

 The imagination driving Australia’s ICT future

Secure Operating Systems

Gernot Heiser
NICTA & UNSW & Open Kernel Labs

 The imagination driving Australia’s ICT future

Overview

• Operating systems security overviewOperating systems security overview
• Security policies
• OS security verification
• Security mechanisms
• Design principles
• OS design for security

 The imagination driving Australia’s ICT future

Secure Operating System

• Provides for secure execution of applications

• Must provide security policies that support the users' security

requirements

• Must enforce those security policies

• Must be safe from tampering etc.

 The imagination driving Australia’s ICT future

Security Policies

• Security policySecurity policy
– specifies allowedallowed and disalloweddisallowed statesstates of a system

• Perfect security is generally unachievable
– need to be aware of threatsthreats
– need to understand what risksrisks can be tolerated

• Security policy needs to identify the assetsassets to be secured
– for computer security, assets are typically data

– OS needs to ensure that no disallowed state is ever entered
– OS mechanismsmechanisms prevent tranistions from allowed to disallowed states

 The imagination driving Australia’s ICT future

Data Security

Three aspects:

• Confidentiality: prevent thefttheft of data
– concealing data from unauthorised agents
– need-to-know principle

• Integrity: prevent damagedamage of data
– trustworthiness of data: data correctnesscorrectness
– trustworthiness of origin of data: authenticationauthentication

• Availability: prevent denialdenial of service
– ensuring data is usable when needed

 The imagination driving Australia’s ICT future

Security Policy

• Partitions system into allowed and disallowed states

• Ideally mathematical model

• In practice, usually natural-language description
– often imprecise, ambiguous, inconsistent, unenforceable

– Example: transactions over $10k require manager approval
• but transferring $10k into own account is no violation

 The imagination driving Australia’s ICT future

Security Mechanisms

• Used to enforce security policy
– computer access control (login authentication)
– operating system file access control system
– controls implemented in tools

• Example:
– Policy: only accountant can access financial system
– Mechanism: on un-networked computer in locked room with only

one key

• A secure system provides mechanisms that ensure that violations are
– prevented
– detected
– recovered from

 The imagination driving Australia’s ICT future

Trust

• Systems always have trusted entitiestrusted entities
– hardware, operating system, sysadmin

• Totally of trusted entities is the trusted computing basetrusted computing base (TCB)
– the part of the system that can circumvent security

• Assumed to be trustworthytrustworthy
– is it???

 The imagination driving Australia’s ICT future

Trusted Computing Base

TCB: The totality of protection mechanisms within a The totality of protection mechanisms within a
computer system — including hardware, firmware and computer system — including hardware, firmware and
software — the combination of which is responsible for software — the combination of which is responsible for
enforcing a security policy.enforcing a security policy. [RFC 2828]

The ability of the TCB to correctly enforce a security policy
depends solely on the mechanisms within the TCB and on the
correct inputs by system administrative personnel or parameters
related to the security policy.

A TCB consists of one or more components that together enforce a
unified security policy over a product or system.

 The imagination driving Australia’s ICT future

Covert Channels

• Information flow that is not controlled by a security
mechanism

– security requires absence of covert channelsabsence of covert channels

– covert timingtiming channel uses temporal order of accesses to shared resource
• outside access-control system
• difficult to reason about
• difficult to prevent

• in principle subject to access control
• a sound access-control system should be freefree of covert channels

• Two types of covert channels
– covert storagestorage channel uses an attribute of a shared resource

• typically meta data, like exisstence or accessibility of an object
• global names create covert storage channels

 The imagination driving Australia’s ICT future

Covert Timing Channels

• Created via shared resource whose behaviour can be
monitored

– network bandwidth
– CPU load
– response time
– locks

• Critical issue is bandwidth
– in practice the damage is limited if the bandwidth is low

• e.g. DRM doesn't care about low-bandwidth channels
– beware of amplification

• e.g. leaking of passwords

• Requires access to a time source
– real-time clock
– anything else that allows unrelated processes to synchronise
– preventable by perfect virtualisation?

