dimensional simulation results. A third 
ase is a study of the swit
hing

behaviour of a bipolar transistor.



Zusammenfassung

Seit den fr�uhen Arbeiten von Gummel in den se
hziger Jahren hat si
h

die numeris
he Simulation von Halbleiterbauelementen zu einem unverzi
ht-

baren Werkzeug f�ur den Entwurf neuer Bauelemente entwi
kelt. Bisher

waren die meisten Bauelementsimulationen ein- oder zweidimensional. Mit

zunehmender Reduktion der Gr�o�e der Bauelemente wird jedo
h eine e
ht

dreidimensionale (3d) Behandlung der Halbleiterstrukturen notwendig.

Einige wenige 3d Bauelementsimulationsprogramme existieren seit den

fr�uhen a
hziger Jahren, ihr Anwendungsberei
h ist jedo
h dur
h die Tat-

sa
he bes
hr�ankt, da� sie keine Behandlung wirkli
h allgemeiner Geometrien

erlauben. Dies ist vor allem darauf zur�u
kzuf�uhren, da� die von diesen

Programme verwendeten Gitter Tensorprodukte ein- und zweidimensionaler

Gitter sind, was nur eine wenig 
exibile Modellierung der dritten Raumdi-

mension erlaubt.

Diese Dissertation bes
hreibt den Entwurf und die Implementierung

von Se
ond, einem dreidimensionalen Bauelementsimulator mit breitem

Anwendungsspektrum. Se
ond basiert auf der numeris
hen L�osung der

traditionellen Drift-Diffusionsglei
hungen f�ur Halbleiter. Diese partiellen

Differentialglei
hungen werden mittels der Box-Methode auf einem all-

gemeinen dreidimensionalen Gitter, bestehend aus Tetraedern, Viere
ks-

pyramiden, Dreie
ksprismen und Parallelepipeden, diskretisiert. F�ur die

Integration der Kantenstr�ome wird das eindimensionale S
harfetter-Gummel-

Verfahren benutzt. Zur Linearisierung der diskreten Glei
hungen wurden

entkoppelte (Gummel-) und gekoppelte (Newton-) Verfahren implemen-

tiert. Die resultierenden linearen Glei
hungssysteme werden mit itera-

tiven Verfahren, basierend auf der Methode der konjugierten Gradienten,

gel�ost. Die Zeitintegration verwendet eine automatis
he S
hrittweiten-

kontrolle basierend auf einer Abs
h�atzung des lokalen Diskretisierungs-
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x Zusammenfassung

fehlers. Die implementierten physikalis
hen Modelle beinhalten dotierungs-

und feldabh�angige Bewegli
hkeiten der Ladungstr�ager, Ober
�a
henstreuung,

Bandl�u
kenverengung, sowie Erzeugungs- und Rekombinationsmodelle mit

dotierungsabh�angigen Lebensdauern.

Die vielf�altige Verwendbarkeit von Se
ond wird anhand einiger Fall-

studien demonstriert: Eine Untersu
hung parasit�arer MOSFET-Elemente in

einem n-MOS-Transistor zeigt, wie aufgrund von Simulationsergebnissen

Designregeln f�ur integrierte S
haltungen aufgestellt werden k�onnen. Als wei-

teres Beispiel dient eine Studie von Lat
hup-Effekten in CMOS-Strukturen,

die au
h einen Verglei
h zwis
hen zwei- und dreidimensionalen Simulations-

ergebnissen pr�asentiert. Als letzter Fall wird das S
haltverhalten eines

Bipolartransistors untersu
ht.
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0

Introdu
tion

Sin
e the invention of the transistor forty-four years ago, solid state ele
troni
s

has developed with a breathtaking pa
e, and has irreversibly transformed

te
hnology. The 
omputer revolution, only possible with VLSI, is still at

its beginning and has the potential to even more signi�
ant 
hanges. While

it may 
ertainly be argued whether the so
ial impa
ts of these 
hanges is

generally for the better or worse, many problems in 
ontemporary so
iety 
an

only be solved with the use of mi
roele
troni
s, even some of the problems


reated by this progress. Examples in
lude the use of sophisti
ated 
ontrol

logi
 to improve energy ef�
ien
y of su
h diverse obje
ts as 
ars, trains and

wind turbines, or better understanding of environmental pro
esses due to more

realisti
 numeri
al modelling with faster 
omputers.

The �rst integrated 
ir
uits, whi
h be
ame 
ommer
ially available in the

early 1960s, 
ontained only a few devi
es. In the year 1990, DRAM 
hips


ontaining more than four million devi
es 
ould be bought in the store, and


hips with sixteen times that number have already been fabri
ated in the

laboratory. The numbers go up by a fa
tor of four every two to three years.

Quantitatively speaking, this rate of progress is unrivaled in the history of

mankind.1

The in
reasing pa
king density of VLSI 
hips implies shrinking devi
e

1The in
rease in 
omputer power, whi
h o

urs at roughly the same rate, is but a result of the
advan
es in mi
roele
troni
s.

1



2 Introdu
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dimensions. Redu
ed feature size, on the other hand, requires more 
ompli-


ated, and time 
onsuming, manufa
turing pro
esses. This means that a pure

\trial-and-error" approa
h to devi
e optimization be
omes impossible sin
e

it is both too time 
onsuming and too expensive. Simulation has therefore

be
ome an indispensable tool for the devi
e engineer. Besides offering the

possibility to \test" hypotheti
al devi
es that have not (or 
ould not) yet

been manufa
tured, simulation offers unique insight into devi
e behaviour by

allowing the \observation" of entities that 
annot be measured on real devi
es.

The �rst one dimensional (1d) devi
e simulations were performed by

Gummel [37℄ in 1964, based on the partial differential equations (PDEs)

of the semi
ondu
tor proposed by van Roosbroe
k [61℄. Soon after, two

dimensional (2d) simulations were performed, and during the 1970s, 2d

simulation developed into a standard tool for devi
e design.

3d-edg
ur.id
90 × 47 mm

Figure 0.1: Spreading of 
urrent at devi
e edges 
auses 3d effe
ts.

2D treatment of semi
ondu
tor devi
es be
omes unrealisti
 on
e 
urrent


ow is no longer predominantly limited to a plane. The �rst sour
e of su
h

non-2d behaviour are edge effe
ts. In a MOSFET, for example, 
arrier 
ow

is two dimensional in the interiour. Near the sides of the 
hannel, however,

the 
urrent spreads outside the region between sour
e and drain (Figure 0.1).

This effe
t 
an be negle
ted if the transistor is wide enough so that the edge


urrents do not matter; with shrinking devi
e dimensions this is no longer the


ase and 2d modelling 
an no longer be a

urate.

A se
ond 
lass of 3d effe
ts in
orporates various kinds of devi
e 
ross



3

talk. A MOSFET that is isolated by an oxide tren
h may suffer from leakage


urrents due to parasiti
 devi
es that 
an be partially turned on under 
ertain


onditions. Operation of su
h devi
es is usually inherently 3d and 
annot

be modelled in two dimensions. Lat
hup effe
ts in CMOS stru
tures are

impossible to model two dimensionally if the tubs are not arranged in line.

Leakage 
urrents in DRAM tren
h 
ells are 3d effe
ts sin
e the the tren
hes

as they are used in 4Mbit and 16Mbit 
hips are too small to be reasonably

modelled in 2d [11℄.

Finally, CMOS lat
hup or DRAM upset 
aused by ionizing radiation (e.g.

natural α a
tivity) 
an only be modelled in 3d due to the small diameter of the

ionized 
hannel [72℄.

The ne
essity to model su
h effe
ts lead to the �rst 3d devi
e simulators

in 1980 [14, 84℄. However, while general-purpose simulators are available for

2d problems, most of the 
urrently available 3d devi
e simulators 
an only

model a small 
lass of unrealisti
 devi
es, and more general ones [17℄ are still

signi�
antly limited in the generality of devi
e geometries they 
an handle.

The aim of this thesis is the 
onstru
tion of a 3d devi
e simulation

program that is general enough to simulate arbitrary devi
e stru
tures under

general operating 
onditions, in
luding transient analysis. In order to be

generally useful, the program must also be fast, \reasonable" in its memory

requirements, and user friendly. On the other side we restri
t ourselves to


onventional physi
al models as they have been used inmost devi
e simulators

so far. Provided a suf�
iently general design, more sophisti
ated models 
an

be added at a later stage.

This work is stru
tured as follows: Chapter 1 will present the basi


physi
al problem that must be solved by a devi
e simulator. We restri
t

ourselves to the traditional drift-diffusion formulation of the semi
ondu
tor

equations. Chapter 2 dis
usses how this problem 
an be solved numeri
ally

on a digital 
omputer. We introdu
e methods for dis
retizing the PDEs,

fo
using on the box method whi
h has turned out to be the most su

essful

dis
retization s
heme in devi
e simulation.

In Chapter 3 the state of the art in 3d devi
e simulation is examined and

problems that are parti
ular to 3d are dis
ussed. Our approa
h tomodel general

3d devi
e geometries is outlined. Chapter 4 des
ribes the basi
 mathemati
al

and 
omputational methods we use in our simulator in more detail. Chapter 5

des
ribes the a
tual software implementation of the devi
e simulator Se
ond,



4 Introdu
tion

starting with an assessment of software engineering problems in the \real

world" of s
ienti�
 
omputing, and presenting solutions to these problems.

The basi
 algorithms and data stru
tures used in Se
ond are then des
ribed.

The usability and 
exibility of Se
ond is demonstrated in Chapter 6 by

means of a
tual simulations performed on a set of very different problems.

Chapter 7 
on
ludes the thesis with an outlook on further work that 
an be

done to enhan
e Se
ond's usefulness.



1

The Semi
ondu
tor Modelling

Problem

In this 
hapter we present the basi
 problem to be solved in devi
e simulation.

The �rst se
tion introdu
es the partial differential equations (PDEs) used to

des
ribe the behaviour of a semi
ondu
tor. Se
tion 1.2 dis
usses the boundary


onditions for whi
h the equations are to be solved. Se
tion 1.3 shows how the

PDEs are s
aled for numeri
al treatment and Se
tion 1.4 
ontains a dis
ussion

of the physi
al models used.

1.1 The Semi
ondu
tor Equations

A semi
ondu
tor is usually modelled as a medium with two kinds of mobile


arriers of 
harge: ele
trons 
arrying a 
harge −q and holes 
arrying a

positive 
harge of the same magnitude. In addition there are impurities,

positively 
harged donors and negatively 
harged a

eptors. These are

immobile, however a donor 
an re
ombine with an ele
tron, or an a

eptor


an re
ombine with a hole, to form an ele
tri
ally neutral impurity. We

assume in the following that all impurities are ionized in the temperature

ranges of interest to us (i.e. around room temperature).

Classi
al ele
trodynami
s (see e.g. [45℄) relates the ele
tri
 �eld E to the

5
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harge density ̺ by Poisson's equation

∇ · εε0E = ̺, (1.1)

where ε is the diele
tri
 
onstant of the material and ε0 the permittivity of

va
uum. Note that ε may vary throughout the devi
e but is assumed to be

independent of time or bias 
onditions. In the 
ase of a semi
ondu
tor we

have

̺ = q(p− n+N+
d −N−

a ), (1.2)

where n and p denote the 
on
entrations (densities) of ele
trons and holes

respe
tively, and N+
d and N−

a are the 
on
entrations of ionized donors and

a

eptors. If we express the ele
tri
 �eld by the ele
trostati
 potential

E = −∇ψ and write N := N+
d − N−

a for the net impurity 
on
entration,

Poisson's equation for the semi
ondu
tor be
omes

−∇ · εε0∇ψ − q(p− n+N) = 0. (1.3)

Conservation of 
harge is expressed by the 
ontinuity equation

∇ · J +
∂̺

∂t
= 0 (1.4)

for the 
urrent density J , where t is the time. In our two 
arrier model of

the semi
ondu
tor, 
harge 
onservation applies individually to the two 
arrier

types ex
ept for re
ombination pro
esses. Therefore we obtain separate


ontinuity equations for both 
arriers:

−∇ · Jn + q(R+
∂n

∂t
) = 0, (1.5)

∇ · Jp + q(R+
∂p

∂t
) = 0. (1.6)

Here Jn and Jp are the ele
tron and hole 
urrent density, and R is the net

re
ombination rate, i.e. the rate at whi
h 
arriers vanish due to re
ombination

pro
esses. Pair generation of 
arriers gives a negative 
ontribution to R.

In addition to the 
ondu
tion 
urrents there is the displa
ement 
urrent

Jd = εε0Ė. These 
urrents add up to the total 
urrent:

J t = Jd + Jn + Jp. (1.7)

Taking the time derivative of Poisson's equation, we �nd the relation

∇ · Jd = ∇ · ∂
∂t
εε0E =

∂

∂t
q(p− n+N) = q(ṗ− ṅ). (1.8)
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Together with (1.5), (1.6) this yields

∇ · J t = 0 (1.9)

in a

ordan
e with Maxwell's se
ond equation [45℄.

In the drift-diffusion approximation usually employed in devi
e simulation,

the 
urrent is assumed to be 
omposed of a drift part, driven by the ele
tri


�eld, and a diffusion part, driven by the 
on
entration gradient:

Jn = −qµnn∇ψ + qDn
∇n, (1.10)

Jp = −qµpp∇ψ − qDp
∇p. (1.11)

Here µn, µp are the mobilities whileDn,Dp are the diffusion 
oef�
ients for

ele
trons and holes respe
tively. These are related by the Einstein relation

D = µ
kT

q
, (1.12)

where k denotes the Boltzmann 
onstant and T the temperature.

If Boltzmann statisti
s is appli
able and the semi
ondu
tor is in thermal

equilibrium, the densities 
an be des
ribed by the Fermi level EF as

n = ni exp
qψ − EF

kT
, (1.13)

p = ni exp
EF − qψ

kT
, (1.14)

where ni is the intrinsi
 
on
entration, whi
h has the property

n2
i = np. (1.15)

Away from equilibrium the above equations no longer hold, but we 
an still

write the densities as

n = ni exp
q(ψ − φn)

kT
, (1.16)

p = ni exp
q(φp − ψ)

kT
, (1.17)

where φn and φp are the quasi-Fermi potentials (also 
alled imrefs). These are
the driving for
es of the parti
le 
urrents, as 
an be seen by using Eqs. (1.16)

and (1.17) to rewrite (1.10), yielding

Jn = −qµnn∇φn, (1.18)

Jp = −qµpp∇φp, . (1.19)
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In thermal equilibrium the quasi-Fermi potentials be
ome equal to the Fermi

potential φF := EF /q (
f. [31℄).

Deviations from Boltzmann statisti
s due to degenera
ies are usually

treated by repla
ing the intrinsi
 
on
entration by an effe
tive intrinsi
 
on-


entration

nie = ni exp
∆Eg

2kT
, (1.20)

where ∆Eg represents the bandgap narrowing. Eqs (1.16) and (1.17) now

read

n = nie exp
q(ψ − φn)

kT
, (1.21)

p = nie exp
q(φp − ψ)

kT
, (1.22)

and in equilibrium, where φn = φp = EF ,

n2
ie = np (1.23)

holds. With the introdu
tion of the effe
tive intrinsi
 
on
entration Eqs (1.18)

and (1.19) remain the same, while (1.10) and (1.11) must be repla
ed by

Jn = −qµnn∇ψ + qDn
∇n− kTµn

∇ lnnie

= −qµnn∇(ψ +
∆Eg

2q
) + kTµn

∇n, (1.24)

Jp = −qµpp∇ψ − qDp
∇p+ kTµn

∇ lnnie

= −qµpp∇(ψ − ∆Eg

2q
)− kTµp

∇p. (1.25)

These equations have pre
isely the same form as (1.10) and (1.11) if we

repla
e the ele
trostati
 potential by an effe
tive potential ψn = ψ+∆Eg/2q
for ele
trons and ψp = ψ −∆Eg/2q for holes.

1.2 Boundary Conditions

1.2.1 External Boundaries

In order to solve the devi
e equations presented in the previous se
tion,

we have to spe
ify appropriate boundary 
onditions. The boundary for a
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mosfet.id
77 × 51 mm

gate oxide (Ω ins)

silicon
substrate

source drain

contact contact

Figure 1.1: Simple MOSFET stru
ture showing sili
on, Ωsemi, oxide, Ωins,

and 
onta
ts, Γ0

devi
e to be simulated (a simple example is shown in Fig. 1.1) 
onsists of two

parts: 
onta
ts and free boundary. We denote the whole domain as Ω, the i-th

onta
t as Γi and the remaining boundary as Γh:

∂Ω = Γh ∪ Γ0, (1.26)

where

Γ0 :=

NC
⋃

i=1

Γi, (1.27)

NC being the number of 
onta
ts. Conta
ts are sour
es and sinks of 
arriers

while no 
arriers are allowed to 
ross the free boundaries. This latter 
ondition

means that the 
urrent densities normal to the boundary must be zero,

n · Jn = n · Jp = 0 on Γh, (1.28)

where n is the outward unit normal ve
tor of the boundary. Be
ause of (1.18)

and (1.19) this implies that the gradients of the quasi-Fermi levels must vanish

in the dire
tion normal to the boundary. Under the 
ondition of no surfa
e


harge, we impose the same 
ondition on the ele
trostati
 potential [45℄, so

that we obtain on Γh a set of Neumann boundary 
onditions

n ·∇φn = n ·∇φp = n ·∇ψ = 0 on Γh. (1.29)

Be
ause of (1.21) and (1.22) this implies

n ·∇n = n ·∇p = 0 on Γh, (1.30)
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provided that n ·∇nie is also zero on Γh.

At 
onta
ts we require 
harge neutrality

̺ = q(p− n+N) = 0 (1.31)

and lo
al thermal equilibrium (Eq. 1.23). The latter 
ondition, be
ause of

(1.21), (1.22), (1.13) and (1.14), means that the quasi-Fermi potentials be
ome

equal to the Fermi potential

φn = φp =
EF

q
= φF on Γ0. (1.32)

Eq. (1.31), together with (1.21), (1.22) and (1.32), determines the ele
trostati


potential as a fun
tion of the Fermi potential

ψ = φF + sinh
N

2nie
on Γ0. (1.33)

The Fermi potential, however, must be equal to the applied voltage in an

ohmi
 
onta
t [71℄, so that we get a Diri
hlet 
ondition on 
onta
ts:

ψ − Ubi = φn = φp = Ui on Γi. (1.34)

Here Ui (\applied voltage") is the potential applied to 
onta
t i. The voltage

Ubi := sinh
N

2nie
(1.35)

is 
alled the built-in voltage.

It must be noted that these boundary 
onditions are sensible only if they

do not in
uen
e the physi
al behaviour of the devi
e. This normally means

that the boundaries must be suf�
iently far away from physi
ally a
tive parts

of the devi
e, su
h as spa
e 
harge regions or regions where the impurity


on
entration 
hanges appre
iately in the dire
tion normal to the boundary.

There is one ex
eption to that rule: The nature of our boundary 
onditions

for
es boundaries to behave like a symmetry plane between the simulated

devi
e and a \virtual" devi
e whose geometry and physi
al 
omposition is a

mirror image of the \real" devi
e. One 
an take advantage of this fa
t when

simulating devi
es with a symmetry plane: Only one half of the devi
e must

be simulated and the simulated 
urrent densities will be exa
tly the same as if

the whole devi
e had been simulated.
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1.2.2 Internal Boundaries

Besides the external boundaries of the simulation domain Ω, there also exist

internal boundaries (or interfa
es) between different materials. In the 
ase

of sili
on devi
es the only kind of interfa
e of interest is between insulator

(oxide) and semi
ondu
tor (sili
on).

In the insulator, Ωins , we assume that there are no 
harges, neither mobile

nor immobile. This means that Poisson's equation is redu
ed to Lapla
e's

equation

−∇ · εinsε0∇ψ = 0 in Ωins , (1.36)

where εins is the diele
tri
 
onstant of the insulator. In the absen
e of

surfa
e 
harges, the interfa
e 
ondition is simply the 
ontinuity of the ele
tri


displa
ement εε0∇ψ [45℄. Hen
e the normal 
omponent of the ele
tri
 �eld

is dis
ontinuous:

n · εsemi∇ψ|Ωsemi
= n · εins∇ψ|Ωins

on ∂Ωsemi ∩ ∂Ωins , (1.37)

where εsemi is the diele
tri
 
onstant in the semi
ondu
tor region Ωsemi .

Sin
e we do not allow 
arriers in the insulator, there is no 
urrent a
ross

the interfa
e and the same Neumann boundary 
onditions (1.29) apply for the

quasi-Fermi levels (or the densities) as in the 
ase of external boundaries.

Sometimes we want to apply Diri
hlet boundary 
onditions in the interior

of the devi
e, e.g. if we want to simulate a devi
e with a metalli
 
onta
t (of

zero thi
kness) that lies between semi
ondu
tor and oxide. This is really a

limiting 
ase of a simulation domain with a hole, where the hole is part of

the Diri
hlet boundary. Hen
e we treat su
h \internal" 
onta
ts as part of the

external boundary Γ0.

1.3 S
aling

When numeri
ally simulating physi
al phenomena it is 
ustomary to s
ale the

physi
al entities. This has several reasons. The most important one is to shift

the order of magnitude of the variables as 
losely to unity as possible, to avoid

problems with the �nite numeri
 range of digital 
omputers. Other reasons

in
lude the \s
aling away" of 
onstants to simplify formulae. Usually the

s
aled entities be
ome dimensionless.
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For our simulationswe use the s
aling proposed by deMari [50℄. As s
aling

fa
tors we de�ne: the intrinsi
 Debye length li, the intrinsi
 
on
entration

ni, the thermal voltage UT and a unit diffusivity D0 for lengths, voltages,


on
entrations and diffusion 
oef�
ients respe
tively. These are de�ned as

li :=

(

εSiε0kT

q2ni

)
1
2
, (1.38)

UT :=
kT

q
, (1.39)

D0 := 1m2s−1, (1.40)

while for ni a phenomenologi
al formula for the temperature dependen
e is

used (see Se
tion 1.4.1).

Quantity S
aling fa
tor

Name Symbol Symbol Value

Displa
ement x li 3.3865×10−5 m

Con
entration n, p,N ni 1.4824×1016 m−3

Current density J qniD0l
−1
i 7.0135×101 Am−2

Voltage U,ψ, φ UT 2.5852×10−2 V

Ele
tri
 �eld E UT l
−1
i 7.6339×102 Vm−1

Time t s 1.1468×10−9 s

Current I qniliD0 8.0434×10−8 A

Mobility µ D0U
−1
T 3.8681×101 m2V−1s−1

Re
ombination rate R niD0l
−2
i 1.2926×1025 m−3s−1

Table 1.1: De Mari s
aling fa
tors for T = 300K.

From these de�nitions the s
aling fa
tors for all other relevant entities 
an

be derived. The various s
aling fa
tors and their values are summarized in

Table 1.1. Table 1.2 summarizes the fundamental and material 
onstants used

for determining the normalization fa
tors.

