NICTA

Secure Operating Systems

Gernot Heiser
NICTA and UNSW and Open Kernel Labs
Sydney, Australia

b VR
gl X Department of Broadband, Communications
and the Digital Economy

Australian Research Council

NICTA Partners

()@
NICTA

Operating systems security overview
Types of secure systems

Security policies

Security mechanisms

Design principles

OS security verification

OS design for security

N
9
>
9
>
>
=

© Gernot Heiser 2008 APTISS'08

Secure Operating System

N
N
N
N

© Gernot Heiser 2008 APTISS'08 4

Provides for secure execution of applications
Must provide security policies that support the users' security requirements
Must enforce those security policies

Must be safe from tampering etc.

Security Policies

2> Security policy
Specifies allowed and disallowed states of a system
« OS needs to ensure that no disallowed state is ever entered
- OS mechanisms prevent transitions from allowed to disallowed states
—~ Security policy needs to identify the asseis to be secure
For computer security, assets are typically data
- Perfect security is generally unachievable
Need to be aware of threais
Need to understand what risks can be tolerated

© Gernot Heiser 2008 APTISS'08 5

Security Mechanisms

2 Used to enforce security policy
Computer access control (login authentication)
* Operating system file access control system
Controls implemented in tools
< Example:
Policy: only accountant can access financial system
* Mechanism: on un-networked computer in locked room with only one key
2 A secure system provides mechanisms that ensure that violations are
Prevented
Detected
Recovered from

© Gernot Heiser 2008 APTISS'08 6

- Systems always have frusted entities
Hardware, operating system, sysadmin
2 Totally of trusted entities is the frusted computing base (TCB)
* The part of the system that can circumvent security
2 A irusted system can be used to process security-critical assets
Gone through some process (“assurance”) to establish its trustworthiness
Should really be called irustworthy system
2> Trusted computing:
Provides mechanisms and procedures for trusted systems
* In practice usually refers to TCG mechanisms for secure boot, encryption etc

© Gernot Heiser 2008 APTISS'08

Trusted Computing Base

<> TCB: The totality of protection mechanisms within a computer system —
including hardware, firmware and software — the combination of which is
responsible for enforcing a security policy

[RFC 2828]

A TCB consists of one or more components that together enforce a unified
security policy over a product or system

The ability of the TCB to correctly enforce a security policy depends solely
on the mechanisms within the TCB and on the correct inputs by system
administrative personnel or parameters related to the security policy

© Gernot Heiser 2008 APTISS'08 8

Covert Channels (Side Channels)

=~ Information flow that is not controlled by a security mechanism
Security requires absence of covert channels

2 Two types of covert channels
* Covert storage channel uses an attribute of a shared resource
~ Typically meta data, like existence or accessibility of an object
~ Global names create covert storage channels
~ In principle subject to access control
~ A sound access-control system should be free of covert channels
Covert fiming channel uses temporal order of accesses to shared resource

~ Qutside access-control system
~ Difficult to reason about
~ Difficult to prevent

© Gernot Heiser 2008 APTISS'08 9

Covert Timing Channels

2 Created via shared resource whose behaviour can be monitored
Network bandwidth
* CPU load
Response time
* Locks
2 Requires access to a time source
* Real-time clock
Anything else that allows unrelated processes to synchronise
Preventable by perfect virtualisation?
=2 Critical issue is bandwidth
In practice, the damage is limited if the bandwidth is low
~ e.g DRM doesn’t care about low-bandwidth channels
Beware of amplification
~ e.g leaking of passwords

© Gernot Heiser 2008 APTISS'08 10

Establishing Trustworthiness

2 Process to show TCB s trustworthy

2 Two approaches
Assurance (systematic evaluation and testing)
Formal verification (mathematical proof)

=~ Certification confirms process was successfully concluded

© Gernot Heiser 2008 APTISS'08 11

Assurance

< Process for bolstering (substantiating or specifying) trust
Specifications
— Unambiguous description of system behaviour
— Can be formal (mathematical model) or informal
Design
— Justification that it meets specification
— Mathematical translation of specification or compelling argument
« Implementation
— Justification that it is consistent with the design
— Mathematical proof or code inspection and rigorous testing
— By implication must also satisfy specification
Operation and maintenance
— Justification that system is used as per assumption in specification

—~ Assurance does not guaraniee correctness or security!