 The imagination driving Australia’s ICT future

Establishing Trustworthiness

• Process to show TCB is trustworthy

• Two approaches:
– Assurance (systematic evaluation and testing)
– Formal verification (mathematical proof)

• Certification confirms process was successfully concluded

 The imagination driving Australia’s ICT future

Assurance

• Process for bolsteringbolstering (substantiating or specifying) trust

• Assurance does not guaranteeguarantee correctness or security!

– Specifications
• unambiguous description of system behaviour
• can be formal (mathematical model) or informal

– Design

• justification that it meets specification
• mathematical translation of specification or compelling argument

– Implementation
• justification that it is consistent with the design
• mathematical proof or rigorous testing
• by implication must also satisfy specification

– Operation and maintenance
• justification that system is used as per assumptions in specification

 The imagination driving Australia’s ICT future

Assurance: Orange Book

US Department of Defence “Orange BookOrange Book” [DoD 86]:

• Defines security classes
– D: minimal protection
– C1–2: discretionary access control (DAC)
– B1–B3: mandatory access control (MAC)
– A1: verified design

• Designed for military use

• Systems can be certified to a certain class
– very costly, hence only available for big companies
– most systems only certified C2 (essentially Unix-style security)

• Superseded by Common Criteria

 The imagination driving Australia’s ICT future

Assurance: Common Criteria

Common Criteria for IT Security EvaluationCommon Criteria for IT Security Evaluation [ISO/IEC 15408]:

• ISO standard, developed out of Orange Book and other approaches
– US, Canada, UK, Germany, France, Netherlands
– for general use (not just military, not just operating systems)

• Unlike Orange Book, doesn't prescribe specific security requirements
– evaluates quality assurance used to ensure requirements are met

• Details later

• Target of evaluationTarget of evaluation (TOE) evaluated against security targetsecurity target (ST)
– ST is statement of desired security properties
– based on protection profilesprotection profiles (PPs) — generic sets of requirements

• defined by “users” (typically governments)

• Seven evaluation assurance levelsevaluation assurance levels (EALs)
– higher levels imply more thorough evaluation (and higher cost)
– notnot necessarily better security

 The imagination driving Australia’s ICT future

Formal Verification

• Process of mathematical proof of security properties

• Mased on a mathematical modelmodel of the system

• Two parts:
– proof that model satisfies security requirementsmodel satisfies security requirements

• generally difficult, except for very simple models
– proof that code implements modelcode implements model

• proving theorems showing correspondence
• even harder, feasible only for few 1000 LOC
• hardly ever done

• Note: model checkingmodel checking (static analysis) is not sufficient
– shows presence or absence of certain properties of code

• uninitialilsed variables, array-bounds, null-pointer de-ref.
– does not prove implementation correctness

 The imagination driving Australia’s ICT future

Summary

• Computer security is complex
– depends on many aspects of computer system

• Policy defines security, mechanisms enforce security

• Important to consider:
– what are the assumptions about threats and trustworthiness?
– incorrect assumptions ═► no security

• Security is never absolute
– given enough resources, mechanisms can be defeated
– important to understand limitations
– inherent tradeoffs between security and usability

• Human factors are important
– people make mistakes
– people may not understand security impact of actions
– people may be less trustworthy than thought

 The imagination driving Australia’s ICT future

Overview

• Operating systems security overview
• Security policiesSecurity policies
• OS security verification
• Security mechanisms
• Design principles
• OS design for security

 The imagination driving Australia’s ICT future

Security Policies: Categories

• DiscretionaryDiscretionary (user-controlled) policies (DAC)
– e.g. A can read B's objects only with A's permission
– user decides about access (at their discretion)
– classical example: Unix permissions

• MandatoryMandatory (system-controlled) policies (MAC)
– e.g. certain users cannot ever access certain objects
– no user can change these
– focus on restricting information flowinformation flow

• Role-basedRole-based policies (RBAC)
– agents can take on specific pre-defined roles

