e NICTA

Secure Operating Systems

Gernot Heiser
NICTA & UNSW & Open Kernel Labs

NICTA Members

= Department of State and
= Regional Development
L
THE UNIVERSITY OF NEW SOUTH WALES
THE AUSTRALIAN NATIONAL UNIVERSITY
. P

P

*51_ Australian Government

Department of Communications,

Information Technology and the Arts % e ®
zy $ 1 The University of Sydney 2 @”J &E\ilgg'}# W g gﬁ%ﬂ:&‘;ﬁ%
Australian Research Council ThePlaceToBe pEISUTE . Coeansant RESSECIIE, e Sama

NICTA Partners

The imagination driving Australia’s ICT future

* Operating systems security overview
* Security policies

* OS security verification

* Security mechanisms

* Design principles

* OS design for security

The imagination driving Australia’s ICT future

e NICTA

Secure Operating System

* Provides for secure execution of applications

* Must provide security policies that support the users' security
requirements

* Must enforce those security policies

* Must be safe from tampering etc.

The imagination driving Australia’s ICT future

Security Policies £Je NICTA

* Security policy
— specifies allowed and disallowed states of a system

— OS needs to ensure that no disallowed state is ever entered
— OS mechanisms prevent tranistions from allowed to disallowed states

* Security policy needs to identify the asseis to be secured
— for computer security, assets are typically data

* Perfect security is generally unachievable
— need to be aware of threats
— need to understand what risks can be tolerated

The imagination driving Australia’s ICT future

Data Security (Je NICTA

Three aspects:

* Confidentiality: prevent theft of data
— concealing data from unauthorised agents
— need-to-know principle

* Integrity: prevent damage of data
— trustworthiness of data: data correctness
— trustworthiness of origin of data: authentication

* Availability: prevent denial of service
— ensuring data is usable when needed

The imagination driving Australia’s ICT future

Security Policy {Je NICTA

* Partitions system into allowed and disallowed states

* |deally mathematical model

* |n practice, usually natural-language description
— often imprecise, ambiguous, inconsistent, unenforceable

— Example: transactions over $10k require manager approval
* but transferring $10k into own account is no violation

The imagination driving Australia’s ICT future

Security Mechanisms Je NICTA

* Used to enforce security policy
— computer access control (login authentication)
— operating system file access control system
— controls implemented in tools

* Example:
— Policy: only accountant can access financial system

— Mechanism: on un-networked computer in locked room with only
one key

* A secure system provides mechanisms that ensure that violations are
— prevented
— detected
— recovered from

The imagination driving Australia’s ICT future

* Systems always have trusted entities
— hardware, operating system, sysadmin

* Totally of trusted entities is the trusted computing base (TCB)
— the part of the system that can circumvent security

* Assumed to be trustworthy
— IS it???

The imagination driving Australia’s ICT future

Trusted Computing Base \J® NICTA

TCB: The totality of protection mechanisms within a
computer system — including hardware, firmware and
software — the combination of which is responsible for
enforcing a security policy. [RFC 2828]

A TCB consists of one or more components that together enforce a
unified security policy over a product or system.

The ability of the TCB to correctly enforce a security policy
depends solely on the mechanisms within the TCB and on the
correct inputs by system administrative personnel or parameters
related to the security policy.

The imagination driving Australia’s ICT future

Covert Channels {Je NICTA

* Information flow that is not controlled by a security
mechanism
— security requires absence of covert channels
* Two types of covert channels
— covert storage channel uses an attribute of a shared resource
* typically meta data, like exisstence or accessibility of an object
* global names create covert storage channels
* in principle subject to access control

* a sound access-control system should be free of covert channels
— covert timing channel uses temporal order of accesses to shared resource
* outside access-control system
* difficult to reason about
* difficult to prevent

The imagination driving Australia’s ICT future

Covert Timing Channels \J® NICTA

* Created via shared resource whose behaviour can be
monitored
— network bandwidth
— CPU load
— response time
— locks

* Requires access to a time source
— real-time clock
— anything else that allows unrelated processes to synchronise
— preventable by perfect virtualisation?