We use the symbols u, v, and w for the s
aled potentials ψ, φn and φp.
For all other quantities we use the same symbols irrespe
tive on whether or

not they are s
aled. Usually the potential variables are suf�
ient to indi
ate

that an equation assumes s
aled quantities.
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Quantity Symbol Value

Universal 
onstants

Elementary 
harge q 1.602 177 33 ×10−19 C

Boltzmann 
onstant k 1.380 658 ×10−23 JK−1

Permittivity of va
uum ε0 8.854 187 818×10−12 Fm−1

Material 
onstants

Diele
tri
ity of Si εSi 11.9

Diele
tri
ity of SiO2 εSiO2 3.9

Table 1.2: Fundamental 
onstants (after Cohen and Taylor [20℄) and material


onstants (after Sze [71℄)

The s
aled semi
ondu
tor equations for a sili
on devi
e now read

−∇ ·∇u− (p− n+N) = 0, (1.41)

−∇ · Jn +R+
∂n

∂t
= 0, (1.42)

∇ · Jp +R+
∂p

∂t
= 0, (1.43)

where

Jn = −µn(n∇u+∇n) = −µnn∇v, (1.44)

Jp = −µp(p∇u −∇p) = −µpp∇w, (1.45)

n = niee
u−v, (1.46)

p = niee
w−u (1.47)

in the semi
ondu
tor, and

−∇ · εox
εsemi

∇u = 0 (1.48)

in the oxide. The boundary 
onditions are

u− Ubi = v = w = Ui, (1.49)

on Diri
hlet, and

n ·∇u = n ·∇v = n ·∇w = n ·∇n = n ·∇p = 0 (1.50)

on Neumann boundaries.
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1.4 Physi
al Models

In this se
tion we present the models used for the quantities ni, nie, µ, and R.

1.4.1 Intrinsi
 Con
entration and Effe
tive Intrinsi


Con
entration

The intrinsi
 
on
entration in sili
on is given in [10℄, based on measurements

over a temperature range of 250{500K, as

ni = 3.87× 1022(T/K)1.5 exp(−7000K/T )m−3. (1.51)

For a temperature of 300K this gives the value of 1.4824 × 1016 m−3 in

Table 1.1.

The effe
tive intrinsi
 
on
entration is given by Eq. (1.20) as a fun
tion

of the bandgap narrowing. Bandgap narrowing is a phenomenologi
al way

to in
orporate deviations from Boltzmann statisti
s due to heavy doping

and quantum effe
ts. Therefore bandgap narrowing is an approximate


orre
tion that lumps several different physi
al phenomena together into a

single parameter. Sin
e this is only a 
oarse approximation of the a
tual

devi
e physi
s, it is not surprising that more than one bandgap narrowing

model exists.

In Se
ond we use the model after Slotboom [67℄:

∆Eg = q 0.009V

[

ln

( |N |
1023 m−3

)

+

√

ln

( |N |
1023 m−3

)

+
1

2

]

, (1.52)

or alternatively the one after Gaur et al. [34℄:

∆Eg = 2kT

{

9.248 · 10−10(|N |/
m3)0.4678 for |N | < 5 · 1019/
m3

1.52 otherwise
.

(1.53)

1.4.2 Mobility

The 
arrier mobilities in doped semi
ondu
tors are redu
ed from their intrinsi


values, µ0, due to s
attering at impurities, leading to doping dependent
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mobilities µ(N). Caughey and Thomas [16℄ �tted experimental data to the

formula

µ(N) = µ0 +
µ1

1+N/Nr
. (1.54)

An ele
tri
 �eld does not a

elerate the 
arriers to arbitrary velo
ities due

to velo
ity saturation. We model this after S
harfetter and Gummel [64℄ with

a mobility depending on the ele
tri
 �eld as

µ(N,E‖) = µ(N)

{

1+

[

µ(N)E‖

vs

]2

+

[

µ(N)E‖/vc
]2

µ(N)E‖/vc +G

}−1/2

, (1.55)

where E‖ is the 
omponent of the ele
tri
 �eld parallel to the 
arrier 
urrent.

However, sin
e the 
arrier 
urrents are driven by the gradients of the quasi-

Fermi potentials (see Eqs. (1.18), (1.19)), it is preferable to use the magnitudes

of these gradients as the parallel ele
tri
 �eld:

En
‖ = |∇φn|, (1.56)

Ep
‖ = |∇φp|. (1.57)

In MOSFETs, where high 
urrent densities 
ow along insulator interfa
es,

surfa
e s
attering effe
ts be
ome important. Yamagu
hi [83℄ proposed to

model these as a fun
tion of the transverse ele
tri
 �eld as

µ(N,E‖, E⊥) = µ(N,E‖)

[

1+

(

E⊥

Ec

)c]−1

, (1.58)

where E⊥ is the 
omponent of the ele
tri
 �eld orthogonal to the dire
tion

of the 
urrent 
ow. Table 1.3 summarizes the various 
onstants used in

Eqs. (1.54), (1.55), and (1.58).

1.4.3 Re
ombination and Generation

Re
ombination is a phenomenon that works towards restoring equilibrium

(Eq. 1.23) under 
onditions where an ex
ess of 
arriers exists. In 
ase of


arrier depletion (np < n2
ie), the same pro
esses lead to an in
rease of 
arrier


on
entrations, i.e. generation. However, this generation is normally not

signi�
ant so that the pro
esses involved are generally 
alled \re
ombination"

even though they may a
tually produ
e 
arriers.
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quantity ele
trons holes units

µ0 0.00880 0.00543 m2V−1s−1

µ1 0.125 20 0.040 73 m2V−1s−1

Nr 143.2 267.0 1021m−3

vs 100.0 83.7 103 ms−1

vc 49 49 103 ms−1

Ec 30.32 15.30 106 Vm−1

c 0.657 0.617

G 8.8 1.6

Table 1.3: Mobility parameters for ele
trons and holes

The most important re
ombination pro
esses in sili
on are the Auger

pro
ess where an ele
tron-hole pair re
ombines and the re
ombination energy

is transferred to a third parti
le, and single level pro
esses where 
arriers

re
ombine via isolated trap levels in the band gap.

Auger re
ombination produ
es the re
ombination rate

RAuger = (np− n2
ie)(nA

n
Aug + pAp

Aug), (1.59)

where AAug are the Auger 
oef�
ients. These are usually 
onsidered 
onstant

with values ofAn
Aug = 0.5{2.8×10−43m6s−1 andAp

Aug = 0.99×10−43m6s−1

(a

ording to Pinto [57℄).

Single trap level re
ombination is usually treated a

ording to the Sho
kley-

Read-Hall model (
f. [71℄) as

RSRH =
pn− n2

ie

τp(n+ nie) + τn(p+ nie)
, (1.60)

where τn and τp are the ele
tron and hole lifetimes respe
tively. These are

usually modelled using the formula

τ =
τ0

1+
(

N
NSRH

)GSRH
. (1.61)

Table 1.4 gives typi
al values. It must be noted, however, that at least

the values of τ0 
an vary signi�
antly between different devi
es. Often
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τ0 NSRH GSRH

10−6 s 1021 m−3

ele
trons 40 3.0 0.5

holes 8 3.0 0.5

Table 1.4: Parameters for Sho
kley-Read-Hall re
ombination model

re
ombination 
enters are deliberately inserted into a devi
e to 
ontrol the

lifetime of the minority 
arriers (lifetime engineering).

The main generation pro
ess is impa
t ionization, also 
alled avalan
he

generation. This phenomenon o

urs when ele
tri
 �elds in a devi
e are

high enough to a

elerate 
arriers to energies where 
ollision with latti
e

atoms 
an ionize the latter. This three-parti
le pro
ess is the inverse of Auger

re
ombination. The effe
t is modelled after Chynoweth [18℄ as

Rav = Rn
av +Rp

av , (1.62)

Rn
av = −1

q
|Jn|An

av exp(−En
crit/E

n
‖ ), (1.63)

Rp
av = −1

q
|Jp|Ap

av exp(−Ep
crit/E

p
‖). (1.64)

where

En
‖ :=

E · Jn

|Jn| , (1.65)

Ep
‖ :=

E · Jp

|Jp| . (1.66)

The minus sign in Eq. (1.63) and (1.64) indi
ates generation. The values

of the ionization 
oef�
ients as experimentally determined by Grant [36℄ are

listed in Table 1.5.
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Aav Ecrit range for E‖

106 m−1 106 Vm−1 106 Vm−1

ele
trons 260 143 < 24

62 108 24{42

50 99 > 42

holes 200 197 < 51

56 132 > 51

Table 1.5: Grant's 
oef�
ients for the impa
t ionization model after

Chynoweth
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Numeri
al Solution of the

Semi
ondu
tor Equations

Having presented the equations des
ribing a semi
ondu
tor devi
e, we will

now dis
uss methods for their solution. Se
tion 2.1 will present the method

used for the spatial dis
retization, while the time dis
retization is dis
ussed in

Se
tion 2.2. In Se
tion 2.3 methods for the solution of the nonlinear equations

arising from dis
retization are presented, and Se
tion 2.4 �nally dis
usses the

solution of linear systems of equations.

2.1 Spatial Dis
retization of the Differential

Equations

In order to solve the boundary value problem (1.41{1.50) on a digital


omputer, the PDEs must be dis
retized, i.e. transformed into a system of

dis
rete equations. One method to do this is the box method (BM), �rst

presented by Varga [77℄, whi
h is also known as the 
ontrol volume or �nite

volume method.

19
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2.1.1 The Box Dis
retization Method

Let us assume a PDE in divergen
e form, the 
lassi
al form of 
onservation

laws in physi
s,

∇ · F (x)− S(x) = 0, (2.1)

for some ve
tor �eld F and a s
alar sour
e term S in some domain Ω with a

plain fa
ed boundary ∂Ω. LetΩ be 
overed by a grid 
onsisting ofNv verti
es

xi ∈ Ω, i = 1, · · · , Nv , 
onne
ted by edges (see Figure 2.1). We 
onstru
t for

ea
h vertex, i, a box, Ωi, delimited by the mid-perpendi
ulars of all the edges

terminating in vertex i. If the grid is 
onstru
ted appropriately, the boxes will
form a partition of Ω:

Ω =

Nv
⋃

i=1

Ωi, (2.2)

V =

Nv
∑

i=1

Vi, (2.3)

where V :=
∫

Ω
dV is the volume of the domain Ω and Vi :=

∫

Ωi
dV the

volume of Ωi.

In order to obtain an equation for vertex i, we integrate (2.1) over Ωi and

apply Gauss's theorem, whi
h yields

∫

Ωi

[∇ · F (x)− S(x)]dV =

∫

∂Ωi

F (x) · dn(x)−
∫

Ωi

S(x)dV = 0, (2.4)

where dn(x) denotes the unit ve
tor normal to the box boundary ∂Ωi in x.

We approximate S(x) within Ωi by its value Si := S(xi) at the box 
enter,

and F (x) within ea
h se
tor Ωij of the box by some average value F ij . The

above equation then be
omes

∑

j

∫

∂Ωij

F ij(x) · dn(x)−
∫

Ωi

SidV =
∑

j

FijAij − SiVi = 0, (2.5)

where Fij := |F ij | 
os 6 (F ij , dn) is the proje
tion of F ij onto the edge ij,
and the sums run over all edge neighbours of vertex i. Edge neighbours of i
are all verti
es j 
onne
ted with i by an edge of the grid. Aij is the area of
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box.id
70 × 66 mm

d ij

lij

i

j
Ω ij

∂Ω i

Figure 2.1: 2D example of a box

the part of the box surfa
e that is normal to ij. If we de�ne Aij to be zero if

verti
es i and j are not edge neighbours, we 
an write Eq. (2.5) as

Nv
∑

j=1
j 6=i

FijAij − SiVi =:
∑

j 6=i

FijAij − SiVi = 0. (2.6)

This is the dis
retized form of Eq. (2.1): one dis
rete equation for ea
h grid

point i.

2.1.2 Box Dis
retization of the Semi
ondu
tor Equa-

tions

Poisson's equation

To apply the box method (BM) to Poisson's equation (1.41), we have to

identify in Eq. (2.1) F with E = −∇u and S with ̺ = p − n + N . This
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results in the dis
retization

∑

j 6=i

EijAij − Vi(pi − ni +Ni) = 0, (2.7)

with the underlying approximation that p = pi := p(xi), n = ni := n(xi),
N = Ni := N(xi) are 
onstant in Ωi, and the proje
tion Eij of E onto

the edge ij is 
onstant. Under these 
onditions we obtain as the potential

differen
e along the edge

uji = uj − ui = −E · (xj − xi), (2.8)

and hen
e

− uji
lji

= E · lji

|lji|
= Eij , (2.9)

with lji := xj − xi and lij := |lji|. Substituting this into Eq. (2.7) results in
the �nal form of the BM dis
retization for Poisson's equation:

Fu
i := −

∑

j 6=i

Aij

lij
uij − Vi(pi − ni +Ni) = 0, (2.10)

where we have used lij = lji and uij = −uji. Consequently, in the oxide,

the dis
retization of Lapla
e's equation (1.48) reads

∑

j 6=i

(− εox
εsemi

Aij

lij
uij) = 0. (2.11)

At interfa
es, the appropriate equation, Eq. (2.10) or Eq. (2.11), must be


hosen separately for the semi
ondu
tor and the insulator part of the box.

Continuity equations

For the 
ontinuity equations (1.42,1.43), Eq. (2.6) translates into

−
∑

j 6=i

AijJ
n
ij + Vi(Ri + ṅi) = 0, (2.12)

∑

j 6=i

AijJ
p
ij + Vi(Ri + ṗi) = 0. (2.13)
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To determine Jn
ij , the 
omponent of the ele
tron 
urrent density along an edge,

we use the 1d solution �rst derived by S
harfetter and Gummel [64℄: We


onsider Eq. (1.44) on the edge ij:

Jn
ij = µn

ij(nEij −
dn

dl
). (2.14)

Under the assumption that Jn
ij , µ

n
ij , and Eij are 
onstant on that edge, we


an integrate the ordinary differential equation (ODE) (2.14) and obtain the

solution

Jn
ij =

µn
ij

lij
[njB(uji)− niB(uij)], (2.15)

with the Bernoulli fun
tion

B(x) =
x

ex − 1
. (2.16)

The hole 
ontinuity equation (1.43) 
an be treated in an analogous fashion,

yielding a 1d hole 
urrent density of

Jp
ij =

µp
ij

lij
[pjB(uij)− piB(uji)], (2.17)

Substituting this into Eqs. (2.12,2.13) results in the dis
retized 
ontinuity

equations

Fn
i := −

∑

j 6=i

Aij

lij
µn
ij [njB(uji)− niB(uij)] + Vi(Ri + ṅi) = 0, (2.18)

F p
i := −

∑

j 6=i

Aij

lij
µp
ij [pjB(uij) − piB(uji)] + Vi(Ri + ṗi) = 0. (2.19)

2.1.3 Limitations of the box method

In Se
tion 2.1.1 we postulated that the boxes delimited by the mid-perpendi
-

ulars of the edges form a partition of the simulation domain. This imposes a

serious restri
tion on the grid, the well-known obtuse angle problem of the BM

(see e.g. Pinto [57℄). In 2d the restri
tion is that the sum of opposite angles

of adja
ent triangles must not ex
eed π/2, and a similar 
hara
terization of a

well shaped grid exists in 3d [21℄.
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While in prin
iple the BM allows the use of grids that 
an model general

geometries, and allows good adjustment of the point density, it is quite dif�
ult

to 
onstru
t irregular grids that are well shaped. Sophisti
ated grid generation

algorithms are required for truly 3d grids (see Conti et al. [23℄).

2.1.4 Other Spatial Dis
retization Methods

Finite differen
es

The simplest (and probably most straight-forward) method for solving a PDE

is by �nite differen
es (FD, for a detailed presentation see Smith [68℄). This

method is based on repla
ing differential operators by differen
e operators.

For example the 2d Lapla
e equation

∂2f(x, y)

∂x2 +
∂2f(x, y)

∂y2
= 0 (2.20)

is, at point (xi, yj) = (ih, jh) of a uniform grid, repla
ed by the differen
e

equation

f(xi−1)− 2f(xi) + f(xi+1)

h2 +
f(yi−1)− 2f(yi) + f(yi+1)

h2 = 0. (2.21)

If the grid is non-uniform, but still regular, a similar but signi�
antly messier

expression holds.

For the 
ontinuity equations this simple s
heme is not useful, be
ause

the exponential variation of the 
arrier densities is poorly �tted by the linear

approximation underlying FD. Higher order differen
e methods are possible

but of not mu
h help in this 
ase. The 1d S
harfetter-Gummel solution of the


urrent equations must therefore be used along the edges as in the 
ase of the

BM (
f. Se
tion 2.1.2). On a re
tangular mesh the BM is a
tually equivalent

to FD, so that the former 
an be 
onsidered a generalization of the latter.

Standard FD requires a regular (though not ne
essarily uniform) grid


onsisting of points (xi, yj , . . .), i = 1, . . . , Nx, j = 1, . . . , Ny , . . . Sin
e su
h

d dimensional grids are the tensor produ
t of d one-dimensional grids, they

are often 
alled tensor produ
t grids.

The regularity of tensor produ
t grids is re
e
ted in a regularity of the

stru
ture of the sparse linear systems emerging from the dis
retization|they
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exhibit a simple band stru
ture (d bands at either side of the main diagonal).

This allows for the use of very simple sparse data stru
tures and algorithms

whi
h 
an be implemented very ef�
iently with little effort, making FD

methods very appealing from the implementation point of view.

The drawba
k of FD is the poor 
ontrol one has over the point density of

the grid|in order to have a suf�
iently high point density in the physi
ally

a
tive devi
e regions one gets many more points than are a
tually needed in

other regions, an effe
t that is drasti
ally worse in 3d than in 2d. Sin
e the

number of grid points determine both, memory and CPU time requirements of

a simulation, this seriously limits the utility of FD. Furthermore it is dif�
ult

to a

urately model non-re
tangular devi
e features with purely re
tangular

grids.

One possibility to redu
e the number of grid points is to allow terminating

grid lines. The resulting variant of FD is often 
alled �nite boxes, see Franz

et al. [33℄ for details. Terminating lines, however, immediately destroy the

regularity of the stru
ture of the resulting systems of linear equations, thus

giving away the main advantage of the FD method. Moreover, as Pinto [57℄

has shown, severe limitations are posed on the aspe
t ratios of the boxes


ontaining a termination node, seriously restri
ting the 
exibility of varying

the point density. It is therefore questionable whether �nite boxes have any

real advantage over the BM, and the method does not seem to be in widespread

use.

Finite element methods

The �nite element method (FEM), originally introdu
ed for the numeri
al

solution of problems in stru
tural me
hani
s, has established itself in the last

two or three de
ades as one of the most popular methods for solving PDEs.

The basi
 idea behind FEM is to repla
e a PDE by an equivalent variational

problem. The domain Ω is partitioned into elements Ωi, and a solution of the

variational problem is then sought by solving it approximately within ea
h

element (see Strang and Fix [70℄ for details).

The advantage of the FEM is that no hard restri
tions, 
omparable to the

angle 
onditions of the BM, are imposed on the grid. (There do exist \soft"

angle 
onditions in that the solution error in
reases with a de
rease of the

smallest angle [70℄, but this is far less restri
tive than the angle 
ondition in
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the BM.)

The disadvantage is that the interpolation fun
tions used within the ele-

ments, whi
h are usually linear or of low polynomial order, are unsuitable

for the exponentially varying densities in the 
ontinuity equations. Var-

ious attempts to use exponential interpolation have apparently not been

su

essful [65, 57℄. Other approa
hes, like hybrid methods or upwinding

s
hemes [13℄, have failed to provide solutions general enough to allow sim-

ulating devi
es under arbitrary operating 
onditions. They all suffer from

trun
ation problems when potential differen
es a
ross elements ex
eed a few

UT . This for
es extremely high point densities when simulating reversely

biased p-n-jun
tions, e.g. in MOSFETs.

Be
ause of these problems, FEM based methods are not 
ommon in the

�eld of devi
e simulation. We are not aware of any general-purpose devi
e

simulator using FEM.

2.2 Time Dis
retization

The spatially dis
retized semi
ondu
tor equations (2.10, 2.11, 2.18, 2.19) 
an

be written as

F (z(t)) = q̇(z(t)) + f(z(t)) = 0, (2.22)

where f = (fν), ν = u, n, p stands for the terms arising from the spatial

dis
retization of the stationary devi
e equations (ṅ = ṗ = 0) and F = (F ν)
for the full (transient) equations,

z(t) :=





u(t)
v(t)
w(t)



 (2.23)

is the transient solution, with u = (ui), v = (vi), and w = (wi), and

q(t) :=





0

(Vini)
(Vipi)



 . (2.24)

Various methods are known for integrating equations like (2.22), for ex-

ample the Euler or ba
kward Euler methods or the trapezoidal rule (TR) [35℄.
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The problem is that Eq (2.22) is extremely stiff, i.e. the time 
onstants vary

over several orders of magnitude. For the usual one-step methods, whi
h are

typi
ally used in 
onjun
tion with a (repeated) Ri
hardson extrapolation, this

results in an una

eptably small time step.

Another major 
on
ern is the stability of the algorithm. An often used


riterion is A stability [35℄: a one-step method

yn+1 = A(hλ)yn, (2.25)

where (hopefully) yn ≈ y(nh), is one stable if, applied to the test problem

dy

dt
= λy (2.26)

with Reλ < 0, it satis�es the 
ondition

|A(hλ)| < 1. (2.27)

The se
ond order TR is the A-stable multistep method with the smallest lo
al

trun
ation error [26℄. However, A-stability is not suf�
ient for very stiff

problems sin
e it does not prevent os
illations in the 
omputed solution unless

the time step be
omes very small. We therefore require the quadrature method

to be L stable [47℄, where a method is said to be L stable if it is A stable and

|A(hλ)| → 0 as |hλ| → 0. (2.28)

This is the 
ase for the method proposed by Bank et al. [7℄: They use a

time step 
omposed of a TR step of length γhn followed by a se
ond order

ba
kward differential formula (BDF2) step of length (1 − γ)hn to go from

time t to tn+1 := tn + hn. For the TR step one has to solve

F n+γ := fn+γ + fn +
2

γhn
(qn+γ − qn) = 0 (2.29)

and for the BDF2 step

F n+1 := fn+1 +
2− γ

(1− γ)hn
qn+1 −

1

γ(1− γ)hn
qn+γ +

1− γ

γhn
qn = 0.

(2.30)
Here we have written qn for q(z(tn)) et
. It turns out that the optimal value

of γ = 2 −
√
2 minimizes the lo
al trun
ation error (LTE) of the 
omposite

s
heme. The advantage of this method is that the 
omposite s
heme is se
ond
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order, yet a one-step algorithm that does not need several previous time steps

for (re)starting.