• well-defined set of roles for each agent
• eg normal user, sysadmin, database admin

– access rights depend on role

 The imagination driving Australia’s ICT future

Security Policy Models

• Represent a whole class of security policies

• Most system-wide policies focus on confidentiality
– e.g. military-style multi-level security models
– classical example is Bell-LaPadulaBell-LaPadula model [BL76]
– most others developed from this
– Orange Book based on this model

• Other models
– Chinese-wallChinese-wall policy focusses on conflict of interest
– Clark-WilsonClark-Wilson model focusses on separation of duty

 The imagination driving Australia’s ICT future

Bell-LaPadula Model

• Each object a has a security classificationclassification L(a)
• Each agent o has a security clearanceclearance L(o)
• Classifications and clearances form hierachical security levelssecurity levels

– e.g. top secret > secret > confidential > unclassified

– problems:
• logging
• command chain

– need way to de-classifyde-classify data

• Rule 2 ( Property — no write down Property — no write down)
– a can writewrite o only if L(a) L(o)≤
– prevents leakageleakage (accidental of by conspiracy)

• Rule 1 (no read upno read up):
– a can readread o only if L(a) L(o)≥
– standard confidentiality

 The imagination driving Australia’s ICT future

Bell-LaPadula Extensions

• Can combine with discretionary access rights
– read/write permissions on specific objects
– e.g. SELinux

• Can add orthogonal security categories indicating types of data
– restrict access to relevant categories
– Denning's lattice modellattice model [Den76]

 The imagination driving Australia’s ICT future

Chinese Wall Policy

• Employed by investment banks to manage conflict of interest
• Idea: Consultant cannot talk to clients' competitors

– single consultant can have multiple concurrent clients

• Example of a dynamic MAC policydynamic MAC policy
– allowed information flow changes over time

– needs a rule for removing conflicts (after deal is done)

• Define conflict classesconflict classes (groups of potentially competing clients)
– eg banks, oil companies, insurance companies, OS vendors

• Consultant dealing with client of class A cannot talk to others in A
– but can continue talking to members of other classes

– some data belongs to several conflict classes

• Public information is not restricted
– consultant can read and write public info at any time

– but must observe  property (cannot publish confidential info)

 The imagination driving Australia’s ICT future

Overview

• Operating systems security overview
• Security policies
• OS security verificationOS security verification
• Security mechanisms
• Design principles
• OS design for security

 The imagination driving Australia’s ICT future

Common Criteria Protection Profiles

• Controlled Access Protection Profile (CAPP)
– standard OS security, derived from Orange Book C2
– certified up to level EAL3

• Single-level Operating System Protection Profile
– superset of CAPP
– certified up to EAL4+

• Labeled Security Protection Profile (LSPP)
– mandatory access control for COTS OSes
– similar to Orange Book B1

• Role-based Access Control Protection Profile

• Multi-level Operating System Protection Profile
– superset of CAPP, LSPP
– certified up to EAL4+

• Separation Kernel Protection Profile (SKPP)
– strict partitioning
– certifications aiming for EAL6+

 The imagination driving Australia’s ICT future

Common Criteria Assurance Levels

• EAL1: functionally tested
– simple to do, can be done without help from developer

• EAL3: methodically tested and checked
– improved test coverage
– procedures to avoid tampering during development
– highest assurance level achieved for Mac OS X

• EAL2: structurally tested
– functional and interface spec
– black- and white-box testing
– vulnerability analysis

 The imagination driving Australia’s ICT future

Common Criteria Assurance Levels

• EAL4: methodically designed, tested and reviewed
– design docs used for testing, avoid tampering during delivery

– independent vulnerability analysis

– highest level feasible on existing product (not developed for CC certific.)

– achieved by main-stream Oses
• Windows 2000: EAL4 in 2003
• SuSe Enterprise Linux: EAL4 in 2005
• Solaris-10 EAL4+ in 2006

– controlled access protection profile (CAPP)
– role-based access control PP

• RedHat Linux EAL4+ in 2007
– they still get broken!