* Critical issue is bandwidth
— in practice the damage is limited if the bandwidth is low
* e.g. DRM doesn't care about low-bandwidth channels
— beware of amplification
* e.g. leaking of passwords

The imagination driving Australia’s ICT future

e NICTA

Establishing Trustworthiness

* Process to show TCB is trustworthy

* Two approaches:
— Assurance (systematic evaluation and testing)
— Formal verification (mathematical proof)

* Certification confirms process was successfully concluded

The imagination driving Australia’s ICT future

* Process for bolstering (substantiating or specifying) trust
— Specifications
* unambiguous description of system behaviour
* can be formal (mathematical model) or informal
— Design
* justification that it meets specification
* mathematical translation of specification or compelling argument
— Implementation
* justification that it is consistent with the design
* mathematical proof or rigorous testing
* by implication must also satisfy specification
— Operation and maintenance
* justification that system is used as per assumptions in specification

* Assurance does not guarantee correctness or security!

The imagination driving Australia’s ICT future

® NICTA
Assurance: Orange Book O

US Department of Defence “Orange Book” [DoD 86]:

* Defines security classes
— D: minimal protection
— C1-2: discretionary access control (DAC)

— B1-B3: mandatory access control (MAC)
— A1: verified design

* Designed for military use

* Systems can be certified to a certain class

— very costly, hence only available for big companies

— most systems only certified C2 (essentially Unix-style security)
* Superseded by Common Criteria

The imagination driving Australia’s ICT future

. . ® NICTA
Assurance: Common Criteria o

Common Criteria for IT Security Evaluation [I1SO/IEC 15408]:

* |SO standard, developed out of Orange Book and other approaches
— US, Canada, UK, Germany, France, Netherlands
— for general use (not just military, not just operating systems)

Unlike Orange Book, doesn't prescribe specific security requirements
— evaluates quality assurance used to ensure requirements are met

Target of evaluation (TOE) evaluated against security target (ST)
— ST is statement of desired security properties

— based on protection profiles (PPs) — generic sets of requirements
* defined by “users” (typically governments)

* Seven evaluation assurance levels (EALS)
— higher levels imply more thorough evaluation (and higher cost)
— not necessarily better security

* Details later

The imagination driving Australia’s ICT future

Formal Verification {Je NICTA

* Process of mathematical proof of security properties
* Mased on a mathematical model of the system

* Two parts:
— proof that model satisfies security requirements
* generally difficult, except for very simple models
— proof that code implements model
* proving theorems showing correspondence
* even harder, feasible only for few 1000 LOC
* hardly ever done

* Note: model checking (static analysis) is not sufficient
— shows presence or absence of certain properties of code
* uninitialilsed variables, array-bounds, null-pointer de-ref.
— does not prove implementation correctness

The imagination driving Australia’s ICT future

* Computer security is complex
— depends on many aspects of computer system

* Policy defines security, mechanisms enforce security

Important to consider:

— what are the assumptions about threats and trustworthiness?
— incorrect assumptions =P no security

* Security is never absolute
— given enough resources, mechanisms can be defeated
— important to understand limitations
— inherent tradeoffs between security and usability

* Human factors are important
— people make mistakes
— people may not understand security impact of actions
— people may be less trustworthy than thought

The imagination driving Australia’s ICT future

* Operating systems security overview
* Security policies

* OS security verification

* Security mechanisms

* Design principles

* OS design for security

The imagination driving Australia’s ICT future

Security Policies: Categories (Je NiCTA

* Discretionary (user-controlled) policies (DAC)
— e.g. A can read B's objects only with A's permission
— user decides about access (at their discretion)
— classical example: Unix permissions

* Mandatory (system-controlled) policies (MAC)
— e.g. certain users cannot ever access certain objects
— Nno user can change these
— focus on restricting information flow

* Role-based policies (RBAC)
— agents can take on specific pre-defined roles
* well-defined set of roles for each agent
* eg normal user, sysadmin, database admin
— access rights depend on role

