// NATIONAL
\\ ICT AUSTRALIA

SECURE EMBEDDED SYSTEMS NEED
MICROKERNELS
Gernot Heiser

Embedded, Real-Time and Operating Systems Program
National ICT Australia

February 2004

PE—
f S d
Rl Devlopment. Business~AC T

ACT GOVERNMENT

3 1" !3;" .
4 Australian Government
A

79X Department of Communications,
Information Technology and the Arts

QUT THE UNIVERSITY
D
ucen:

AAAAAAAAA

Australian Research Council

EMBEDDED SYSTEM ARE UBIQUITOUS

NATIONAL

IIIIII

EMBEDDED SYSTEM ARE UBIQUITOUS

NATIONAL
ICT AUSTRALIA

LIMITED

But are they Secure?

©NICTA 2004 ERTOS P1

NATIONAL

LLLLLL

SECURITY CHALLENGES /E
A

e Growing functionality

e Wireless connectivity

e Downloaded contents (entertainment)

NATIONAL

IIIIII

SECURITY CHALLENGES @

e Growing functionality

[J Increasing software complexity
[J increased number of faults
[I increased likelihood of security faults

e Wireless connectivity

e Downloaded contents (entertainment)

SECURITY CHALLENGES

e Growing functionality

[1 increasing software complexity
[J increased number of faults
[increased likelihood of security faults

e Wireless connectivity

[1 subject to attacks from outside (crackers)

e Downloaded contents (entertainment)

NATIONAL

@

IIIIII

SECURITY CHALLENGES

e Growing functionality

[1 increasing software complexity
[J increased number of faults
[increased likelihood of security faults

e Wireless connectivity

[1 subject to attacks from outside (crackers)

e Downloaded contents (entertainment)

[1 subject to attacks from inside (viruses, worms)

NATIONAL

@

IIIIII

NATIONAL

SECURITY CHALLENGES @

IIIIII

e Growing functionality

[1 increasing software complexity
[J increased number of faults
[increased likelihood of security faults

e Wireless connectivity

[1 subject to attacks from outside (crackers)

e Downloaded contents (entertainment)

[] subject to attacks from inside (viruses, worms)

e Increasing dependence on embedded systems

[J Iincreased exposure to embedded-systems security weaknesses

©NICTA 2004 ERTOS P2

NATIONAL

IIIIII

PRESENT APPROACHES @

e Real-time executives

NATIONAL

IIIIII

PRESENT APPROACHES @

e Real-time executives
* sultable for systems with very limited functionality

* no internal protection

NATIONAL

IIIIII

PRESENT APPROACHES @

¢ Real-time executives
* suitable for systems with very limited functionality

* Nno Internal protection

[1 every small bug/failure is fatal
[1 no defence against viruses, limited defence against crackers

NATIONAL

PRESENT APPROACHES @

e Real-time executives

* suitable for systems with very limited functionality

* Nno Internal protection

[1 every small bug/failure is fatal
[1 no defence against viruses, limited defence against crackers

e Linux, Windows Embedded, ...

IIIIII

NATIONAL

IIIIII

PRESENT APPROACHES @

e Real-time executives
* suitable for systems with very limited functionality

* Nno Internal protection

[1 every small bug/failure is fatal
[1 no defence against viruses, limited defence against crackers

e Linux, Windows Embedded, ...

* dubious or non-existent real-time capabilities

[1 unsuitable for hard real-time systems

NATIONAL

IIIIII

PRESENT APPROACHES @

e Real-time executives
* suitable for systems with very limited functionality

* Nno Internal protection

[1 every small bug/failure is fatal
[1 no defence against viruses, limited defence against crackers

e Linux, Windows Embedded, ...
* dubious or non-existent real-time capabilities
[1 unsuitable for hard real-time systems

* huge code base (millions of lines of code)

[1 excessive for small embedded system
[1 too much code on which security of system is dependent

©NICTA 2004 ERTOS P3

NATIONAL

EMBEDDED-SYSTEMS SECURITY @

IIIIII

REQUIRES MINIMAL TRUSTED COMPUTING BASE (TCB)

TCB: The part of system that must be relied on for the correct
operation of the system

NATIONAL

IIIIII

EMBEDDED-SYSTEMS SECURITY @

REQUIRES MINIMAL TRUSTED COMPUTING BASE (TCB)

TCB: The part of system that must be relied on for the correct
operation of the system

... otherwise the security issue is intractable!

