
The imagination driving Australia’s ICT future.

TOWARDS TRUSTWORTHY EMBEDDED SOFTWARE

Gernot Heiser

�� �� � � � � �	� �
 � � �� � 
 




The imagination driving Australia’s ICT future.

EMBEDDED SYSTEM ARE UBIQUITOUS

The are becoming an essential part of everyday life

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 2



The imagination driving Australia’s ICT future.

LESSONS FROM DESKTOP SYSTEMS

Desktop computer systems suck:

• They crash

• They get hacked

• They get infected

How about embedded systems?

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 3



The imagination driving Australia’s ICT future.

LESSONS FROM DESKTOP SYSTEMS

Desktop computer systems suck:

• They crash

• They get hacked

• They get infected

How about embedded systems?

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 3-A



The imagination driving Australia’s ICT future.

WHY TRUSTWORTHY COMPUTER SYSTEMS?

Scary Examples:

• Internet banking
➜ how safe are your access keys?
➜ how safe is your money?

• Health cards
➜ how private is your health data?
➜ is someone changing your medication?

• Property protection
➜ is someone disabling your house/car alarm?

• Personal safety
➜ is some hoon hacking their steering/breaks?
➜ is someone hacking your steering/breaks?

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 4



The imagination driving Australia’s ICT future.

WHY TRUSTWORTHY COMPUTER SYSTEMS?

Scary Examples:

• Internet banking
➜ how safe are your access keys?
➜ how safe is your money?

• Health cards
➜ how private is your health data?
➜ is someone changing your medication?

• Property protection
➜ is someone disabling your house/car alarm?

• Personal safety
➜ is some hoon hacking their steering/breaks?
➜ is someone hacking your steering/breaks?

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 4-A



The imagination driving Australia’s ICT future.

WHY TRUSTWORTHY COMPUTER SYSTEMS?

Scary Examples:

• Internet banking
➜ how safe are your access keys?
➜ how safe is your money?

• Health cards
➜ how private is your health data?
➜ is someone changing your medication?

• Property protection
➜ is someone disabling your house/car alarm?

• Personal safety
➜ is some hoon hacking their steering/breaks?
➜ is someone hacking your steering/breaks?

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 4-B



The imagination driving Australia’s ICT future.

WHY TRUSTWORTHY COMPUTER SYSTEMS?

Scary Examples:

• Internet banking
➜ how safe are your access keys?
➜ how safe is your money?

• Health cards
➜ how private is your health data?
➜ is someone changing your medication?

• Property protection
➜ is someone disabling your house/car alarm?

• Personal safety
➜ is some hoon hacking their steering/breaks?

➜ is someone hacking your steering/breaks?

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 4-C



The imagination driving Australia’s ICT future.

WHY TRUSTWORTHY COMPUTER SYSTEMS?

Scary Examples:

• Internet banking
➜ how safe are your access keys?
➜ how safe is your money?

• Health cards
➜ how private is your health data?
➜ is someone changing your medication?

• Property protection
➜ is someone disabling your house/car alarm?

• Personal safety
➜ is some hoon hacking their steering/breaks?
➜ is someone hacking your steering/breaks?

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 4-D



The imagination driving Australia’s ICT future.

ARE EMBEDDED SYSTEMS TRUSTWORTHY?

Presently: Maybe:
• Embedded systems tend to be simple and closed

Security/Safety Challenges:
• Growing functionality

➜ increasing software complexity (Mloc embedded systems)
➜ increased number of faults (1000’s)
➜ increased likelihood of security faults

• Wireless connectivity
➜ systems subject to attacks from outside (crackers)

• Downloaded contents (entertainment etc)
➜ systems subject to attacks from inside (viruses, worms)

Future systems highly vulnerable!
➜ challenges at least as bad as in PC world
➜ defences aren’t better

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 5



The imagination driving Australia’s ICT future.

ARE EMBEDDED SYSTEMS TRUSTWORTHY?

Presently: Maybe:
• Embedded systems tend to be simple and closed

Security/Safety Challenges:
• Growing functionality

➜ increasing software complexity (Mloc embedded systems)
➜ increased number of faults (1000’s)
➜ increased likelihood of security faults

• Wireless connectivity

➜ systems subject to attacks from outside (crackers)

• Downloaded contents (entertainment etc)

➜ systems subject to attacks from inside (viruses, worms)

Future systems highly vulnerable!
➜ challenges at least as bad as in PC world
➜ defences aren’t better

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 5-A



The imagination driving Australia’s ICT future.

ARE EMBEDDED SYSTEMS TRUSTWORTHY?

Presently: Maybe:
• Embedded systems tend to be simple and closed

Security/Safety Challenges:
• Growing functionality

➜ increasing software complexity (Mloc embedded systems)

➜ increased number of faults (1000’s)
➜ increased likelihood of security faults

• Wireless connectivity

➜ systems subject to attacks from outside (crackers)

• Downloaded contents (entertainment etc)

➜ systems subject to attacks from inside (viruses, worms)

Future systems highly vulnerable!
➜ challenges at least as bad as in PC world
➜ defences aren’t better

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 5-B



The imagination driving Australia’s ICT future.

ARE EMBEDDED SYSTEMS TRUSTWORTHY?

Presently: Maybe:
• Embedded systems tend to be simple and closed

Security/Safety Challenges:
• Growing functionality

➜ increasing software complexity (Mloc embedded systems)
➜ increased number of faults (1000’s)
➜ increased likelihood of security faults

• Wireless connectivity

➜ systems subject to attacks from outside (crackers)

• Downloaded contents (entertainment etc)

➜ systems subject to attacks from inside (viruses, worms)

Future systems highly vulnerable!
➜ challenges at least as bad as in PC world
➜ defences aren’t better

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 5-C



The imagination driving Australia’s ICT future.