The imagination driving Australia’s ICT future

Security Policy Models (J® NICTA

* Represent a whole class of security policies

* Most system-wide policies focus on confidentiality
— e.g. military-style multi-level security models

— classical example is Bell-LaPaclula model [BL76]
— most others developed from this

— Orange Book based on this model

* Other models

— Chinese-wall policy focusses on conflict of interest
— Clark-Wilson model focusses on separation of duty

The imagination driving Australia’s ICT future

Bell-LaPadula Model Je NICTA

* Each object a has a security classification L (a)
* Each agent o has a security clearance L (0)

* Classifications and clearances form hierachical security levels
— e.qg. top secret > secret > confidential > unclassified

* Rule 1 (no read up):
— acanreadoonlyifL(a) = L(0)
— standard confidentiality
* Rule 2 (5 Property — no write down)
— acanwriteoonlyifL(a) = L(0)
— prevents Jeakage (accidental of by conspiracy)
— problems:
* logging
* command chain
— need way to de-classify data

The imagination driving Australia’s ICT future

Bell-LaPadula Extensions Je NICTA

* Can combine with discretionary access rights
— read/write permissions on specific objects
— e.g. SELinux

* Can add orthogonal security categories indicating types of data
— restrict access to relevant categories
— Denning's lattice model [Den76]

The imagination driving Australia’s ICT future

Chinese Wall Policy {Je NICTA

* Employed by investment banks to manage conflict of interest
* |dea: Consultant cannot talk to clients' competitors
— single consultant can have multiple concurrent clients
* Define confiict classes (groups of potentially competing clients)
— eg banks, oil companies, insurance companies, OS vendors
* Consultant dealing with client of class A cannot talk to others in A
— but can continue talking to members of other classes
— some data belongs to several conflict classes
* Public information is not restricted
— consultant can read and write public info at any time
— but must observe * property (cannot publish confidential info)

* Example of a dynamic MAC policy
— allowed information flow changes over time
— needs a rule for removing conflicts (after deal is done)

The imagination driving Australia’s ICT future

* Operating systems security overview
* Security policies

* OS security verification

* Security mechanisms

* Design principles

* OS design for security

The imagination driving Australia’s ICT future

Common Criteria Protection Profiles (Je NiCTA

* Controlled Access Protection Profile (CAPP)

— standard OS security, derived from Orange Book C2
— certified up to level EAL3

Single-level Operating System Protection Profile
— superset of CAPP
— certified up to EAL4+

Labeled Security Protection Profile (LSPP)

— mandatory access control for COTS OSes
— similar to Orange Book B1

Role-based Access Control Protection Profile

Multi-level Operating System Protection Profile
— superset of CAPP, LSPP
— certified up to EAL4+

Separation Kernel Protection Profile (SKPP)
— strict partitioning
— certifications aiming for EALG+

The imagination driving Australia’s ICT future

. . ® NICTA
Common Criteria Assurance Levels o

* EAL1: functionally tested
— simple to do, can be done without help from developer

* EALZ2: structurally tested
— functional and interface spec
— black- and white-box testing
— vulnerability analysis

* EALS3: methodically tested and checked
— improved test coverage
— procedures to avoid tampering during development
— highest assurance level achieved for Mac OS X

The imagination driving Australia’s ICT future

. . ® NICTA
Common Criteria Assurance Levels 0

* EAL4: methodically designed, tested and reviewed
— design docs used for testing, avoid tampering during delivery
— independent vulnerability analysis
— highest level feasible on existing product (not developed for CC certific.)

