
Safe and Reliable Embedded 
Systems
Gernot Heiser



Modern Embedded Systems
• Ubiquitous
– dozens per person, part of everyday life

• Increasinly dependent on correct operation
– security of data
•protection of personal information
•protection of valuable media content

– device safety
• faulty devices can injure or kill
• faulty devices can interfere with wireless networks

– device reliability
•annoyance
•cost to reputation, cost of recalls



Embedded Systems Challenges
• Embedded-systems functionality is exploding
• Software complexity is growing strongly
– millions of lines of code
– gigabytes of embedded software

• Complexity is the enemy of reliability
– trustworthiness becomes harder to achieve

• Many embedded systems become open
– user-installed untrusted software

• Faults require remote software upgrades
– increased security problems

• Software cost requires component reuse across domains
– especially OS software, comms stacks, GUIs etc



Problems with Existing Assurance
• Many domain-specific standards
– impedes component re-use

• General standard (Common Criteria) only security-
focussed
– information flow, not reliability & safety

• Lack modularity
– mostly certify systems, not components
– doesn't scale to many millions of lines of code

• Focus on inputs, not outputs of development
– concern with process and history, not semantics

• Assurance gap
– prove properties of models, not code



Scalable Approach to Trustworthiness
• Small trusted computing base (TCB)
– based on small, high-assurance operating system
– prove correctness of TCB (i.e. its code)
– prove once, use in arbitrary domain

• Design by composition
– component behaviour restricted by TCB — provably!
– can make guarantees about fault containment
– can formally reason about composition
– can prove correctness of critical components in isolation
– re-use components and their verification
• reduce cost of assurance
• increase level of assurance

• Standards need to recognise and support this!



Requirements for Standards
•Domain-independent assurance
– assure functionality, no matter what it is
– assure all critical functionality, not just security

•Assurance of code
– assure functionality, not process

•Real proof
– testing proves presence, not absence of faults

•Assure components and their compositions
–make assurance scalable and re-usable


