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Embedded Systems are Everywhere

Let's think about the implications...
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Lessons from Desktop Systems

• They crash
• They get cracked
• They get infected

Desktop Computers Suck

How about embedded systems?
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Wireless Everywhere!

• Bank accounts
Is someone monitoring your financial transactions?
Is someone taking money out of your account?

• Automobiles
Is someone changing your engine settings?
Is someone manipulating your breaks?

• Health cards
Is someone accessing your medical history?
Is someone changing your medication?

• Your home
Is someone watching you at home?
Is someone entering while you are away?
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Computer Unreliability — Why?

• Complexity is the arch-enemy of reliability
Complex systems are impossible to understand completely
Complex systems are faulty

• Software systems are incredibly complex
Smartphones have 5-7 M lines of code (LOC)
Cars contain Gigabytes of software
Future systems will be even more complex

• Software is buggy
Good-quality software has about 1 bug per 1,000 LOC
Bug count grows super-linearly in code size
Systems have thousands and thousands of bugs
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Reliability, Security, Safety, Trustworthiness...

• Reliability is key! 
unreliable systems are most likely not secure
unreliable systems are most likely not safe
unreliable systems are most definitely not trustworthy!

• Reliability is a system challenge
permeates all layers of a system
requires support from reliable/trustworthy mechanisms

• Reliability is an operating-system challenge
If the OS isn't reliable, the rest of the system cannot be
The OS must provide the mechanisms for desig for reliability

• The OS must be designed for providing and supporting reliability
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What Can We Do To Combat Unreliability?

• Componentised software
Break system into components
Encapsulate implementation
Communication via interfaces
Can achieve fault containment

• Requires reliable base
Ensures encapsulation
Guarantees interfaces
Provides communication

• This is the trusted computing base (TCB)
Def: Part of the system that can circumvent security

• Reliability requires the TCB to be trustworthy
How can we ensure its correctness?
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TCB Reliability — Size is Key!

• Without a trustworthy TCB we cannot have a reliable system
• TCB must be correct!
• How can the TCB be made correct?
• how can any software be made correct?

• Modularity is key
partition problem into mangeable bits

• Formal methods (mathematical proof)
ultimate guarantee
scales only to 1000s LOC

• Testing
exhaustive testing only scales to 100s LOC
non-exhaustive testing can show the 
presence, not the absence of bugs
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Kernel Size is Key!

• Kernel: Code that executes in privileged mode
always part of the TCB

• Kernel verification cannot be subdivided
all kernel code is privileged
there is no protection against misbehaving kernel code

• Kernel must be very small
small enough to be tractable by formal methods
must have absolutely minimal functionality

• Kernel must be a microkernel!
only contain code that must execute in privileged mode
everything else at user level
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What Is a Microkernel?

• Small kernel providing core functionality
➔ no other code running in privileged mode
➔ provide mechanisms for building arbitrary systems on top

• OS services provided by user-level servers

• Applications communicate with servers by message-passing IPC

Monolithic OS Microkernel OS
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Reliable Systems — How?

• Need a high-performance microkernel
This exists: OKL4

• Need proof it provides right mechanisms
can support secure systems (encapsulation etc)
NICTA project seL4

• Need proof its implementation is correct
implementation matches specification
NICTA project L4.verified

• Need credible timing model
actual worst-case latencies, based on sound methodology
NICTA project Potoroo
Need software-engineering infrastructure

- support for building large systems on microkernel
- NICTA project CAmkES
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seL4 Project: High-Security Microkernel API

• Need flexible and 
efficient mechanism to 
authorise 
communication 
between processes

Microkernel (OKL4)

Supervisory OS
(Iguana)

TCP/IP
Stack

File
System

Network
Driver

Disk
Driver

Application Application

Application

Privileged 
mode

User mode

• Similarly, need full 
control over system 
resources
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• Aims:
➔ API suitable for highly secure systems (military, banking etc)
➔ Complete control over communication and system resources
➔ Proofs of security properties (Common Criteria)
➔ Suitable for formal verification of implementation

seL4 Project

• Status:
➔ Semi-formal specification in Haskell
➔ “Executable spec”: Haskell implementation plus ISA simulator
➔ Can port application code before kernel implementation available
➔ C kernel prototype under evaluation
➔ Initial proofs of security properties
➔ To be completed by the end of the year



© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 



© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 19

• Aims:
➔ API suitable for highly secure systems (military, banking etc)
➔ Complete control over communication and system resources
➔ Proofs of security properties (Common Criteria)
➔ Suitable for formal verification of implementation

L4.Verified Project

• Status:
➔ Semi-formal specification in Haskell
➔ “Executable spec”: Haskell implementation plus ISA simulator
➔ Can port application code before kernel implementation available
➔ C kernel prototype under evaluation
➔ Initial proofs of security properties
➔ To be completed by the end of the year
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• Methodology:
➔ Real measurements of execution times at basic-block level
 ➔ need not rely on accurate timing models of processors
➔ Static analysis to determine whether worst case was observed
 ➔ also reduces pessimism (exclude impossible combinations)

Potoroo Project

• Status:
➔ Commenced April 2004
➔ Prototype tools analyse actual kernel code
➔ Static analysis in progress
➔ To be completed by July 2008
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• Software-Engineering 
framework for L4

• highly modular 
systems

• components encap-
sulated by kernel

• Designed for 
embedded systems

• very lightweight

• no overhead for 
unused features 
(dynamic comp.)

CamkES Project: Component Architecture
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• Core system exists
➔ static components, configured at system build time
➔ connectors as first-class objects
➔ architecture definition language and tools
➔ being introduced to production L4 environment

• Dynamic system under development
➔ run-time loading, linking, unloading of components
➔ to be completed by September 2007

• Next phase in planning
➔ model-driven development
➔ non-functional requirements (real-time, power)

CamkES Project Status
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• Need to be ultra-reliable
➔ based on microkernels
➔ provably-secure mechanisms
➔ provably-correct implementation
➔ credible timing models

• Need to be highly componentised
➔ components protected by microkernel address spaces
➔ can isolate faults, support run-time upgrades
➔ can prove correctness of components, or at least confinement of faults

Next-Generation Embedded Operating Systems

• NICTA/OK Partnership will deliver this
➔ core technology OKL4 already on market and deployed on products
➔ research agenda for next generation completed next year
➔ commercial availability within 2-3 years
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