ARE EMBEDDED SYSTEMS TRUSTWORTHY?

Presently: Maybe:
• Embedded systems tend to be simple and closed

Security/Safety Challenges:
• Growing functionality

➜ increasing software complexity (Mloc embedded systems)
➜ increased number of faults (1000’s)
➜ increased likelihood of security faults

• Wireless connectivity
➜ systems subject to attacks from outside (crackers)

• Downloaded contents (entertainment etc)

➜ systems subject to attacks from inside (viruses, worms)

Future systems highly vulnerable!
➜ challenges at least as bad as in PC world
➜ defences aren’t better

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 5-D



The imagination driving Australia’s ICT future.

ARE EMBEDDED SYSTEMS TRUSTWORTHY?

Presently: Maybe:
• Embedded systems tend to be simple and closed

Security/Safety Challenges:
• Growing functionality

➜ increasing software complexity (Mloc embedded systems)
➜ increased number of faults (1000’s)
➜ increased likelihood of security faults

• Wireless connectivity
➜ systems subject to attacks from outside (crackers)

• Downloaded contents (entertainment etc)
➜ systems subject to attacks from inside (viruses, worms)

Future systems highly vulnerable!
➜ challenges at least as bad as in PC world
➜ defences aren’t better

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 5-E



The imagination driving Australia’s ICT future.

ARE EMBEDDED SYSTEMS TRUSTWORTHY?

Presently: Maybe:
• Embedded systems tend to be simple and closed

Security/Safety Challenges:
• Growing functionality

➜ increasing software complexity (Mloc embedded systems)
➜ increased number of faults (1000’s)
➜ increased likelihood of security faults

• Wireless connectivity
➜ systems subject to attacks from outside (crackers)

• Downloaded contents (entertainment etc)
➜ systems subject to attacks from inside (viruses, worms)

Future systems highly vulnerable!
➜ challenges at least as bad as in PC world
➜ defences aren’t better

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 5-F



The imagination driving Australia’s ICT future.

TRUSTWORTHINESS

Why is it a problem?

• Computer systems are too big, too complex
➜ several millions loc in a mobile-phone handset
➜ Gigabytes of software in top-range automobiles

• Software is inherently buggy

• Large and complex software is very buggy

➜ High-quality software has ≈1 bug / 1000loc (OS code: 1–10/1000loc)
⇒ 1 Mloc has ≈1000 bugs (or ≈10,000)
➜ each one is potentially fatal

Can such a large system ever be made trustworthy?

• Yes, if its trusted computing base (TCB) is trustworthy!
➜ TCB: The part of the system that can circumvent security

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 6



The imagination driving Australia’s ICT future.

TRUSTWORTHINESS

Why is it a problem?

• Computer systems are too big, too complex
➜ several millions loc in a mobile-phone handset
➜ Gigabytes of software in top-range automobiles

• Software is inherently buggy

• Large and complex software is very buggy
➜ High-quality software has ≈1 bug / 1000loc (OS code: 1–10/1000loc)
⇒ 1 Mloc has ≈1000 bugs (or ≈10,000)
➜ each one is potentially fatal

Can such a large system ever be made trustworthy?

• Yes, if its trusted computing base (TCB) is trustworthy!
➜ TCB: The part of the system that can circumvent security

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 6-A



The imagination driving Australia’s ICT future.

TRUSTWORTHINESS

Why is it a problem?

• Computer systems are too big, too complex
➜ several millions loc in a mobile-phone handset
➜ Gigabytes of software in top-range automobiles

• Software is inherently buggy

• Large and complex software is very buggy
➜ High-quality software has ≈1 bug / 1000loc (OS code: 1–10/1000loc)
⇒ 1 Mloc has ≈1000 bugs (or ≈10,000)
➜ each one is potentially fatal

Can such a large system ever be made trustworthy?

• Yes, if its trusted computing base (TCB) is trustworthy!
➜ TCB: The part of the system that can circumvent security

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 6-B



The imagination driving Australia’s ICT future.

TRUSTWORTHINESS

Why is it a problem?

• Computer systems are too big, too complex
➜ several millions loc in a mobile-phone handset
➜ Gigabytes of software in top-range automobiles

• Software is inherently buggy

• Large and complex software is very buggy
➜ High-quality software has ≈1 bug / 1000loc (OS code: 1–10/1000loc)
⇒ 1 Mloc has ≈1000 bugs (or ≈10,000)
➜ each one is potentially fatal

Can such a large system ever be made trustworthy?

• Yes, if its trusted computing base (TCB) is trustworthy!
➜ TCB: The part of the system that can circumvent security

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 6-C



The imagination driving Australia’s ICT future.

TRUSTED COMPUTING BASE — TRUSTWORTHY?

How to make a TCB trustworthy?

• TCB must be known to be functionally correct
➜ How????

• Testing?
➜ exhaustive testing doesn’t scale beyond 100’s loc
➜ non-exhaustive testing cannot show absence of bugs

• Proof?
➜ software proofs don’t scale beyond 1000’s loc

• Modularity?
➜ can reduce complexity of verification problem
➜ doesn’t help if interfaces aren’t enforced
➜ can’t guarantee if not type-safe or privileged-mode execution

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 7



The imagination driving Australia’s ICT future.

TRUSTED COMPUTING BASE — TRUSTWORTHY?

How to make a TCB trustworthy?

