
SECURE EMBEDDED SYSTEMS NEED

MICROKERNELS

Gernot Heiser
Embedded, Real-Time and Operating Systems Program

National ICT Australia

February 2004

ERTOS P1



EMBEDDED SYSTEM ARE UBIQUITOUS



EMBEDDED SYSTEM ARE UBIQUITOUS

But are they Secure?

c©NICTA 2004 ERTOS P1



SECURITY CHALLENGES

• Growing functionality

• Wireless connectivity

• Downloaded contents (entertainment)



SECURITY CHALLENGES

• Growing functionality

➜ increasing software complexity
➜ increased number of faults
➜ increased likelihood of security faults

• Wireless connectivity

• Downloaded contents (entertainment)



SECURITY CHALLENGES

• Growing functionality

➜ increasing software complexity
➜ increased number of faults
➜ increased likelihood of security faults

• Wireless connectivity

➜ subject to attacks from outside (crackers)

• Downloaded contents (entertainment)



SECURITY CHALLENGES

• Growing functionality

➜ increasing software complexity
➜ increased number of faults
➜ increased likelihood of security faults

• Wireless connectivity

➜ subject to attacks from outside (crackers)

• Downloaded contents (entertainment)

➜ subject to attacks from inside (viruses, worms)



SECURITY CHALLENGES

• Growing functionality

➜ increasing software complexity
➜ increased number of faults
➜ increased likelihood of security faults

• Wireless connectivity

➜ subject to attacks from outside (crackers)

• Downloaded contents (entertainment)

➜ subject to attacks from inside (viruses, worms)

• Increasing dependence on embedded systems

➜ increased exposure to embedded-systems security weaknesses

c©NICTA 2004 ERTOS P2



PRESENT APPROACHES

• Real-time executives



PRESENT APPROACHES

• Real-time executives

? suitable for systems with very limited functionality

? no internal protection



PRESENT APPROACHES

• Real-time executives

? suitable for systems with very limited functionality

? no internal protection

➜ every small bug/failure is fatal
➜ no defence against viruses, limited defence against crackers



PRESENT APPROACHES

• Real-time executives

? suitable for systems with very limited functionality

? no internal protection

➜ every small bug/failure is fatal
➜ no defence against viruses, limited defence against crackers

• Linux, Windows Embedded, ...



PRESENT APPROACHES

• Real-time executives

? suitable for systems with very limited functionality

? no internal protection

➜ every small bug/failure is fatal
➜ no defence against viruses, limited defence against crackers

• Linux, Windows Embedded, ...

? dubious or non-existent real-time capabilities

➜ unsuitable for hard real-time systems



PRESENT APPROACHES

• Real-time executives

? suitable for systems with very limited functionality

? no internal protection

➜ every small bug/failure is fatal
➜ no defence against viruses, limited defence against crackers

• Linux, Windows Embedded, ...

? dubious or non-existent real-time capabilities

➜ unsuitable for hard real-time systems

? huge code base (millions of lines of code)

➜ excessive for small embedded system
➜ too much code on which security of system is dependent

c©NICTA 2004 ERTOS P3



EMBEDDED-SYSTEMS SECURITY

REQUIRES MINIMAL TRUSTED COMPUTING BASE (TCB)

TCB: The part of system that must be relied on for the correct
operation of the system



EMBEDDED-SYSTEMS SECURITY

REQUIRES MINIMAL TRUSTED COMPUTING BASE (TCB)

TCB: The part of system that must be relied on for the correct
operation of the system

... otherwise the security issue is intractable!



EMBEDDED-SYSTEMS SECURITY

REQUIRES MINIMAL TRUSTED COMPUTING BASE (TCB)

TCB: The part of system that must be relied on for the correct
operation of the system

... otherwise the security issue is intractable!

MINIMAL TCB MEANS :

1. Split software into trusted and untrusted part



EMBEDDED-SYSTEMS SECURITY

REQUIRES MINIMAL TRUSTED COMPUTING BASE (TCB)

TCB: The part of system that must be relied on for the correct
operation of the system

... otherwise the security issue is intractable!

MINIMAL TCB MEANS :

1. Split software into trusted and untrusted part

2. Minimise the trusted part



EMBEDDED-SYSTEMS SECURITY

REQUIRES MINIMAL TRUSTED COMPUTING BASE (TCB)

TCB: The part of system that must be relied on for the correct
operation of the system

... otherwise the security issue is intractable!

MINIMAL TCB MEANS :

1. Split software into trusted and untrusted part

2. Minimise the trusted part

3. Make the trusted part trustworthy

c©NICTA 2004 ERTOS P4



MINIMISING THE TCB

Hardware

Service

Application

System: traditional
embedded



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

System: traditional
embedded

Linux/
Windows



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based

TCB: all code



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based

TCB: all code



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based

TCB: all code



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based

TCB: all code



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based

TCB: all code 100,000’s loc



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based

TCB: all code 100,000’s loc



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based

TCB: all code 100,000’s loc



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based

TCB: all code 100,000’s loc



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based

TCB: all code 100,000’s loc 10,000’s loc



MINIMISING THE TCB

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based

TCB: all code 100,000’s loc 10,000’s loc

Small kernel⇒ small TCB⇒ more trustworthy TCB!

c©NICTA 2004 ERTOS P5



MAKING THE TCB TRUSTWORTHY

TRADITIONAL APPROACHES

ADVANCED APPROACHES



MAKING THE TCB TRUSTWORTHY

TRADITIONAL APPROACHES

• Testing

• Code inspection

ADVANCED APPROACHES



MAKING THE TCB TRUSTWORTHY

TRADITIONAL APPROACHES

• Testing

• Code inspection

V Smaller TCB⇒ fewer remaining bugs

X ... but no assurance of absence of bugs!