Bank et al. also propose a s
heme for 
ontrolling the size of the time step

based on an estimate of the LTE de�ned as

τ = 2Chn

[

fn

γ
−

fn+γ

γ(1− γ)
+

fn+1

(1− γ)

]

, (2.31)

where

C =
−3γ2 + 4γ − 2

12(2− γ)
. (2.32)

From the previous step size, hn, a 
andidate step size, h̃, is determined as

h̃ = hnr
−1/3, (2.33)

where

r2 =
1

N

∑

i

(

τi
ei

)2

, (2.34)

and

ei = ǫR|qn+1,i|+ ǫA, (2.35)

with the absolute and relative error parameters ǫR and ǫA. If r ≤ 5 the time

step is a

epted and the s
heme 
ontinues with the next step hn+1 := h̃,
otherwise the step is reje
ted and repeated with hn := 0.9h̃. If the nonlinear
solver does not 
onverge (within a given number of iterations) the time step is

also reje
ted and repeated with hn := hn/2.

2.3 Non-linear Equation Solution

2.3.1 Damped Newton Iteration

The dis
retized equations are nonlinear and are linearized for numeri
al

solution. The usual linearization pro
edure is the (quadrati
ally 
onvergent)

Newton method. Given a nonlinear system of equations

F (z) = 0, (2.36)

the Newton pro
edure iteratively 
omputes a new solution

zk+1
i := zki + δzki (2.37)
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from an old one zk, where the update δzk is obtained as the solution of the

linear system
∑

j

∂Fi(z
k)

∂zkj
δzkj = −Fi(z

k). (2.38)

This basi
 Newton pro
edure suffers from a phenomenon 
alled overshoot:

the update δz frequently overestimates (often by many orders of magnitude)

the differen
e to the solution of (2.36). If su
h an ex
essive update is applied,

the resulting intermediate solution may lie outside of the 
onvergen
e region

of the Newton pro
edure, or numeri
al problems (like exponent over
ow)

may prevent 
onvergen
e.

To 
ontrol this overshoot, damping is introdu
ed: Eq. (2.37) is repla
ed

by

zk+1
i := zki + skδzki , (2.39)

where a damping fa
tor sk, 0 < sk ≤ 1 is introdu
ed. The question remains

how to determine that damping fa
tor. Bank and Rose [8℄ showed that, under


ertain 
onditions, global and quadrati
 
onvergen
e is a
hieved if sk satis�es
the suf�
ient de
rease 
ondition

1− ‖F k+1‖
‖F k‖

≥ ǫsk, (2.40)

where ǫ > 0 is some �xed, small value, usually taken to be the ma
hine

epsilon. Note that this algorithm will still 
onverge if some reasonable

approximation is used instead of the exa
t Ja
obian ∂Fi(z)/∂zj .

To determine a damping fa
tor satisfying Eq. (2.40) without a large number

of evaluations of F k+1, Coughran et al. [25℄ propose the following s
heme:

An initial damping fa
tor sk+1 for a new step is determined from the last

su

essful one as

sk+1 :=
sk

sk + 0.2(1− sk)‖F k+1‖/‖F k‖
. (2.41)

If this step does not satisfy (2.40), the following values are tried in turn:

sk+1 := sk
(

ǫ‖zk‖
δz

)j2/l2

, j = 1, . . . , l. (2.42)
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2.3.2 Coupled and De
oupled Solution

For the stationary 
ase (ṅ = ṗ = 0), the dis
retized equations (2.10, 2.18,

2.19) 
an be summarized as

Fu
i (u,n,p) = 0, (2.43)

Fn
i (u,n,p) = 0, (2.44)

F p
i (u,n,p) = 0. (2.45)

These are three timesNv equations in 3Nv unknowns, whereNv is the number

of grid points. One possibility to solve the equations is by applying the above

Newton pro
edure to the whole 3N -dimensional system. This is 
alled the


oupled solution or full Newton approa
h.

Alternatively one 
an �rst solve (2.43) for u, use the new u and the

original n and p to solve (2.44) for n, and use the new values of u and n

together with the original p to solve (2.45) for p. This must then be iterated

until a self-
onsistent solution is a
hieved, effe
tively performing a nonlinear

blo
k Gauss-Seidel iteration. The method is usually 
alled de
oupled solution

or Gummel or plugin iteration.

The advantage of the 
oupled s
heme is that the 
oupling between the

PDEs is fully taken into a

ount and 
onvergen
e is generally mu
h faster

than with the Gummel method. On the other hand, when the 
oupling is

weak (low inje
tion 
ase), the Gummel method may a
tually 
onverge just as

qui
kly as the full Newton s
heme. In that 
ase it is 
ertainly preferable to

use the former, sin
e the latter requires far more memory due to the fa
t that

the linear system to be solved have three times the number of unknowns.

Experien
e shows that the full Newton method only 
onverges if started

from a reasonably good initial solution. For a truly general purpose devi
e

simulator, a good initial guess is not possible without signi�
ant effort

(
omparable to the total solution effort, 
f. Se
tion 4.5). Hen
e it must be

possible to start the simulation from a poor initial guess. This is possible

with the Gummel iteration, whi
h 
onverges for a very wide range of starting

values. The Gummel method is therefore indispensable for a general purpose

devi
e simulator.

On the other hand, the de
oupled s
heme does 
onverge very slowly

(or not at all) if the PDEs are strongly 
oupled (high inje
tion 
ase). Here

one is for
ed to use the full Newton iteration. The same holds true for
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transient simulations. Hen
e, both methods must be implemented in the

devi
e simulator.

2.3.3 Choi
e of Variables

The 
hoi
e of the variables strongly in
uen
es the nonlinear 
onvergen
e.

So far we have expressed most equations in terms of the variables (u, n, p).
Alternatives are to use quasi-Fermi levels in pla
e of the densities, (u, v, w),
or the Slotboom variables (u, ν := exp(−v), ω := exp(w)).

At a �rst glan
e, the variable set (u, n, p) seems attra
tive for the de-


oupled method, sin
e the equations (2.10, 2.18, 2.19) are linear (ignoring

the dependen
e of the mobilities and re
ombination rates on the variables).

However, it turns out that the Gummel iteration does in most pra
ti
al 
ases

not 
onverge in these variables [57℄. Using the set (u, v, w) for Poisson's

equation results in a stable Gummel iteration. Note that for the de
oupled

method there is no need to use the same set of variables for the different

equations, it is therefore possible to use the 
arrier densities for the 
ontinuity

equations and thus keep these linear.

In the 
oupled 
ase, the equations be
ome nonlinear, even when expressed

in densities, due to the Bernoulli fun
tions in Eqs. (2.44, 2.45). When using

quasi-Fermi levels we have in addition the exponential dependen
ies on the

variables in the density terms of all three equations. It is therefore to be

expe
ted that the variable set (u, n, p) is preferable in the 
oupled 
ase, whi
h
is exa
tly what Pinto [57℄ �nds.

There is a problem, however, in the s
aling of the variables. While u
typi
ally varies over one or two orders of magnitude, the 
arrier densities

vary over ten to twenty orders of magnitude. This 
auses severe problems

when linear systems are solved by iterative methods (see next se
tion). A

linear solver will in general not be able to resolve the small variations in the

potential when solving for densities at the same time. This essentially renders

the 
on
entration variables useless when performing a full Newton iteration

while using iterative linear solvers. One might hope that some smart s
aling

of the equation 
ould help, but 
urrently no su
h s
aling is known. The

quasi-Fermi levels, on the other hand, are s
aled 
omparably to the potential

and are therefore appropriate for the full Newton s
heme.

The Slotboom variables have the advantage that the 
ontinuity equations
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be
ome self-adjoined and symmetri
 positive de�nite, a property the other

sets of variables do not have. However, their s
aling is even worse than that

of the densities, so that they are of no help in the 
oupled 
ase.1

To summarize this dis
ussion, we found that the variable set (u, n, p)
works well for solving the 
ontinuity equations in de
oupled mode, while

for Poisson's equation and in the 
oupled 
ase the variables of 
hoi
e are

(u, v, w).

2.4 Sparse Linear Systems

Owing to the fa
t that the box dis
retization produ
es 
oupling between

different grid points only if the points are edge neighbours, the linear system

of equations, e.g. (2.38), are very sparse. We found that with the irregular

grids we are using, there are in average only about eight non-zeros in ea
h

row of the 
oef�
ient matrix. In order to keep time and memory requirements

of the linear solves within reasonable limits, it is mandatory to employ

algorithms and data stru
tures that make use of the sparsity, so-
alled sparse

linear solvers. Sin
e the 
omputer time required for a simulation is usually

dominated by the time needed for linear solves, it is mandatory to use the

fastest methods available.

The linear systems 
an be solved by sparse dire
t methods (i.e. variants of

Gaussian elimination) [29, 28, 9, 4, 1℄ or by sparse iterative methods, usually

generalization of the basi
 
onjugate gradient method (CG) [44℄.

Dire
t methods have traditionally been used in devi
e simulation, and

enjoy 
ontinued popularity in 2d [57℄. The major reason is that they

reliably produ
e a solution, while most iterative methods 
annot handle the

ill-
onditioned matri
es arising in devi
e simulation. However, due the huge

grid sizes typi
al for 3d devi
e simulations, problems with memory size made

the use of iterative methods a ne
essity.

The memory requirements of an iterative method are �xed, known in

advan
e, and fairly low. Only a few ve
tors of length N are required

as working spa
e (typi
ally between three and twelve, depending on the

1Pinto reports typi
al 
ondition numbers of 1015 to 1016 for densities, up to 1020 for Slotboom
variables, and as low as 103 for quasi-Fermi levels. This is a 
lear indi
ation that only the latter

hoi
e is useful when applying iterative solvers.
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method), plus, in the 
ase of no-�ll in
omplete fa
torization pre
onditioning,

one matrix with the same sparsity pattern as the original system matrix. For

dire
t methods, the memory requirements depend highly on the stru
ture of

the matrix and parti
ularly on the ordering of the rows in the matrix. Although

there are heuristi
s to redu
e the �ll,2 like the minimum degree algorithm or

bandwidth redu
tion te
hniques like the reverse Cuthill-M
Kee s
heme [58℄,

the storage requirements for dire
t solvers on general sparse matri
es are

unpredi
table and grow superlinearly with the problem size. The differen
e in

the storage requirements of dire
t and iterative solvers is depi
ted in Fig. 2.2,

based on experimental data.

memory.ps
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direct
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Figure 2.2: Memory requirements of dire
t and iterative solvers as a fun
tion

of problem size

If we extrapolate the 
urves to, say, 300 000 unknowns (
orresponding to

a 
oupled solve with a 100 000 point grid) we expe
t memory requirements in

the 10 to 100Gbyte range, whi
h is more than even the biggest ma
hines 
an

offer today. It is obvious that dire
t methods 
an no longer be used on
e the

grid sizes ex
eed some ten or twenty thousand points.

Time 
onsiderations also favor iterative methods for large problems. The

2Non-zero entries in the obtained fa
tor matrix at positions where the original matrix was zero
are 
alled �ll.



34 Numeri
al Solution of the Equations

time to solve a general linear system by a dire
t method is as unpredi
table

as its storage requirements (with an upper limit of n3/3). For a given matrix

stru
ture and row ordering, however, this time is �xed, it does not depend on

the a
tual numeri
al values in the matrix. Conversely, an iterative method

requires a �xed amount of work per iteration, and the number of iterations

required to a
hieve a 
ertain pre
ision depends strongly on the numeri
al

values of the 
oef�
ients. As a result, dire
t methods are usually faster on

small problems. For large problems the iterative methods tend to be faster due

to the fa
t that for a given problem the required number of iterations depends

only weakly on the problem size Nv .
3

The use of iterative s
hemes has only re
ently be
ome a topi
 for devi
e

simulation [60, 74℄) and the performan
e of these methods has often been

disappointing. However, in the last few years signi�
ant progress has been

made and 
urrently the CG variants BiCG [32℄, CGS [69℄ and espe
ially

CGSTAB [79℄, all in 
ombination with ILU pre
onditioning [52, 53℄, seem to

be most promising. For a detailed 
omparison of iterative methods in devi
e

simulation see Heiser et al. [43℄.

3The meaning of \small" and \large" here depends on the ma
hine used for the 
al
ulation.
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Semi
ondu
tor Devi
e Modelling in

Three Dimensions

In this 
hapter we dis
uss semi
ondu
tor devi
e simulation from the viewpoint

of 3d modelling. The �rst se
tion reviews the most important 3d simulation

proje
ts published so far. The next se
tion illustrates the problems that are

parti
ular to devi
e simulation in 3d. The last se
tion of the 
hapter outlines

the approa
h we have taken with our simulator Se
ond.

3.1 Previous Work

The oldest published a

ounts of 3d devi
e simulation seems to be on the

FIELDAY program developed by Buturla et al. [14, 63℄ at IBM, and the work

done by Yoshii et al. [84, 46℄ at NTT.

FIELDAY is a 1, 2 and 3-dimensional FEM 
ode. For 3d simulations a

grid 
onsisting of triangular prisms is used. This grid is obtained as a tensor

produ
t of a 2d triangular mesh and a 1d grid. The approa
h 
hosen allows

good modelling of devi
e features, in
luding non-re
tangular boundaries, in

two dimensions, while in the third dimension the grid is regular (and possesses

translational symmetry).

FIELDAY already allowed the steady-state or transient solution of the

35
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semi
ondu
tor equations, using either a full Newton s
heme or a Gummel

iteration. To save 
omputing time it allowed suppressing one or both 
ontinuity

equations in 
ases where 
arrier 
ow is unipolar or negligible. The program's

appli
ability was mainly limited by the fa
t that dire
t methods were used for

the solution of linear systems, apparently due to the poor reliability of the

iterative methods available at that time, parti
ularly in the 
ase of irregular

FEM grids. This, together with memory sizes available ten years only allowed

simulation of grids 
ontaining no more than a few thousand points.

Conversely, the NTT effort used a FD method (with regular grids). Only

steady state solutions using the Gummel iteration were possible. An analyti
al

(linear) approximation of the variation of the ele
trostati
 potential was used

within the oxide for MOSFET simulations. Linear systems were solved by

relaxation methods, whi
h allowed grid sizes of up to 20 000 nodes.

The TOPMOST MOSFET simulator by Dang et al. from Toshiba [27, 66℄

was the �rst to use pre
onditioned CG to solve the linear equations. This

purportedly required them to use Slotboom variables for the 
ontinuity

equations, with all the adverse effe
ts these variables have on the 
ondition of

the linear systems (
f. Se
tion 2.3.3). The authors also report using the BM,

however their grids are purely tensor produ
t type, and the BM is only used

in order to treat some non-re
tangular boundaries. An interesting feature of

TOPMOST is that it also in
orporates a 3d pro
ess simulator [55℄.

Toyabe et al. [51, 74℄ from Hita
hi, with their program CADDETH, were

the �rst to report the use of CG-based methods for solving non-symmetri


linear systems, namely BiCG and CR [62℄. Usage of tensor produ
t grids

enabled them to highly ve
torize their 
ode. Their simulator 
an model

avalan
he breakdown of MOSFETs and has been extensively used in the

investigation of α-parti
le indu
ed soft errors [72℄.

Notable re
ent work in
ludes the SMART program by Odanaka et al. [54℄

from Matsushita, whi
h also 
ombines 3d pro
ess and devi
e simulation,

and whi
h 
an simulate GaAs-MESFETs [76℄. The well-known MOSFET

simulator MINIMOS by Selberherr et al. from the Te
hni
al University of

Vienna, whi
h in
ludes energy balan
e [38℄, has been extended to 3d [73℄

and re
ently also to GaAs-MESFETs [49℄ and to non-re
tangular Si-SiO2
interfa
es [75℄. SMART and MINIMOS both use tensor produ
t grids.

The SIERRA program by Chern et al. [17℄ from Texas Instruments is a

3d extension of the well established Pis
es-II simulator [56℄. It uses the BM
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with prismati
 elements for stationary and transient simulations as well as

small signal analysis. The geometry spe
i�
ation is extra
ted from layout and

pro
ess des
riptions. This is probably the most versatile 3d devi
e simulator

published to date. However, the usage of prismati
 grids still signi�
antly

restri
ts the generality of devi
es that 
an be modelled. The HFIELDS-3D

simulator by Ba

arani et al. [19℄ from the University of Bologna also uses

prismati
 grids.

If we 
ompare the re
ent publi
ations with the oldest ones, we 
an see

that re
ent progress has 
hie
y been made in two areas: improved numeri
al

methods, in parti
ular improved iterative solvers, have made 3d simulation

more pra
ti
al. Improved physi
al models have made them more realisti


(energy balan
e) or appli
able to a wider range of problems (GaAs).

With respe
t to geometri
al generality the improvements have been rather

modest: while some progress has been made by allowing some limited form

of non-re
tangular geometries, all proje
ts use grids that are essential tensor

produ
ts of one- or two-dimensional meshes and are therefore not well suited

to model truly 3d geometry and devi
e features. The result is a grid that is

mu
h bigger (in terms of the number of grid points) than what is really needed

and wanted, resulting in ex
essive memory 
onsumption of the simulator.

Furthermore the grids are still essentially 1+1+1 dimensional (re
tangular

grids) or 1+2 dimensional (prismati
 grids), implying limited 
apability to

model general devi
e geometries.

3.2 What Makes 3D Harder Than 2D?

In this se
tion we will examine some of the main dif�
ulties that are inherent

in 3d devi
e simulation.

3.2.1 Computational Complexity

As 
an be seen from Figure 2.2, the memory requirements of an iterative linear

solver grow approximately linearly with the problem size, i.e. the number

of unknowns. The same holds true for the devi
e simulator in general, so

that one 
an say that the required memory size is proportional to the grid

size. Similarly, the time per iteration of the linear solver is proportional to

the number of equations. Sin
e the 
ondition of the linear systems tends to
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deteriorate with in
reasing number of unknowns, the time required for the

simulation grows in general superlinearly with the grid size. Note that this

is only a rough \ba
k of the envelope" 
al
ulation, sin
e the 
ondition of the

linear systems will also depend on the grid geometry, sometimes a simulation

may a
tually be faster on a bigger grid than on a smaller one. This, however,

is ex
eptional. The general tenden
y of a slightly superlinear dependen
e of

simulation time on grid size is 
ertainly 
orre
t.

The transition from 2d to 3d is obviously 
onne
ted with a huge in
rease in

grid sizes. Typi
al 2d simulations with irregular grids use several hundred up

to a few thousand points, and for simulations with regular grids a few thousand

points are 
ertainly a ne
essity for non-trivial devi
e geometries. If we assume

symmetri
 treatment of all spa
e dimensions, the transition from 2d to 3d will

in
rease the grid size by a power of 3/2, that is from 1 000 to 30 000 or from

4 000 to 80 000. Su
h grid sizes are suf�
ient to �ll the memories of the

largest super
omputers available today, and typi
al super
omputer run times

for a grid with 
lose to 100 000 points are of the order of hours for stationary

and days for transient simulations, whi
h is at the edge or beyond of what 
an

be 
onsidered pra
ti
al or \tra
table". For smaller ma
hines, like mainframes

or mini-super
omputers, the maximum size of \tra
table" problems is maybe

four times smaller than for super
omputers.

3.2.2 Numeri
al Aspe
ts

We have already pointed out in Se
tion 2.4 that dire
t linear solvers 
annot

be used for realisti
 3d simulations sin
e their time and spa
e 
omplexity is

too high. This poses new problems. The linear systems arising from the

dis
retization of the semi
ondu
tor equations are notoriously ill-
onditioned

(
f. Se
tion 2.3.3), and the 
ondition tends to deteriorate with in
reasing grid

size. The use of pre
onditioned solver algorithms is therefore mandatory.

Be
ause of the long run times typi
ally asso
iated with 3d devi
e simula-

tions, it is imperative to make optimal use of the hardware, in parti
ular the

parallel pro
essing 
apabilities of ve
tor or multipro
essor 
omputers. How-

ever, as Heiser et al. [43℄ have shown, the reordering of unknowns required

to a
hieve this goal 
an be 
ounterprodu
tive|
ondition deteriorates further

and the number of iterations required for 
onvergen
e is in
reased, sometimes


onvergen
e is even fully destroyed.

Hen
e, to perform realisti
 3d simulations we need very stable iterative
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solvers that 
an handle ill-
onditioned systems, and \good" grids, that prevent

the 
ondition number from be
oming too big.

3.2.3 Geometry De�nition

There is a qualitative differen
e in the dif�
ulty of spe
ifying the geometry of

a 2d or a 3d obje
t. While a 2d geometry 
an basi
ally be de�ned by a simple

drawing (e.g. using a mouse and a graphi
 display) this is not the 
ase in 3d.

Sophisti
ated geometri
 modelling tools are required, and even with a good

solid modeller 
onstru
tion of a 3d devi
e geometry is mu
h more dif�
ult

and time 
onsuming than it is in 2d.

Another problem is 
aused by the need to use pro
ess simulator output or

measured doping data. 3D pro
ess simulators are not yet widely available,

even 2d simulation is not yet generally done in pro
ess modelling. The

problem is worse with experimental data|it is dif�
ult (and ina

urate) to

measure doping pro�les in 1d and measured 2d pro�les are an ex
eption.

Hen
e for the purpose of devi
e simulation, the 3d impurity information must

be 
onstru
ted out of 1d or 2d pro
ess simulation or measurement data.

3.2.4 Grid Generation

Sin
e 3d grids are generally mu
h bigger than 2d grids, and sin
e 3d simulation

is at the limit of today's 
omputers, every attempt must be made to keep the

number of grid points as small as possible. This is only possible if irregular

grids are used, otherwise many grid points are wasted in devi
e regions where

a low point density suf�
es.

The generation of grids adapted to needs in three dimensions is by itself

a dif�
ult problem. While in 2d it is possible (in prin
iple) to pla
e points

manually, this is not possible in 3d. The grid generation pro
ess must be fully

automated. The angle 
onditions imposed by the BM add enormously to that

dif�
ulty, sin
e it is a hopeless task to \regularize" a grid that does not ful�ll

these 
onditions. The grid generation pro
ess must take the angle 
onditions

into a

ount right from the beginning [21℄. Furthermore the elements of the

grids must have bounded aspe
t ratios to avoid unne
essarily poor 
ondition

numbers in the linear systems resulting from the dis
retization.
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3.2.5 Visualization of Results

Visualization of 3d simulation results is both important and dif�
ult. While

it may be possible to examine 1d results in the form of tables or simple


urves, this be
omes already impra
ti
al in 2d. In 3d the sheer amount of data

ne
essitates some 
ondensed graphi
al representation.

On the other hand, there is again a qualitative differen
e between the

visualization of 2d and 3d results. A s
alar fun
tion on a 2d domain produ
es

a surfa
e embedded in a 3d spa
e, whi
h is relatively easy to visualize sin
e

the world we experien
e is three dimensional. In the same way a fun
tion on a

3d domain would require a four dimensional representation, whi
h is beyond

the imagination of most humans. New approa
hes must therefore been taken

for the visualization of 3d results.

