
© 2006 Open Kernel Labs. All rights reserved. This presentation has been prepared by Open Kernel Labs (OK). It contains certain proprietary and confidential information about
OK’s core competencies, personnel, and product offerings. This presentation is only for the purpose of evaluating OK’s product offerings, or its role as a strategic partner or
services provider. OK does not authorize its dissemination in whole or in part to any unauthorized parties, potential partners or competitors. We appreciate your consideration in
this matter.

Gernot Heiser

Founder and CTO, Open Kernel Labs
Professor of Operating Systems, UNSW
Program Leader, NICTA

Next-Generation
Embedded Operating Systems

14 May 2007

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 2

Embedded Systems are Everywhere

Let's think about the implications...

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 3

Lessons from Desktop Systems

• They crash
• They get cracked
• They get infected

Desktop Computers Suck

How about embedded systems?

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 4

Wireless Everywhere!

• Bank accounts
Is someone monitoring your financial transactions?
Is someone taking money out of your account?

• Automobiles
Is someone changing your engine settings?
Is someone manipulating your breaks?

• Health cards
Is someone accessing your medical history?
Is someone changing your medication?

• Your home
Is someone watching you at home?
Is someone entering while you are away?

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 5

Computer Unreliability — Why?

• Complexity is the arch-enemy of reliability
Complex systems are impossible to understand completely
Complex systems are faulty

• Software systems are incredibly complex
Smartphones have 5-7 M lines of code (LOC)
Cars contain Gigabytes of software
Future systems will be even more complex

• Software is buggy
Good-quality software has about 1 bug per 1,000 LOC
Bug count grows super-linearly in code size
Systems have thousands and thousands of bugs

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 6

Reliability, Security, Safety, Trustworthiness...

• Reliability is key!
unreliable systems are most likely not secure
unreliable systems are most likely not safe
unreliable systems are most definitely not trustworthy!

• Reliability is a system challenge
permeates all layers of a system
requires support from reliable/trustworthy mechanisms

• Reliability is an operating-system challenge
If the OS isn't reliable, the rest of the system cannot be
The OS must provide the mechanisms for desig for reliability

• The OS must be designed for providing and supporting reliability

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 7

What Can We Do To Combat Unreliability?

• Componentised software
Break system into components
Encapsulate implementation
Communication via interfaces
Can achieve fault containment

• Requires reliable base
Ensures encapsulation
Guarantees interfaces
Provides communication

• This is the trusted computing base (TCB)
Def: Part of the system that can circumvent security

• Reliability requires the TCB to be trustworthy
How can we ensure its correctness?

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 10

TCB Reliability — Size is Key!

• Without a trustworthy TCB we cannot have a reliable system
• TCB must be correct!
• How can the TCB be made correct?
• how can any software be made correct?

• Modularity is key
partition problem into mangeable bits

• Formal methods (mathematical proof)
ultimate guarantee
scales only to 1000s LOC

• Testing
exhaustive testing only scales to 100s LOC
non-exhaustive testing can show the
presence, not the absence of bugs

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 11

Kernel Size is Key!

• Kernel: Code that executes in privileged mode
always part of the TCB

• Kernel verification cannot be subdivided
all kernel code is privileged
there is no protection against misbehaving kernel code

• Kernel must be very small
small enough to be tractable by formal methods
must have absolutely minimal functionality

• Kernel must be a microkernel!
only contain code that must execute in privileged mode
everything else at user level

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 12

What Is a Microkernel?

• Small kernel providing core functionality
➔ no other code running in privileged mode
➔ provide mechanisms for building arbitrary systems on top

• OS services provided by user-level servers

• Applications communicate with servers by message-passing IPC

Monolithic OS Microkernel OS

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 15

Reliable Systems — How?

• Need a high-performance microkernel
This exists: OKL4

• Need proof it provides right mechanisms
can support secure systems (encapsulation etc)
NICTA project seL4

• Need proof its implementation is correct
implementation matches specification
NICTA project L4.verified

• Need credible timing model
actual worst-case latencies, based on sound methodology
NICTA project Potoroo
Need software-engineering infrastructure

- support for building large systems on microkernel
- NICTA project CAmkES

Open Kernel Labs, Inc. © 2006© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior

authorization.
16

seL4 Project: High-Security Microkernel API

• Need flexible and
efficient mechanism to
authorise
communication
between processes

Microkernel (OKL4)

Supervisory OS
(Iguana)

TCP/IP
Stack

File
System

Network
Driver

Disk
Driver

Application Application

Application

Privileged
mode

User mode

• Similarly, need full
control over system
resources

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 17

• Aims:
➔ API suitable for highly secure systems (military, banking etc)
➔ Complete control over communication and system resources
➔ Proofs of security properties (Common Criteria)
➔ Suitable for formal verification of implementation

seL4 Project

• Status:
➔ Semi-formal specification in Haskell
➔ “Executable spec”: Haskell implementation plus ISA simulator
➔ Can port application code before kernel implementation available
➔ C kernel prototype under evaluation
➔ Initial proofs of security properties
➔ To be completed by the end of the year

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 19

• Aims:
➔ API suitable for highly secure systems (military, banking etc)
➔ Complete control over communication and system resources
➔ Proofs of security properties (Common Criteria)
➔ Suitable for formal verification of implementation

L4.Verified Project

• Status:
➔ Semi-formal specification in Haskell
➔ “Executable spec”: Haskell implementation plus ISA simulator
➔ Can port application code before kernel implementation available
➔ C kernel prototype under evaluation
➔ Initial proofs of security properties
➔ To be completed by the end of the year

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 22

• Methodology:
➔ Real measurements of execution times at basic-block level
 ➔ need not rely on accurate timing models of processors
➔ Static analysis to determine whether worst case was observed
 ➔ also reduces pessimism (exclude impossible combinations)

Potoroo Project

• Status:
➔ Commenced April 2004
➔ Prototype tools analyse actual kernel code
➔ Static analysis in progress
➔ To be completed by July 2008

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 23

• Software-Engineering
framework for L4

• highly modular
systems

• components encap-
sulated by kernel

• Designed for
embedded systems

• very lightweight

• no overhead for
unused features
(dynamic comp.)

CamkES Project: Component Architecture

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 24

• Core system exists
➔ static components, configured at system build time
➔ connectors as first-class objects
➔ architecture definition language and tools
➔ being introduced to production L4 environment

• Dynamic system under development
➔ run-time loading, linking, unloading of components
➔ to be completed by September 2007

• Next phase in planning
➔ model-driven development
➔ non-functional requirements (real-time, power)

CamkES Project Status

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 25

• Need to be ultra-reliable
➔ based on microkernels
➔ provably-secure mechanisms
➔ provably-correct implementation
➔ credible timing models

• Need to be highly componentised
➔ components protected by microkernel address spaces
➔ can isolate faults, support run-time upgrades
➔ can prove correctness of components, or at least confinement of faults

Next-Generation Embedded Operating Systems

• NICTA/OK Partnership will deliver this
➔ core technology OKL4 already on market and deployed on products
➔ research agenda for next generation completed next year
➔ commercial availability within 2-3 years

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Gernot Heiser
Founder and CTO

Open Kernel Labs
t +61 28306 0550
gernot@ok-labs.com