— achieved by main-stream Oses

* Windows 2000: EAL4 in 2003

* SuSe Enterprise Linux: EAL4 in 2005

* Solaris-10 EAL4+ in 2006
— controlled access protection profile (CAPP)
— role-based access control PP

* RedHat Linux EAL4+ in 2007

— they still get broken!
* certification is based on assumptions about environment, etc...
* most use is outside those assumptions
— certification means nothing in such a case
— presumably there were no compromises were assumptions held

The imagination driving Australia’s ICT future

. . ® NICTA
Common Criteria Assurance Levels 0

* EALS: semiformally designed and tested
— formal model of TEO security policy
— semi-formal model of functional spec & high-level design
— semi-formal argument about correspondence
— covert-channel analysis

— IBM z-Series hypervisor EALS in 2003 (partitioning)
— attempted by Mandrake for Linux with French Government support

* EALG: semiformally verified design and tested
— semiformal low-level design
— structured representation of implementation
— modular and layered TOE design
— independent vulnerability analysis
— systematic covert-channel identification
— Green Hills Integrity microkernel presently undergoing EALG+ certification

* separation kernel protection profile

The imagination driving Australia’s ICT future

. . ® NICTA
Common Criteria Assurance Levels O

* EALY: formally verified design and tested
— formal functional spec and high-level design
— formal and semiformal demonstration of correspondence
* between specification and low-level design
— simple TOE
— complete independent confirmation of developer tests
— LynuxWorks claims LynxSecure separation kernel EAL7 “certifiable”

* but not certified
— Green Hills also aiming for EAL7

Note:

* Even EALY relies on testing!
— EALY requires proof of correspondence between formal descriptions
— However, no requirement of formalising implementation
— Hence no requirement for formal proof of implementation correctness

The imagination driving Australia’s ICT future

Formal Verification (J® NICTA

* Based on mathematical model of the system

* Complete verification requires two parts:

— proof that model satisfies requirements of security policies
* typically prove generic properties that actual policies map to
* required by CC EAL5-7

— proof that implementation has same properties as model
* proof of correspondence between model and implementation
* not required by CC even at EAL7
* done by some kernels with very limited functionality
* never done for any gereral-purpose OS!

* Model-checking (static analysis) is incomplete formal verification
— shows presence or absence of certain properties
* eg uninitialised variables, array-bounds overflows
— nevertheless useful for assurance

The imagination driving Australia’s ICT future

* Operating systems security overview
* Security policies

* OS security verification

* Security mechanisms

* Design principles

* OS design for security

The imagination driving Australia’s ICT future

Security Mechanisms (J® NICTA

* Used to implement security policies

* Based on access control
— discretionary access control (DAC)
— mandatory access control (MAC)
— role-based access control (RBAC)

* Access rights
— simple rights
* read, write, execute/invoke, send, receive
— meta rights (DAC only)
* copy

— propagate own rights to another agent
* own

— change rights of an object or agent

The imagination driving Australia’s ICT future

Access Control Matrix {Je NICTA

Objects
Agents S, S, O, O,
wait, signal,
31 terminate send read
read,
wait, signal, execute,
Sz terminate write
wait, signal,
83 receive
S4 control execute write

* Defines each agent's rights on any object
* Note: agents are objects too

The imagination driving Australia’s ICT future

Properties of Access Control Matrix (J® NICTA

* Rows define agents' protection domains (PDs)
* Columns define objects' accessibility

* Dynamic data structure:
— frequent permanent changes (e.g. chmod)
— frequent temporary changes (e.g. setuid)

* Very sparse with many repeated entries
* Impractical to store explicitly

The imagination driving Australia’s ICT future

e NICTA

Issues for Protection System Design

Propagation of rights:
— Can agent grant access to other?

Restriction of rights:
— Can agent propagate subset of own rights?

Revocation of rights:
— Can access, once granted, be revoked?

Amplification of rights:
— Can unprivileged agent perform restricted operations?

Determination of object accessibility
— Which agents have access to particular object?
— Is object accessible at all (garbage collection)?

Determination of agent's protection domain
— Which objects are accessible?