• TCB must be known to be functionally correct
➜ How????

• Testing?

➜ exhaustive testing doesn’t scale beyond 100’s loc
➜ non-exhaustive testing cannot show absence of bugs

• Proof?

➜ software proofs don’t scale beyond 1000’s loc

• Modularity?

➜ can reduce complexity of verification problem
➜ doesn’t help if interfaces aren’t enforced
➜ can’t guarantee if not type-safe or privileged-mode execution

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 7-A



The imagination driving Australia’s ICT future.

TRUSTED COMPUTING BASE — TRUSTWORTHY?

How to make a TCB trustworthy?

• TCB must be known to be functionally correct
➜ How????

• Testing?
➜ exhaustive testing doesn’t scale beyond 100’s loc
➜ non-exhaustive testing cannot show absence of bugs

• Proof?

➜ software proofs don’t scale beyond 1000’s loc

• Modularity?

➜ can reduce complexity of verification problem
➜ doesn’t help if interfaces aren’t enforced
➜ can’t guarantee if not type-safe or privileged-mode execution

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 7-B



The imagination driving Australia’s ICT future.

TRUSTED COMPUTING BASE — TRUSTWORTHY?

How to make a TCB trustworthy?

• TCB must be known to be functionally correct
➜ How????

• Testing?
➜ exhaustive testing doesn’t scale beyond 100’s loc
➜ non-exhaustive testing cannot show absence of bugs

• Proof?
➜ software proofs don’t scale beyond 1000’s loc

• Modularity?

➜ can reduce complexity of verification problem
➜ doesn’t help if interfaces aren’t enforced
➜ can’t guarantee if not type-safe or privileged-mode execution

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 7-C



The imagination driving Australia’s ICT future.

TRUSTED COMPUTING BASE — TRUSTWORTHY?

How to make a TCB trustworthy?

• TCB must be known to be functionally correct
➜ How????

• Testing?
➜ exhaustive testing doesn’t scale beyond 100’s loc
➜ non-exhaustive testing cannot show absence of bugs

• Proof?
➜ software proofs don’t scale beyond 1000’s loc

• Modularity?
➜ can reduce complexity of verification problem
➜ doesn’t help if interfaces aren’t enforced
➜ can’t guarantee if not type-safe or privileged-mode execution

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 7-D



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Traditional approach: Real-time executive

Hardware

Service

Application

• Small, simple operating system
➜ optimised for fast real-time response
➜ suitable for systems with very limited functionality

• No internal protection
➜ every small bug/failure is fatal
➜ no defence against viruses, limited defence against crackers

• TCB: all code (millions of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 8



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Traditional approach: Real-time executive

Hardware

Service

Application

• Small, simple operating system
➜ optimised for fast real-time response
➜ suitable for systems with very limited functionality

• No internal protection
➜ every small bug/failure is fatal
➜ no defence against viruses, limited defence against crackers

• TCB: all code (millions of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 8-A



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Traditional approach: Real-time executive

Hardware

Service

Application

• Small, simple operating system
➜ optimised for fast real-time response
➜ suitable for systems with very limited functionality

• No internal protection
➜ every small bug/failure is fatal
➜ no defence against viruses, limited defence against crackers

• TCB: all code (millions of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 8-B



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Traditional approach: Real-time executive

Hardware

Service

Application

• Small, simple operating system
➜ optimised for fast real-time response
➜ suitable for systems with very limited functionality

• No internal protection
➜ every small bug/failure is fatal
➜ no defence against viruses, limited defence against crackers

• TCB: all code (millions of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 8-C



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Traditional approach: Real-time executive

Hardware

Service

Application

• Small, simple operating system
➜ optimised for fast real-time response
➜ suitable for systems with very limited functionality

• No internal protection
➜ every small bug/failure is fatal
➜ no defence against viruses, limited defence against crackers

• TCB: all code (millions of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 8-D



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Popular approach: Linux, Windows Embedded, ...

Application

Hardware

OS

Service

• Scaled-down version of desktop operating system
➜ operating system protected from application misbehaviour

➜ excessive code base for small embedded system
➜ too much code on which security of system is dependent

• Dubious or non-existent real-time capabilities
➜ unsuitable for hard real-time systems

• TCB: kernel + some user-level code (100,000s of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 9



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Popular approach: Linux, Windows Embedded, ...

Application

Hardware

OS

Service

• Scaled-down version of desktop operating system
➜ operating system protected from application misbehaviour

➜ excessive code base for small embedded system
➜ too much code on which security of system is dependent

• Dubious or non-existent real-time capabilities
➜ unsuitable for hard real-time systems

• TCB: kernel + some user-level code (100,000s of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 9-A



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Popular approach: Linux, Windows Embedded, ...

Application

Hardware

OS

Service

• Scaled-down version of desktop operating system
➜ operating system protected from application misbehaviour

➜ excessive code base for small embedded system
➜ too much code on which security of system is dependent

• Dubious or non-existent real-time capabilities
➜ unsuitable for hard real-time systems

• TCB: kernel + some user-level code (100,000s of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 9-B



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Popular approach: Linux, Windows Embedded, ...

Application

Hardware

OS

Service

• Scaled-down version of desktop operating system
➜ operating system protected from application misbehaviour

➜ excessive code base for small embedded system
➜ too much code on which security of system is dependent

• Dubious or non-existent real-time capabilities
➜ unsuitable for hard real-time systems

• TCB: kernel + some user-level code (100,000s of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 9-C



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Popular approach: Linux, Windows Embedded, ...