ADVANCED APPROACHES



MAKING THE TCB TRUSTWORTHY

TRADITIONAL APPROACHES

• Testing

• Code inspection

V Smaller TCB⇒ fewer remaining bugs

X ... but no assurance of absence of bugs!

ADVANCED APPROACHES

• Prove the correctness of the TCB

V assurance of absence of bugs



MAKING THE TCB TRUSTWORTHY

TRADITIONAL APPROACHES

• Testing

• Code inspection

V Smaller TCB⇒ fewer remaining bugs

X ... but no assurance of absence of bugs!

ADVANCED APPROACHES

• Prove the correctness of the TCB

V assurance of absence of bugs
X unfeasible for 100,000s loc
V feasible for very small microkernel

c©NICTA 2004 ERTOS P6



MICROKERNEL VERIFICATION



MICROKERNEL VERIFICATION

PROOF OF CORRECTNESS OF MICROKERNEL



MICROKERNEL VERIFICATION

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

➜ prerequisite for all formal work on kernel



MICROKERNEL VERIFICATION

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

➜ prerequisite for all formal work on kernel

2. Prove security (isolation) properties of API

➜ confinement, data flow, interference, covert storage channels



MICROKERNEL VERIFICATION

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

➜ prerequisite for all formal work on kernel

2. Prove security (isolation) properties of API

➜ confinement, data flow, interference, covert storage channels

3. Prove correctness of microkernel implementation

➜ refine API spec into compilable source code



MICROKERNEL VERIFICATION

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

➜ prerequisite for all formal work on kernel

2. Prove security (isolation) properties of API

➜ confinement, data flow, interference, covert storage channels

3. Prove correctness of microkernel implementation

➜ refine API spec into compilable source code

COMPLETE TEMPORAL MODEL OF MICROKERNEL



MICROKERNEL VERIFICATION

PROOF OF CORRECTNESS OF MICROKERNEL

1. Formal specification of microkernel API

➜ prerequisite for all formal work on kernel

2. Prove security (isolation) properties of API

➜ confinement, data flow, interference, covert storage channels

3. Prove correctness of microkernel implementation

➜ refine API spec into compilable source code

COMPLETE TEMPORAL MODEL OF MICROKERNEL

• exhaustive measurement of latencies of kernel operations

➜ prerequisite for real-time analysis of whole system

c©NICTA 2004 ERTOS P7



A SAMPLE SYSTEM

Untrusted

Trusted

Microkernel

Device
Driver

Trusted
Service

Linux
Server

Legacy
App

Device
Driver

Sensitive
App

• Sensitive part of system has small TCB



A SAMPLE SYSTEM

Untrusted

Trusted

Microkernel

Device
Driver

Trusted
Service

Linux
Server

Legacy
App

Device
Driver

Sensitive
App

• Sensitive part of system has small TCB

• Standard API supported by de-privileged Linux server

➜ full binary compatibility with native Linux



A SAMPLE SYSTEM

Untrusted

Trusted

Microkernel

Device
Driver

Trusted
Service

Linux
Server

Legacy
App

Device
Driver

Sensitive
App

• Sensitive part of system has small TCB

• Standard API supported by de-privileged Linux server

➜ full binary compatibility with native Linux

• Compromised legacy system cannot interfere with trusted part

c©NICTA 2004 ERTOS P8



STATUS

Untrusted

Trusted

Microkernel

Device
Driver

Trusted
Service

Linux
Server

Legacy
App

Device
Driver

Sensitive
App

• Microkernel operational

➜ 10,000 lines of code
➜ highly efficient



STATUS

Untrusted

Trusted

Microkernel

Device
Driver

Trusted
Service

Linux
Server

Legacy
App

Device
Driver

Sensitive
App

• Microkernel operational

➜ 10,000 lines of code
➜ highly efficient

• Basic infrastructure exists

➜ core services
➜ Linux server, drivers



STATUS

Untrusted

Trusted

Microkernel

Device
Driver

Trusted
Service

Linux
Server

Legacy
App

Device
Driver

Sensitive
App

• Microkernel operational

➜ 10,000 lines of code
➜ highly efficient

• Basic infrastructure exists

➜ core services
➜ Linux server, drivers
➜ in commercial deployment



STATUS

Untrusted

Trusted

Microkernel

Device
Driver

Trusted
Service

Linux
Server

Legacy
App

Device
Driver

Sensitive
App

• Microkernel operational

➜ 10,000 lines of code
➜ highly efficient

• Basic infrastructure exists

➜ core services
➜ Linux server, drivers
➜ in commercial deployment

• Verification in progress

➜ successful pilot project for verification of API “slice”
➜ full-scale correctness proof project commencing
➜ temporal analysis commencing

c©NICTA 2004 ERTOS P9