The imagination driving Australia’s ICT future

{Je NICTA

Access Matrix Implementation: ACLs

Represent column-wise: access control list (ALC):

* ACL associated with object
— Propagation: meta right (e.g. owner can chmod)
— Restriction: meta right
— Revocation: meta right
— Amplification: protected-invocation right (e.g. setuid)
— Accessibility: explicit in ACL
— Protection domain: hard (if not impossible) to determine

Usually condensed via domain classes (UNIX, NT groups)
Full ACLs used by Multics, Apollo Domain, Andrew FS, NTFS

Can have negative rights to:
— reduce window of vulnerability
— simplify exclusion from groups

Sometimes implicit (Unix process hierarchy)

Implemented in almost all commercial systems

The imagination driving Australia’s ICT future

£Je NICTA

Access Matrix Implementation: Capabi

Represent row-wise: capabilities:

* Capability list associated with agent

* Each capability confers a certain right to its holder
— Propagation: copy capabilities between agents (how?)
— Restriction: lesser rights require creation of new (derived) caps
— Revocation: requires invalidation of caps from all agents
— Amplification: special invocation capability
— Accessibility: requires inspection of all capability lists (how?)
— Protection domain: explicit in capability list

* Can have negative rights to:
— reduce window of vulnerability
— simplify management of groups of capabilities

* Only successful commercial systems: IBM System/38 / AS400 / i-Series

The imagination driving Australia’s ICT future

Capabilities CJe NICTA

* Main advantage of capabilities is the fine-grained access control:
— easy to provide access to specific agents

* Capability presets prima facie evidence of the right to access
— capability =P object identifier (imples naming)
— capability =0 (set of) access rights
=> any representation must contain object ID and access rights
=> any representation must protect capability from forgery

* How are caps implemented and protected?
— tagged — protected by hardware
— partitioned/segregated — protected by software
— sparse — protected by sparsity (probabilistically secure, like encryption)

The imagination driving Australia’s ICT future

Tagged Capabilities J® NICTA

* Tag bit(s) with every (group of) memory word(s)
— tag identifies capabilities
— capabilities are used and copied like “normal” pointers
— hardware checks permissions when deferencing capability
— modifications turn tags off (convert to plain data)
— Only privileged instructions(kernel) can turn tags on
— Properties:
= propagation easy
= restriction requires kernel to make new capability
= revocation virtually impossible (requires memory scan)
= amplification possible (below)
=> accessibility virtually impossible to determine
=> protection domain difficult to establish

* IBM System/38, AS/400, i-Series, many historical systems

The imagination driving Australia’s ICT future

Partitioned Capabilities (J® NICTA

* System maintains capability list (Clist) with each process
— user code uses indirect references to caps (clist index) CapRef

* c.f. Unix file descriptors User

— System validates access via clist when mapping any page Kerne!

— Properties:
* validation is explicit at map time
* propagation: system call to copy between clients
* restriction: kernel to make new capability

* revocation: kernel to remove cap from clist
— one specific or all

* accessibility: requires scanning all clists
* protection domain: explicitly represented in clist

* Few commercial systems (KeyKOS)
* Many research systems
* Hydra, Mach, EROS, and many others

The imagination driving Australia’s ICT future

Propagating Partitioned Capabilities \J® NICTA

* Capabilities can be included in IPC messages

* sender supplies cap (clist
index) to system call

2 Kkerne looks up cap in sender's
clist

3 kernel inserts caps into
receiver's clist

4 Kkernel replaces sender's clist
index by receiver's and delivers
message

Copy

The imagination driving Australia’s ICT future

e NICTA

Partitioned Capabilities Summary

Secure through protection by kernel
— real caps live in kernel space

Validation at mapping time =P apps use “normal” pointers

Fast validation (clist check is simple, validation cached by MMU)

Propagation requires marshaling and kernel intervention

Reference counting possible to detect unaccessible objects

The imagination driving Australia’s ICT future

L)e NICTA

Sparse Capabilities

* Basic idea similar to encryption
— add bit string to make valid capabilities a very small subset of cap space
— either encrypted object info or password
— secure by infeasibility of exhaustive search of cap space

Chject ID | Access rights Ohbject D Password

1
E(K.C) En c:ryptedl capability QID arcoss password

F #

Dbject 1D Access rights Signatu re

I —

Global object table

The imagination driving Australia’s ICT future

Sparse Capabilities e NICTA

* Sparse caps are user-level objects

— can be passed like other data
* similar to tagged caps, but without hardware support
* validated at mapping time (explicit or implicit)

— good match to user-level servers

* no central authority, no kernel required on most ops
* cannot reference-count objects

* |ssues:
— Full mediation requires extra work
* but doable, see Mungi
* essentially provided user-level cap segregation
— High amplification of leaked data
* problem with convert channels

The imagination driving Australia’s ICT future

e NICTA

* Problem 1: Executing untrusted code
— you downloaded a game from the internet
— how can you be sure it doesn't steal/corrupts your data?