Application

Hardware

OS

Service

• Scaled-down version of desktop operating system
➜ operating system protected from application misbehaviour

➜ excessive code base for small embedded system
➜ too much code on which security of system is dependent

• Dubious or non-existent real-time capabilities
➜ unsuitable for hard real-time systems

• TCB: kernel + some user-level code (100,000s of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 9-D



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Popular approach: Linux, Windows Embedded, ...

Application

Hardware

OS

Service

• Scaled-down version of desktop operating system
➜ operating system protected from application misbehaviour
➜ excessive code base for small embedded system
➜ too much code on which security of system is dependent

• Dubious or non-existent real-time capabilities
➜ unsuitable for hard real-time systems

• TCB: kernel + some user-level code (100,000s of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 9-E



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Popular approach: Linux, Windows Embedded, ...

Application

Hardware

OS

Service

• Scaled-down version of desktop operating system
➜ operating system protected from application misbehaviour
➜ excessive code base for small embedded system
➜ too much code on which security of system is dependent

• Dubious or non-existent real-time capabilities
➜ unsuitable for hard real-time systems

• TCB: kernel + some user-level code (100,000s of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 9-F



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB

Popular approach: Linux, Windows Embedded, ...

Application

Hardware

OS

Service

• Scaled-down version of desktop operating system
➜ operating system protected from application misbehaviour
➜ excessive code base for small embedded system
➜ too much code on which security of system is dependent

• Dubious or non-existent real-time capabilities
➜ unsuitable for hard real-time systems

• TCB: kernel + some user-level code (100,000s of lines!)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 9-G



The imagination driving Australia’s ICT future.

TRUSTWORTHINESS REQUIRES COMPONENTISATION

• Use modularity to manage complexity
➜ break into bite-sized pieces

• Use language or hardware mechanisms to enforce interfaces

• Verify components individually
➜ using exhaustive testing or formal methods
➜ requires components that are small enough
➜ really depends on interfaces being explicit and enforced

• Of course, this alone is insufficient for trustworthiness
➜ no guarantee that whole system operates as intended
➜ solution left as an exercise for the reader

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 10



The imagination driving Australia’s ICT future.

TRUSTWORTHINESS REQUIRES COMPONENTISATION

• Use modularity to manage complexity
➜ break into bite-sized pieces

• Use language or hardware mechanisms to enforce interfaces

• Verify components individually
➜ using exhaustive testing or formal methods
➜ requires components that are small enough
➜ really depends on interfaces being explicit and enforced

• Of course, this alone is insufficient for trustworthiness
➜ no guarantee that whole system operates as intended
➜ solution left as an exercise for the reader

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 10-A



The imagination driving Australia’s ICT future.

TRUSTWORTHINESS REQUIRES COMPONENTISATION

• Use modularity to manage complexity
➜ break into bite-sized pieces

• Use language or hardware mechanisms to enforce interfaces

• Verify components individually
➜ using exhaustive testing or formal methods
➜ requires components that are small enough
➜ really depends on interfaces being explicit and enforced

• Of course, this alone is insufficient for trustworthiness
➜ no guarantee that whole system operates as intended
➜ solution left as an exercise for the reader

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 10-B



The imagination driving Australia’s ICT future.

KERNEL IS A BIG HEADACHE

• Kernel = code that executes in privileged mode
➜ any piece of kernel code has unrestricted access
⇒ no hardware encapsulation possible

➜ type safety is of limited value
➜ kernel contains many operations that are inherently type-unsafe
➜ type safety introduces significant overhead
➜ type-safe languages tend to increase TCB (run-time system)

or are too weak to be useful

• Kernel is indivisible module
➜ can only be verified in one piece
⇒ kernel must be small — 1000’s loc

• Kernel must be minimal
➜ contain only code that must be privileged

• Kernel must be a microkernel

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 11



The imagination driving Australia’s ICT future.

KERNEL IS A BIG HEADACHE

• Kernel = code that executes in privileged mode
➜ any piece of kernel code has unrestricted access
⇒ no hardware encapsulation possible
➜ type safety is of limited value

➜ kernel contains many operations that are inherently type-unsafe
➜ type safety introduces significant overhead
➜ type-safe languages tend to increase TCB (run-time system)

or are too weak to be useful

• Kernel is indivisible module
➜ can only be verified in one piece
⇒ kernel must be small — 1000’s loc

• Kernel must be minimal
➜ contain only code that must be privileged

• Kernel must be a microkernel

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 11-A



The imagination driving Australia’s ICT future.

KERNEL IS A BIG HEADACHE

• Kernel = code that executes in privileged mode
➜ any piece of kernel code has unrestricted access
⇒ no hardware encapsulation possible
➜ type safety is of limited value

➜ kernel contains many operations that are inherently type-unsafe
➜ type safety introduces significant overhead
➜ type-safe languages tend to increase TCB (run-time system)

or are too weak to be useful

• Kernel is indivisible module
➜ can only be verified in one piece
⇒ kernel must be small — 1000’s loc

• Kernel must be minimal
➜ contain only code that must be privileged

• Kernel must be a microkernel

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 11-B



The imagination driving Australia’s ICT future.

KERNEL IS A BIG HEADACHE

• Kernel = code that executes in privileged mode
➜ any piece of kernel code has unrestricted access
⇒ no hardware encapsulation possible
➜ type safety is of limited value

➜ kernel contains many operations that are inherently type-unsafe
➜ type safety introduces significant overhead
➜ type-safe languages tend to increase TCB (run-time system)

or are too weak to be useful

• Kernel is indivisible module
➜ can only be verified in one piece
⇒ kernel must be small — 1000’s loc

• Kernel must be minimal
➜ contain only code that must be privileged

• Kernel must be a microkernel

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 11-C



The imagination driving Australia’s ICT future.