3.3 Our Approa
h

In the pre
eding se
tions we attempted to give the reader an impression of

the dif�
ulties involved in 
onstru
ting a truly general 3d devi
e simulation

system, mu
h more than a single person 
an handle within a reasonable

amount of time. It is therefore ne
essary to break the whole problem into

several parts. However, the full extend of the problem must be kept in mind

when going about to solve the partial problems.

We will from now on fo
us our attention ba
k on the \simulator proper",

i.e. the program that, when supplied with a suitable des
ription of the devi
e

to be simulated, in
luding the grid, will solve the semi
ondu
tor equations

and produ
e results in a form whi
h allows their visualization using the

appropriate tools. We will take another look at the 
omplete simulation

system in Se
tion 5.3.

The reader surely 
ouldn't help noti
ing our view that 
urrently only the

BM allows modelling general devi
e geometries while being appli
able to

arbitrary devi
e operating 
onditions|we therefore adopted the BM for our

simulator system. In order to have suf�
ient 
exibility we allow grids to

be 
omposed of four element types (\shapes"): tetrahedra, quadrilateral

pyramids (with a parallelogram base), triangular prisms, and parallelepipeds

(sheared 
uboids).
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With these elements every plane fa
ed devi
e geometry (or internal

interfa
e) 
an be modelled. Furthermore, they allow to interpolate between

(quasi-regular) grid regions of various 
oarseness, thus permitting the point

density of the grid to vary in all dire
tions. While this would be possible

by using tetrahedra alone (all the other elements 
an be divided into at most

�ve tetrahedra), by using 
uboids we 
an signi�
antly redu
e the number of

elements and edges in the grid.

The admissible element shapes are de�ned su
h that the type and three

edge ve
tors are suf�
ient to de�ne ea
h element [41℄. This permits the use

of ef�
ient data stru
tures for des
ribing the grid within the simulator.





4

Methods

In this 
hapter we des
ribe some of the methods used in the a
tual implemen-

tation of the 
on
epts presented in the previous 
hapters.

4.1 Assembly

At the very heart of the simulation lies the problem of solving the linear

equations (2.38) arising from the Newton pro
edure. Before su
h a system


an a
tually be solved it must �rst be assembled, i.e. the 
oef�
ient matrix

(LHS) and the right hand sides (RHS) must be 
omputed.

4.1.1 Poisson's Equation

From the dis
retized Poisson's and Lapla
e's equations (2.10, 2.11) we obtain

the LHS as

− ∂Fu
i

∂uk
= ε

Aik

lik
+ δik

∑

j 6=i

ε
Aij

lij
− δikVi(ni + pi). (4.1)

Here, ε = 1 within sili
on, while within the oxide, the 
harge terms δikVi(ni+
pi) are to be omitted, and ε = εox/εsemi . Obviously the �rst two terms in (4.1)

43
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only depend on the grid, not the 
urrent values of the unknowns. This part,

whi
h represents the dis
retized Lapla
e operator, 
an therefore be 
omputed

on
e for the whole simulation.

When setting up this matrix, whi
h we denote (aij), one has to make sure

that the proper value of ε is used for ea
h edge. If the box se
tion Aij does

not fully belong to a single material (e.g. if the edge is on a material interfa
e)

the box parts from the different materials must be multiplied with the proper

value of ε and added together.

On
e the matrix (aij) is set up, the LHS for the Poisson equation 
an

be assembled by simply 
opying (aij) and adding the 
harge terms to the

diagonal. The RHS then be
omes

Fu
i =

∑

j

aijuk + (ni − pi)Vi −NiVi. (4.2)

The last term on the right is again independent of the solution and 
an be

pre
omputed. Sin
e doping values are not needed afterwards, there is no

storage penalty for this prepro
essing. The box volumes Vi 
an also be

pre
omputed as

Vi =
∑

j 6=i

Aij lij/6, (4.3)

so that the assembly of the RHS of the Poisson equation redu
es to a sparse

matrix-times-ve
tor operation plus a few very simple ve
tor operations.

4.1.2 Continuity Equations

The BM dis
retization of the 
ontinuity equations (2.18, 2.19) is expressed


ompletely in u, n, and p. This is an appropriate form for the RHS if we use

this set of variables (
f. Se
tion 2.3.3). The LHS then take the form

− ∂Fn
i

∂nk
=
A′

ik

lik
µn
ikB(uki)− δik





∑

j 6=i

A′
ij

lij
µn
ijB(uij) + V ′

i

∂Ri

∂ni



 , (4.4)

− ∂F p
i

∂pk
=
A′

ik

lik
µp
ikB(uik)− δik





∑

j 6=i

A′
ij

lij
µp
ijB(uji) + V ′

i

∂Ri

∂pi



 , (4.5)
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where

V ′
i =

∑

j 6=i

A′
ij lij/6, (4.6)

and A′
ij is the part of the box se
tion that lies within the semi
ondu
ting

material; A′
ij is zero for edges that lie 
ompletely within insulating material.

If we use the variables u, v, and w, we prefer a form of the dis
rete

equations that is expressed in these variables. Substituting v andw for n and p
in Eq. (2.18, 2.19) and making use of the properties of the Bernoulli fun
tions,

we obtain the alternative forms

F v
i = −

∑

j 6=i

A′
ij

lij
µn
ijniB(uij)(e

vij − 1) + V ′
iRi, (4.7)

Fw
i = −

∑

j 6=i

A′
ij

lij
µp
ijpiB(uji)(e

wji − 1) + V ′
iRi, (4.8)

−∂F
v
i

∂vk
= −A

′
ik

lik
µn
ikniB(uik)e

vik

+ δik





∑

j 6=i

A′
ij

lij
µn
ijniB(uij) + V ′

i ni
∂Ri

∂ni



 , (4.9)

−∂F
w
i

∂wk
= +

A′
ik

lik
µp
ikpiB(uki)e

wki

+ δik





∑

j 6=i

A′
ij

lij
µn
ijpiB(uji) + V ′

i pi
∂Ri

∂pi



 , (4.10)

with vij := vi − vj and wij := wi − wj . We 
an remove most dire
t

referen
es to the densities in these equations by s
aling them with the

appropriate densities. That way we obtain for the linear systems

(RHS)vi = +
1

ni
F v
i , (4.11)

(RHS)wi = +
1

pi
Fw
i , (4.12)

(LHS)vik = − 1

ni

∂F v
i

∂vk
, (4.13)

(LHS)wik = − 1

pi

∂Fw
i

∂wk
. (4.14)
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Unlike Poisson's equation, the LHS of the 
ontinuity equations depend

on the solution, not just the grid. However, the matrix elements 
ontain the

invariant fa
tors A′
ik/lik. The matrix (A′

ik/lik), whi
h is different from the

matrix (aij) that is used for Poisson's equation, 
an again be pre-
omputed.

TheS
harfetter-Gummel dis
retization of the 
ontinuity equations assumes

the mobilities to be 
onstant along an edge. Be
ause we 
an 
ompute the

mobilities at the grid points, we approximate the mobility along an edge as

the average of the nodal values at the edge's end points:

µij =
1

2
(µi + µj). (4.15)

The Bernoulli fun
tions and the terms ex − 1 must be evaluated very

a

urately, otherwise the 
urrents will not be 
onserved. Trun
ation of

signi�
ant digits make the 
omputation of exp(x)− 1 ina

urate for |x| ≪ 1.

We therefore use a polynomial expansion [39℄ of B(x) and ex − 1 for small

values of x.

4.2 Treatment of Boundary Conditions

4.2.1 Diri
hlet Boundaries

AtDiri
hlet boundary points (
alledDiri
hlet points from now on) the solution

is known from the beginning. The treatment of su
h grid points within the

PDE solver thus 
onsists of two parts:

1. setting up the initial solution so that it satis�es the Diri
hlet boundary


ondition, and

2. ensuring that the values of the unknowns at the Diri
hlet points do not


hange.

The �rst point is straightforward and needs no further explanation. The

se
ond implies that in the Newton update step

zk+1 := zk + skδzk (4.16)
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all the 
omponents i, i ∈ Γ0 of δz that 
orrespond to Diri
hlet points are zero.

Sin
e δz is the solution of a linear system

∑

j

Aijδzj = bi, (4.17)

this means that we already know part of the solution to Eq. (4.17). Let us

assume that the equations are numbered su
h that Diri
hlet points have the

highest numbers, i.e.

∀i ∈ Γ0 : ∀j 6∈ Γ0 : i > j. (4.18)

We 
an now drop all 
oef�
ients of (Aij) whi
h are multiplied with the

Diri
hlet 
omponents of the solution, sin
e their removal will not 
hange the

solution of the system. These are the 
omponents (Aij) with j ≥ ND, if ND

is the Diri
hlet point with the smallest number. In the s
hemati
 representation

of Figure 4.1 this in
ludes all the 
oef�
ients in blo
k II of the matrix.
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}

Diri
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Figure 4.1: S
hemati
 view of Diri
hlet and non-Diri
hlet regions in the

linear system of equations

The dropping of these 
oef�
ients in fa
t 
ompletely de
ouples the

equations for the non-Diri
hlet points from the equations for the Diri
hlet

points. Hen
e it is no longer ne
essary to solve the equations for the Diri
hlet

points at all, rather than solving the N × N system (4.17) we 
an solve the

redu
ed ND × ND system whi
h is obtained from (4.17) by dropping the

last (N − ND) equations and the last (N − ND) 
olumns of the 
oef�
ient

matrix. Alternatively we 
an zero all the 
oef�
ients in regions II and III of

Figure 4.1, make region IV a unit matrix, and set the right hand sides in region

VIII to zero.
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box-bound.id
82 × 30 mm

i
∂Ω

Ω i

∂Ω i

Figure 4.2: Box of a boundary point

4.2.2 Neumann Boundaries

Neumann boundary 
onditions are even easier to treat|they basi
ally

look after themselves. If we fo
us on Eq. (2.4), the integral
∫

∂Ωi
F · dn gives

a zero 
ontribution on ∂Ωi ∩ Γh, the part of the box boundary that 
oin
ides

with the Neumann boundary; due to the fa
t that F · dn = 0 by de�nition.

In the dis
retized equation (2.6) this is ensured automati
ally, sin
e no edges


orrespond to the box boundary se
tion ∂Ωi ∩ Γh, and therefore no term in

(2.6) 
orresponds to that part of the boundary (see also Fig. 4.2). In other

words, Neumann verti
es 
an be treated exa
tly like internal verti
es.

4.2.3 Internal Boundaries

The situation is basi
ally the same for internal boundaries between different

materials (so-
alled internal interfa
es). The only kind of internal interfa
es

we have to deal with are the boundaries between semi
ondu
ting material

and insulator. The interfa
e 
ondition for the 
ontinuity equations is that no


urrent 
an 
ow a
ross the interfa
e, whi
h is a Neumann boundary 
ondition

for the 
ontinuity equations (
f. Se
tion 1.2.2).

For Poisson's equation, the interfa
e 
ondition in the absen
e of surfa
e


harges is the 
ontinuity of the ele
tri
 displa
ement D = εE. This is again

satis�ed automati
ally due to the fa
t that the 
harge density, whi
h determines

the ele
tri
 displa
ement, is 
ontinuous. Hen
e internal boundaries require no

spe
ial treatment.
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4.3 Terminal Currents

As has been shown by B�urgler [13℄, the 
urrent In,pi 
owing out of the i-th

onta
t due to ele
tron or hole 
ondu
tion 
an be obtained by summing the

right hand sides obtained when assembling the 
ontinuity equations:

In,pi = −
∑

ωj⊂Ri

Fn,p
j . (4.19)

Here Ri is a region (part) of the devi
e that 
ontains 
onta
t i but no other


onta
t. Note that here we need to use the RHS as assembled independent

of the Diri
hlet boundary 
onditions. In other words, if we treat Diri
hlet

boundary 
onditions as suggested in Se
tion 4.2.1, wemust do the 
omputation

of the terminal 
urrents a

ording to Eq. (4.19) before setting the RHS to zero

for Diri
hlet points.

A

ording to B�urgler the total 
urrent (in
luding the displa
ement 
urrent

in transient simulations) 
an be obtained by solving

∇ · Jn +∇ · Jp −∇ · ε∇u̇ = 0. (4.20)

The linear system resulting from the dis
retization of this equation has the

RHS

F t
i := fni + fpi +

∑

j

aij u̇k, (4.21)

while the LHS is, ex
ept for the sign, equal to the dis
retized Lapla
ian (
f.

Se
tion 4.1.1).

After solving Eq. (4.20) we 
an obtain the total 
urrent through 
onta
t i
as

Iti =
∑

ωj⊂Ri

F t
j (4.22)

just as in the 
ase of the 
ondu
tion 
urrents. The displa
ement 
urrent is then

the differen
e of the total and 
ondu
tion 
urrents:

Idi = Iti − (Ini + Ipi ). (4.23)
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4.4 Ele
tri
 Field

The physi
al models employed in devi
e simulation often 
ontain referen
es

to the ele
tri
 �eld or the ele
tron and hole 
urrent densities (
f. Se
tion 1.4).

We must therefore �nd a way to 
ompute these entities at the grid points.

As shown in Se
tion (2.1.2), under the assumption of a 
onstant ele
tri


�eld, the proje
tion Eij = E · lij/|lij | of E onto the edge ij is known to be

−uji/lji. The problem now is to re
onstru
t the ve
torE from its proje
tions.

e�eld-elt.id
61 × 54 mm

E
x1

x2

x0 p1

p2

Figure 4.3: Ele
tri
 �eld ve
tor within an element

Consider the situation in Figure 4.3: In d spa
e dimensions (d = 2 in the

Figure) we have a 
orner of an element where d edges meet. The proje
tions,

pi, of the ve
tor E onto the edges are

pi = E · li0

|li0|
=

d
∑

j=1

Ej
li,j
|li0|

, (4.24)

where li,j is the j-th 
oordinate of li0.

Sin
e the ve
tors li0 are assumed to be linearly independent, the matrix

(li,j/|li0|) is regular and has an inverse (aij) := (li,j/|li0|)(−1) with the
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property

d
∑

i=1

aki
li,j
|li0|

= δkj . (4.25)

Multiplying (4.24) with this inverse from the left we obtain

d
∑

i=1

akipi =
d

∑

j=1

d
∑

i=1

aki
li,j
|li0|

Ej =
d

∑

j=1

δkjEj = Ek. (4.26)

This means that we 
an 
ompute the ele
tri
 �eld ve
tor as

Ek = −
d

∑

i=1

aki
ui − u0

|li0|
. (4.27)

If the ele
tri
 �eld is not 
onstant, (4.27) holds only approximately, and

the value obtained for E will depend on the d-tuple of edges used; none of

these values will, in general, be equal to the \true" value of E. However,

if the grid suf�
iently resolves the physi
s of the devi
e, the values obtained

should be a reasonable approximation.

The question remains how to obtain a value for E at a grid point. The

obvious approa
h is to 
ompute in ea
h element, ω, that is in
ident in the

vertex, x, an approximation, Eω , to the ele
tri
 �eld ve
tor a

ording to

(4.27). We 
an then get an approximation to the �eld as a weighted average

of the values obtained for the individual elements:

E(x) =
1

S

∑

ω∋x

sωEω, (4.28)

where

S :=
∑

ω∋x

sω. (4.29)

Note that in general Eω depends on the 
orner of ω at whi
h it is evaluated.

Within ea
h element ω, the value of the 
orner 
orresponding to vertex xmust

be taken.

As weight fa
tors sω we 
hoose the angle spanned by ω. In 3d this means


omputing the solid angle spanned by three ve
tors a, b and c. A

ording
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to [12℄ this angle is equal to

sω = 4 ar
tan

(

tan
α+ β + γ

4

× tan
−α+ β + γ

4
tan

α− β + γ

4
tan

α+ β − γ

4

)
1
2
, (4.30)

where α, β and γ are the (2d) angles en
losed between ea
h pair of edges.

This 
hoi
e of sω yields

S = 4π. (4.31)

An additional 
ompli
ation exists if there are 3d elements whi
h have

verti
es where more than three edges meet | as is the 
ase at the tip of our

quadrilateral pyramids. We 
an handle this 
ase by (temporarily) treating su
h

a pyramid as two tetrahedra. A more symmetri
 treatment is to 
ompute a

value of Eω for ea
h of the four triples of edges, and extending the sum in

(4.28) over all four subelements. In this 
ase we must divide the weight sω by

two, sin
e ea
h part of the element is used twi
e.

We 
an summarize the ele
tri
 �eld 
omputation as

Ei(x) = − 1

S

∑

ω∋x

sω
d

∑

j=1

aij

|lωj |
[u(xω

j )− u(x)]. (4.32)

In 3d this is rather expensive to 
ompute, due to the many inversions of 3× 3

matri
es required. It is therefore advantageous to a

umulate all the fa
tors

(s/S)(a/|l|) in a matrix bijk. The storage requirement for this matrix is d
times the number of edges. On
e the matrix is set up, the ele
tri
 �eld in all

verti
es 
an be 
omputed as a simple linear transformation of the potential

differen
es along the edges:

Ei(xj) =
∑

k 6=i

bijkujk. (4.33)

The 
urrent density ve
tors at the grid points 
an be 
omputed in the

same fashion: The S
harfetter-Gummel solutions (2.15,2.17) are in fa
t the

proje
tions of the 
urrent densities onto the grid edges. We 
an therefore


ompute the 
urrent densities at the grid points by means of the same

transformation (4.33). However, sin
e there exist no 
urrent densities within

the insulator, an additional weight fa
tor must be used for points at the

interfa
e.
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4.5 Initial Solution

If we want to simulate a devi
e we need some initial solution to start the

iteration. Physi
al reasoning and experien
e 
an often be used to determine

an approximation to the �nal solution. Su
h an approximation 
an in prin
iple

be used as an initial guess in a devi
e simulator. While this may be feasible

in the 
ase of a spe
ial purpose simulator, building su
h \intelligen
e" into a

truly general program is a task whose 
omplexity is at least 
omparable to the


onstru
tion of the remainder of the simulator. It must also be remembered

that determination of the initial guess should be 
heap (in terms of 
omputing

time) 
ompared to the solution of the full problem. We are therefore for
ed to

use a rather 
oarse initial guess that is easy to 
ompute.

A frequently used method to start up a simulation is to solve �rst for

thermal equilibrium, i.e. no applied bias, and then step the terminal voltages

up to the required bias 
onditions. Pinto [57℄, however, reports that the

\lo
al quasi-Fermi" guess leads to a faster 
onvergen
e. Hen
e the majority

quasi-Fermi potential in ea
h devi
e region is set equal to the bias applied to

that region, while the minority quasi-Fermi potential is set su
h that minimum

minority 
arrier densities result. This is a
hieved by setting the ele
tron

quasi-Fermi potential in p-regions to the maximum applied voltage Vmax ,

while in n-regions the hole quasi-Fermi potential is set to the minimum voltage

Vmin . The ele
trostati
 potential is set su
h that the majority 
arrier density

equals the lo
al impurity 
on
entration, whi
h means that the potential is set

to the applied voltage plus the built-in voltage.

This initial guess, while signi�
antly better than the thermal equilibrium

solution, is not suf�
ient for good 
onvergen
e under all 
onditions. If the

applied bias is too high, the nonlinear iteration may not 
onverge from this

starting solution, or may 
onverge very slowly. In su
h a 
ase it is ne
essary

to �rst solve for some redu
ed bias value and step from there up to the required

bias.

Often a simulation is not started from s
rat
h, but from the results of an

earlier simulation. Sin
e the previous simulation will in general have been

performed with different bias 
onditions, we need to adjust the solution before

using it as an initial guess for the new simulation run. For this we use a

method similar to the initial guess: If a 
onta
t voltage is 
hanged by a 
ertain

amount, the ele
trostati
 potential and the majority quasi-Fermi potential is


hanged by the same amount at all points in the devi
e region belonging to
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that 
onta
t. Minority quasi-Fermi potentials are left unmodi�ed if this does

not in
rease the minority 
arrier density, otherwise they are 
hanged by the

same amount as the ele
trostati
 and the majority quasi-Fermi potential (thus

keeping the minority 
arrier densities 
onstant).

Note that this way of adjusting an earlier result to obtain an initial guess

works well if applied voltages are in
reased in the new simulation (so the

old bias values represent something like an intermediate working point). It

will perform worse if the applied voltage range is a
tually redu
ed in the new

simulation, and may fail miserably if going from forward to reverse bias or

vi
e versa.

4.6 Stopping Criteria

4.6.1 Non-linear Iterations

An important aspe
t of any iterative algorithm is the de
ision of when the

iteration is 
onsidered 
onverged and 
an therefore be stopped. There are

prin
ipally two kinds of stopping 
riteria: relative and absolute.

For the Newton iteration (
f. Se
tion 2.3.1) a relative 
riterion would be

‖δzk‖
‖zk‖ ≤ ǫr, (4.34)

while an absolute 
riterion might read

‖δzk‖ ≤ ǫa, (4.35)

where ǫr, ǫa are the relative and absolute error limits rese
tively.

Obviously, an absolute error 
riterion does not make mu
h sense for the


on
entration variables, whi
h vary over ten to twenty orders of magnitude,

and even if only majority 
arriers are 
onsidered, the range is still at least

six orders of magnitude. In regions where the (majority) 
arrier densities are

relatively small, the (absolute) 
u
tuations of the densities near 
onvergen
e

are so small that an absolute 
onvergen
e 
riterion sensitive to these 
hanges

would, in regions where the densities are large, translate into a relative error

of, say, 10−10 or smaller. It may not even be possible to obtain su
h a high

a

ura
y.
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An absolute error 
riterion 
an still be applied if the error is monitored in

terms of the quasi-Fermi levels. This is easily possible, even if the iteration is

a
tually performed in terms of the 
arrier densities. For quasi-Fermi levels,

as for the ele
trostati
 potential, a (uniform) absolute error 
riterion makes

sense, and reasonable values are in the range 10−3UT · · · 10−2UT .

We generally use a 
ombination of both kinds of 
riteria: an iteration is


onsidered 
onverged if either the relative or the absolute 
riterion is met. For

the relative 
riterion, usual values are 10−6 · · · 10−4. We use the l2 (Eu
lid)
norm for relative, and the l∞ (maximum) norm for absolute error 
riteria.

Pinto [57℄ re
ommends an absolute stopping 
riterion of 10−5UT , reason-

ing that, due to the quadrati
 
onvergen
e of the Newton method, this does

not really 
ost mu
h 
omputing time. For VLSI appli
ations, where typi
al

voltages are of the order of 5V ≈ 200UT , this 
orresponds to a relative

toleran
e of 5 × 10−8. The linear solver error (see next se
tion) should, of


ourse, not be greater than the nonlinear toleran
e, otherwise the latter does

not make sense. That implies that linear systems must be solved to at least the

same toleran
e of 5× 10−8. This is no problem when using dire
t solvers, an

iterative solver, however, may take very many iterations or not 
onverge at all

when trying to solve a system so a

urately. For that reason we have to use a

less stri
t nonlinear stopping 
riterion.

4.6.2 Linear Iterations

When using iterative linear solvers, the question arises how a

urately the

linear systems are to be solved. Clearly, an insuf�
iently 
onverged linear

solve may prevent 
onvergen
e of the nonlinear solve. We generally require

a relative error for the linear solve that is by a fa
tor 0.1 · · · 0.5 smaller than

the nonlinear toleran
e expe
ted.