• certification is based on assumptions about environment, etc...
• most use is outside those assumptions

– certification means nothing in such a case
– presumably there were no compromises were assumptions held

 The imagination driving Australia’s ICT future

Common Criteria Assurance Levels

• EAL5: semiformally designed and tested
– formal model of TEO security policy
– semi-formal model of functional spec & high-level design
– semi-formal argument about correspondence
– covert-channel analysis
– IBM z-Series hypervisor EAL5 in 2003 (partitioning)
– attempted by Mandrake for Linux with French Government support

– Green Hills Integrity microkernel presently undergoing EAL6+ certification
• separation kernel protection profile

• EAL6: semiformally verified design and tested
– semiformal low-level design
– structured representation of implementation
– modular and layered TOE design
– independent vulnerability analysis
– systematic covert-channel identification

 The imagination driving Australia’s ICT future

Common Criteria Assurance Levels

• EAL7: formally verified design and tested
– formal functional spec and high-level design
– formal and semiformal demonstration of correspondence

• between specification and low-level design
– simple TOE
– complete independent confirmation of developer tests

Note:

• Even EAL7 relies on testing!Even EAL7 relies on testing!
– EAL7 requires proof of correspondence between formal descriptions
– However, no requirement of formalising implementation
– Hence no requirement for formal proof of implementation correctness

– LynuxWorks claims LynxSecure separation kernel EAL7 “certifiable”
• but not certified

– Green Hills also aiming for EAL7

 The imagination driving Australia’s ICT future

Formal Verification

• Based on mathematical model of the system

• Complete verification requires two parts:
– proof that model satisfies requirements of security policies

• typically prove generic properties that actual policies map to
• required by CC EAL5–7

– proof that implementation has same properties as model
• proof of correspondence between model and implementation
• not required by CC even at EAL7
• done by some kernels with very limited functionality
• never done for any gereral-purpose OS!

• Model-checking (static analysis) is incompleteincomplete formal verification
– shows presence or absence of certain properties

• eg uninitialised variables, array-bounds overflows
– nevertheless useful for assurance

 The imagination driving Australia’s ICT future

Overview

• Operating systems security overview
• Security policies
• OS security verification
• Security mechanismsSecurity mechanisms
• Design principles
• OS design for security

 The imagination driving Australia’s ICT future

Security Mechanisms

• Used to implement security policies

• Based on access control
– discretionary access control (DAC)
– mandatory access control (MAC)
– role-based access control (RBAC)

• Access rights
– simple rights

• read, write, execute/invoke, send, receive
– meta rights (DAC only)

• copy
– propagate own rights to another agent

• own
– change rights of an object or agent

 The imagination driving Australia’s ICT future

Access Control Matrix

Objects

Agents

terminate read

control execute write

S
1

S
2

O
3

O
4

S
1

wait, signal,
send

S
2

wait, signal,
terminate

read,
execute,

write

S3

wait, signal,
receive

S
4

• Defines each agent's rights on any object

• Note: agents are objects too

 The imagination driving Australia’s ICT future

Properties of Access Control Matrix

• Rows define agents' protection domainsprotection domains (PDs)

• Columns define objects' accessibilityaccessibility

• Dynamic data structure:
– frequent permanent changes (e.g. chmod)
– frequent temporary changes (e.g. setuid)

• Very sparsesparse with many repeated entries

• Impractical to store explicitly

 The imagination driving Australia’s ICT future

Issues for Protection System Design

• Propagation of rights:
– Can agent grant access to other?

• Restriction of rights:
– Can agent propagate subset of own rights?

• Revocation of rights:
– Can access, once granted, be revoked?

• Amplification of rights:
– Can unprivileged agent perform restricted operations?

• Determination of object accessibility
– Which agents have access to particular object?
– Is object accessible at all (garbage collection)?

• Determination of agent's protection domain
– Which objects are accessible?

