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e Growing functionality

[1 increasing software complexity
[J increased number of faults
[ increased likelihood of security faults

e Wireless connectivity

[1 subject to attacks from outside (crackers)

e Downloaded contents (entertainment)

[] subject to attacks from inside (viruses, worms)

e Increasing dependence on embedded systems

[J Iincreased exposure to embedded-systems security weaknesses
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e Real-time executives
* suitable for systems with very limited functionality

* Nno Internal protection

[1 every small bug/failure is fatal
[1 no defence against viruses, limited defence against crackers

e Linux, Windows Embedded, ...
* dubious or non-existent real-time capabilities
[1 unsuitable for hard real-time systems

* huge code base (millions of lines of code)

[1 excessive for small embedded system
[1 too much code on which security of system is dependent
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REQUIRES MINIMAL TRUSTED COMPUTING BASE (TCB)

TCB: The part of system that must be relied on for the correct
operation of the system

... otherwise the security issue is intractable!
MINIMAL TCB MEANS:

1. Split software into trusted and untrusted part
2. Minimise the trusted part

3. Make the trusted part trustworthy
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Service
Microkernel

Hardware Hardware
System: traditional Linux/ Microkernel-
embedded Windows based
TCB: all code 100,000’s loc 10,000’s loc

Small kernel = small TCB =- more trustworthy TCB!
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TRADITIONAL APPROACHES

e Testing
¢ Code inspection

v Smaller TCB =- fewer remaining bugs

X ... but no assurance of absence of bugs!
ADVANCED APPROACHES

e Prove the correctness of the TCB

v assurance of absence of bugs
x unfeasible for 100,000s loc
v feasible for very small microkernel

©NICTA 2004 ERTOS P6



NATIONAL

MICROKERNEL VERIFICATION @

IIIIII



NATIONAL

IIIIII

MICROKERNEL VERIFICATION @

PROOF OF CORRECTNESS OF MICROKERNEL



NATIONAL

LLLLLL

MICROKERNEL VERIFICATION /E

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

[1 prerequisite for all formal work on kernel



NATIONAL

MICROKERNEL VERIFICATION @

IIIIII

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

[1 prerequisite for all formal work on kernel

2. Prove security (isolation) properties of API

[1 confinement, data flow, interference, covert storage channels



NATIONAL

IIIIII

MICROKERNEL VERIFICATION @

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

[ prerequisite for all formal work on kernel

2. Prove security (isolation) properties of API

[1 confinement, data flow, interference, covert storage channels

3. Prove correctness of microkernel implementation

[ refine API spec into compilable source code



NATIONAL

MICROKERNEL VERIFICATION @

IIIIII

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

[ prerequisite for all formal work on kernel

2. Prove security (isolation) properties of API

[1 confinement, data flow, interference, covert storage channels

3. Prove correctness of microkernel implementation

[1 refine API spec into compilable source code

COMPLETE TEMPORAL MODEL OF MICROKERNEL



NATIONAL

MICROKERNEL VERIFICATION @

IIIIII

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

[ prerequisite for all formal work on kernel

2. Prove security (isolation) properties of API

[1 confinement, data flow, interference, covert storage channels

3. Prove correctness of microkernel implementation

[1 refine API spec into compilable source code

COMPLETE TEMPORAL MODEL OF MICROKERNEL

e exhaustive measurement of latencies of kernel operations

[1 prerequisite for real-time analysis of whole system
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Legacy E
App Sensitive
1 App

: Untrusted
Linux R
Server : Trusted

| De_wce
Driver

e Sensitive part of system has small TCB

e Standard API supported by de-privileged Linux server

(1 full binary compatibility with native Linux

e Compromised legacy system cannot interfere with trusted part
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e Microkernel operational

] Legac :
[] 10,000 lines of code Ap% ! "
: o : Sensitive
(1 highly efficient I . App
Untrusted
o _ Linux SEEEEE CEE LR LR L
e Basic Infrastructure exists Server Trusted

| De_vice
[] core services Driver .
[1 Linux server, drivers

[1 in commercial deployment

e Verification in progress

[J successful pilot project for verification of API “slice”
[1 full-scale correctness proof project commencing
[1 temporal analysis commencing
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