Safe and Reliable Embedded
Systems

Gernot Heiser

Department of State and
Regional Development

Australian Government

THE UNIVERSITY OF NEW SOUTH WALES

% 5 THE AUSTRALIAN NATIONAL UNIVERSITY First for Business
Department of Communications,
Information Technology and the Arts S @
gy W&;’, :é?, The University of Sydney a A @”J UGNI\’\i/EgS‘\tI'I; W B}F'%ldsgliﬁ;;
Australian Research Council ThePsceToBe DEwmumor Queensiand SR e v

NICTA Partners

Modern Embedded Systems

 Ubiquitous
- dozens per person, part of everyday life

* Increasinly dependent on correct operation

- security of data

e protection of personal information

e protection of valuable media content
- device safety

e faulty devices can injure or Kill

e faulty devices can interfere with wireless networks
- device reliability

e annoyance

e cost to reputation, cost of recalls

Embedded Systems Challenges

Embedded-systems functionality is exploding

Software complexity is growing strongly

- millions of lines of code
- gigabytes of embedded software

Complexity is the enemy of reliability
- trustworthiness becomes harder to achieve

Many embedded systems become open
- user-installed untrusted software

Faults require remote software upgrades
- Increased security problems

Software cost requires component reuse across domains
- especially OS software, comms stacks, GUls etc

Problems with Existing Assurance

 Many domain-specific standards
- Impedes component re-use

General standard (Common Criteria) only security-

focussed
- information flow, not reliability & safety

Lack modularity

- mostly certify systems, not components
- doesn't scale to many millions of lines of code

* Focus on inputs, not outputs of development
- concern with process and history, not semantics

Assurance gap
- prove properties of models, not code

Scalable Approach to Trustworthiness

e Small trusted computing base (TCB)
- based on small, high-assurance operating system
- prove correctness of TCB (i.e. its code)
— prove once, use in arbitrary domain

e Design by composition
- component behaviour restricted by TCB — provably!
- can make guarantees about fault containment
- can formally reason about composition

- can prove correctness of critical components in isolation

- re-use components and their verification
e reduce cost of assurance
* increase level of assurance

o Standards need to recognise and support this!

Requirements for Standards

 Domain-independent assurance
- assure functionality, no matter what it is
- assure all critical functionality, not just security

* Assurance of code
- assure functionality, not process

* Real proof
- testing proves presence, not absence of faults

e Assure components and their compositions
- make assurance scalable and re-usable

