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Open Kernel Labs,

Be open. Be safe.

Embedded Systems are Everywhere

Let's think about the implications...
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Open Kernel Labs,

Be open. Be safe.

Lessons from Desktop Systems

Desktop Computers Suck

e Th h o
e Cras An exception 06 has occured at 0028:C11B3ADC in VXD DiskTSD(03) +

00001660. This was called from 0028:C11B40C8 in WxD voltrack(04) +
00000000, It may be possible to continue normally.

 They get cracked e e

* Press CTRL+ALT+RESET to restart your computer. You will
lose any unsaved information in all applications.

. They get infeCted Press any key to continue

How about embedded systems?




Open Kernel Labs,

Be open. Be safe.

Wireless Everywhere!

Bank accounts
— |Is someone monitoring your financial transactions?
— |s someone taking money out of your account?
Automobiles
— |s someone changing your engine settings?
— |Is someone manipulating your breaks?
Health cards
— |s someone accessing your medical history?
— |s someone changing your medication?
Your home
— |s someone watching you at home?
— |s someone entering while you are away?
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Open Kernel Labs,

Be open. Be safe.

Computer Unreliability — Why? |

« Complexity is the arch-enemy of reliability
— Complex systems are impossible to understand completely
— Complex systems are faulty

« Software systems are incredibly complex
— Smartphones have 5-7 M lines of code (LOC)
— Cars contain Gigabytes of software
— Future systems will be even more complex

« Software is buggy
— Good-quality software has about 1 bug per 1,000 LOC
— Bug count grows super-linearly in code size
— Systems have thousands and thousands of bugs
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Be open. Be safe.

Reliable Systems — How?

_—

* Need a high-performance microkernel

* Need certainty it provides right mechanisms

* Need certainty its implementation is correct

* Need credible timing model

 Need software-engineering infrastructure
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Open Kernel Labs,

Be open. Be safe.

OKL4: Embedded OS and \/irtualization

Small OKL4 micro-
kernel (10 KLOC)

— unbeaten IPC
performance

— native real-time
programming env

* Virtualization for
standard high-level
OS API (Linux)

— Full binary
compatibility

» Developed at UNSW and NICTA, spun out into startup
* Open Kernel Labs markets and continues development
« Joint venture of Open Kernel Labs and NICTA

— develop next-generation technology based on OKL4

Untrusted

Trusted

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Be open. Be safe.

OKL4 Commercial Deployment

» Shipped by QUALCOMM on
their latest chipsets

* First OKL4 phone on the
market: Toshiba W47T

— on sale in Japan since late
2006

« More handsets to hit market
in next 12 months

— US, Korean manufacturers

* Products in other industry
verticals in pipeline
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Open Kernel Labs,

Be open. Be safe.

Reliable Systems — How?

* Need a high-performance microkernel
— This exists: OKL4
* Need certainty it provides right mechanisms
—» can support secure systems (encapsulation etc)

* Need certainty its implementation is correct

* Need credible timing model

 Need software-engineering infrastructure
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Open Kernel Labs,

Be open. Be safe.

Reliable Systems — How?

* Need a high-performance microkernel
— This exists: OKL4
* Need certainty it provides right mechanisms

—» can support secure systems (encapsulation etc)
— NICTA project seL4

* Need certainty its implementation is correct
— implementation matches specification

* Need credible timing model

 Need software-engineering infrastructure
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Open Kernel Labs,

Be open. Be safe.

Reliable Systems — How?

* Need a high-performance microkernel
— This exists: OKL4
* Need certainty it provides right mechanisms

—» can support secure systems (encapsulation etc)
— NICTA project seL4

* Need certainty its implementation is correct

— implementation matches specification
— NICTA project L4.verified

 Need credible timing model
—> actual worst-case latencies, based on sound methodology

 Need software-engineering infrastructure
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Open Kernel Labs,

Be open. Be safe.

Reliable Systems — How?

* Need a high-performance microkernel
- This exists: OKL4
* Need certainty it provides right mechanisms
—» can support secure systems (encapsulation etc)
— NICTA project seL4
* Need certainty its implementation is correct
— implementation matches specification
— NICTA project L4.verified
 Need credible timing model
—> actual worst-case latencies, based on sound methodology
— NICTA project Potoroo
 Need software-engineering infrastructure
— support for building large and complex systems
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Open Kernel Labs.
CamkES Project: Component Architecture

« Software-Engineering
framework for OKL4 -

— support highly
modular systems

—> components encap-
sulated by kernel

- Applications

« Designed for

embedded systems
— very lightweight

CAmMKES System Components

— no overhead for (File System, Drivers, Network Stack)
unused features e CAMKES Runtime
(eg. dynamic .
components)
RTOS Layer
Reconfigurable Hardware Layer

Hardware
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Open Kernel Labs,

Be open. Be safe.

Reliable Systems — How?

* Need a high-performance microkernel
- This exists: OKL4
* Need certainty it provides right mechanisms
—» can support secure systems (encapsulation etc)
— NICTA project seL4
* Need certainty its implementation is correct
— implementation matches specification
— NICTA project L4.verified
 Need credible timing model
—> actual worst-case latencies, based on sound methodology
— NICTA project Potoroo
 Need software-engineering infrastructure

— support for building large and complex systems
— NICTA project CAmKES
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Open Kernel Labs,

Be open. Be safe.

Next-Generation Embedded Operating Systems

* Need to be ultra-reliable
=2 based on microkernels
=2 provably-secure mechanisms
=2 provably-correct implementation
=> credible timing models

* Need to be highly componentised
=2 components protected by microkernel address spaces

=2 can isolate faults, support run-time upgrades
=2 can prove correctness of components, or at least confinement of faults

 NICTA/OK Partnership will deliver this
=>» core technology OKL4 already on market and deployed on products
=2 research agenda for next generation completed next year
=>» commercial availability within 2-3 years



Be open. Be safe.
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