Problem 2: Digital rights management (DRM)
— you own copyrighted material (e.g. entertainment media content)
— you want to let others use it (for a fee)
— how can you prevent them from making unauthorised copies?

You need to confine the program (game, viewer) so it cannot leak

Cannot be done with most protection schemes!
— not with Unix or most other ACL-based schemes
— not with most tagged or sparse capability schemes
— multi-level security has some inherent confinement (but can't do DRM)

Some protection models can confine in principle
— e.g segregated caps system, can instruct system not to accept any
— EROS has formal proof of confinement of a model of the system [SWQ0O]

In practice difficult to achieve due to covert channels

The imagination driving Australia’s ICT future

* Operating systems security overview
* Security policies

* OS security verification

* Security mechanisms

* Design principles

* OS design for security

The imagination driving Australia’s ICT future

Design Principles for Secure OS Je NICTA

* Least privilege (POLA)

* Economy of mechanisms

* Fail-safe defaults

* Complete mediation

* Open design

* Separation of privilege

* Least common mechanisms
* Psychological acceptability

The imagination driving Australia’s ICT future

Least Privilege £Je NICTA

* Also called the principle of least authority (POLA)

* Agent should only be given the minimal rights needed for task
— minimal protection domain
— PD determined by function, not identity
* Unix root is evil
* Aim of role-based access control (RBAC)
— rights added as needed, removed when no longer needed
— violated by all mainstream Oses

* Example: executing web applet
— should not have all of user's privileges, only minimal access
— hard to do with ACL-based systems

The imagination driving Australia’s ICT future

Least Privilege Implications for OS (J® NICTA

* OS kernel executes in privileged mode of hardware
— kernel has unlimited privilege!

* POLA implies keeping kernel code to an absolute minimum
— this means a secure OS must be based on a microkernel!

* Trusted computing base can bypass security

* POLA requires that TCB is minimal
— microkernel plus minimal security manager

The imagination driving Australia’s ICT future

Economy of Mechanisms \J® NICTA

* KISS principle of engineering
— “keep it simple, stupid!”

* Less code/features/stuff =» less to get wrong
— makes it easier to fix if something does go wrong
— complexity is the natural enemy of security

* Also applies to interfaces, interactions, protocols, ...
* Specifically applies to TCB

The imagination driving Australia’s ICT future

Fail-Safe Defaults (Je NicTA

* Default action is no-access
— if action fails, system remains secure
— if security administrator forgets to add rule, system remains secure
— “better safe than sorry”

The imagination driving Australia’s ICT future

Complete Mediation {Je NICTA

* Check every access
— violated in Unix file access:
* access rights checked at open(), then cached
* access remains enabled until close(), even if attributes change
— also implies that any rights propagation must be controlled
* not done with tagged or sparse capability systems

* In practice conflicts with performance!
— caching of buffers, file descriptors etc
— without caching unacceptable performance

* Should at least limit window of opportunity
— e.g. guarantee caches are flushed after some fixed period
— guarantee no cached access after revoking access

The imagination driving Australia’s ICT future

Open Design (J® NICTA

* Security must not depend on secrecy of design or implementation
— TCB must be open to scrutiny
— Security by obscurity is poor security
* not all security/certification agencies seem to understand this

* Note that this doesn't rule out passwords or secret keys
— but their creation requires careful cryptoanalysis

