Be open. Be safe.

Next-Generation
Embedded Operating Systems

Gernot Heiser

Founder and CTO, Open Kernel Labs
Professor of Operating Systems, UNSW
Program Leader, NICTA

August 2007

© 2006 Open Kernel Labs. All rights reserved. This presentation has been prepared by Open Kernel Labs (OK). It contains certain proprietary and confidential information about
OK'’s core competencies, personnel, and product offerings. This presentation is only for the purpose of evaluating OK’s product offerings, or its role as a strategic partner or
services provider. OK does not authorize its dissemination in whole or in part to any unauthorized parties, potential partners or competitors. We appreciate your consideration in
this matter.



Open Kernel Labs,

Be open. Be safe.

Embedded Systems are Everywhere

Let's think about the implications...

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Open Kernel Labs,

Be open. Be safe.

Lessons from Desktop Systems

Desktop Computers Suck

e Th h o
e Cras An exception 06 has occured at 0028:C11B3ADC in VXD DiskTSD(03) +

00001660. This was called from 0028:C11B40C8 in WxD voltrack(04) +
00000000, It may be possible to continue normally.

 They get cracked e e

* Press CTRL+ALT+RESET to restart your computer. You will
lose any unsaved information in all applications.

. They get infeCted Press any key to continue

How about embedded systems?




Open Kernel Labs,

Be open. Be safe.

Wireless Everywhere!

Bank accounts
— |Is someone monitoring your financial transactions?
— |s someone taking money out of your account?
Automobiles
— |s someone changing your engine settings?
— |Is someone manipulating your breaks?
Health cards
— |s someone accessing your medical history?
— |s someone changing your medication?
Your home
— |s someone watching you at home?
— |s someone entering while you are away?

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Open Kernel Labs,

Be open. Be safe.

Computer Unreliability — Why? |

« Complexity is the arch-enemy of reliability
— Complex systems are impossible to understand completely
— Complex systems are faulty

« Software systems are incredibly complex
— Smartphones have 5-7 M lines of code (LOC)
— Cars contain Gigabytes of software
— Future systems will be even more complex

« Software is buggy
— Good-quality software has about 1 bug per 1,000 LOC
— Bug count grows super-linearly in code size
— Systems have thousands and thousands of bugs

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Be open. Be safe.

Reliable Systems — How?

_—

* Need a high-performance microkernel

* Need certainty it provides right mechanisms

* Need certainty its implementation is correct

* Need credible timing model

 Need software-engineering infrastructure

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Open Kernel Labs,

Be open. Be safe.

OKL4: Embedded OS and \/irtualization

Small OKL4 micro-
kernel (10 KLOC)

— unbeaten IPC
performance

— native real-time
programming env

* Virtualization for
standard high-level
OS API (Linux)

— Full binary
compatibility

» Developed at UNSW and NICTA, spun out into startup
* Open Kernel Labs markets and continues development
« Joint venture of Open Kernel Labs and NICTA

— develop next-generation technology based on OKL4

Untrusted

Trusted

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Be open. Be safe.

OKL4 Commercial Deployment

» Shipped by QUALCOMM on
their latest chipsets

* First OKL4 phone on the
market: Toshiba W47T

— on sale in Japan since late
2006

« More handsets to hit market
in next 12 months

— US, Korean manufacturers

* Products in other industry
verticals in pipeline

'HVA y

S

. VlNG.P‘;eé.Jtswork

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Open Kernel Labs,

Be open. Be safe.

Reliable Systems — How?

* Need a high-performance microkernel
— This exists: OKL4
* Need certainty it provides right mechanisms
—» can support secure systems (encapsulation etc)

* Need certainty its implementation is correct

* Need credible timing model

 Need software-engineering infrastructure

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Open Kernel Labs,

Be open. Be safe.

Reliable Systems — How?

* Need a high-performance microkernel
— This exists: OKL4
* Need certainty it provides right mechanisms

—» can support secure systems (encapsulation etc)
— NICTA project seL4

* Need certainty its implementation is correct
— implementation matches specification

* Need credible timing model

 Need software-engineering infrastructure

10

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Open Kernel Labs,

Be open. Be safe.

Reliable Systems — How?

* Need a high-performance microkernel
— This exists: OKL4
* Need certainty it provides right mechanisms

—» can support secure systems (encapsulation etc)
— NICTA project seL4

* Need certainty its implementation is correct

— implementation matches specification
— NICTA project L4.verified

 Need credible timing model
—> actual worst-case latencies, based on sound methodology

 Need software-engineering infrastructure

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Open Kernel Labs,

Be open. Be safe.

Reliable Systems — How?

* Need a high-performance microkernel
- This exists: OKL4
* Need certainty it provides right mechanisms
—» can support secure systems (encapsulation etc)
— NICTA project seL4
* Need certainty its implementation is correct
— implementation matches specification
— NICTA project L4.verified
 Need credible timing model
—> actual worst-case latencies, based on sound methodology
— NICTA project Potoroo
 Need software-engineering infrastructure
— support for building large and complex systems

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.




Open Kernel Labs.
CamkES Project: Component Architecture

« Software-Engineering
framework for OKL4 -

— support highly
modular systems

—> components encap-
sulated by kernel

- Applications

« Designed for

embedded systems
— very lightweight

CAmMKES System Components

— no overhead for (File System, Drivers, Network Stack)
unused features e CAMKES Runtime
(eg. dynamic .
components)
RTOS Layer
Reconfigurable Hardware Layer

Hardware

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Open Kernel Labs,

Be open. Be safe.

Reliable Systems — How?

* Need a high-performance microkernel
- This exists: OKL4
* Need certainty it provides right mechanisms
—» can support secure systems (encapsulation etc)
— NICTA project seL4
* Need certainty its implementation is correct
— implementation matches specification
— NICTA project L4.verified
 Need credible timing model
—> actual worst-case latencies, based on sound methodology
— NICTA project Potoroo
 Need software-engineering infrastructure

— support for building large and complex systems
— NICTA project CAmKES

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.




Open Kernel Labs,

Be open. Be safe.

Next-Generation Embedded Operating Systems

* Need to be ultra-reliable
=2 based on microkernels
=2 provably-secure mechanisms
=2 provably-correct implementation
=> credible timing models

* Need to be highly componentised
=2 components protected by microkernel address spaces

=2 can isolate faults, support run-time upgrades
=2 can prove correctness of components, or at least confinement of faults

 NICTA/OK Partnership will deliver this
=>» core technology OKL4 already on market and deployed on products
=2 research agenda for next generation completed next year
=>» commercial availability within 2-3 years



Be open. Be safe.

Gernot Heiser
Founder and CTO

Open Kernel Labs
t +61 28306 0550
gernot@ok-labs.com

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