NATIONAL

IIIIII

EMBEDDED-SYSTEMS SECURITY @

REQUIRES MINIMAL TRUSTED COMPUTING BASE (TCB)

TCB: The part of system that must be relied on for the correct
operation of the system

... otherwise the security issue is intractable!
MINIMAL TCB MEANS:

1. Split software into trusted and untrusted part

NATIONAL

IIIIII

EMBEDDED-SYSTEMS SECURITY @

REQUIRES MINIMAL TRUSTED COMPUTING BASE (TCB)

TCB: The part of system that must be relied on for the correct
operation of the system

... otherwise the security issue is intractable!
MINIMAL TCB MEANS:

1. Split software into trusted and untrusted part

2. Minimise the trusted part

NATIONAL

IIIIII

EMBEDDED-SYSTEMS SECURITY @

REQUIRES MINIMAL TRUSTED COMPUTING BASE (TCB)

TCB: The part of system that must be relied on for the correct
operation of the system

... otherwise the security issue is intractable!
MINIMAL TCB MEANS:

1. Split software into trusted and untrusted part
2. Minimise the trusted part

3. Make the trusted part trustworthy

©NICTA 2004 ERTOS P4

MINIMISING THE TCB

Application

Hardware

System: traditional
embedded

NATIONAL

@

ICT AUSTRALIA

IIIIII

ICT AUSTRALIA

IIIIII

MINIMISING THE TCB @NM.ONM

Application
Application

Hardware Hardware

System: traditional Linux/
embedded Windows

(O

ICT AUSTRALIA

IIIIII

MINIMISING THE TCB @NM.ONM

Application Application
Application

(O

Service
rvic ervic _
Microkernel

Hardware Hardware Hardware

System: traditional Linux/ Microkernel-
embedded Windows based

MINIMISING THE TCB @NM.ONM

IIIIII

Application Application
plication
oS
Service
rvic ervic
Microkernel
System: traditional Linux/ Microkernel-

embedded Windows based

MINIMISING THE TCB @NM.ONM

IIIIII

Application Application
oS
Service
ervic
Microkernel
System: traditional Linux/ Microkernel-
embedded Windows based

TCB: all code

MINIMISING THE TCB @NM.ONM

IIIIII

Application Application
\.
oS
Service
ervic
Microkernel
System: traditional Linux/ Microkernel-
embedded Windows based

TCB: all code

MINIMISING THE TCB @NM.ONM

w)< Application

A 3
~
oS S
~
~
Service
ervic _

Microkernel

Hardware Hardware Hardware

System: traditional Linux/ Microkernel-
embedded Windows based
TCB: all code

MINIMISING THE TCB @NM.ONM

IIIIII

ion Application

Service
Microkernel
Hardware
System: traditional Linux/ Microkernel-
embedded Windows based

TCB: all code

IIIIII

MINIMISING THE TCB @NM.ONM

Application

Service
Microkernel
System: traditional Linux/ Microkernel-

embedded Windows based
TCB: all code 100,000’s loc

Hardware Hardware

IIIIII

MINIMISING THE TCB @NM.ONM

R Applicati

Application |on PpiEs K{
(O) N
\ q
Service
| m Microkernel
Hardware Hardware
System: traditional Linux/ Microkernel-
embedded Windows based

TCB: all code 100,000’s loc

MINIMISING THE TCB @NM.ONM

IIIIII

satio

>

AN 4
M Service

Microkernel
Hardware Hardware
System: traditional Linux/ Microkernel-
embedded Windows based

TCB: all code 100,000’s loc

IIIIII

MINIMISING THE TCB @NM.ONM

satio

A Y
\
A Y
Y
s ~
\ A
M Service

Microkernel

Hardware Hardware
System: traditional Linux/ Microkernel-
embedded Windows based

TCB: all code 100,000’s loc

MINIMISING THE TCB @NM.ONM

IIIIII
A Y
\
A Y
Y
A Y
. 4
X YA

Service
m Microkernel
Hardware Hardware
System: traditional Linux/ Microkernel-
embedded Windows based

TCB: all code 100,000’s loc 10,000’s loc

MINIMISING THE TCB @NM.ONM

......

A Y

\
A Y
‘s
~
~ \,
... 4
N
Service
Microkernel

Hardware Hardware
System: traditional Linux/ Microkernel-
embedded Windows based
TCB: all code 100,000’s loc 10,000’s loc

Small kernel = small TCB =- more trustworthy TCB!

©NICTA 2004 ERTOS P5

NATIONAL

IIIIII

MAKING THE TCB TRUSTWORTHY @

TRADITIONAL APPROACHES

ADVANCED APPROACHES

NATIONAL

IIIIII

MAKING THE TCB TRUSTWORTHY @

TRADITIONAL APPROACHES
e Testing

e Code inspection

ADVANCED APPROACHES

MAKING THE TCB TRUSTWORTHY

TRADITIONAL APPROACHES

e Testing
e Code inspection

v Smaller TCB =- fewer remaining bugs

X ... but no assurance of absence of bugs!