KERNEL IS A BIG HEADACHE

• Kernel = code that executes in privileged mode
➜ any piece of kernel code has unrestricted access
⇒ no hardware encapsulation possible
➜ type safety is of limited value

➜ kernel contains many operations that are inherently type-unsafe
➜ type safety introduces significant overhead
➜ type-safe languages tend to increase TCB (run-time system)

or are too weak to be useful

• Kernel is indivisible module
➜ can only be verified in one piece
⇒ kernel must be small — 1000’s loc

• Kernel must be minimal
➜ contain only code that must be privileged

• Kernel must be a microkernel

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 11-D



The imagination driving Australia’s ICT future.

WHAT IS A MICROKERNEL?

• Microkernel only contains code that must execute in privileged mode
➜ e.g., code that manipulates processor state, MMU, ...

• Microkernel contains no code that can safely run in user mode
➜ no device drivers
➜ no resource-management policies
➜ no actual operating-system services

• Services and policies implemented as user-level servers
➜ applications obtain services by sending messages to servers
⇒ performance of message-passing IPC is critical

• Faults can be contained
➜ removes more code from TCB
➜ kernel size: ≈ 10,000 loc

Application

Hardware

Microkernel

Service

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 12



The imagination driving Australia’s ICT future.

WHAT IS A MICROKERNEL?

• Microkernel only contains code that must execute in privileged mode
➜ e.g., code that manipulates processor state, MMU, ...

• Microkernel contains no code that can safely run in user mode
➜ no device drivers
➜ no resource-management policies
➜ no actual operating-system services

• Services and policies implemented as user-level servers
➜ applications obtain services by sending messages to servers
⇒ performance of message-passing IPC is critical

• Faults can be contained
➜ removes more code from TCB
➜ kernel size: ≈ 10,000 loc

Application

Hardware

Microkernel

Service

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 12-A



The imagination driving Australia’s ICT future.

WHAT IS A MICROKERNEL?

• Microkernel only contains code that must execute in privileged mode
➜ e.g., code that manipulates processor state, MMU, ...

• Microkernel contains no code that can safely run in user mode
➜ no device drivers
➜ no resource-management policies
➜ no actual operating-system services

• Services and policies implemented as user-level servers
➜ applications obtain services by sending messages to servers
⇒ performance of message-passing IPC is critical

• Faults can be contained
➜ removes more code from TCB
➜ kernel size: ≈ 10,000 loc

Application

Hardware

Microkernel

Service

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 12-B



The imagination driving Australia’s ICT future.

WHAT IS A MICROKERNEL?

• Microkernel only contains code that must execute in privileged mode
➜ e.g., code that manipulates processor state, MMU, ...

• Microkernel contains no code that can safely run in user mode
➜ no device drivers
➜ no resource-management policies
➜ no actual operating-system services

• Services and policies implemented as user-level servers
➜ applications obtain services by sending messages to servers
⇒ performance of message-passing IPC is critical

• Faults can be contained
➜ removes more code from TCB
➜ kernel size: ≈ 10,000 loc

Application

Hardware

Microkernel

Service

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 12-C



The imagination driving Australia’s ICT future.

WHAT IS A MICROKERNEL?

• Microkernel only contains code that must execute in privileged mode
➜ e.g., code that manipulates processor state, MMU, ...

• Microkernel contains no code that can safely run in user mode
➜ no device drivers
➜ no resource-management policies
➜ no actual operating-system services

• Services and policies implemented as user-level servers
➜ applications obtain services by sending messages to servers
⇒ performance of message-passing IPC is critical

• Faults can be contained
➜ removes more code from TCB
➜ kernel size: ≈ 10,000 loc

Application

Hardware

Microkernel

Service

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 12-D



The imagination driving Australia’s ICT future.

WHAT IS A MICROKERNEL?

• Microkernel only contains code that must execute in privileged mode
➜ e.g., code that manipulates processor state, MMU, ...

• Microkernel contains no code that can safely run in user mode
➜ no device drivers
➜ no resource-management policies
➜ no actual operating-system services

• Services and policies implemented as user-level servers
➜ applications obtain services by sending messages to servers
⇒ performance of message-passing IPC is critical

• Faults can be contained
➜ removes more code from TCB
➜ kernel size: ≈ 10,000 loc

Application

Hardware

Microkernel

Service

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 12-E



The imagination driving Australia’s ICT future.

WHAT IS A MICROKERNEL?

• Microkernel only contains code that must execute in privileged mode
➜ e.g., code that manipulates processor state, MMU, ...

• Microkernel contains no code that can safely run in user mode
➜ no device drivers
➜ no resource-management policies
➜ no actual operating-system services

• Services and policies implemented as user-level servers
➜ applications obtain services by sending messages to servers
⇒ performance of message-passing IPC is critical

• Faults can be contained
➜ removes more code from TCB
➜ kernel size: ≈ 10,000 loc

Application

Hardware

Microkernel

Service

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 12-F



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB COMPARISON

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based (L4)

TCB: all code ≥ 200,000 loc ≥ 20,000 loc

Note: size (TCB) ≥ size (kernel)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 13



The imagination driving Australia’s ICT future.

EMBEDDED SYSTEMS TCB COMPARISON

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional
embedded

Linux/
Windows

Microkernel-
based (L4)

TCB: all code ≥ 200,000 loc ≥ 20,000 loc

Note: size (TCB) ≥ size (kernel)

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 13-A



The imagination driving Australia’s ICT future.

