Be open. Be safe.

Next-Generation
Embedded Operating Systems

Gernot Heiser

Founder and CTO, Open Kernel Labs
Professor of Operating Systems, UNSW
Program Leader, NICTA

14 May 2007

© 2006 Open Kernel Labs. All rights reserved. This presentation has been prepared by Open Kernel Labs (OK). It contains certain proprietary and confidential information about
OK'’s core competencies, personnel, and product offerings. This presentation is only for the purpose of evaluating OK’s product offerings, or its role as a strategic partner or
services provider. OK does not authorize its dissemination in whole or in part to any unauthorized parties, potential partners or competitors. We appreciate your consideration in
this matter.

Open Kernel Labs,

Be open. Be safe.

Embedded Systems are Everywhere

Let's think about the implications...

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs,

Be open. Be safe.

Lessons from Desktop Systems

Desktop Computers Suck

e Th h o
e Cras An exception 06 has occured at 0028:C11B3ADC in VXD DiskTSD(03) +

00001660. This was called from 0028:C11B40C8 in WxD voltrack(04) +
00000000, It may be possible to continue normally.

 They get cracked e e

* Press CTRL+ALT+RESET to restart your computer. You will
lose any unsaved information in all applications.

. They get infected Press any key to continue

How about embedded systems?

Open Kernel Labs,

Be open. Be safe.

Wireless Everywhere!

Bank accounts
— Is someone monitoring your financial transactions?
— |s someone taking money out of your account?
Automobiles
— |Is someone changing your engine settings?
— Is someone manipulating your breaks?
Health cards
— |s someone accessing your medical history?
— Is someone changing your medication?
Your home
— Is someone watching you at home?
— |Is someone entering while you are away?

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs,

Be open. Be safe.

Computer Unreliability — Why? |

« Complexity is the arch-enemy of reliability
— Complex systems are impossible to understand completely
— Complex systems are faulty

« Software systems are incredibly complex
— Smartphones have 5-7 M lines of code (LOC)
— Cars contain Gigabytes of software
— Future systems will be even more complex

« Software is buggy
— Good-quality software has about 1 bug per 1,000 LOC
— Bug count grows super-linearly in code size
— Systems have thousands and thousands of bugs

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Reliability, Security, Safety, Trustworthiness...

Reliability is key!
— unreliable systems are most likely not secure
— unreliable systems are most likely not safe
— unreliable systems are most definitely not trustworthy!

Reliability is a system challenge
— permeates all layers of a system
- requires support from reliable/trustworthy mechanisms

Reliability is an operating-system challenge
— If the OS isn't reliable, the rest of the system cannot be
— The OS must provide the mechanisms for desig for reliability

The OS must be designed for providing and supporting reliability

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs,

Be open. Be safe.

What Can We Do To Combat Unreliability?

Application built with
components

« Componentised software e componen
— Break system into components - -

— Encapsulate implementation

OLE Structured

i i i I rf Storage
2 Commurlucatlon via nte.aces
— Can achieve fault containment
 Requires reliable base i e B
— Ensures encapsulation EEE 5 5 EEE

— @Guarantees interfaces
— Provides communication

« This is the frusted computing base (TCB)
- Def: Part of the system that can circumvent security

« Reliability requires the TCB to be frustworthy
— How can we ensure its correctness?

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Be open. Be safe.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Be open. Be safe.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs,

TCB Reliability — Size is Key!

« Without a frustworthy TCB we cannot have a reliable system
« TCB must be correct!

 How can the TCB be made correct?

« how can any software be made correct?
» Testing

— exhaustive testing only scales to 100s LOC

— non-exhaustive testing can show the
presence, not the absence of bugs

* Formal methods (mathematical proof)
— ultimate guarantee
— scales only to 1000s LOC

* Modularity is key
- partition problem into mangeable bits

10
© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs,

Be open. Be safe.

Kernel Size is Key!

« Kernel: Code that executes in privileged mode
— always part of the TCB

 Kernel verification cannot be subdivided

- all kernel code is privileged

— there is no protection against misbehaving kernel code
* Kernel must be very small

— small enough to be tractable by formal methods

— must have absolutely minimal functionality
« Kernel must be a microkernel!

— only contain code that must execute in privileged mode
— everything else at user level

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs,

Be open. Be safe.

What Is a Microkernel?