 The imagination driving Australia’s ICT future

Access Matrix Implementation: ACLs

Represent column-wise: access control listaccess control list (ALC):

• ACLACL associated with objectobject
– Propagation: meta right (e.g. owner can chmod)
– Restriction: meta right
– Revocation: meta right
– Amplification: protected-invocation right (e.g. setuid)
– Accessibility: explicit in ACL
– Protection domain: hard (if not impossible) to determine

• Sometimes implicit (Unix process hierarchy)

• Implemented in almost all commercial systems

• Can have negative rightsnegative rights to:
– reduce window of vulnerability
– simplify exclusion from groups

• Usually condensed via domain classesdomain classes (UNIX, NT groups)

• Full ACLs used by Multics, Apollo Domain, Andrew FS, NTFS

 The imagination driving Australia’s ICT future

Access Matrix Implementation: Capabilities

Represent row-wise: capabilitiescapabilities:

• Capability listCapability list associated with agent

• Each capability confers a certain right to its holder
– Propagation: copy capabilities between agents (how?)
– Restriction: lesser rights require creation of new (derived) caps
– Revocation: requires invalidation of caps from all agents
– Amplification: special invocation capability
– Accessibility: requires inspection of all capability lists (how?)
– Protection domain: explicit in capability list

• Only successful commercial systems: IBM System/38 / AS400 / i-Series

• Can have negative rightsnegative rights to:
– reduce window of vulnerability
– simplify management of groups of capabilities

 The imagination driving Australia’s ICT future

Capabilities

• Main advantage of capabilities is the fine-grained access control:
– easy to provide access to specific agents

– tagged — protected by hardware

– partitioned/segregated — protected by software

– sparse — protected by sparsity (probabilistically secure, like encryption)

• How are caps implemented and protected?

• Capability presets prima facie evidence of the right to accessright to access
– capability ═► object identifierobject identifier (imples naming)

– capability ═► (set of) access rightsaccess rights
 any representation must contain object ID and access rights
 any representation must protect capability from forgery

 The imagination driving Australia’s ICT future

Tagged Capabilities

• Tag bit(s)Tag bit(s) with every (group of) memory word(s)
– tag identifies capabilities

– capabilities are used and copied like “normal” pointers

– hardware checks permissions when deferencing capability

– modifications turn tags off (convert to plain data)

– Only privileged instructions(kernel) can turn tags on

• IBM System/38, AS/400, i-Series, many historical systems

– Properties:
 propagation easy
 restriction requires kernel to make new capability
 revocation virtually impossible (requires memory scan)
 amplification possible (below)
 accessibility virtually impossible to determine
 protection domain difficult to establish

 The imagination driving Australia’s ICT future

Partitioned Capabilities

• System maintains capability list (Clist) with each process
– user code uses indirect references to caps (clist index)

• c.f. Unix file descriptors

– System validates access via clist when mapping any page

• Few commercial systems (KeyKOS)
• Many research systems

• Hydra, Mach, EROS, and many others

– Properties:
• validation is explicit at map time
• propagation: system call to copy between clients

• restriction: kernel to make new capability
• revocation: kernel to remove cap from clist

– one specific or all
• accessibility: requires scanning all clists
• protection domain: explicitly represented in clist

 The imagination driving Australia’s ICT future

Propagating Partitioned Capabilities

• Capabilities can be included in IPC messages
• sender supplies cap (clist

index) to system call
2 kerne looks up cap in sender's

clist
3 kernel inserts caps into

receiver's clist
4 kernel replaces sender's clist

index by receiver's and delivers
message

 The imagination driving Australia’s ICT future

Partitioned Capabilities Summary

• Secure through protection by kernel
– real caps live in kernel space

• Validation at mapping time ═► apps use “normal” pointers

• Fast validation (clist check is simple, validation cached by MMU)

• Propagation requires marshaling and kernel intervention

• Reference counting possible to detect unaccessible objects

 The imagination driving Australia’s ICT future

Sparse Capabilities

• Basic idea similar to encryption
– add bit string to make valid capabilities a very small subset of cap space
– either encrypted object info or password
– secure by infeasibility of exhaustive search of cap space