ADVANCED APPROACHES

NATIONAL

@

IIIIII

MAKING THE TCB TRUSTWORTHY

TRADITIONAL APPROACHES

e Testing
e Code inspection

v Smaller TCB =- fewer remaining bugs

X ... but no assurance of absence of bugs!
ADVANCED APPROACHES

e Prove the correctness of the TCB

v assurance of absence of bugs

NATIONAL

@

IIIIII

IIIIII

MAKING THE TCB TRUSTWORTHY @NM,ONM

TRADITIONAL APPROACHES

e Testing
¢ Code inspection

v Smaller TCB =- fewer remaining bugs

X ... but no assurance of absence of bugs!
ADVANCED APPROACHES

e Prove the correctness of the TCB

v assurance of absence of bugs
x unfeasible for 100,000s loc
v feasible for very small microkernel

©NICTA 2004 ERTOS P6

NATIONAL

MICROKERNEL VERIFICATION @

IIIIII

NATIONAL

IIIIII

MICROKERNEL VERIFICATION @

PROOF OF CORRECTNESS OF MICROKERNEL

NATIONAL

LLLLLL

MICROKERNEL VERIFICATION /E

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

[1 prerequisite for all formal work on kernel

NATIONAL

MICROKERNEL VERIFICATION @

IIIIII

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

[1 prerequisite for all formal work on kernel

2. Prove security (isolation) properties of API

[1 confinement, data flow, interference, covert storage channels

NATIONAL

IIIIII

MICROKERNEL VERIFICATION @

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

[prerequisite for all formal work on kernel

2. Prove security (isolation) properties of API

[1 confinement, data flow, interference, covert storage channels

3. Prove correctness of microkernel implementation

[refine API spec into compilable source code

NATIONAL

MICROKERNEL VERIFICATION @

IIIIII

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

[prerequisite for all formal work on kernel

2. Prove security (isolation) properties of API

[1 confinement, data flow, interference, covert storage channels

3. Prove correctness of microkernel implementation

[1 refine API spec into compilable source code

COMPLETE TEMPORAL MODEL OF MICROKERNEL

NATIONAL

MICROKERNEL VERIFICATION @

IIIIII

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

[prerequisite for all formal work on kernel

2. Prove security (isolation) properties of API

[1 confinement, data flow, interference, covert storage channels

3. Prove correctness of microkernel implementation

[1 refine API spec into compilable source code

COMPLETE TEMPORAL MODEL OF MICROKERNEL

e exhaustive measurement of latencies of kernel operations

[1 prerequisite for real-time analysis of whole system

©NICTA 2004 ERTOS P7

IIIIII

A SAMPLE SYSTEM @NM.ONM

Legacy :
App Sensitive
I : App

: Untrusted
Linux TEEEEE EEEEE PP PR
Server : Trusted

| De_wce
Driver

e Sensitive part of system has small TCB

A SAMPLE SYSTEM @NM.ONM

IIIIII

Legacy E
App Sensitive
1 : App

: Untrusted
Linux R
Server : Trusted

| De_wce
Driver

e Sensitive part of system has small TCB

e Standard API supported by de-privileged Linux server

(I full binary compatibility with native Linux

IIIIII

A SAMPLE SYSTEM @NM.ONM

Legacy E
App Sensitive
1 App

: Untrusted
Linux R
Server : Trusted

| De_wce
Driver

e Sensitive part of system has small TCB

e Standard API supported by de-privileged Linux server

(1 full binary compatibility with native Linux

e Compromised legacy system cannot interfere with trusted part

©NICTA 2004 ERTOS P8

STATUS

e Microkernel operational

[1 10,000 lines of code
[highly efficient

NATIONAL
ICT AUSTRALIA

Legacy :
App Sensitive
I App
. Untrusted
Linux EEEEEE PP L PP PR
Server o Trusted
Device '

Driver

STATUS

e Microkernel operational
[1 10,000 lines of code

(1 highly efficient
e Basic infrastructure exists

[] core services
[1 Linux server, drivers

NATIONAL
ICT AUSTRALIA
IIIIII D

Legacy E
App Sensitive
I : App
. Untrusted
Linux EEEEEE EEPEEER PP PEEEEREE
Server — Trusted
De_wce :
Driver .

STATUS @NATIONAL

e Microkernel operational

[1 10,000 lines of code
[0 highly efficient

Sensitive

App
Untrusted

e Basic infrastructure exists Trusted

[] core services
[1 Linux server, drivers
[in commercial deployment

STATUS @NATIONAL

e Microkernel operational

] Legac :
[] 10,000 lines of code Ap% ! "
: o : Sensitive
(1 highly efficient I . App
Untrusted
o _ Linux SEEEEE CEE LR LR L
e Basic Infrastructure exists Server Trusted

| De_vice
[] core services Driver .
[1 Linux server, drivers

[1 in commercial deployment

e Verification in progress

[J successful pilot project for verification of API “slice”
[1 full-scale correctness proof project commencing
[1 temporal analysis commencing

©NICTA 2004 ERTOS P9