At the beginning of a Newton iteration, when the variables are still far

away from the solution values, it seems a waste of effort to solve the linear

systems too a

urately. Indeed, as Bank and Rose [8℄ have shown, the

quadrati
 
onvergen
e of the Newton iteration is preserved, if, in the k-th
Newton step, the linear solver error is less than

αk := α0
‖F k−1‖
‖F 0‖

, (4.36)
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for some α0 ∈ (0, 1). We have found when that using α0 = 0.5 for Poisson's
equation, the Newton iteration usually 
onverged in the same number of

iterations as if all linear solves were performed with high a

ura
y, and up to

50% of 
omputing time was saved. For 
oupled solves we found the value

α0 = 0.1 to be safer.

In order to avoid requiring unreasonable linear solver toleran
es, a lower

limit for the toleran
e of the linear solver is taken, if the toleran
e as required

by the above formula be
omes too small. This minimum toleran
e is user

settable, its default value is one tenth of the nonlinear toleran
e.

In transient simulations the Newton iteration often 
onverges in one or two

iterations. In su
h a 
ase the toleran
e determined by Eq. (4.36) is a
tually

too big and may lead to unne
essarily large errors, resulting in an in
rease of

Newton iterations. It is then advisable to turn off the automati
 adjustment of

linear solver toleran
es by setting α0 to a very small value. Sin
e the linear

solver toleran
e is limited to a minimum, setting α0 = 0 will do.

4.6.3 Transient Simulations

In transient simulations, the time step is 
ontrolled by the error parameters ǫR
and ǫA in Eq. (2.35). We usually set the former to ten times the nonlinear

toleran
e, while the latter is set to

ǫA =
ǫ2R‖V ‖2√

2Nv

, (4.37)

where V = (Vi) is the ve
tor of box volumes. These are, admittedly, purely

heuristi
 
riteria, but they seem to work.
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Implementation

This 
hapter des
ribes the implementation of Se
ond in some detail.

5.1 Software Engineering Aspe
ts

5.1.1 Hardware and Software Environment

The design and implementation of Se
ond was strongly in
uen
ed by 
ertain


onstraints imposed by hard- and software.

The 
ode was developed at the Integrated Systems Laboratory at ETH

Z�uri
h, where a variety of hardware exists ranging from Sun workstations to

Alliant (and later also Convex) mini-super
omputers, plus in the later phase

a

ess to ETH's Cray X-MP and Cray-2 super
omputers. These ma
hines

differ widely in ar
hite
ture, performan
e (and pri
e), but all run the same

kind of operating system (all Berkeley UNIX or UNIX System V). Hen
e

the development environment was 
hara
terized by very diverse hardware but

relatively homogeneous software.

On the other hand the 
odewas supposed to run on otherma
hines available

to industrial partners, like a Siemens/Fujitsu VP-200 super
omputer running

MSP, an operating system largely 
ompatible to IBM's MVS. Hen
e the

57
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appli
ation environment was 
hara
terized by diverse hardware and software.

The traditional implementation language in the area of s
ienti�
 
omputing

is FORTRAN. Be
ause of its many short
omings, whi
h will be explained

in detail later on, we were seriously investigating the possibility of using a

different implementation language.

There were only two other 
andidates: C and Pas
al. Both were

available on most UNIX systems, both were just be
oming available on

Cray super
omputers and both we 
onsidered mu
h better languages than

FORTRAN. We did expe
t the C or Pas
al 
ompilers to generate less ef�
ient


ode that the FORTRAN 
ompilers, but felt that this 
ould be handled by

writing the (usually quite simple) inner loops in FORTRAN.

The real problem were the industrial partners. On the VP-200 system

there was no C 
ompiler. There was a ve
torizing Pas
al 
ompiler announ
ed

for the �rst half or 1988, and, in fa
t, Siemens 
oding regulations [78℄ 
alled

for all new software to be implemented in Pas
al.

Unfortunately, this Pas
al 
ompiler never materialized, andwewere �nally

left with the 
hoi
e between 
ontinuing without the support from Siemens

or biting the bullet and writing in FORTRAN. The next se
tion attempts to

outline the impli
ations of that de
ision.

5.1.2 Drawba
ks of FORTRAN

The FORTRAN language was developed in the mid '50s by Ba
kus et

al. [6℄. The language has evolved sin
e, but even the most re
ent standard [2℄

des
ribes a rather ar
hai
 language that has roughly the power of Algol-60 [5℄

while 
ompletely la
king the latter's elegan
e.

The three most frequently voi
ed reasons why people 
ontinue to use

FORTRAN are

• the huge world-wide investment in FORTRAN 
ode,

• the ef�
ien
y of the produ
ed ma
hine 
ode, and

• the portability of FORTRAN programs.
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The �rst of these points is obviously of little 
onsequen
e for new software.

The se
ond one is indeed true and is due to the fa
t that FORTRAN is the

most frequently used programming language for problems where this kind

of ef�
ien
y is important. Consequently, the manufa
turers invest most

into optimizing FORTRAN 
ompilers. This, of 
ourse, leads to a vi
ious


ir
le|people use FORTRAN be
ause it's ef�
ient, and it's ef�
ient, be
ause

people use it a lot. However, at least in an environment like UNIX, where

inter-language 
alls pose no unsurmountable problems, this argument is not

really a de
isive one, one 
an 
ode most of a system in another language and

fall ba
k on FORTRAN for the few really 
riti
al algorithms.

The last point, portability, works really against FORTRAN, if we look


loser. There are various reasons for this.

Supersets

One is the proliferation of supersets that is typi
al for FORTRAN. Be
ause

FORTRAN la
ks so mu
h of the power of modern 
omputer languages,

most manufa
turers implemented supersets of the standard language. These

supersets, of 
ourse, differ between 
ompilers from different manufa
turers,

and more often than not even between different 
ompilers from the same

manufa
turer. Some of these non-standard features have a
tually developed

into \de fa
to-standards" whi
h many (if not most) users of the language

a
tually 
onsider part of standard FORTRAN. The bad surprise often 
omes

mu
h later when a relatively mature 
ode is ported to a ma
hine whose


ompiler only supports the standard language, or an in
ompatible superset.

Be
ause these de fa
to-standards are so deeply entren
hed into the FOR-

TRAN 
ommunity, writing portable FORTRAN 
ode is quite dif�
ult. Most

of the programs one sees use non-standard features, most language manuals

do not 
learly differentiate between standard features and extensions, most


ompilers do not 
onsistently point out non-standard usage, and most people

who tea
h FORTRAN to their students do not know the differen
e either. The

only help 
omes from [2℄, whi
h, of 
ourse, is quite hard to read and one must

almost know it by heart in order to �nd all the portability 
at
hes.
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Control- and data stru
tures

The reason for this notorious supersetting in FORTRAN implementations

originates from the fa
t that FORTRAN is su
h an old-fashioned language

la
king so many of the features that are natural for users of other 
omputer

languages. One example is the la
k of support for everything that is 
onsidered

\good" or \modern" programming style. FORTRAN is very poor in 
ontrol

stru
tures, making it almost impossible to adopt a \stru
tured" programming

approa
h. The only 
ontrol stru
tures available are blo
k IFs, a loop 
onstru
t

with an iteration 
ount that is established before exe
ution of the loop begins,

and unstru
tured GOTOs. The often needed WHILE loop 
onstru
t is missing


ompletely and 
an only be emulated with GOTO statements.

Mu
h more serious than the la
k of 
ontrol stru
tures is the la
k of data

stru
tures. The only data types available are simple types (numeri
 and

LOGICAL) and arrays of simple types. Pointers and stru
tured types are

missing, not to mention any support for abstra
t data types. This means

that when programming in FORTRAN one has to forget all the advan
es in


omputer languages of the last thirty years, and map all data stru
tures onto

primitive obje
ts, a task that is nowadays 
onsidered the 
ompiler's job.

While su
h a \manual 
ompilation" of data stru
tures is, of 
ourse, always

possible, it defeats the purpose of using sophisti
ated data stru
tures in the

�rst pla
e. All advantages with respe
t to readability and maintainability

of the 
ode is lost. The time required to write the 
ode is in
reased, and

modi�
ations in the existing 
ode are mu
h harder to do. But worst of all,


oding is signi�
antly more error-prone, and the bugs are mu
h harder to �nd.

Additional problems exist for writing large programs. Sin
e the \software


risis" has been per
eived in 1969 [15℄, modularization is 
onsidered one of

themost potent weapons to 
ounter the 
risis. This, however, is onemore pla
e

where the FORTRAN language is no help at all. The only modules known in

FORTRAN are subprograms, whi
h 
annot be nested. Data sharing between

program units is possible only via pro
edure parameters and COMMON

blo
ks.

Parameters are only of limited use, sin
e the la
k of stru
tured types and

pointers would require huge, unwieldy parameter lists. COMMON blo
ks,

on the other hand, make data 
ompletely global, a

essible by any program

unit. There is no way to ensure that 
ertain data 
an easily be a

essed by a

group of related subprograms but remain hidden from others. This means in
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parti
ular that there is no support for data abstra
tion and data hiding.

COMMON blo
ks are furthermore potentially dangerous, sin
e the pro-

grammer is largely responsible for their layout. This means that the de
laration

of a COMMON blo
k must be identi
ally repeated in ea
h program unit that

is to a

ess some data from the COMMON blo
k. The only reasonable means

to ensure this identi
al de�nition is to do it on
e in a �le and in
lude that

�le in all program units a

essing the COMMON blo
k. The problem is that

standard FORTRAN does not provide an in
lude statement. Of 
ourse, every

implementation we are aware of provides some form of an in
lude statement,

but sin
e this is not part of the standard, the syntax (if not semanti
s) of

in
lude statements differ between implementations.

Numeri
 pre
ision

Standard FORTRAN supports two 
oating point numeri
 types, REAL and

DOUBLE PRECISION. This re
e
ts the fa
t that most 
omputers have a

word length (nowadays 32 bits, in the old days often 36 bits) that is insuf�
ient

for many numeri
al problems. Semi
ondu
tor devi
e simulation is su
h a

problem, where ill-
onditioned systems have to be solved and 
oating point

numbers with a mantissa of at least 40 bits are required. Hen
e, on most


omputers a devi
e simulator requires the DOUBLE PRECISION type.

There exist, however, ma
hines with long words, most notably Cray

super
omputers with a word length of 64 bits (48 bit mantissa). On this

ma
hines the REAL type is obviously suf�
ient. Furthermore, sin
e DOUBLE

PRECISION operations are implemented in software on Cray ma
hines, their

usage is prohibitively expensive. Hen
e the programmust use REAL variables

on Crays and DOUBLE PRECISION variables on most other 
omputers.

Obviously, a fully portable program is not possible in FORTRAN.

Most 
ompilers support some kind of swit
h that instru
ts the 
ompiler to

automati
ally treat every REAL de
laration as DOUBLE PRECISION. This

still does not solve the problem, sin
e many subprogram libraries (e.g. [48℄)

have entry points for both REAL and DOUBLE PRECISION parameters, and

the entry point name is used to differentiate between the pre
isions. This

means that, besides variable de
larations, the names used in subroutine 
alls

have to be 
hanged too.

Besides the problem of the 
ontrol of the numeri
 pre
ision, there exists
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the problem of determining the numeri
 pre
ision that 
an be a
hieved.

FORTRAN does not provide any standard means to allow a program to

determine the value of the ma
hine epsilon, whi
h is of utmost importan
e

for many numeri
al algorithms. Sin
e different 
omputers use different

representations of 
oating point numbers, the ma
hine epsilon 
an differ by

more than a fa
tor of 500 between ma
hines, even if the same number of bits

are used to store a number.1

A

ess to environment

For any large program it is highly desirable, if not mandatory, to have some

a

ess to the 
omputing environment. The most 
ommonly used fun
tion

of this kind is the pro
essor time 
onsumed by the program. This is

important information for tuning the 
ode as well as for 
omparing 
omputers.

Furthermore it is desirable to have the program print a time stamp on its

output, and maybe even identify the 
omputer system on whi
h the program

was run.

Information on pro
essor time 
onsumption 
an be important for an

entirely different reason. A 3d devi
e simulator will typi
ally run for several

hours even on a super
omputer. This implies that intera
tive usage is often not

possible, the program must be run through some kind of bat
h system, whi
h

usually means that the amount of pro
essor time that the program may use is

limited, and exe
ution is aborted when the limit is exhausted. A program abort

due to ex
eeded time limits means that some hours of pre
ious super
omputer

time may be wasted. Naturally, this must be avoided|the program must

terminate in an orderly fashion before it is aborted by the operating system.

To this end one may impose, via input data, some limit on the number of

iterations the program may perform in its outermost loop. However, su
h an

approa
h is not always pra
ti
al sin
e it is not always 
lear a priori what a

reasonable limit would be. A better solution is to have the program monitor

its time 
onsumption and 
ompare with the allotted limit. The program must

then realize when it is about to ex
eed that limit and terminate in time. This,

of 
ourse, requires that the program be able to determine the time limit.

For really long 
omputations that must be broken not only in two or three,

but maybe in �ve or ten parts, it is preferable to automate the pro
ess of

1Example: ε for Cray in single pre
ision is 7.1 × 10−15 while on a VAX in D FLOATING
(double pre
ision) format it is 1.4× 10−17, both using 64 bits!
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starting the next job after the su

essor has terminated. For that reason one

wishes to be able to determine, at the 
ommand language level, whether the

program terminated su

essfully, ran out of time, or en
ountered an error.

Hen
e the program should somehow signal its su

ess to the 
ommand level.

On most operating systems this is done by some kind of exit status that 
an

be set by the program and tested at the 
ommand level. The me
hanism for

setting is, of 
ourse, system dependent.

Furthermore, in order to make usage of the program as 
onvenient as

possible, one would like to employ some ma
hine spe
i�
 means of passing

information, like input �le names, to the program. Most systems have some

notion of \
ommand line parameters" that spe
ify �le names or options.

None of the above features are a stri
t prerequisite for making a program

perform its task on a 
omputer system. However, they are highly desired

to make the program truly useful for a wide range of appli
ations and

environments. None of them are available in standard FORTRAN and in order

to implement them one has to refer to non-portable features.

Memory management

One of the most serious short
omings of the FORTRAN language is the la
k

of memory management. All storage assignment happens at 
ompile, link or

load time; on
e a program has been loaded into a 
omputer's main memory,

all variables have a �xed address. This makes the 
ompiler's and linker's

job easy|on the programmer's and user's ba
k. The impli
ation is that all

arrays must be dimensioned with the maximum size they may ever assume.

Changing this maximum requires re
ompilation of at least one program unit.

This is, of 
ourse, extremely impra
ti
al. For on
e it is not always possible to

know in advan
e how arrays are to be dimensioned as a fun
tion of the size of

the input data. For example, it is in general not possible to predi
t how mu
h

working storage is required to fa
torize a sparse input matrix with a given

rank and �ll. Thus one is fa
ed with the 
hoi
e of either being 
onservative,

and waste lots of 
omputer memory in most 
ases, or risk that the program

aborts in the middle of the 
al
ulation due to insuf�
ient memory.

Another problem is that, sin
e the program size is �xed independently of

the input data, even 
omputations with small data sets require the full amount

of memory set aside for the biggest jobs. This is 
learly una

eptable for an

environment where the user pays for memory o

upan
y. Compiling different
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versions of the program for various data sizes is a makeshift measure, not a

solution of the problem.

Naming restri
tions

Variable, COMMON blo
k and program unit names are limited to six 
hara
-

ters (letters or digits) in FORTRAN. This is one of the main reasons for the

poor readability of FORTRAN 
ode. While six 
hara
ters may often suf�
e

for lo
al variables, for global entities like subprograms this is 
learly inappro-

priate. Any attempt to use meaningful names for writing \self do
umenting"


ode is doomed from the beginning.

Most FORTRAN 
ompilers available today allow names up to at least 31


hara
ters in length. However, sin
e there are still many 
ompilers that follow

the six 
hara
ter rule, we 
annot rely on the availability of long names.

5.1.3 Further Compli
ations

The pre
eding se
tion made it (hopefully) obvious that plain standard FOR-

TRAN 
ode would not suf�
e for the implementation of a big program. On

the other hand, portability of the 
ode was essential:

During the development phase it was frequently ne
essary to move the


ode to another ma
hine, e.g. for running larger test 
ases on a faster 
omputer.

This, together with the diversity of the target platforms, put high demands on

the portability of the 
ode. The frequent re-installations require an automated

pro
ess for installation and 
ompilation|manually editing the ported 
ode to

produ
e a runnable version on the target system is out of the question. For

the required ease of installation we needed a fully portable sour
e 
ode. With

\fully portable" we mean that, after some initial installation pro
edure, any

later version of the 
ode 
an be 
opied to the target system, and 
an there be


ompiled and run without any further 
hanges.

5.1.4 Prepro
essing

In the pre
eding two se
tions we have seen that we had to re
on
ile two


on
i
ting obje
tives, the requirement for full portability on one side, and the
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need for system dependent 
ode on the other. The only reasonable solution to

that dilemma, short of dropping FORTRAN, is to use a prepro
essor.

The 
hoi
e we had was whether to use the UNIX tools ratfor or m4,

the C language prepro
essor, 
pp, or to write a new prepro
essor. While the

latter 
hoi
e offers the greatest 
exibility, it is also the most expensive version

and would make sense only if the other possibilities proved to be impra
ti
al.

The ratfor program was originally written to enhan
e FORTRAN-66.

It does not offer signi�
ant improvement over standard FORTRAN and was

therefore no help for our problem.

Between the remaining two alternatives we de
ided in favour of
pp, sin
e

this program is virtually guaranteed to be available on any UNIX system, and

be
ause it is already used by all C programs and it would be helpful when

interfa
ing FORTRAN with C.

Usage of the (UNIXish) C prepro
essor does not restri
t the simulator to

UNIX ma
hines. The prepro
essing does not need to be done on the target

system, any UNIX workstation will do, and the prepro
essor output 
an then

be transferred to the target ma
hine.

By using a prepro
essor we were able to �nd reasonable solutions for most

of the problems mentioned above. Some of them are still quite 
lumsy, and

the implementation of all these measures 
ost a signi�
ant amount of time

and effort|all for things that are really the 
ompiler's job. C, while not the

author's favourite language, provides all the features we 
onsider essential for

a proje
t as ours, at no extra 
ost.

Considering all the effort we had to invest to 
ope with FORTRAN's

short
omings and pitfalls (not all of whi
h we have mentioned), even the

ef�
ien
y argument that is regularly used by FORTRAN advo
ates be
omes

dubious. In a time where 
omputer power be
omes 
heaper and 
heaper at

an astonishing rate, and where programmer time be
omes more and more

expensive, it is more than questionable whether there is any overall ef�
ien
y

to be gained from using FORTRAN. We 
ertainly feel that we would have

had a working program at least a year earlier if we had used a suitable

programming language.
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5.2 Des
ription of the Implementation

5.2.1 Modules and Files

As mentioned earlier, our development environment featured a variety of

different ma
hines all running UNIX operating systems. Consequently we

employed the usual UNIX 
onventions for program sour
es. In parti
ular

we use the �le name extension \.F" for FORTRAN sour
e �les requiring

prepro
essing, \.f" for the prepro
essed sour
es, i.e. the \plain" FORTRAN

sour
es, and \.h" for \header" �les. The header �les are in
luded into

the sour
es by means of 
pp #in
lude statements. They mainly 
ontain

prepro
essor dire
tives, 
ode that has to be inserted at several pla
es (like

COMMON blo
k de
larations) and 
omments.

From now onwewill use the term \module" to designate a set of data stru
-

tures (in FORTRAN: COMMON blo
ks) and operations (SUBROUTINEs or

FUNCTIONs). In our 
ase, a module typi
ally 
onsists of three �les: a sour
e

�le modulename.F that 
ontains the pro
edures, a header �le modulename.h

that 
ontains de�nitions of ma
ros and data to support a

ess to the module

by 
lient routines, and possibly another header �le modulename int.h that


ontains de�nitions for internal use by the module.

The 
onvention is that the modulename.h header �le is all a 
lient of

the module needs. In parti
ular this �le 
ontains 
omments des
ribing the

meaning of the exported data stru
tures and the 
alling sequen
es for the

exported pro
edures.

The internal header �le should only be used (in
luded) by pro
edures

belonging to the module. Its main purposes is to de�ne data that are shared

between different parts of the module.

For illustration, Program 5.1 shows the header �le of a sample module

sumint. Program 5.2 shows the internal header �le and Program 5.3 shows

the sour
e �le. Finally, Program 5.4 shows a 
lient module. The example

demonstrates how the data stru
tures 
an be a

essed in the sour
e �les, after

in
luding the appropriate header �les.

The appropriate header �les must be in
luded by every pro
edure that is to

a

ess global data. This implies that in general a header �le is in
luded several

times by the same sour
e �le. Sin
e header �les also 
ontain ma
ro de�nitions
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/* sumint, a pa
kage for summing integers.

Data stru
tures:
the_sum: sum of all numbers pro
essed so far

Entry points:
add_this (I)
INTEGER I

adds I

FUNCTION the_average ()
returns the average value

*/
#ifdef INCLUDE_BODY

COMMON /sumint_
ommon/ SUM
INTEGER the_sum
SAVE /sumint_
ommon/

# ifdef DEFINE_FUNCTIONS
REAL the_average

# endif /* DEFINE_FUNCTIONS */
#endif /* INCLUDE_BODY */

Program 5.1: sumint.h

that must not be exe
uted more than on
e, a me
hanism is needed to ensure

that 
ertain parts of the header �le are seen only on
e by the prepro
essor,

while others are seen several times.

To avoid problems with multiple in
lusions and to redu
e order-

dependen
e of the #in
ludes as mu
h as possible, we use the following


onvention: FORTRAN 
ode (COMMON de�nitions) is only in
luded if the

ma
ro INCLUDE BODY is de�ned. This leads to the usage as demonstrated

in Programs 5.3 and 5.4: Header �les are in
luded for the �rst time in the

header of the sour
e �le, i.e. before any FORTRAN 
ode, then the ma
ro

INCLUDE BODY is de�ned. All further #in
lude statements are in the

de
laration parts of the individual pro
edures.

A spe
ial 
ase is the return type of FUNCTIONs. If a module exports a

FUNCTION, its return type should also be de
lared in the header �le. This 
an


ause problems with BLOCK DATA subprograms, sin
e some 
ompilers do
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#in
lude "sumint.h"
#ifdef INCLUDE_BODY

COMMON /sumint_private_
ommon/ NRINTS
INTEGER NRINTS
SAVE /sumint_private_
ommon/

#endif /* INCLUDE_BODY */

Program 5.2: sumint int.h

not allow the de
laration of non-COMMON variables in this kind of program

units. For that reason, FUNCTION return types will only be de
lared if the

ma
ro DEFINE FUNCTIONS is de�ned.