 The imagination driving Australia’s ICT future

Sparse Capabilities

• Sparse caps are user-level objects
– can be passed like other data

• similar to tagged caps, but without hardware support
• validated at mapping time (explicit or implicit)

– good match to user-level servers
• no central authority, no kernel required on most ops
• cannot reference-count objects

• Issues:
– Full mediation requires extra work

• but doable, see Mungi
• essentially provided user-level cap segregation

– High amplification of leaked data
• problem with convert channels

 The imagination driving Australia’s ICT future

Confinement

• Problem 1: Executing untrusted code
– you downloaded a game from the internet
– how can you be sure it doesn't steal/corrupts your data?

• In practice difficult to achieve due to covert channelscovert channels

• Some protection models can confine in principle
– e.g segregated caps system, can instruct system not to accept any
– EROS has formal proof of confinement of a model of the system [SW00]

• You need to confineconfine the program (game, viewer) so it cannot leak

• Cannot be done with most protection schemes!
– not with Unix or most other ACL-based schemes
– not with most tagged or sparse capability schemes
– multi-level security has some inherent confinement (but can't do DRM)

• Problem 2: Digital rights management (DRM)
– you own copyrighted material (e.g. entertainment media content)
– you want to let others use it (for a fee)
– how can you prevent them from making unauthorised copies?

 The imagination driving Australia’s ICT future

Overview

• Operating systems security overview
• Security policies
• OS security verification
• Security mechanisms
• Design principlesDesign principles
• OS design for security

 The imagination driving Australia’s ICT future

Design Principles for Secure OS

• Least privilege (POLA)

• Economy of mechanisms

• Fail-safe defaults

• Complete mediation

• Open design

• Separation of privilege

• Least common mechanisms

• Psychological acceptability

 The imagination driving Australia’s ICT future

Least Privilege

• Also called the principle of least authorityleast authority (POLA)
• Agent should only be given the minimal rights needed for task

– minimal protection domain
– PD determined by functionfunction, not identityidentity

• Unix root is evil
• Aim of role-based access control (RBAC)

– rights added as needed, removed when no longer needed
– violated by all mainstream Oses

• Example: executing web applet
– should not have all of user's privileges, only minimal access
– hard to do with ACL-based systems

 The imagination driving Australia’s ICT future

Least Privilege Implications for OS

• OS kernel executes in privileged mode of hardware
– kernel has unlimited privilege!

• POLA implies keeping kernel code to an absolute minimum
– this means a secure OS must be based on a microkernel!

• Trusted computing base can bypass security

• POLA requires that TCB is minimal
– microkernel plus minimal security manager

 The imagination driving Australia’s ICT future

Economy of Mechanisms

• KISS principle of engineering
– “keep it simple, stupid!”

• Less code/features/stuff ═► less to get wrong
– makes it easier to fix if something does go wrong
– complexity is the natural enemy of security

• Also applies to interfaces, interactions, protocols, ...

• Specifically applies to TCB

 The imagination driving Australia’s ICT future

Fail-Safe Defaults

• Default action is no-access
– if action fails, system remains secure
– if security administrator forgets to add rule, system remains secure
– “better safe than sorry”

 The imagination driving Australia’s ICT future

Complete Mediation

• Check every access
– violated in Unix file access:

• access rights checked at open(), then cached
• access remains enabled until close(), even if attributes change

– also implies that any rights propagation must be controlled
• not done with tagged or sparse capability systems

• In practice conflicts with performance!
– caching of buffers, file descriptors etc
– without caching unacceptable performance

• Should at least limit window of opportunity
– e.g. guarantee caches are flushed after some fixed period
– guarantee no cached access after revoking access

 The imagination driving Australia’s ICT future

Open Design

• Security must not depend on secrecy of design or implementation
– TCB must be open to scrutiny
– Security by obscurity is poor security

• not all security/certification agencies seem to understand this

• Note that this doesn't rule out passwords or secret keys
– but their creation requires careful cryptoanalysiscryptoanalysis

