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Open Kernel Labs,

Be open. Be safe.

Embedded Systems are Everywhere

Let's think about the implications...
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Lessons from Desktop Systems

Desktop Computers Suck

e Th h o
e Cras An exception 06 has occured at 0028:C11B3ADC in VXD DiskTSD(03) +

00001660. This was called from 0028:C11B40C8 in WxD voltrack(04) +
00000000, It may be possible to continue normally.

 They get cracked e e

* Press CTRL+ALT+RESET to restart your computer. You will
lose any unsaved information in all applications.

. They get infected Press any key to continue

How about embedded systems?




Open Kernel Labs,

Be open. Be safe.

Wireless Everywhere!

Bank accounts
— Is someone monitoring your financial transactions?
— |s someone taking money out of your account?
Automobiles
— |Is someone changing your engine settings?
— Is someone manipulating your breaks?
Health cards
— |s someone accessing your medical history?
— Is someone changing your medication?
Your home
— Is someone watching you at home?
— |Is someone entering while you are away?
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Be open. Be safe.

Computer Unreliability — Why? |

« Complexity is the arch-enemy of reliability
— Complex systems are impossible to understand completely
— Complex systems are faulty

« Software systems are incredibly complex
— Smartphones have 5-7 M lines of code (LOC)
— Cars contain Gigabytes of software
— Future systems will be even more complex

« Software is buggy
— Good-quality software has about 1 bug per 1,000 LOC
— Bug count grows super-linearly in code size
— Systems have thousands and thousands of bugs
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Reliability, Security, Safety, Trustworthiness...

Reliability is key!
— unreliable systems are most likely not secure
— unreliable systems are most likely not safe
— unreliable systems are most definitely not trustworthy!

Reliability is a system challenge
— permeates all layers of a system
- requires support from reliable/trustworthy mechanisms

Reliability is an operating-system challenge
— If the OS isn't reliable, the rest of the system cannot be
— The OS must provide the mechanisms for desig for reliability

The OS must be designed for providing and supporting reliability
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Open Kernel Labs,

Be open. Be safe.

What Can We Do To Combat Unreliability?

Application built with
components

« Componentised software e componen
— Break system into components - -

— Encapsulate implementation

OLE Structured

i i i I rf Storage
2 Commurlucatlon via nte.aces
— Can achieve fault containment
 Requires reliable base i e B
— Ensures encapsulation EEE 5 5 EEE

— @Guarantees interfaces
— Provides communication

« This is the frusted computing base (TCB)
- Def: Part of the system that can circumvent security

« Reliability requires the TCB to be frustworthy
— How can we ensure its correctness?
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Open Kernel Labs,

TCB Reliability — Size is Key!

« Without a frustworthy TCB we cannot have a reliable system
« TCB must be correct!

 How can the TCB be made correct?

« how can any software be made correct?
» Testing

— exhaustive testing only scales to 100s LOC

— non-exhaustive testing can show the
presence, not the absence of bugs

* Formal methods (mathematical proof)
— ultimate guarantee
— scales only to 1000s LOC

* Modularity is key
- partition problem into mangeable bits
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Kernel Size is Key!

« Kernel: Code that executes in privileged mode
— always part of the TCB

 Kernel verification cannot be subdivided

- all kernel code is privileged

— there is no protection against misbehaving kernel code
* Kernel must be very small

— small enough to be tractable by formal methods

— must have absolutely minimal functionality
« Kernel must be a microkernel!

— only contain code that must execute in privileged mode
— everything else at user level
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What Is a Microkernel?

« Small kernel providing core functionality
=2 no other code running in privileged mode
=2 provide mechanisms for building arbitrary systems on top

« OS services provided by user-level servers

« Applications communicate with servers by message-passing IPC

ication | syscall
' user
mode
VFS
IPC, File System Device Fi
Server
Scheduler, Virtual Memory
kernel
Device Drivers, Dispatcher,... mode IPC, Virtual Memory

Hardware Hardware

Monolithic OS Microkernel OS

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

12



Be open. Be safe.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Be open. Be safe.

© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Open Kernel Labs,
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Reliable Systems — How?

* Need a high-performance microkernel
- This exists: OKL4
* Need proof it provides right mechanisms
—» can support secure systems (encapsulation etc)
— NICTA project seL4
* Need proof its implementation is correct
— implementation matches specification
— NICTA project L4.verified
 Need credible timing model
—> actual worst-case latencies, based on sound methodology
— NICTA project Potoroo
- Need software-engineering infrastructure

- support for building large systems on microkernel
- NICTA project CAmMKES
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Open Kernel Labs,

selL4 Project: High-Security Microkernel API

 Need flexible and
efficient mechanism to
authorise
communication
between processes

Disk File TCP/IP Network
Driver System Stack Driver

o Similarly, need full
control over system
resources

User mode

Privileged
mode [ Microkernel (OKL4) ]
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: Open Kernel Labs_
SeL4 PrOJeCt Be open. Be safe.

 Aims:
=>» API suitable for highly secure systems (military, banking etc)
=2 Complete control over communication and system resources
=2 Proofs of security properties (Common Criteria)
=>» Suitable for formal verification of implementation

« Status:
=>» Semi-formal specification in Haskell
=>» “Executable spec”: Haskell implementation plus ISA simulator
=>» Can port application code before kernel implementation available
=2 C kernel prototype under evaluation
=2 Initial proofs of security properties
—>» To be completed by the end of the year
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L4 .Verified Project Be o, Be safe

 Aims:
=>» API suitable for highly secure systems (military, banking etc)
=2 Complete control over communication and system resources
=2 Proofs of security properties (Common Criteria)
=>» Suitable for formal verification of implementation

« Status:
=>» Semi-formal specification in Haskell
=>» “Executable spec”: Haskell implementation plus ISA simulator
=>» Can port application code before kernel implementation available
=2 C kernel prototype under evaluation
=2 Initial proofs of security properties
—>» To be completed by the end of the year
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Potoroo Project

* Methodology:
=2 Real measurements of execution times at basic-block level
=2>need not rely on accurate timing models of processors
> Static analysis to determine whether worst case was observed
=2 also reduces pessimism (exclude impossible combinations)

o Status:

=>» Commenced April 2004
=2 Prototype tools analyse actual kernel code

—=> Static analysis in progress
=2 To be completed by July 2008

22
© 2006 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.



Open Kernel Labs.
CamkES Project: Component Architecture

« Software-Engineering
framework for L4

« highly modular
systems

- Applications

« components encap-
sulated by kernel

« Designed for
embedded systems

CAmMKES System Components
(File System, Drivers, Network Stack)

« very lightweight CAMKES Runtime
CAmMKES Core Runtime

« no overhead for
unused features
(dynamic comp.)

RTOS Layer

Reconfigurable Hardware Layer
Hardware
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CamkES Project Status

« Core system exists
—=» static components, configured at system build time
=>» connectors as first-class objects

=> architecture definition language and tools
=» being introduced to production L4 environment

* Dynamic system under development
=» run-time loading, linking, unloading of components
=>» to be completed by September 2007

* Next phase in planning

=2 model-driven development
=2 non-functional requirements (real-time, power)
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Next-Generation Embedded Operating Systems

* Need to be ultra-reliable
=» based on microkernels
=» provably-secure mechanisms
=> provably-correct implementation
—=> credible timing models

* Need to be highly componentised
=>» components protected by microkernel address spaces

= can isolate faults, support run-time upgrades
=> can prove correctness of components, or at least confinement of faults

* NICTA/OK Partnership will deliver this
=>» core technology OKL4 already on market and deployed on products
=» research agenda for next generation completed next year
=>» commercial availability within 2-3 years
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