5.2.2 Ma
ros for Portability and C/C++ Interfa
e

All our ma
ros are based on a set of general-purpose ma
ros de�ned in the

header �le CF ma
ros.h. This header �le 
ontains only ma
ro de�nitions,

no data de
larations. It is not part of a module, i.o.w. there does not exist a


orresponding sour
e �le. Be
ause it de�nes many ma
ros that are used in

other header �les, CF ma
ros.h should always be in
luded �rst. There is

no point of in
luding it more than on
e sin
e it does not de
lare any data.

CF ma
ros.h is the main vehi
le for the solution of the portability

problems mentioned in Se
tion 5.1.2. Furthermore it supports the interfa
e

between FORTRAN and C routines. To distinguish FORTRAN from C 
ode,

the ma
ro FORTRAN must be de�ned. For this reason FORTRAN modules

in
lude the header �le F ma
ros.h, whi
h in turn de�nes FORTRAN and

in
ludes CF ma
ros.h.

With all these ma
ros, 
are has been taken to assure that the string into

whi
h the ma
ro expands is at most as long as the ma
ro's name. This is

to avoid bad surprises with the FORTRAN 72 
olumn limit: a ma
ro that

expands into a string longer than its name 
ould 
ause some of the generated

FORTRAN 
ode to extend beyond 
olumn 72 of the prepro
essed sour
e �le,

even when the original sour
e did not. This 
ould result in obs
ure 
ompiler

messages, or even in wrong 
ode.
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#in
lude "sumint_int.h"
#define INCLUDE_BODY

BLOCK DATA sumint_bd
#in
lude "sumint_int.h"

DATA SUM, NRINTS /2*0/
END

#define DEFINE_FUNCTIONS

SUBROUTINE add_this (I)
INTEGER I

#in
lude "sumint_int.h"
NRINTS = NRINTS + 1
SUM = SUM + I
END

FUNCTION the_average ()
#in
lude "sumint_int.h"

the_average = sum / REAL (NRINTS)
END

Program 5.3: sumint.F

Numeri
 pre
ision

As a remedy for the problem of 
ontrolling the numeri
 pre
ision (see

Se
tion 5.1.2) CF ma
ros.h provides a ma
ro normal pre
ision

(NORMAL PRECISION for C programs). This should be used as a type

name when de
laring 
oating point variables. It will expand into REAL on

Cray 
omputers and into DOUBLE PRECISION on 32-bit ma
hines.

The ma
ros single pre
ision and double pre
ision are avail-

able for 
ode that needs to use the maximum or minimum pre
ision available.

They should be used instead of the (normally equivalent) REAL and DOUBLE

PRECISION sin
e the ma
ros allow 
onsistent use of non-standard types on

ma
hine that provide more than two 
oating point types.

Other ma
ros serve to allow programs to a

ess the most important

ma
hine 
hara
teristi
s. These are summarized in Table 5.1. The ma
ros

. . . normal pre
ision 
orrespond to the normal pre
ision type.
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#in
lude "sumint.h"
#define INCLUDE_BODY
#define DEFINE_FUNCTIONS

PROGRAM 
lient
#in
lude "sumint.h"

INTEGER I
REAL AV

DO 100 I = 1, 10
CALL add_this (I)

100 CONTINUE
PRINT *, 'sum = ', SUM
PRINT *, 'average = ', the_average ()
END

Program 5.4: Client module

There exist a few more ma
ros for supporting the use of the

normal pre
ision type: ints per real is the size of a

normal pre
ision datum in units of INTEGER words. The ma
ros

0 , 1 , 2 and 05 expand into proper normal pre
ision literals

representing the 
onstants 0.0, 1.0, 2.0 and 0.5 respe
tively.

Long names

To improve readability of the program 
ode it is desirable to make use of

long names (longer than the usually allowed six 
hara
ters). Sin
e not all


ompilers support these, there must be a means for mapping long names onto

standard 
onforming ones. However, we do not wish to do this mapping

un
onditionally, sin
e this implies that even on systems where long names

are legal, we would have to 
ope with the unreadable six 
hara
ter names

whenever we have to look at the prepro
essed sour
es, e.g. when using a

sour
e level debugger.

Therefore CF ma
ros.h de�nes the ma
ro LONG NAMES for 
ompilers

that allow long names for variables, and LONG EXTERNALS on those systems

that also allow them for subprogram and COMMON blo
k names. Header

�les use these to 
onditionally map long names onto short ones. Using these

we get the improved version of the sumint header �le (Program 5.5).
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FORTRAN name C name typi
al value

max integer Max INTEGER 2 147 483 647

min integer Min INTEGER −2 147 483 647

max single pre
ision Max SINGLE PRECISION 3.4× 10+38

min single pre
ision Min SINGLE PRECISION −3.4× 10+38

least single pre
ision Least SINGLE PRECISION 1.2× 10−38

eps single pre
ision Eps SINGLE PRECISION 1.2× 10−7

max double pre
ision Max DOUBLE PRECISION 1.8× 10+308

min double pre
ision Min DOUBLE PRECISION −1.8× 10+308

least double pre
ision Least DOUBLE PRECISION 2.2× 10−308

eps double pre
ision Eps DOUBLE PRECISION 2.2× 10−16

max normal pre
ision Max NORMAL PRECISION 1.8× 10+308

min normal pre
ision Min NORMAL PRECISION −1.8× 10+308

least normal pre
ision Least NORMAL PRECISION 2.2× 10−308

eps normal pre
ision Eps NORMAL PRECISION 2.2× 10−16

Table 5.1: Ma
ros de�ning ma
hine 
hara
teristi
s for use by FORTRAN

and C programs

Further portability support

The ma
ros std in, std out and std err expand into the FORTRAN

logi
al unit numbers for standard input, standard output and standard error

output respe
tively. Note that the �rst two of these are equivalent to the

implied units designated by the use of an asterisk in an I/O statement. The

ma
ros are mainly needed when a unit number must be passed as a parameter.

Most non-UNIX systems do not have a notion of a \standard error output"

�le, on su
h systems std err will be the same as std out.

impli
it none 
an be used to disable the dangerous impli
it typing

in FORTRAN. For 
ompilers that support this FORTRAN-8X [3℄ extension,

the ma
ro expands into IMPLICIT NONE, otherwise into IMPLICIT

CHARACTER*7 (A-Z).

In 
ases where non-portable 
onstru
ts are ne
essary, a ma
hine dependent

ma
ro 
an be used to hide su
h a 
onstru
t from other 
ompilers. For

example, on the Alliant (and only there) the ma
ro alliant is de�ned.

This allows for the safe use of nonportable 
ode by prote
ting it with
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#ifndef LONG_EXTERNALS
# define add_this SIADD
# define the_average SIAVER
# define sumint_
ommon SICOMN
#endif /* LONG_EXTERNALS */

#ifndef LONG_NAMES
# define the_sum SUM
#endif /* LONG_NAMES */

/* sumint, a pa
kage for summing integers.
. . . */

#ifdef INCLUDE_BODY
COMMON /sumint_
ommon/ the_sum
INTEGER the_sum
SAVE /sumint_
ommon/

# ifdef DEFINE_FUNCTIONS
REAL the_average

# endif /* DEFINE_FUNCTIONS */
#endif /* INCLUDE_BODY */

Program 5.5: An improved version of sumint.h

#ifdef alliant .

For testing purposes, non-standard features 
an be disabled by de�ning

STANDARD ONLY prior to in
luding CF ma
ros.h. This will in parti
ular

prevent the de�nition of LONG EXTERNALS and LONG NAMES.

Optimization dire
tives

In order to fully exploit the power of ve
tor 
omputers or multipro
essors, it

is often ne
essary to use 
ompiler dire
tives, telling the 
ompiler that it is safe

to optimize a 
ertain loop. These dire
tives vary from 
ompiler to 
ompiler.

CF ma
ros.h provides a portable means for the insertion of these dire
tives.

It works by in
luding 
ertain �les: If a loop 
an be safely optimized by the


ompiler, the statement

#in
lude O_nodep.h
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should be used immediately before the loop. Similarly, in
luding

O ve
tor.h instru
ts a ve
torizing 
ompiler to ve
torize the loop, without

exploiting any other forms of parallelism, O 
on
ur.h does the same for


on
urren
y, and O ve
t 
on
.h tries to for
e both, ve
torization and


on
urren
y (provided the ma
hine is a ve
tor multipro
essor). O noopt.h


an be used to prevent optimization (useful e.g. in the 
ase of nested loops to

prevent the 
ompiler from optimizing the \wrong" loop).

C/C++ interfa
e

To solve the problems mentioned in Se
tion 5.1.2, it was ne
essary to 
all

pro
edures written in C. Furthermore, other parts of the 3d simulation pa
kage

that are written in C++ should be able to 
all the same libraries as Se
ond.

Therefore it was ne
essary to provide a portable means to interfa
e FORTRAN

to C and C++. This is done by providing the ma
ros fortran name and

fortran 
ommon blo
k for de
laring FORTRAN entities in C or C++.

Their usage is demonstrated in Program 5.6 for a library routine that 
an be


alled from either FORTRAN or C.

The ma
ros fortran name and fortran 
ommon have two parame-

ters, the all-lower-
ase and the all-upper-
ase versions of the name used in the

FORTRAN program. This is ne
essary sin
e on some systems the FORTRAN


ompiler exports pro
edure names up-
ased, on others down-
ased. The same

holds for COMMON blo
ks.

Naturally there is no guarantee that the 
hosen s
heme for theC/FORTRAN

interfa
e will work on all 
omputers, not even on all UNIX systems. There are

too many possible variations in the way things might be done. The 
urrently

implemented s
heme works at least on all the UNIX systems we know.

Wewould like to note here that the present implementation of Se
ond does

not depend on C 
ode, it is possible to install a pure FORTRAN version|with

signi�
antly redu
ed 
omfort.

5.2.3 Libraries and Tools

This Se
tion presents the library fun
tions used by Se
ond. They fall

into three 
ategories: general-purpose FORTRAN utilities (f util), devi
e
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/* Simple plot module */
#ifndef _FORTRAN_
# ifdef LONG_EXTERNALS
# define Cur_pos fortran_
ommon(
ur_pos,CUR_POS)
# define Move_to fortran_name(move_to,MOVE_TO)
# else /* ! LONG_EXTERNALS */
# define Cur_pos fortran_
ommon(dr
ups,DRCUPS)
# define Move_to fortran_name(drmove,DRMOVE)
# endif /* ! LONG_EXTERNALS */
fortran_
ommon_blo
k

stru
t {INTEGER x, y}

ommon_de
laration(Cur_pos);

Move_to (INTEGER *x, *y);
#else /* _FORTRAN_ */
# ifndef LONG_EXTERNALS
# define Cur_pos DRCUPS
# define Move_to DRMOVE
# endif /* ! LONG_EXTERNALS */
# ifdef INCLUDE_BODY

COMMON /
urrent_pos/ X, Y
INTEGER X, Y
SAVE /
urrent_pos/

# endif /* INCLUDE_BODY */
#endif /* _FORTRAN_ */

Program 5.6: Header �le for library routine 
allable by both, FORTRAN and

C

simulation spe
i�
 utilities (sim util) and linear algebra kernels and sparse

linear solver pa
kages.

General-Purpose FORTRAN Utilities

The subprogram library f util 
ontains pro
edures that are of general use

for FORTRAN programs, as well as routines that support a C/FORTRAN

interfa
e on a �le level. These library routines are dis
ussed in this se
tion.
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Heap To solve the dynami
 memory problem (Se
tion 5.1.2) we imple-

mented a heap module. There are basi
ally two ways to implement a heap:

Purely in FORTRAN, using a big array as a heap, or outside FORTRAN,

e.g. by 
alling the C fun
tion mallo
. The latter method is, of 
ourse, not

portable to systems that do not have C, while the former has the disadvantage

that the heap is not really dynami
 and the total size of a program is still

independent of the data.

We therefore de
ided to implement both methods. The FORTRANmodule

heap allo
ates storage from a stati
 array. If no more spa
e is available, a

C fun
tion is 
alled (module heap dyn), whi
h in turn 
alls mallo
. On

systems where mallo
 is available, the stati
 heap array is made small so

that the C routines are used, otherwise the stati
 array is dimensioned big

enough and the C interfa
e is disabled.

#ifdef . . .
#define real_heap single_heap
#else
#define real_heap double_heap
#endif

SUBROUTINE allo
ate_real (SIZE, INDEX, ERROR)
INTEGER SIZE, INDEX, ERROR

SUBROUTINE deallo
ate_real (INDEX, ERROR)
INTEGER INDEX, ERROR

SUBROUTINE resize_real (NEWSZE, INDEX, ERROR)
INTEGER NEWSZE, INDEX, ERROR

SUBROUTINE print_heap_statisti
s ()
SUBROUTINE print_heap ()
SUBROUTINE set_heap_debug (DBGLEV, UNIT)

INTEGER DEGBLV, UNIT
C

INTEGER HEAPSZ, DHEAPS
PARAMETER (HEAPSZ = s_heap_size)
PARAMETER (DHEAPS = (HEAPSZ+1)/2)
COMMON /heap_
ommon/ double_heap
double_pre
ision double_heap (0:DHEAPS-1)
single_pre
ision single_heap (0:HEAPSZ-1)
EQUIVALENCE (single_heap,double_heap)

Program 5.7: Simpli�ed heap interfa
e
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Program 5.8 shows a simpli�ed interfa
e to the heap module (only

showing routines for allo
ating normal pre
ision data). The allo
ation

fun
tion allo
ate real returns, if su

essful, an index into the heap array

(real heap for type normal pre
ision) whi
h points to the �rst word

of the allo
ated segment. With deallo
ate real the allo
ated storage


an be returned, with resize real the size of an allo
ated segment 
an be

in
reased or de
reased.

Corresponding 
alls exist for the dynami
 allo
ation of INTEGER,

LOGICAL, single pre
ision or double pre
ision storage.

If the dynami
 heap option is used, the allo
ated storage segment is in

general not part of the heap array, rather the address returned by mallo
 is


onverted into an offset from the address of the array. This only works as long

as the system does not perform array bounds 
he
king at run time. Sin
e su
h


he
ks are normally very expensive, they are not done by most FORTRAN

systems. There are ex
eptions, however, like on the Burroughs B-6700 series

where these 
he
ks are automati
ally done by hardware. On su
h a ma
hine

our dynami
 memory management would not work, but on \normal" systems

there should be no problems.

The heap module also provides some 
he
k and debug fun
tions. The

pro
edure print heap statisti
s prints statisti
s on the amount of

heap storage used and the amount of memory fragmentation. The usage

and fragmentation �gures only in
lude what was allo
ated by the heap

module, if any routines 
all mallo
 dire
tly this storage will not be


ounted as \used" (and in
rease the \fragmentation" �gure). As a side-

effe
t print heap statisti
s performs a 
onsisten
y 
he
k of the heap

segment lists.

The pro
edure print heap prints the 
urrent layout of the heap, i.e. the

list of free and used segments. This 
an be useful for debugging a program

that overwrites storage. The pro
edure set heap debug turns debugging

on or off. A value greater than zero for DBGLEV turns on debugging output,

a zero or negative value turns debugging off. Debug output is written to the

logi
al unit designated by UNIT.

Program 5.8 shows the typi
al use of heap memory. Ma
ros are used to

a

ess dynami
ally allo
ated memory using the normal array notation. That

way the 
ode looks exa
tly as if the arrays were \real" ones.

Note that a relatively long name is used for the array ma
ro (global . . . ),
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#define n_mat 3*n_ve

#define global_ve
(i)real_heap(x_ve
+i)
#define global_mat(i,j)real_heap(x_mat+3*i+j)

. . .
INTEGER n_ve
, x_ve
, x_mat, I, J

. . .
CALL allo
ate_real (n_ve
, x_ve
, ERR1)
CALL allo
ate_real (n_mat, x_mat, ERR2)

. . .
DO 100 I = 0, n_ve
-1

READ (*,*) global_ve
(I),
$ (global_mat(I,J), J=0,2)

100 CONTINUE
. . .

CALL deallo
ate_real (x_ve
, ERR1)
CALL deallo
ate_real (x_mat, ERR2)

Program 5.8: Typi
al usage of heap memory.

to prevent the expanded 
ode from being longer than the original ma
ro 
all.

This is easy to do for one dimensional arrays. For more dimensions the names

need to be quite long and be
ome unhandy. We therefore sti
k with the above

used names whi
h are safe in the 
ase of one dimensional arrays and must

otherwise be used with 
are.

Simbad The Simbad binary I/O interfa
e fa
ilitates data transfer between

C/C++ and FORTRAN programs on the �le level. It provides for hardware

independent binary �les and thus allows moving data in a 
ompressed form

between dissimilar 
omputers. Simbad is dis
ussed in detail in [40℄. The

module simbad.h implements the Simbad spe
i�
ations.

Smaller utility modules

f strings The module f strings supplies a few often needed string

pro
essing fun
tions. These in
lude a fun
tion returning the a
tual length of

a string, and pro
edures to remove extra spa
es in strings, to append strings,
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and to up- or down-
ase strings. Finally there is a pro
edure for extra
ting the

value of a keyword �eld set up by RCS.

tiny The module tiny exports a set of small utilities that help to

solve the problems pointed out in Se
tion 5.1.2. Most of them are a
tually

implemented in C, on non-UNIX systems these may return null values of a

kind that allow the 
alling program to 
ontinue in a reasonable fashion.

Pro
edures exported by tiny allow programs to inquire 
ommand line

parameters, the total amount of pro
essor time 
onsumed or remaining, or the


urrent date and time. Other entry points 
ush output units or remove �les.

Fun
tions for determining whether or not standard input/output is from/to an

intera
tive terminal are provided, as is a fun
tion returning the identi�
ation

number of the 
urrent pro
ess. Finally there is a pro
edure to terminate the

program with an indi
ation on the su

ess of the exe
ution (exit status), and

one to for
e a 
ontrolled program 
rash (produ
ing information that may be

helpful for debugging).


lo
k The module 
lo
k provides a 
onvenient interfa
e for timing

se
tions of a program. It exports a type time type and the pro
edures

init 
lo
k, start 
lo
k and stop 
lo
k. To use the 
lo
k, a

variable of type time typemust be de
lared, whi
h is initialized by passing

it to init 
lo
k. After that, the 
lo
k 
an be started, stopped, re-started

et
. by 
alling the pro
edures start 
lo
k and stop 
lo
k. The latter

will return the time sin
e the last time the 
lo
k was started, the a

umulated

time during whi
h the 
lo
k was running, and the number of intervals for

whi
h it was running.

By de�ning several time type variables a program 
an use several

different stopwat
hes to time various parts of 
ode.

arsinh The arsinh fun
tion is frequently needed in devi
e simulations,

but is not part of the set of standard FORTRAN intrinsi
 fun
tions. Hen
e the

module arsinh.h provides a (not parti
ularly a

urate) implementation of

arsinh.
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Kernels and linear solvers

blas blas.h is a header �le providing a generi
 interfa
e to the Basi


Linear Algebra Subprograms (BLAS) [48℄. These are a set of elementary

ve
tor × ve
tor operations. On most ve
tor 
omputers highly optimized

implementations of the BLAS are available in some system library. For those

systems only the header �le blas.h is needed to 
ompile the simulator. For

systems where no BLAS library is available, ready-to-
ompile sour
es are

supplied (sour
e subdire
tory blas).

BLAS routines 
ome in four 
ategories: REAL, DOUBLE PRECISION,

COMPLEX and, where available, DOUBLE COMPLEX. No 
omplex data types

are used throughout the simulator, hen
e the latter two 
ategories are of no

interest to us. For the other ones we require a interfa
e that is 
onsistent with

our type normal pre
ision. This is provided by generi
 name ma
ros

like axpy, whi
h expands into SAXPY or DAXPY, depending on whether

normal pre
ision is the same as REAL or DOUBLE PRECISION.

De�ning these ma
ros is the main purpose of the header �le blas.h.

math aux The module math aux provides simple ve
tor operations

that are similar to, but not part of, the BLAS. These in
lude ve
tor assignment

operations (xi := a) and ternary ve
tor operations like zi := zi + xiyi. These

an be ef�
iently optimized on ve
tor 
omputers. However, the main reason

for their existen
e is the wish to improve readability of the 
ode by using

subroutine 
alls for su
h basi
 operations rather than 
luttering the 
ode with

many loops.

solvers Finally there are subroutines for the solution of sparse linear

systems of equations. These are pa
kages of their own [9, 59℄ and are not

do
umented here.

Simulation-related utilities

General de�nitions Certain 
onventions are required for the ef�
ient

internal or external storage of simulation grids. These 
onventions are de�ned
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in Datex [41℄. For 
onvenient a

ess by programs the 
onventions are

spe
i�ed in the form of ma
ros in general.h.

The ma
ros de�ned in general.h in
lude 
onstants identifying element

and fa
e types (shape 
odes), vertex lo
ation types and material types.

Additional 
onstants like Max elt 
orners and Max fa
e 
orners

are typi
ally used for de�ning arrays within 
lient modules as well as the

general module.

Data stru
tures exported by general are arrays spe
ifying properties of

elements and element fa
es, su
h as the numbers as well as the start and end

points of edges.

The only pro
edure exported by the module is an initialization routine that

must be 
alled before any of the arrays are being used. In addition, the C/C++

interfa
e de�nes types that are useful for pro
essing grid data.

data 
odes The module data 
odes 
ontains ma
ros spe
ifying the

type 
odes for various data that may be output from a simulation. This allows

using symboli
 names rather than the 
onstants de�ned in [41℄.

Furthermore the module exports a pro
edure get data label, whi
h,

given a data type 
ode, returns the fa
tor used to s
ale data of this kind

when externally stored in Datex �les. The pro
edure also returns strings for

representing the name of the datum in human readable form. This is useful

for labelling graphs or tables that are output of various tools.

5.2.4 Program Stru
ture

Figure 5.1 gives a rough representation of the overall stru
ture of Se
ond.

The meaning of the various symbols is as follows:

A box, like
module:

procedure , symbolizes one or more pro
edures. The bold, 
olon

terminated string denotes the module name while the other string(s) give the

pro
edure name(s). We will frequently make use of the notation mod:pro
 to

designate that the pro
edure pro
 is exported from module mod.
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Bold solid arrows symbolize pro
edure 
alls (pointing from the 
aller to

the 
allee), while dotted bold arrows designate indire
t 
alls (i.e. 
alls through

intermediate pro
edures). Thin solid lines denote data 
ow, parti
ularly from

or to I/O units. The symbols , , and designate su
h I/O units:

input de
ks, output lists and mass storage units respe
tively. The symbols are

labelled with a string whi
h gives the 
onventional �le name extension for

that kind of �le. These extensions are used to distinguish within a dire
tory

the various �les that are used in a parti
ular simulation run.

We use the \input de
k" symbol for human readable input �les that may


ome from a small �le or dire
tly from the terminal, or may be produ
ed

by another program. Similarly, the \output lists" stand for human readable

output �les. The \mass storage" symbol denotes �les that are generally large

and not human readable (i.e. stored in binary), su
h �les are used to pass large

amounts of data between different programs or between different runs of the

same program. Note that some of the \listing �les" are also read by other

programs, usually for some kind of post-pro
essing.