VIRTUALISATION: BEST OF BOTH WORLDS

Untrusted

Trusted

Device
Driver

Trusted
Service

Linux
Server

Wombat

Legacy
App

Device
Driver

Sensitive
App

Iguana embedded OS

L4 Microkernel

• Minimal secure environment
(L4 + Iguana)
➜ small TCB
➜ fully real-time capable

• Virtualised legacy OS for
application support
➜ binary compatibility with

native legacy code
➜ performance close to native

• Secure subsystem can provide services to legacy system
➜ e.g. device drivers

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 14



The imagination driving Australia’s ICT future.

REQUIREMENTS FOR TRUSTED SYSTEMS

0. Very small, high-performance microkernel: L4

1. Microkernel mechanisms for secure systems

2. Verification of microkernel implementation

3. Trustworthy temporal model of microkernel

4. Techniques for building high-performance
microkernel-based systems

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 15



The imagination driving Australia’s ICT future.

SEL4: MICROKERNEL MECHANISMS FOR SECURE SYSTEMS

seL4: Microkernel for secure embedded systems:

• Security requirements for embedded systems:
➜ Integrity: protecting data from damage
➜ Availability: ensuring system operation
➜ Privacy: protecting sensitive data from loss
➜ IP Protection: controlling propagation of valuable data

• Issue: Present L4 API unsuitable for highly-secure systems

– inefficient information flow control mechanisms
➜ present mechanisms double or triple IPC costs

– insufficient resource isolation (kernel memory pool)
➜ applications can force kernel to run out of memory
➜ present countermeasures are inflexible

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 16



The imagination driving Australia’s ICT future.

SEL4: MICROKERNEL MECHANISMS FOR SECURE SYSTEMS

seL4: Microkernel for secure embedded systems:

• Security requirements for embedded systems:
➜ Integrity: protecting data from damage
➜ Availability: ensuring system operation
➜ Privacy: protecting sensitive data from loss
➜ IP Protection: controlling propagation of valuable data

• Issue: Present L4 API unsuitable for highly-secure systems

– inefficient information flow control mechanisms
➜ present mechanisms double or triple IPC costs

– insufficient resource isolation (kernel memory pool)
➜ applications can force kernel to run out of memory
➜ present countermeasures are inflexible

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 16-A



The imagination driving Australia’s ICT future.

SEL4: MICROKERNEL MECHANISMS FOR SECURE SYSTEMS

Project status:

• Semi-formal API specification in literal Haskell
➜ automatic generation of API documentation from source
➜ draft available from �� � �� � ��� � � �	 
 � ��
 � � 
 
 �� 
 �� � �� 	 � � �
 � � 	 � � �

• Proof of separation properties
➜ suitable for confinement, DRM

• Prototype implementation in Haskell, integrated with ISA
simulator
➜ rapid prototyping: API changes implemented in hours/days
➜ can build and execute apps using standard build tools
➜ used for porting user-level software

• C implementation: Dec ’06

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 17



The imagination driving Australia’s ICT future.

SEL4: MICROKERNEL MECHANISMS FOR SECURE SYSTEMS

Project status:

• Semi-formal API specification in literal Haskell
➜ automatic generation of API documentation from source
➜ draft available from �� � �� � ��� � � �	 
 � ��
 � � 
 
 �� 
 �� � �� 	 � � �
 � � 	 � � �

• Proof of separation properties
➜ suitable for confinement, DRM

• Prototype implementation in Haskell, integrated with ISA
simulator
➜ rapid prototyping: API changes implemented in hours/days
➜ can build and execute apps using standard build tools
➜ used for porting user-level software

• C implementation: Dec ’06

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 17-A



The imagination driving Australia’s ICT future.

SEL4: MICROKERNEL MECHANISMS FOR SECURE SYSTEMS

Project status:

• Semi-formal API specification in literal Haskell
➜ automatic generation of API documentation from source
➜ draft available from �� � �� � ��� � � �	 
 � ��
 � � 
 
 �� 
 �� � �� 	 � � �
 � � 	 � � �

• Proof of separation properties
➜ suitable for confinement, DRM

• Prototype implementation in Haskell, integrated with ISA
simulator
➜ rapid prototyping: API changes implemented in hours/days
➜ can build and execute apps using standard build tools
➜ used for porting user-level software

• C implementation: Dec ’06

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 17-B



The imagination driving Australia’s ICT future.

SEL4: MICROKERNEL MECHANISMS FOR SECURE SYSTEMS

Project status:

• Semi-formal API specification in literal Haskell
➜ automatic generation of API documentation from source
➜ draft available from �� � �� � ��� � � �	 
 � ��
 � � 
 
 �� 
 �� � �� 	 � � �
 � � 	 � � �

• Proof of separation properties
➜ suitable for confinement, DRM

• Prototype implementation in Haskell, integrated with ISA
simulator
➜ rapid prototyping: API changes implemented in hours/days
➜ can build and execute apps using standard build tools
➜ used for porting user-level software

• C implementation: Dec ’06

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 17-C



The imagination driving Australia’s ICT future.

L4.VERIFIED: FORMAL VERIFICATION OF KERNEL

• Leverage small size of kernel to prove correctness

• Part 1: Pilot project (Jan ’04 – Mar ’05)

– Verified thin “slice” of API all the way to source code
➜ memory-management functions
➜ > 10% of kernel code, > 20% of kernel complexity
➜ 1.5 person years

– Did almost complete formalisation of present L4 API

• Part 2: Main project (Apr ’05 – Mar ’08)

– Refinement approach using the Isabelle/HOL theorem prover
➜ Importing seL4 API specification (Haskell)
➜ Importing C/assembler implementation to be proved
3

– Result to be usable in existing deployments
➜ no sacrificing of performance for verifiability

– On track...