« Small kernel providing core functionality
=2 no other code running in privileged mode
=2 provide mechanisms for building arbitrary systems on top

« OS services provided by user-level servers

« Applications communicate with servers by message-passing IPC

ication | syscall
' user
mode
VFS
IPC, File System Device Fi
Server
Scheduler, Virtual Memory
kernel
Device Drivers, Dispatcher,... mode IPC, Virtual Memory

Hardware Hardware

Monolithic OS Microkernel OS

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

12

Be open. Be safe.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Be open. Be safe.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs,

Be open. Be safe.

Reliable Systems — How?

* Need a high-performance microkernel
- This exists: OKL4
* Need proof it provides right mechanisms
—» can support secure systems (encapsulation etc)
— NICTA project seL4
* Need proof its implementation is correct
— implementation matches specification
— NICTA project L4.verified
 Need credible timing model
—> actual worst-case latencies, based on sound methodology
— NICTA project Potoroo
- Need software-engineering infrastructure

- support for building large systems on microkernel
- NICTA project CAmMKES

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs,

selL4 Project: High-Security Microkernel API

 Need flexible and
efficient mechanism to
authorise
communication
between processes

Disk File TCP/IP Network
Driver System Stack Driver

o Similarly, need full
control over system
resources

User mode

Privileged
mode [Microkernel (OKL4)]

Open Kernel Labs, Inc. © 2006© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior 16

authorization.

: Open Kernel Labs_
SeL4 PrOJeCt Be open. Be safe.

 Aims:
=>» API suitable for highly secure systems (military, banking etc)
=2 Complete control over communication and system resources
=2 Proofs of security properties (Common Criteria)
=>» Suitable for formal verification of implementation

« Status:
=>» Semi-formal specification in Haskell
=>» “Executable spec”: Haskell implementation plus ISA simulator
=>» Can port application code before kernel implementation available
=2 C kernel prototype under evaluation
=2 Initial proofs of security properties
—>» To be completed by the end of the year

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Be open. Be safe.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs,

L4 .Verified Project Be o, Be safe

 Aims:
=>» API suitable for highly secure systems (military, banking etc)
=2 Complete control over communication and system resources
=2 Proofs of security properties (Common Criteria)
=>» Suitable for formal verification of implementation

« Status:
=>» Semi-formal specification in Haskell
=>» “Executable spec”: Haskell implementation plus ISA simulator
=>» Can port application code before kernel implementation available
=2 C kernel prototype under evaluation
=2 Initial proofs of security properties
—>» To be completed by the end of the year

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Be open. Be safe.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Be open. Be safe.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs,

Be open. Be safe.

Potoroo Project

* Methodology:
=2 Real measurements of execution times at basic-block level
=2>need not rely on accurate timing models of processors
> Static analysis to determine whether worst case was observed
=2 also reduces pessimism (exclude impossible combinations)

o Status:

=>» Commenced April 2004
=2 Prototype tools analyse actual kernel code

—=> Static analysis in progress
=2 To be completed by July 2008

22
© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs.
CamkES Project: Component Architecture

« Software-Engineering
framework for L4

« highly modular
systems

- Applications

« components encap-
sulated by kernel

« Designed for
embedded systems

CAmMKES System Components
(File System, Drivers, Network Stack)

« very lightweight CAMKES Runtime
CAmMKES Core Runtime

« no overhead for
unused features
(dynamic comp.)

RTOS Layer

Reconfigurable Hardware Layer
Hardware

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs,

CamkES Project Status

« Core system exists
—=» static components, configured at system build time
=>» connectors as first-class objects

=> architecture definition language and tools
=» being introduced to production L4 environment

* Dynamic system under development
=» run-time loading, linking, unloading of components
=>» to be completed by September 2007

* Next phase in planning

=2 model-driven development
=2 non-functional requirements (real-time, power)

24

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Open Kernel Labs,

Be open. Be safe.

Next-Generation Embedded Operating Systems

* Need to be ultra-reliable
=» based on microkernels
=» provably-secure mechanisms
=> provably-correct implementation
—=> credible timing models

* Need to be highly componentised
=>» components protected by microkernel address spaces

= can isolate faults, support run-time upgrades
=> can prove correctness of components, or at least confinement of faults

* NICTA/OK Partnership will deliver this
=>» core technology OKL4 already on market and deployed on products
=» research agenda for next generation completed next year
=>» commercial availability within 2-3 years

25

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Be open. Be safe.

Gernot Heiser
Founder and CTO

Open Kernel Labs
t +61 28306 0550
gernot@ok-labs.com

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