The input de
k that is read by the input pro
essor 
ontains dire
tives to

the simulator. Its 
ontents determine whi
h simulation is to be performed,

spe
ifying the grid to use, the bias 
onditions and the physi
al models to apply

et
. It also spe
i�es what kind of output (e.g. for plotting the results) is to be

produ
ed. The 
ontents of the input de
k, 
alled parameter input, is des
ribed

in the User Manual [42℄.

The grid �le (extension .geo) and the doping �le (.dop) 
ontain the

physi
al des
ription of the devi
e to be simulated, as well as a simulation grid.

These two �les are produ
ed by the grid generator Ω. The result �les (.out)
are used to plot the results with the graphi
 tool Pi
asso [82℄. More details

on the intera
tion between Se
ond and the various pre- and post-pro
essing

tools are given in Se
tion 5.3.

Save �les (.sav) are used to save the results of one simulation so that a

future simulation 
an 
ontinue from the point where an earlier one �nished.

The 
urrent �le (.
ur) re
ords, in transient or quasi-stationary simulations,

the values of the terminal 
urrents after every time step.

Several result �les may be written in the 
ase of transient or quasi-

stationary simulations, provided the parameter �le says so. In that 
ase a

movie �le (.mvy) re
ords the names of the intermediate result �les, together

with the simulated time to whi
h they belong.
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The pro
edure time:solve transient is the root of the \real" PDE

solver. Its stru
ture is shown in Figure 5.2. Here the dashed boxes refer to

several different modules and the thin lines denote important data 
ow.

solvestru
t.id
108 × 87 mm

time:

nonlin:

newton:

assembly:

geometry:

tables:

current:

linsolve:

timeass:

bernoulli:
expm1:
efield:
sparse:

utilities

mobil:
recomb:

physical models

Figure 5.2: Stru
ture and main data 
ow of the PDE solver

The utility modules bernoulli and expm1 are fast and a

urate

implementations of the Bernoulli and ex − 1 fun
tions, and sparse only


ontains the pro
edure saxp whi
h multiplies a sparse matrix with a ve
tor.

efield 
ontains pro
edures for the a

urate 
omputation of the ele
tri
 �eld

and 
urrent density ve
tors, as explained in Se
tion 4.4.

The module mobil 
omputes the 
arrier mobilities a

ording to one

of several available models, while re
omb 
omputes 
arrier re
ombination

and generation rates. The other modules will be dis
ussed in the following

se
tions.
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5.2.5 Data Stru
tures

The modules geometry and tables are the main 
ontainers of global data

for the simulator. Further data of general interest are exported by the modules

par files, par math, and par physi
s. The modules assembly,


urrent, efield, mobil, and re
omb 
ontain data that are of relevan
e

only for a few modules.

Geometry As the name implies, the geometry module 
ontains data

des
ribing the geometry of the simulated obje
t. Almost every module needs

to a

ess some of these data.

Data exported by geometry fall in three 
ategories: simple variables,

small, �xed size arrays, and large, dynami
 arrays. Variables of the �rst


ategory 
ontain 
ounts like the number of verti
es in the grid or the number

of 
onta
ts in the devi
e. The se
ond kind of variables are quite similar: arrays


ontaining, for example, the number of elements of ea
h possible shape. The

third kind 
ontains the a
tual geometry data, like the 
oordinates or doping

values of the verti
es, or the shape 
odes of the elements.

These arrays are initialized from the grid �le. Grid �le information is

also used to initialize other data, parti
ularly the arrays exported by tables.

After this initialization most of the dynami
 arrays in geometry are no

longer required and are hen
e deallo
ated.

Reordering of elements and verti
es In order to simplify some of

the algorithms (parti
ularly in the assembly of the linear equations) and to

improve ve
torization of several loops, the verti
es and elements are reordered

while reading the geometry �le. With a few (parti
ularly do
umented)

ex
eptions, all data stru
tures and algorithms of the simulator assume this

internal order. The only pla
es where the original order is used are the input

and output routines, and some initialization pro
edures.

The verti
es are internally ordered by material: �rst 
ome all the verti
es

belonging to a semi
ondu
tor material (in
luding those at the interfa
es), then

all the verti
es in the insulator (if any), and �nally all the Diri
hlet (
onta
t)

verti
es irrespe
tive of the material. The entries in the array dom points


ontain the starting point numbers of ea
h of these domains. Figure 5.3

illustrates the internal order.
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vert-ord.id
91 × 31 mm

dom_pts: 

vertex numbers: 

Si_dom SiO2_dom dir_dom dir_dom+1

0 N-1 N

Figure 5.3: Internal order of verti
es

Similarly the elements are ordered by shape, �rst all tetrahedra, followed

by all pyramids, followed by all prisms, followed by all 
uboids. Within ea
h

shape the elements are ordered by material. The array shape elts 
ontains

pointers to the beginning of ea
h part.

The permutation indi
es for verti
es and elements are 
ontained in the ar-

rays global pt permut and global elt permut respe
tively. These

arrays a
tually 
ontain both, the permutation from external to internal order

and the inverse. The element permutation is a
tually not needed by the pro-

gram, it is only stored for debugging purposes. At the end of the initialization

phase the element permutation array is deallo
ated. The vertex permutations

are needed for outputting results in external order and are therefore kept until

the end.

Tables The module tables 
ontains the bulk of the global numeri
al data,

most of whi
h falls in two 
ategories: ve
tors and sparse matri
es. Ve
tor

data, like the box volumes for ea
h vertex, are straightforward and need not

be dis
ussed in detail.

Sparse matrix representation Sparse matri
es must be stored in a

form that suppresses zero entries, otherwise the memory requirements as well

as the time needed for pro
essing the matri
es would be unreasonably large.

There is, however, no established standard for the representation of sparse

matri
es.

Sin
e they originate from the box dis
retization of a 3d mesh, ea
h non-

zero off-diagonal entry in our sparse matri
es 
orresponds to an edge in the
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mesh. Therefore the sparsity stru
ture of our matri
es is equivalent to a list of

edges. If we have a data stru
ture for edges we 
an interpret this as a sparse

matrix data format.

We 
hoose the following 
onventions for edges: Ea
h edge is identi�ed

by a starting and an ending vertex. For edges between non-Diri
hlet verti
es,

we take as the starting vertex the one with the smaller (internal) number, for

edges where at least one of the verti
es is a Diri
hlet point, the vertex with

the larger number is taken as the starting vertex. (We will see the advantages

of this 
onvention shortly.) Edges are sorted by as
ending starting vertex

number, with as
ending ending vertex number as the minor sort key. This

uniquely determines the order of the edges.

We now de�ne the array global edg index to 
ontain, at position i,

the number of the �rst edge whose starting index is i. Two further arrays

global edg pt and global edg oth pt 
ontain ea
h edge's starting

index (i) and ending index (j) respe
tively. Figure 5.4 shows how the

off-diagonal elements of a sparse symmetri
 matrix are stored: the 
oef�
ient

aij , whi
h 
orresponds to the edge from vertex i to vertex j, is stored in an

array (here global edg fa
t) at the same position as the indi
es i and j

in their respe
tive arrays.

sparse-ds.id
101 × 53 mm

...0 1 i N-1 N...

global_edg_index:

0...0 ...1 ...i iglobal_edg_pt:

... j...global_edg_oth_pt:

a
ij

... ...global_edg_fact:

Figure 5.4: S
hemati
 representation of the sparse data stru
ture

Note that the array global edg pt is redundant. However, its avail-

ability often allows pro
essing of an entire sparse matrix in a single loop rather
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than two nested loops (with an additional indire
tion). The one-loop variant,

when usable, leads to 
ode that 
an be ef�
iently ve
torized. Program 5.9

gives examples of pro
essing matri
es with our data stru
ture.

-- 
ompute duij = ui − uj

e_0:=global_edg_index[0℄
e_1:=global_edg_index[N℄
for e:=e_0 to e_1-1
i:=global_edg_pt[e℄
j:=global_edg_oth_pt[e℄
du[e℄:=u[i℄ - u[j℄

-- 
ompute bi =
∑

j
aijxj

off:=global_edg_index[N℄ -
global_edg_index[0℄

for i:=0 to N-1
e_0:=global_edg_index[i℄
e_1:=global_edg_index[i+1℄
for e:=e_0 to e_1-1

j :=global_edg_oth_pt[e℄
b[i℄:=b[i℄ + x[j℄*a[e℄
b[j℄:=b[j℄ + x[i℄*a[e+off℄

Program 5.9: Examples of sparse matrix usage: single loop version (left)

and nested loop version (right)

We observe that by virtue of our ordering of the edges, the previously

dis
ussed separation of non-Diri
hlet and Diri
hlet verti
es translates into a


orresponding separation of edges between non-Diri
hlet points and edges

that belong to at least one Diri
hlet point. This allows for easy and ef�
ient

treatment of the boundary 
onditions (
f. Se
tion 4.2.1). In fa
t, the order

insulator-semi
ondu
tor-Diri
hlet points would be even more advantageous,

sin
e it would automati
ally separate insulator edges from semi
ondu
tor

edges and thus save additional IF statements in the assembly of the 
ontinuity

equations. However, this would require a linear solver that allows vertex

numbers to start at an arbitrary value, whi
h is not supported by the linear

solvers we have at our disposal.

What has been said so far only explains how the off-diagonal 
oef�
ients

of a symmetri
 matrix, or the stri
t upper triangle of a non-symmetri
 matrix,

are stored. The diagonal, whi
h is simply a ve
tor of lengthN , is either stored

separately, or immediately pre
eding the off diagonals (indi
es −N · · · − 1).

For non-symmetri
 matri
es we 
an either use a two-dimensional array, or

simply store the 
oef�
ients of the lower triangle after the upper triangle

(with a 
onstant offset between the 
oef�
ients aij and aji). This usage is

already demonstrated in Program 5.9. Most internally used sparse matri
es

are symmetri
, moreover most of them have zero diagonals.

Our sparse matrix data format is quite similar to the BLSMP data stru
-
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ture [9℄, whi
h is a variant of the YSMP format [30℄. The main differen
e

between the latter two is that BLSMP makes use of the stru
tural symmetry

of the matri
es and avoids storing redundant information when dealing with

symmetri
 matri
es. Our format differs from BLSMP in the use of zero-

relative indi
es and by avoiding the mixing of pointers and indi
es in the same

array.

Other arrays The 
oef�
ient matrix of the linear systems,

assembly:global lhs, whi
h is non-symmetri
 and has a non-zero

diagonal, is kept in the BLSMP format di
tated by the linear solver.

Its sparsity stru
ture (BLSMP's notorious \JA" array) is 
ontained in

global index list. The array global edg ja
 index serves to

translate between the two data stru
tures: the array 
ontains the BLSMP in-

di
es of our edges. The array global dphi dphi 
ontains the dis
retized

Lapla
e operator. This one is also kept in BLSMP format, be
ause that way it

only needs to be 
opied when assembling the 
oef�
ient matrix.

There are several temporary arrays that 
ontain data in \external" vertex

order: global raw e ndx, global raw e oth et
. These are used to

hold the box information supplied in the grid �le, until enough of the simulator

data stru
tures are set up to store the box se
tions at their �nal pla
e. This is

done at the end of the initialization phase, the temporary arrays are afterwards

deallo
ated.

The arrays global ve
t trafo and global ve
t Si wgt are used

for the 
omputation of ele
tri
 �elds and 
urrent densities along the lines laid

out in Se
tion 4.4.

Other modules The module assembly exports the arrays to hold the


oef�
ient matri
es (LHS) and the residual ve
tors (RHS) of the sparse linear

systems to be solved. The LHS arrays are kept in BLSMP format (see above).

The module 
urrent exports the array 
ontaining the 
urrent density

ve
tors for ele
trons and holes, while efield exports the ele
tri
 �eld as well

as the gradients of the ele
tron and hole quasi-Fermi potentials. Mobilities

are exported by mobilwhile re
ombinations, effe
tive intrinsi
 densities and

the bandgap narrowing values are exported by re
omb. These modules also

export pro
edures, some of whi
h will be dis
ussed in Se
tion 5.2.6.
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5.2.6 Algorithms

Time Integration

-- time:solve transient
if not restarted from transient simulation

nonlin:solve_nonlinear()
forea
h time_interval do

-- time:time interval
time := start_time(time_interval)
while time<end_time(time_interval) do

if ex
eeded resour
es or step size limit
exit

-- time:time step
for step := TR_step, BDF2_step

set the 
onta
t voltages for time
-- time:time extrapolation
extrapolate variables from previous to 
urrent time
nonlin:solve_nonlinear()

estimate the LTE
if LTE<LTE_limit

time := time + time_step
time:write_
urrents()

else
reje
t time step

determine new time_step

Program 5.10: S
hemati
 
ontrol 
ow for time integration

Program 5.10 shows s
hemati
ally the pro
edure for the time integration.

The 
omments introdu
ed by \--" indi
ate whi
h pro
edure 
ontains the

parti
ular se
tion of 
ode. The algorithm follows the method laid out in

Se
tion 2.2.

The main work to be performed for the time integration is the solution

(spa
e integration) of the semi
ondu
tor equations for ea
h individual time

point. This solution is not different from the stationary 
ase, ex
ept that some

terms are added to the arising linear systems of equations. This is done during

the linear equation assembly.

Quasi-stationary simulations are basi
ally performed as transient simula-
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tions without adding the transient 
ontributions to the linear systems. An

arti�
ial time is used to 
ontrol the speed with whi
h terminal voltages are

stepped up.

Nonlinear equation solution For the spa
e integration the pro
edure

nonlin:solve nonlinear is 
alled. This performs a Gummel iteration,


alling newton:newton for ea
h individual equation, or a 
oupled solve,


alling newton:newton on
e for the full system. In stationary simulations

Gummel iterations are always performed, usually followed by a 
oupled

solve. Transient simulations only use 
oupled iterations, and quasi-stationary

simulations 
an be performed either way.

In order to keep the 
ontrol over 
onvergen
e 
riteria all in one pla
e,

newton:newton uses the pro
edure nonlin:
omp rel err for 
om-

puting the relative error. That pro
edure is passed as a parameter to

newton:newton. The pro
edure nonlin:extra
t old values (also

passed as a parameter) serves to pass the original values of the variables from

newton tononlin, so that
omp rel err 
an 
ompute the relative 
hange

due to the last Newton iteration.

Program 5.11 shows the implementation of the damped Newton algorithm.

The damping s
heme has been dis
ussed in Se
tion 2.3.1, while the 
ontrol of

the linear solver has been des
ribed in Se
tion 4.6.2.

A safeguard not shown in Program 5.11 is to impose an upper limit on

the damping fa
tor if some 
omponents of the solution of the linear system

for potential variables (ele
trostati
 or quasi-Fermi potentials) be
ome too

big. We limit the damping fa
tor su
h that no potential 
omponent may be

updated during a single Newton step by more than approximately one volt,

thus avoiding over
ow when 
omputing the 
arrier densities from the updated

potentials. This is a rather 
oarse method that is suf�
ient for simulations

where applied voltages are in the one to ten volts range. For high voltage

devi
es it is inappropriate.

Assembly The real work for the solution of the differential equations is

done by the assembly pro
edures and by the sparse linear solver. The latter

is a separate pie
e of software and is not dis
ussed here in any detail. The

assembly pro
edures assemble RHS and assemble LHS are exported by

the module assembly.
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assemble_RHS
rhsnrm := ‖rhs‖
oldnrm := rhsnrm
damp := 1
for it := 1, max_it

assemble_LHS
solve_sparse_system (lhs, rhs, dx)
dxnrm := ‖dx‖
damp := damp / (damp + ((1-damp) * rhsnrm) /

(10 * oldnrm))
oldnrm := rhsnrm
oldamp := damp
extra
t old values
for j := 1 to j_max

update_vars -- x := x + damp * dx
assemble_RHS
rhsnrm := ‖rhs‖

omp_rel_err
if 
onverged

exit
else if 1-rhsnrm/oldnrm > damp*delta

exit
else

damp := oldamp*(delta/dxnrm)**((j/j_max)**2)
reset -- re
over old x

if 
onverged
exit

Program 5.11: The damped Newton algorithm

RHS assembly The assembly of the RHS pro
eeds in several steps.

First the stationary RHS are assembled (without the re
ombination terms

in the 
ase of the 
ontinuity equations). Next the re
ombination terms are

evaluated and added. This means that in the 
oupled 
ase the re
ombination

rates are 
omputed only on
e for both, the ele
tron and hole equations. The

next step is to 
all timeass:time RHS to add the transient 
ontributions,

if any. After that the terminal 
urrents are extra
ted from the assembled RHS.

Finally the Diri
hlet boundary 
onditions are in
orporated by zeroing the RHS


omponents belonging to Diri
hlet verti
es (
f. Se
tion 4.2.1).

As explained in Se
tion 4.1.1, assembling the RHS for Poisson's equation
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e_0 := global_edg_index[0℄
e_1 := global_edg_index[N℄
for e := e_0 to e_1-1

i := global_edg_pt[e℄
j := global_edg_oth_pt[e℄
fa
t := global_edg_fa
t[e℄*(mobil[i℄+mobil[j℄)/2
tmp[e℄ := -fa
t * (dens[j℄*B[0,e℄-dens[i℄*B[1,e℄)

for i := 0 to N-1
e_0 := global_edg_index[i℄
e_1 := global_edg_index[i+1℄
for e := e_0 to e_1-1

j := global_edg_oth_pt[e℄
RHS[i℄ := RHS[i℄ + tmp[e℄
RHS[j℄ := RHS[j℄ - tmp[e℄

Program 5.12: Simpli�ed RHS assembly for the ele
tron 
ontinuity equation

(using densities). The Bernoulli fun
tion values B are pre
omputed


an be done by multiplying the dis
retized Lapla
ian with the solution ve
tor,

and adding a few ve
tors arising from the 
harge terms, hen
e the dominating

operation is the sparse matrix-times-ve
tor produ
t. Program 5.12 shows that

the situation is similar for RHS assembly for the 
ontinuity equations: First a

sparse matrix is 
omputed, then the RHS is obtained by summing the rows of

that matrix. The 
omputation of the matrix 
an be very ef�
iently ve
torized,

so this part is rather fast, even though many operations are involved. The

se
ond part, the summing of the rows, is just a simpli�ed form of the

matrix-times-ve
tor produ
t (the ve
tor has all 
omponents equal to one).

The sparse matrix-times-ve
tor type operations do not ve
torize well. The

inner loop runs over the non-zero entries of the upper triangular part of the

matrix, whi
h, owing to the extreme sparsity of our matri
es,2 makes a very

short loop. Due to data dependen
ies, the loops 
annot be ex
hanged either.

Therefore this part of the algorithm exe
utes essentially at s
alar speed.

LHS Assembly The LHS assembly is quite similar. Looking at

Eqs. (4.4, 4.5, 4.9, 4.10), we see that the LHS for the 
ontinuity equations has

2For the grids we are using, a vertex is in average in
ident in about seven edges, whi
h
means that the resulting sparse matri
es have in average eight non-zeros per row (in
luding the
diagonal), so that a loop over rows in a stri
t upper triangular matrix has in average 3.5 iterations.
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the form

(LHS )ik = aik − δik





∑

j 6=i

aij + bi



 , (5.1)

where aik is a matrix with a zero diagonal. Assembling the LHS therefore

requires the 
omputation of the matrix aik (whi
h, again, 
an easily be

ve
torized), and adding two diagonal 
ontributions, the �rst being the row

sum of aik, while the se
ond, arising from the re
ombination terms, is just a

ve
tor that does not 
ause problems. As in the RHS assembly, the summing

of the rows of aik must be done essentially at s
alar speed.

Clearinghouse The 
learinghouse 
lear serves to avoid redundant eval-

uations of 
ostly expressions. For example, when assembling the LHS, it is

not ne
essary to re
ompute the mobilities if the RHS has just been assembled

and the values of the unknowns did not 
hange in the meantime.

If a quantity, su
h as the mobility, needs to be known, the pro
edure

must 
ompute is 
alled with one parameter spe
ifying the quantity to be


omputed and the other the quantities on whi
h the �rst quantity depends (i.e.

the \independent quantities"). The pro
edure returns false if the dependent

quantity is up-to-date, otherwise true is returned and the dependent quantity

must be re
omputed. Whenever one of the monitored quantities 
hanges this

must be reported to the 
learinghouse by 
alling notify 
hange.

The 
learinghouse is implemented by maintaining a \modi�
ation time"

for ea
h monitored variable. This is an arti�
ial time value that starts with

zero and is in
remented on ea
h 
all of notify 
hange. Consequently,

must 
ompute only needs to 
he
k if any of the independent quantities are

\younger" than the dependent one.

Quantities are identi�ed by numbers that are all powers of two. They 
an

therefore be treated as elements of a set. To spe
ify the set of independent

quantities, one only needs to add all their identi�ers. This makes the


learinghouse very 
onvenient to use. However, it must be kept in mind that

FORTRAN does not really support sets|
are must be taken, that no identi�er

is spe
i�ed twi
e, sin
e this would result in the wrong \set".

other modules Besides data stru
tures (
f. Se
tion 5.2.5, page 84),

geometry also 
ontains pro
edures, only one of them, init geometry,
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is exported. These pro
edures do all the input pro
essing of the grid and

doping �les, plus the setting up of many of the geometry data stru
tures,

in
luding the temporary ones. A 
orresponding initialization pro
edure exists

in tables, this does the remaining initializations of the global data stru
tures,

parti
ularly those required for the equation assembly, plus the transformation

matrix for the 
omputation of ele
tri
 �elds (
f. Se
tion 4.4). Other modules

are initialized by tables by 
alling their respe
tive initialization 
odes.

The module 
urrent exports three routines: an initialization routine


alled by tables, and the routines 
omp 
urrents and get 
ont 
ur.

The former extra
ts the 
onta
t 
urrents from the assembled RHS as explained

in Se
tion 4.3, and saves them in internal arrays. The latter pro
edure then

returns the stored values.

All the physi
al models are implemented inmobil andre
omb, the latter

module also 
ontains the evaluation of bandgap narrowing. The 
ontributions

to the Ja
obian (LHS) due to derivatives of the re
ombination terms are also


omputed in re
omb. LHS 
ontributions due to the �eld dependen
e of the

mobilities and the generation terms are 
urrently ignored. The 
omputation

of the ele
tri
 �eld, as well as the gradients of the quasi-Fermi levels, is done

in efield, using the method presented in Se
tion 4.4. Note that the ele
tri


�eld 
omputation, like the assembly routines, 
ontains a poorly ve
torizing

sparse matrix row sum.

Potential Future Improvements

We pointed out in Se
tion 5.2.6 (page 91) that parts of the assembly pro
edure

are sparse matrix-times-ve
tor operations or row sums of sparse matri
es and

do not ve
torize well. This has so far not been a serious problem, sin
e

CPU times of typi
al simulations are dominated by the linear solves (usually

to 70-98%). However, re
ent improvements in the solver algorithms have

lead to 
ases where only about 60% of the time was used for linear solves,

assembly and ele
tri
 �eld 
omputations being responsible for most of the

remainder.