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 18



The imagination driving Australia’s ICT future.

L4.VERIFIED: FORMAL VERIFICATION OF KERNEL

• Leverage small size of kernel to prove correctness

• Part 1: Pilot project (Jan ’04 – Mar ’05)

– Verified thin “slice” of API all the way to source code
➜ memory-management functions
➜ > 10% of kernel code, > 20% of kernel complexity
➜ 1.5 person years

– Did almost complete formalisation of present L4 API

• Part 2: Main project (Apr ’05 – Mar ’08)

– Refinement approach using the Isabelle/HOL theorem prover
➜ Importing seL4 API specification (Haskell)
➜ Importing C/assembler implementation to be proved
3

– Result to be usable in existing deployments
➜ no sacrificing of performance for verifiability

– On track...

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 18-A



The imagination driving Australia’s ICT future.

L4.VERIFIED: FORMAL VERIFICATION OF KERNEL

• Leverage small size of kernel to prove correctness

• Part 1: Pilot project (Jan ’04 – Mar ’05)

– Verified thin “slice” of API all the way to source code
➜ memory-management functions
➜ > 10% of kernel code, > 20% of kernel complexity
➜ 1.5 person years

– Did almost complete formalisation of present L4 API

• Part 2: Main project (Apr ’05 – Mar ’08)

– Refinement approach using the Isabelle/HOL theorem prover
➜ Importing seL4 API specification (Haskell)
➜ Importing C/assembler implementation to be proved

3

– Result to be usable in existing deployments
➜ no sacrificing of performance for verifiability

– On track...

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 18-B



The imagination driving Australia’s ICT future.

L4.VERIFIED: FORMAL VERIFICATION OF KERNEL

• Leverage small size of kernel to prove correctness

• Part 1: Pilot project (Jan ’04 – Mar ’05)

– Verified thin “slice” of API all the way to source code
➜ memory-management functions
➜ > 10% of kernel code, > 20% of kernel complexity
➜ 1.5 person years

– Did almost complete formalisation of present L4 API

• Part 2: Main project (Apr ’05 – Mar ’08)

– Refinement approach using the Isabelle/HOL theorem prover
➜ Importing seL4 API specification (Haskell)
➜ Importing C/assembler implementation to be proved
3

– Result to be usable in existing deployments
➜ no sacrificing of performance for verifiability

– On track...
RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 18-C



The imagination driving Australia’s ICT future.

POTOROO: COMPLETE TEMPORAL MODEL OF KERNEL

• Prerequisite for complete real-time analysis of whole system
➜ strict worst-case execution times (WCET)
➜ probabilistic WCET

• Essential for trustworthy real-time systems
➜ RT analysis of applications pointless without timing model of kernel

• Measurement-based approach augmented by static analysis
➜ measure execution-time profiles of basic blocks
➜ convolute into overall execution-time profile
➜ static analysis to ensure worst case observed
➜ static analysis to reduce pessimism

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 19



The imagination driving Australia’s ICT future.

POTOROO: COMPLETE TEMPORAL MODEL OF KERNEL

• Prerequisite for complete real-time analysis of whole system
➜ strict worst-case execution times (WCET)
➜ probabilistic WCET

• Essential for trustworthy real-time systems
➜ RT analysis of applications pointless without timing model of kernel

• Measurement-based approach augmented by static analysis
➜ measure execution-time profiles of basic blocks
➜ convolute into overall execution-time profile
➜ static analysis to ensure worst case observed
➜ static analysis to reduce pessimism

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 19-A



The imagination driving Australia’s ICT future.

POTOROO: COMPLETE TEMPORAL MODEL OF KERNEL

• Prerequisite for complete real-time analysis of whole system
➜ strict worst-case execution times (WCET)
➜ probabilistic WCET

• Essential for trustworthy real-time systems
➜ RT analysis of applications pointless without timing model of kernel

• Measurement-based approach augmented by static analysis
➜ measure execution-time profiles of basic blocks
➜ convolute into overall execution-time profile
➜ static analysis to ensure worst case observed
➜ static analysis to reduce pessimism

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 19-B



The imagination driving Australia’s ICT future.

CAMKES: COMPONENT ARCHITECTURE FOR
MICROKERNEL-BASED EMBEDDED SYSTEMS

• Aim: approach for highly-componentised embedded software
2✔ reduce software cost by enforcing modularity
2✔ deliver on fault isolation, hot upgrades, security enforcement, ...

• Ultimate goal:

Kernel
Implementation

Component
Implementation

Hardware Model

Kernel Model

Kernel
Implementation

Hardware Model

Component
Model

Kernel Model

Component
Implementation

System Model

Component
Model

Full system verification
➜ kernel-enforced

component boundaries
2✔ can verify components

individually
2✗ model composition?

➜ Distant future...

• Status: static prototype

• Working on dynamic system, performance, non-functional properties

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 20



The imagination driving Australia’s ICT future.

CAMKES: COMPONENT ARCHITECTURE FOR
MICROKERNEL-BASED EMBEDDED SYSTEMS

• Aim: approach for highly-componentised embedded software
2✔ reduce software cost by enforcing modularity
2✔ deliver on fault isolation, hot upgrades, security enforcement, ...

• Ultimate goal:

Kernel
Implementation

Component
Implementation

Hardware Model

Kernel Model

Kernel
Implementation

Hardware Model

Component
Model

Kernel Model

Component
Implementation

System Model

Component
Model

Full system verification

➜ kernel-enforced
component boundaries

2✔ can verify components
individually

2✗ model composition?
➜ Distant future...