 The imagination driving Australia’s ICT future

Separation of Privilege

• Require a combination of conditions for granting access
– e.g. user is in group wheel and knows the root password
– take-grant model for capability-based protection:

• sender needs grantgrant right on capability
• receiver needs taketake right to accept capability

• Closely related to least privilege

 The imagination driving Australia’s ICT future

Least Common Mechanisms

• Avoid sharing mechanisms
– shared mechanism ═► shared channel
– potential covert channel

• Inherent conflict with other design imperatives
– simplicity ═► shared mechanisms

 The imagination driving Australia’s ICT future

Psychological Acceptability

• Security mechanisms should not add to difficulty of use
– hide complexity introduced by security mechanisms
– ensure ease of installation, configurations, use
– systems are used by humans!

• Inherently problematic:
– security inherently inhibits ease of use
– idea is to minimise impact

• Security-usability tradeoff is to a degree unavoidable

 The imagination driving Australia’s ICT future

Overview

• Operating systems security overview
• Security policies
• OS security verification
• Security mechanisms
• Design principles
• OS design for securityOS design for security

 The imagination driving Australia’s ICT future

OS Design for Security

• Minimize kernel code
– kernel = code that executes in privileged mode
– kernel can bypass any security
– kernel is inherently part of TCB
– kernel can only be verified as a whole (not in components)

• it's hard enough to verify a minimal kernel

• How?
– generic mechanisms (economy of mechanisms)
– no policies, only mechanisms
– mechanisms as simple as possible
– only code that must be privileged in order to support secure systems
– free of covert channels:

• no global names, absolute time

• Formally specify API

 The imagination driving Australia’s ICT future

OS Design for Security

• Minimize mandatory TCB
– unless formally verified, TCB must be assumed imperfect
– the smaller, the fewer defects
– POLA requires, economy of mechanisms leads to minimal TCB

• Ensure TCB is well defined and understood
– make security policy explicit
– make granting of authority explilcit

• Flexibility to support various uses
– make authority delgatable
– ensure mechanisms allow high-performance implementation

• Design for verifiability
– minimize implementation complexity

 The imagination driving Australia’s ICT future

Example: seL4

• High-security version of L4 microkernel API
– all authority granted by capabilities
– only four system calls: read, write, create, derive
– kernel memory explicitly managed by user-level resource manager
– 7,000–10,000 lines of kernel code

• Semi-formal API spec in Haskell
– easily formalised in theorem prover
– machine-checked proofs of security properties
– designed for formal verification, to be finished mid-2008

CONFIDENTIAL
 The imagination driving Australia’s ICT future

Kernel Prototyping in Haskell

• Model the kernel in detail

• Literate Haskell to model
– Pure functional programming

language

– Embedded documentation

– Close to Isabelle/HOL

– Formalized Haskell becomes
intermediate representation for
refinement proof

• Executable
– Supports running user-level

code

User-level
Simulator

Kernel
Prototype

.c

GCC

.lhs

GHC

User
App

Kernel
Reference

Manual

LaTeX

Formal
Model

Isabelle/
HOL

CONFIDENTIAL
 The imagination driving Australia’s ICT future

Simulation of User-Level Execution

• Simulator for user-level ISA
– M5 Alpha simulator
– Locally-developed ARMv6

simulator
– QEMU

• Executes compiled user-level
binaries

• Sends events to the Haskell
kernel

• Combination allows running
complete boot image

• Port system components before
kernel implementation is
complete

Simulator Kernel

Save/Restore

Event

Load/Store

TLB Access

.c .c

GCC

.lhs .lhs

GHC

ARMv6
Binary

CONFIDENTIAL
 The imagination driving Australia’s ICT future

L4.verified: Formal Correctness Proof

…

Requirements

Abstract model

Refined model (1)

Refined model (n)

C and assembler code HW

Safety theorem

seL4 API (semi-formal)

• Prove correspon-
dence of code and
specification

• Refinement proofs in
Isabelle/HOL

CONFIDENTIAL
 The imagination driving Australia’s ICT future

Thank you!