The imagination driving Australia’s ICT future

Separation of Privilege (Je NICTA

* Require a combination of conditions for granting access
— e.g. user is in group wheel and knows the root password
— take-grant model for capability-based protection:
* sender needs grant right on capability
* receiver needs take right to accept capability

* Closely related to least privilege

The imagination driving Australia’s ICT future

. ® NICTA
Least Common Mechanisms S

* Avoid sharing mechanisms
— shared mechanism =P shared channel
— potential covert channel

* Inherent conflict with other design imperatives
— simplicity =» shared mechanisms

The imagination driving Australia’s ICT future

Psychological Acceptability (J® NICTA

* Security mechanisms should not add to difficulty of use
— hide complexity introduced by security mechanisms
— ensure ease of installation, configurations, use
— systems are used by humans!

* Inherently problematic:
— security inherently inhibits ease of use
— idea is to minimise impact

* Security-usability tradeoff is to a degree unavoidable

The imagination driving Australia’s ICT future

* Operating systems security overview
* Security policies

* OS security verification

* Security mechanisms

* Design principles

* OS design for security

The imagination driving Australia’s ICT future

OS Design for Security

L)e NICTA

Minimize kernel code

kernel = code that executes in privileged mode

kernel can bypass any security

kernel is inherently part of TCB

kernel can only be verified as a whole (not in components)
* it's hard enough to verify a minimal kernel

How?

generic mechanisms (economy of mechanisms)
no policies, only mechanisms
mechanisms as simple as possible
only code that must be privileged in order to support secure systems
free of covert channels:
* no global names, absolute time

Formally specify API

The imagination driving Australia’s ICT future

L)e NICTA

OS Design for Security

Minimize mandatory TCB
— unless formally verified, TCB must be assumed imperfect
— the smaller, the fewer defects
— POLA requires, economy of mechanisms leads to minimal TCB

Ensure TCB is well defined and understood
— make security policy explicit
— make granting of authority explilcit

Flexibility to support various uses
— make authority delgatable
— ensure mechanisms allow high-performance implementation

* Design for verifiability
— minimize implementation complexity

The imagination driving Australia’s ICT future

Example: selL4 (Je NICTA

* High-security version of L4 microkernel API
— all authority granted by capabilities
— only four system calls: read, write, create, derive

— kernel memory explicitly managed by user-level resource manager
— 7,000-10,000 lines of kernel code

* Semi-formal API spec in Haskell
— easily formalised in theorem prover
— machine-checked proofs of security properties
— designed for formal verification, to be finished mid-2008

The imagination driving Australia’s ICT future

Kernel Prototyping in Haskell {J® NICTA

* Model the kernel in detail

Jhs
* Literate Haskell to model

— Pure functional programming
language IS?_%:_IG LaTeX GHC

— Embedded documentation ¢

— Close to Isabelle/HOL

- Formalizgd Haskell beco.mes I;z)gdnaal Ptlfo(%gnt%e
intermediate representation for
refinement proof ¢

* Executable -

_ : _ : User-level
Supports running user-level ¢ Simulator
code

User
GCC —>» App

The imagination driving Australia’s ICT future

e NICTA

Simulation of User-Level Execution

* Simulator for user-level ISA

.C .C .Ihs .Ihs

— M5 Alpha simulator N 4 N 4

— Locally-developed ARMv6
simulator GCC GHC

- QEMU ¢
* Executes compiled user-level v

binaries ARMYS | S avoRoct
* Sends events to the Haskell Binary ave/ =08

kernel Event

* Combination allows running STUEiy <!_oad/Store IS

complete boot image JLB Access
* Port system components before
kernel implementation is
complete

The imagination driving Australia’s ICT future

L4.verified: Formal Correctness Proof {J® NICTA

D 5 5
seL4 API (semi-formal) J Requirements

1 I

7]

[GE—

[Refined model (1) }
- * Prove correspon-
dence of code and
o specification
- * Refinement proofs in
[Refined model (n)] Isabelle/HOL
[C and assembler code I HW }
__J

The imagination driving Australia’s ICT future

Thank you!

The imagination driving Australia’s ICT future