• Status: static prototype

• Working on dynamic system, performance, non-functional properties

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 20-A



The imagination driving Australia’s ICT future.

CAMKES: COMPONENT ARCHITECTURE FOR
MICROKERNEL-BASED EMBEDDED SYSTEMS

• Aim: approach for highly-componentised embedded software
2✔ reduce software cost by enforcing modularity
2✔ deliver on fault isolation, hot upgrades, security enforcement, ...

• Ultimate goal:

Kernel
Implementation

Component
Implementation

Hardware Model

Kernel Model

Kernel
Implementation

Hardware Model

Component
Model

Kernel Model

Component
Implementation

System Model

Component
Model

Full system verification
➜ kernel-enforced

component boundaries
2✔ can verify components

individually
2✗ model composition?

➜ Distant future...

• Status: static prototype

• Working on dynamic system, performance, non-functional properties

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 20-B



The imagination driving Australia’s ICT future.

CAMKES: COMPONENT ARCHITECTURE FOR
MICROKERNEL-BASED EMBEDDED SYSTEMS

• Aim: approach for highly-componentised embedded software
2✔ reduce software cost by enforcing modularity
2✔ deliver on fault isolation, hot upgrades, security enforcement, ...

• Ultimate goal:

Kernel
Implementation

Component
Implementation

Hardware Model

Kernel Model

Kernel
Implementation

Hardware Model

Component
Model

Kernel Model

Component
Implementation

System Model

Component
Model

Full system verification
➜ kernel-enforced

component boundaries
2✔ can verify components

individually
2✗ model composition?

➜ Distant future...

• Status: static prototype

• Working on dynamic system, performance, non-functional properties

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 20-C



The imagination driving Australia’s ICT future.

PRESENT STATE

• Pistachio: Mature microkernel

Untrusted

Trusted

Device
Driver

Trusted
Service

Linux
Server

Wombat

Legacy
App

Device
Driver

Sensitive
App

Iguana embedded OS

L4 Microkernel

➜ 10,000 lines of code (shrinking)
➜ highly efficient

• Iguana: Core OS services
➜ naming, protection, memory...
➜ device drivers
➜ optional Linux server

• Multiple architectures
➜ on ARM, MIPS, x86

• Commercially deployed
➜ new base of Qualcomm CDMA chip firmware
➜ other deployments in pipeline

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 21



The imagination driving Australia’s ICT future.

PRESENT STATE

• Pistachio: Mature microkernel

Untrusted

Trusted

Device
Driver

Trusted
Service

Linux
Server

Wombat

Legacy
App

Device
Driver

Sensitive
App

Iguana embedded OS

L4 Microkernel

➜ 10,000 lines of code (shrinking)
➜ highly efficient

• Iguana: Core OS services
➜ naming, protection, memory...
➜ device drivers
➜ optional Linux server

• Multiple architectures
➜ on ARM, MIPS, x86

• Commercially deployed
➜ new base of Qualcomm CDMA chip firmware
➜ other deployments in pipeline

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 21-A



The imagination driving Australia’s ICT future.

PRESENT STATE

• Pistachio: Mature microkernel

Untrusted

Trusted

Device
Driver

Trusted
Service

Linux
Server

Wombat

Legacy
App

Device
Driver

Sensitive
App

Iguana embedded OS

L4 Microkernel

➜ 10,000 lines of code (shrinking)
➜ highly efficient

• Iguana: Core OS services
➜ naming, protection, memory...
➜ device drivers
➜ optional Linux server

• Multiple architectures
➜ on ARM, MIPS, x86

• Commercially deployed
➜ new base of Qualcomm CDMA chip firmware
➜ other deployments in pipeline

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 21-B



The imagination driving Australia’s ICT future.

SYSTEM PERFORMANCE

Benchmark Native Linux Wombat

1 Task 47.5 46.3

2 Tasks 24.8 24.1

3 Tasks 16.7 16.3

➜ AIM7 “compute server mix”,
jobs/min/task

➜ All on PLEB2 (Intel PXA 255 XScale,
200MHz CPU, 100MHz RAM)

Untrusted

Trusted

Device
Driver

Trusted
Service

Linux
Server

Wombat

Legacy
App

Device
Driver

Sensitive
App

Iguana embedded OS

L4 Microkernel

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 22



The imagination driving Australia’s ICT future.

TRUSTWORTHY COMPUTER SYSTEMS — A DREAM?

• Maybe

, but

• A trustworthy TCB is a starting point and seems doable

• Prerequisite: small TCB, small kernel

• We are on track to deliver a trustworthy TCB

• ... without sacrificing performance

• ... usable in real systems

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 23



The imagination driving Australia’s ICT future.

TRUSTWORTHY COMPUTER SYSTEMS — A DREAM?

• Maybe, but

• A trustworthy TCB is a starting point and seems doable

• Prerequisite: small TCB, small kernel

• We are on track to deliver a trustworthy TCB

• ... without sacrificing performance

• ... usable in real systems

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 23-A



The imagination driving Australia’s ICT future.

TRUSTWORTHY COMPUTER SYSTEMS — A DREAM?

• Maybe, but

• A trustworthy TCB is a starting point and seems doable

• Prerequisite: small TCB, small kernel

• We are on track to deliver a trustworthy TCB

• ... without sacrificing performance

• ... usable in real systems

RTCSA’06 TOWARDS TRUSTWORTHY EMBEDDED SYSTEMS 23-B