The slow algorithms 
ould be ve
torized (and hen
e speeded up by fa
tors

of ten or more) if they 
ould be pro
essed in a different way (e.g. diagonal wise

rather than row wise). This is normally not possible sin
e data dependen
ies

would then prevent ve
torization 
ompletely. However, the rows 
an be

reordered in su
h a way that data dependen
ies are avoided and inner loops
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with a large range result. This reordering is already done in the iterative

solver, so using the solver's order 
ould signi�
antly speed up the assembly

routines (probably by some fa
tor of two to �ve).

So far this has not been worth the effort, sin
e assembly times were

usually only about 10% of the total simulation time. However, if progress

with the linear solver algorithms 
ontinues, it may be a worthwhile task to

ta
kle. An improved linear solver interfa
e is needed though, whi
h would

be in
ompatible with our dire
t solver (whi
h has proved very important for

debugging).

With a new solver interfa
e we would also have the 
han
e to get rid of

the multiple sparse data stru
tures that plague the present implementation.

5.2.7 Availability and Portability

Se
ond has been implementedmainly on anAlliant FX-80minisuper 
omputer.

During most of the development phase up-to-date versions were maintained

on Cray X-MP and Cray-2 super
omputers, later also on a Convex C-220

minisuper. These were heavily used for testing the 
ode and running examples.

The 
ode was ported to various other UNIX ma
hines, in
luding NEC

SX-3 super
omputers, Multi
ow Tra
e and DECsystem mainframes and Sun

workstations. An older (FORTRAN only) version ran on Fujitsu VP-200 and

VP-2000 series super
omputers under both, the Super-UX (UNIX System V)

and MSP (
ompatible to IBM's MVS) operating systems.

The good portability of the 
ode is unders
ored by the fa
t that installation

to a UNIX system on whi
h Se
ond has never been running before typi
ally

takes some three to �ve hours, in
luding all system dependent parts. Most of

this time is typi
ally used up waiting for 
ompilations to �nish. The a
tual

task of 
on�guring Se
ond for a new system typi
ally takes less than one

hour.
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5.3 Integration Into a Simulation System

environ.id
84 × 101 mm

Process Simulation

Idea

Ω

.dop .geo

.cur
.out

Second Picasso

Sepp

Figure 5.5: Embedding Se
ond into a simulation environment

Figure 5.5 shows how Se
ond �ts into the 3d devi
e simulation environ-

ment of the Integrated Systems Lab at ETH Z�uri
h. Idea [80℄ is an intera
tive

tool that allows the user to 
onstru
t a devi
e out of simple building blo
ks.

Pro
ess simulation output 
an be used to de�ne the doping pro�les within the

devi
e under 
onstru
tion. (This feature is 
urrently only rudimentary, the


orresponding part in Figure 5.5 is therefore dashed.)

The user also supplies to Idea information on how the initial simulation

grid is to be re�ned. This grid information, together with the 
onstru
ted

geometry, is used by Idea to build an input �le for the grid generator Ω [24℄.
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Ω 
an then generate the grid, whi
h is deposited in the grid �le (.geo), while

the 
orresponding doping information is written to the doping �le (.dop).

The grid and doping information is input to Se
ond, together with some

parameter input spe
ifying e.g. terminal voltages. Simulation results, i.e.

the values of physi
al quantities at the grid points, are written to result �les

(.out), while 
onta
t 
urrents are written to the 
urrent �le (.
ur). The

dashed line between Ω and Se
ond indi
ates adaptive grid re�nement whi
h

is not yet implemented.

Two tools exist for the visualization of the simulation results. Sepp is

a small utility based on xgraph that reads the 
urrent �le and plots I(V )

urves and similar graphs. Pi
asso [82℄ is a sophisti
ated and versatile 2d/3d

graphi
 tool. It uses the grid and result �les to render various representations

of simulation data. In parti
ular it allows the user to sele
t an arbitrary view

of the simulated obje
t and to view s
alar or ve
tor data on the surfa
e of

the obje
t. Colours are used to represent magnitudes. To examine data in

the devi
e interiour, an arbitrary plane 
an be used to 
ut away parts of the

obje
t, so that data be
ome visible on the 
ut fa
e. Pi
asso has proved to be

an indispensable tool for both, the interpretation of simulation results and for

debugging Se
ond. All the plots in Chapter 6 were produ
ed with Sepp and

Pi
asso.

It is evident from Figure 5.5 that information is transferred between

programs mostly through �les. This may not always be the best method,

however in our 
ase there is not mu
h of an alternative. Pi
asso will

typi
ally run on a workstation, while Se
ond requires a super
omputer for

large simulations, and often needs to be run in the ba
kground (e.g. over

night). Files are 
urrently the only reasonable way to hand the simulation

results from Se
ond to Pi
asso.
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Results

In this 
hapter we present some typi
al results of 3d devi
e simulations. These

results are meant to show the wide range of possible appli
ations and the


exibility of Se
ond.

The �rst example in Se
tion 6.1 shows a study of parasiti
 MOSFETs

and demonstrates how design rules 
an be drawn up based on the simulation

results. In the next example (Se
tion 6.2) we investigate different CMOS

designs with respe
t to their sus
eptibility to lat
hup. Se
tion 6.3 �nally

presents the examination of the swit
hing behaviour of a bipolar transistor.

6.1 Parasiti
 MOSFETs

In this se
tion we want to use an example ofMOSFET degradation by parasiti


devi
es to demonstrate the ne
essity and possibilities of 3d simulation.

Figure 6.1 shows an idealized view of a sub-mi
ron n-type MOSFET

isolated by an oxide tren
h.1 The 
hannel between the sour
e and drain n+

regions is 
ontrolled by a gate whi
h must be imagined to sit on top of the

devi
e, between sour
e and drain. Due to the devi
e geometry there exist

two parasiti
 n-MOS devi
es, both gated through the tren
h oxide: a lateral

1This example has been proposed by Marius Orlowski from Motorola In
., Austin.

99
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mos-s
hem.id
96 × 47 mm n+

n+-draintrench

n+-source

p-well

n-substrate

Figure 6.1: S
hemati
 view of a tren
h-isolated MOSFET

parasiti
 devi
e with the same sour
e and drain as the \proper" devi
e, and a

verti
al one whose \drain" is the substrate. If the n+ region outside the tren
h

is positively biased with respe
t to the p-well, a 
hannel 
an be 
reated at the

surfa
e of the tren
h oxide. This parasiti
 
hannel 
an 
arry a leakage 
urrent

whi
h may interfere with the normal transistor operation.

The \
hannel" of the lateral parasiti
 MOSFET will be a very thin layer

along the (verti
al) gate oxide interfa
e, while the \true" transistor 
hannel

is, of 
ourse, a very shallow layer along the (horizontal) gate oxide interfa
e.

Sin
e the two 
hannels are in orthogonal planes it is impossible to simulate

their intera
tion two dimensionally.

For this matter-of-prin
iple investigation we make the simulation problem

more manageable with the help of a few simpli�
ations. First we restri
t

ourselves to examining the effe
t of the lateral parasiti
 MOSFET. In addition

we note that the devi
e as sket
hed in Figure 6.1 is symmetri
al|hen
e we

ignore the left half. Furthermore we noti
e that for the operation of the

lateral devi
e the front and ba
k parts of the tren
h do not play any signi�
ant

role|we ignore everything in front of the sour
e and behind the drain. Sin
e

we are only interested in the steady-state, we do not need to simulate the

substrate and the n+ region outside the tren
h. We therefore repla
e the n+

region by a 
onta
t at the outside of the tren
h oxide, and the substrate by

a 
onta
t at the bottom of the p-well. To make for a good 
onta
t and to

suppress the parasiti
 verti
al MOSFET a
tion, we introdu
e a thin p+ layer

at the bottom of the p-well.
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Figure 6.2: Geometry and doping distribution for the lateral parasiti


MOSFET simulation. The plot on the right shows the 
hannel region

(in
luding the grid) viewed from the tren
h after removal of the tren
h oxide

The resulting devi
e is shown in Figure 6.2. We used a 
hannel length

L = 0.5µm and a 
hannel widthW = 0.5µm (meaning 0.25µm for our half

devi
e). The gate is 150 Å thi
k and the tren
h is T = 0.3µm wide. The

p-well doping is 1017cm−3.
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Figure 6.3: Ele
tron density plot showing the parasiti
 
hannel
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Figure 6.3 shows the ele
tron density in the devi
e with a gate voltage of

1V and 5V applied to the parasiti
 gate. The devi
e is 
ut in the middle of

the 
hannel, the 
ut plane is orthogonal to the dire
tion of the 
urrent 
ow.

The parasiti
 
hannel 
an be 
learly seen at the tren
h oxide interfa
e.

In order to study the intera
tion of the parasiti
 devi
e with the proper

MOSFET we examine the effe
t of the parasiti
 gate bias on the threshold

voltage. The latter we de�ne as the gate bias for whi
h the drain voltage is

10−7 W
L A. Figure 6.4 shows the result of the simulation: applying a bias of 5V

to the parasiti
 gate shifts the transistors threshold voltage by approximately

200mV.

tren
h-Vth.ps
85 × 40 mm

threshold voltage [mV]

bias [V]
-500

-400

-300

-200

-100

0

-5 0 5 10

Figure 6.4: MOSFET threshold voltage as a fun
tion of parasiti
 gate bias

The devi
e engineer is interested in design rules that ensure save devi
e

operation. In our example the question of interest to the devi
e engineer might

be: Given a 
ertain value of an a

eptable threshold shift, what are the 
riti
al

values of the devi
e geometry?

To answer this question we varied the tren
h thi
kness T from 0.3 to

0.5µm. For ea
h geometry the shift of the threshold voltage (for in
reasing

the parasiti
 gate bias from 0 to 5V) was determined. The result, whi
h is

plotted in Figure 6.5, shows that the threshold shift de
reases with in
reasing

tren
h thi
kness. This is, of 
ourse, expe
ted, sin
e the ele
tri
 �eld 
reated

by the parasiti
 gate de
reases with in
reasing T .

These simulations were performed with grids 
onsisting of between

15 000 and 24 000 verti
es. CPU times on a 6 pro
essor Alliant FX-80

mini-super
omputer were on the order of 20 minutes per bias point, when
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Figure 6.5: Threshold voltage shift as a fun
tion of tren
h width

the bias was stepped up smoothly. Approximately �ve to ten bias steps were

normally used to determine the threshold voltage for a given voltage applied

to the parasiti
 gate. The working point shown in Figure 6.3 was run from

s
rat
h (without stepping up voltages) in just over an hour. On a Cray-2

super
omputer the exe
ution times are typi
ally faster by a fa
tor of �ve.

6.2 CMOS Lat
hup

lat
h-
onf.id
98 × 46 mm

p+p+n+ n+

n-well

p-substrate

Figure 6.6: Simpli�ed CMOS lat
hup stru
ture

Lat
hup is an effe
t in CMOS devi
es where different parasiti
 bipolar
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transistors lo
k ea
h other in a high 
urrent on-state. On
e lat
hup o

urs

the devi
e will be destroyed within mi
rose
onds due to the ex
essive heat

development. Shrinking devi
e dimensions ease devi
e 
ross-talk and thus

make lat
hup more likely. The avoidan
e of lat
hup is a major design goal

when trying to produ
e even smaller devi
es. Simulation 
an be a extremely

helpful in setting up lat
hup-proof design rules.

There are various possibilities for lat
hup to o

ur. We 
on
entrate on

a part of a CMOS inverter, whi
h is the simplest 
on�guration sus
eptible

to lat
hup. Figure 6.6 shows an idealized sket
h of the devi
es. The p+

diffusion, the n-well, and the p-substrate form a verti
al pnp transistor, while

the n+ diffusion, the substrate and the n-well form a lateral npn transistor.

Both are 
oupled in a thyristor-like fashion.

Normally, both bipolar transistors are turned off sin
e under normal

operating 
onditions the substrate is biased at 0V by the n+-plug and the

p-well is similarly held at VSS . The 
onta
ts at the n
+- and p+-diffusions are

always between 0V and VSS , so that the base-emitter diode is never forward

biased. However, a voltage glit
h at one of the two emitters 
an turn on the


orresponding transistor. If the transistor is 
ondu
ting enough 
urrent for a

suf�
ient amount of time, its 
olle
tor 
urrent may 
ause a voltage drop along

the other transistor's base-emitter diode high enough to turn on that transistor

as well. If the two transistors have suf�
ient gain, they will lo
k ea
h other in

high inje
tion mode even as the glit
h that triggered the pro
ess is over, and

the devi
es are lat
hed.

In our experimentswe always tried to indu
e lat
hup by applying a negative

voltage pulse of 0.85V to the p+-diffusion, thus turning on the lateral npn

transistor. The length of the pulse varied, while the steepness of its 
anks was

kept 
onstant (1 ns rising time). Figure 6.7 shows the impurity 
on
entrations

for the basi
 
on�guration, whi
h is in 1µm te
hnology, featuring a very

shallow (1.35µm) n-well. Minimum distan
es between a
tive regions o

ur

a
ross tub edges.

The �rst investigation (see also [43℄) was a 
omparison between 2d and 3d

simulations. The former were also performed with Se
ond, but a \quasi-2D"

grid was obtained by repli
ating the front layer of the original 3d grid on
e

in the third dimension. The 3d grid 
onsisted of 56 562 verti
es while the

resulting \2D" grid had 2× 2 247 points.

The result of the simulation with the triggering voltage pulse held for
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Figure 6.7: Impurity distribution for basi
 CMOS lat
hup example
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Figure 6.8: Conta
t 
urrents for 2d (left) and 3d (right) simulations

2.2 ns is shown in Figure 6.8. The 
urve labels \p-n-tub" and \n-p-tub" refer

to the p+ and n+ diffusions respe
tively. It 
an be 
learly seen that a

ording
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to the 2d simulation lat
hup o

urs just as the voltage pulse is falling off after

3.2 ns, while a

ording to the 3d simulation, the npn transistor turns off very

qui
kly on
e the applied voltage goes towards zero. The voltage pulse needed

to be held for more than 5 ns for the 3d simulation to indi
ate lat
hup. This

is an example of the signi�
ant differen
es that 
an o

ur between two and

three dimensional simulations.

tren
h-dop.ps
52 × 30 mm

shifted-dop.ps
52 × 30 mm

Figure 6.9: Doping for the tren
h isolated (left) and shifted (right) CMOS

stru
tures. The bla
k stru
ture is the oxide

Next we examined the effe
t of two design measures for inhibiting

lat
hup [22℄. One was to introdu
e a small oxide tren
h to isolate the a
tive

regions of the p-MOS and the n-MOS devi
es while the other was to shift one

transistor in the third dimension (Figure 6.9). Figure 6.10 shows the 
urrents

for all three 
ases when the pulse was held for 10 ns. The 
urves 
learly show

that both measures effe
tively prevented lat
hup in this 
ase.

These simulations were performed partially on a Cray-2 super
omputer

and partially on a Convex C-220 minisuper. Typi
al run times were a few

hours on the Cray-2 or days on the Convex for grid sizes ranging from 18 500

to 24 000 points. Memory usage was of the order of 240Mbytes.

6.3 Transistor Swit
hing

Bipolar transistors 
an be made to swit
h mu
h faster than CMOS devi
es, at

the expense of a higher power 
onsumption (and hen
e heat dissipation). For

that reason they are used in 
ases where speed matters more than pri
e, e.g.

for super
omputers.

Here we examine the swit
hing behaviour of a high-speed ECL transistor.
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Figure 6.10: Conta
t 
urrents for three CMOS stru
tures
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Figure 6.11: Doping distribution for an ECL transistor

Figure 6.11 shows the doping distribution within the devi
e. Also visible

is an insulating oxide tren
h. The emitter is the bright region in the middle

top portion of the devi
e, the base is 
onta
ted at the left and the 
olle
tor


onta
t is at the right. The 
olle
tor 
urrent must therefore 
ow around the
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tren
h. Note the slanted walls of that tren
h, whi
h Se
ond 
an handle

without problems. We know of no other program that 
an simulate su
h a

devi
e geometry.

We simulated the 
urrent waveform of the transistor in a 
ommon emitter


on�guration. The 
olle
tor-emitter voltage, VCE , was kept 
onstant at 5V

and the base-emitter bias, VBE , was initially at 0.8V, so that the transistor

was fully turned on. At t = 0 the devi
e was being turned off by ramping

VBE to 0V within 200 ps. At t = 300 ps the base voltage was again turned

on, rea
hing its old value of 0.8V at t = 500 ps. The simulation was then


arried on for another 500 ps.

bip-
ur.ps
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Emitter
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Figure 6.12: ECL transistor swit
hing waveform

Figure 6.12 shows the 
omputed 
onta
t 
urrents. The dis
ontinuities

at 0, 200, 300, and 500 ps are due to the displa
ement 
urrent, whi
h is

dis
ontinuous be
ause of the dis
ontinuous derivative of the applied voltage.

The terminal 
urrents are dominated by the displa
ement 
urrent after approx.

70 ps, meaning that the transistor is basi
ally turned off at that time.

The pi
ture is somewhat different when the devi
e is swit
hed on: The

terminal 
urrent are 
ompletely dominated by the displa
ement 
urrent until

the base voltage has rea
hed its �nal value (VBE = 0.8V). After that, approx.
120 ps are needed until the 
olle
tor 
urrent 
omes 
lose to rea
hing the steady

state value.

Su
h a simulation may be used to optimize the swit
hing time of the
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transistor. To this end it is useful to observe the dynami
 operation of the

devi
e by monitoring physi
al entities in the devi
e interiour. Figure 6.13

shows a plot of the magnitude of the ele
tron 
urrent density in the transistor

after 100 ps, that is halfway through the swit
h-off phase. The plot shows that

the a
tive region of the transistor is already basi
ally free of 
urrent, while


arriers are still travelling through the highly doped 
olle
tor and emitter

regions. This 
lean-out time is obviously responsible for the laten
y of the

swit
h. Pi
tures like this one 
an be very valuable for optimizing dynami


devi
e 
hara
teristi
s.
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Figure 6.13: Magnitude of the ele
tron 
urrent density in the transistor during

swit
h-off

These 
omputations were performed using a grid with 17 770 verti
es.

The simulations were run on a six pro
essor Alliant FX-80 in about one day.

Memory usage was 100Mbytes. Similar runs took about �ve hours on a

Cray-2.
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Con
lusions and Future Work

In this thesis we dis
ussed the dif�
ulties asso
iated with the three dimensional

simulation of general semi
ondu
tor devi
es. We presented the design and

implementation of Se
ond, a program that 
an be used to perform su
h

simulations. We demonstrated the programs usefulness by applying it to a

variety of different problems involving signi�
antly differing geometries and

operating 
onditions.

The results presented in Chapter 6 are meant to give an indi
ation of the

problems that 
an be approa
hed with Se
ond. However, they are only a

small sele
tion of a wide range of possible appli
ations.

Our examples prove that 3d simulations, even transient, are possible with

rather general devi
e geometries. The examples also show, however, that

these simulations are quite expensive in terms of CPU time and memory

requirements. Typi
al simulations run for hours on modern super
omputers

or days on minisupers. Optimizing a devi
e generally requires many single

simulations, in
reasing 
omputer time requirements by another order of

magnitude. Memory requirements are in the hundreds of megabytes range,

whi
h 
alls for big ma
hines. It therefore appears safe to say that 3d

simulation, while being a ne
essity for many problems, is not yet in a position

to 
ompletely displa
e 2d simulation.

On the other hand, even running a super
omputer for days on a single

111
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problem is 
heap 
ompared to the 
ost of going through one more iteration

of 
hip manufa
turing, whi
h 
an take months and 
ost millions. One has to

keep that in mind when looking at the 
osts of 3d simulation. We would also

like to add that the high 
osts are not a result of our general approa
h, the pri
e

we pay for generality is the size and 
omplexity of the 
ode, not the amount

of 
omputer time. Indeed, our general 3d grids often allow us to work with

fewer mesh points than would be required by other programs, and hen
e save


omputer time.

Se
ond meets its design goals of being a \general purpose devi
e

simulator" in as far as it permits the simulation of general plane fa
ed

geometries|the generality of the possible devi
e geometries is only limited

by what the grid generator 
an supply. No other 3d devi
e simulator published

so far supports su
h geometri
al generality.

In other respe
ts true generality is not yet a
hieved. Further improvements

are mainly possible in two ways: adaptive grid re�nement 
an improve speed

and reliability of the simulation, and improved physi
al models 
an in
rease

the domain of problems that 
an be ta
kled with Se
ond.

Adaptive grid re�nement offers the possibility to simulate with grids that

are better adjusted to the problem than grids that are generated based on the

doping information (and possibly additional hints by the user). Implementation

of this feature requires two things: an improved interfa
e between Se
ond

and the grid generator must enable the former to instru
t the latter where the

point density is to be in
reased or redu
ed, also some means must be available

to interpolate data from the original to the revised grid. On the other hand,


riteria must be found so the simulator 
an determine where it needs more

grid points and where it needs less. As B�urgler [13℄ has shown, this problem

is not easy to solve. The solution B�urgler has given is based on his new

dis
retization s
heme and is not appli
able to the BM. More theoreti
al work

must be done on error estimates before a good implementation of adaptive

grid re�nement is possible.

Various improvements are possible in the way physi
al devi
es are mod-

elled. Generalized boundary 
onditions should in
lude external resistors,


apa
itors and indu
tan
es, as well as 
urrent 
ontrolled (in addition to volt-

age 
ontrolled) 
onta
ts. The treatment of external magneti
 �elds must

be possible for the simulation of magneti
 �eld sensors. Spe
ial devi
es

types, like thyristors, may require more sophisti
ated mobility and re
om-

bination models. Parti
ularly power devi
es require the solution of extra
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equations for 
arrier and latti
e temperature [81℄. Finally, the re
ent interest

in heterostru
tures 
reates a demand for their simulation in 3d (
f. [49℄).

Most of these extensions follow work that has been done in 2d, sin
e

the physi
al models do not depend on the dimension. However, sin
e better

models generally imply an in
rease of the number of 
al
ulations to be

done, 
omputer speed poses a limit on what 
an be done|parti
ularly for 3d

simulations whi
h are anyway at the edge of what is feasible with present-day


omputers.

It should �nally be pointed out that there are a number of possible

improvements in parts of the simulation system that are not dis
ussed in this

thesis. Improved grid generators 
an lower simulation 
osts by redu
ing the

number of grid points or by allo
ating them in a way that results in better


onditioned linear systems. In addition we 
an expe
t signi�
ant redu
tions

in simulation 
osts from improved linear solver algorithms. During the

development of Se
ond we already experien
ed a dramati
 improvement in

the available iterative linear equation solvers, and there is good reason to

expe
t further progress. Finally, the dramati
 in
rease in 
omputer speed and

de
rease in 
omputer pri
es will 
ertainly help to transform 3d simulation into

a standard engineering tool.
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