© Gernot Heiser 2008 APTISS'08 12

Assurance: Orange Book

US Department of Defence “Orange Book” [DoD 86]:
—~ Officially the Trusted Computing Systems Evaluation Criteria (TCSEC)
—~ Defines security classes

D: minimal protection

C1-2: discretionary access control (DAC)

B1-B3: mandatory access control (MAC)

A1: verified design
—~ Designed for military use
- Systems can be certified to a certain class

« Very costly, hence only available for big companies
Most systems only certified C2 (essentially Unix-style security)

2 Superseded by Common Criteria
Orange book no longer has any official standing
However, still an excellent reference for security terminology and rationale

© Gernot Heiser 2008 APTISS'08 13

Assurance: Common Criteria

Common Criteria for IT Security Evaluation [ISO/IEC 15408]:

2 IS0 standard, developed out of Orange Book and other approaches
US, Canada, UK, Germany, France, Netherlands
* For general use (not just military, not just operating systems)

2 Unlike Orange Book, doesn't prescribe specific security requirements
* Evaluates quality assurance used to ensure requirements are met
< Target of evaluation (TOE) evaluated against security target (ST)
- ST is statement of desired security properties
Based on protection profiles (PPs) — generic sets of requirements
— Defined by “users” (typically governments)
—~ Seven evaluation assurance levels (EALS)
Higher levels imply more thorough evaluation (and higher cost)
Not necessarily better security

< Details later

© Gernot Heiser 2008 APTISS'08 14

Formal Verification

< Process of mathematical proof of security properties
- Mased on a mathematical mode/ of the system

- Two Parts:
Proof that model safisfies security requirements
— Generally difficult, except for very simple models
Proof that code implements model
— Proving theorems showing correspondence
— Even harder, feasible only for few 1000 LOC
— Hardly ever done
< Note: model checking (static analysis) is not sufficient
Shows presence or absence of certain properties of code
— Uninitialised variables, array-bounds, null-pointer de-ref.
« Does not prove implementation correctness

© Gernot Heiser 2008 APTISS'08 15

2 Computer security is complex
Depends on many aspects of computer system
2 Policy defines security, mechanisms enforce security
=2 Important to consider:
What are the assumptions about threats and trustworthiness?
* Incorrect assumptions = no security
=~ Security is never absolute
* Given enough resources, mechanisms can be defeated
Important to understand limitations
Inherent tradeoffs between security and usability
2 Human factors are important
People make mistakes
People may not understand security impact of actions
* People may be less trustworthy than thought

© Gernot Heiser 2008 APTISS'08

16

Operating systems security overview
Types of secure systems

Security policies

Security mechanisms

Design principles

OS security verification

OS design for security

9
9
9
9
9
9
9

© Gernot Heiser 2008 APTISS'08 17

Secure Systems Classification

=~ Based on Orange Book terminology
Assumes military-style security problem
Data of different security classifications
System must ensure that classification is enforced
~ Classifies systems based on the kind of data they can deal with
Single-level secure (SLS) system
Multiple single-level secure (MSL) system
Multi-level secure (MLS) system

2 Basis of multiple-independent levels of security (MILS) architecture

© Gernot Heiser 2008 APTISS'08 18

Single-Level Secure (SLS) System

e Suitable only for processing data of one particular security level
- generally the lowest, i.e. unclassified

unclassified.

>

SLS System

© Gernot Heiser 2008 APTISS'08 19

Multlple Single-Level (MSL) Secure

» System suitable for processing data of several security levels
- only one security level at a time, up to some limit

* Multiple instances used, each one as a SLS system

MSL Secure System

© Gernot Heiser 2008 APTISS'08 20

Multi-Level Secure (MLS) System Qe

NICTA

* Suitable for processing data of several security levels
- concurrently, up to some limit
- needs to ensure that classifications are honoured
- does this by labelling all data

Requires mandatory access controlin OS

secret.

unclassified. >

MLS System

SLS Ternal

© Gernot Heiser 2008 APTISS'08 21

* MLS component handles multiple levels of data
* Only a single level of data goes to each of the MSL secure systems

MLS Terminal

MSL Secure System

© Gernot Heiser 2008 APTISS'08 22

Oe

NICTA

MLS System Using Virtualization

* MLS hypervisor runs several MSL secure OSes in individual virtual machines
* Resultis MLS system
* An example of a muliiple independent levels of security (MILS) architecture

- Hypervisor here operates as a separation kernel
- Separates (isolates) different security domains

MLS System

SLS Terminal SLS Terminal

© Gernot Heiser 2008 APTISS'08 23

= Operating systems security overview
> Types of secure systems

> Security policies

=~ Security mechanisms

= Design principles

2 OS security verification

=~ OS design for security

© Gernot Heiser 2008 APTISS'08 24

Security Policies: Categories

< Discretionary (user-controlled) policies (DAC)
e.g A can read B's objects only with A's permission
- User decides about access (at their discretion)
« Classical example: Unix permissions
- Mandatory (system-controlled) policies (MAC)

e.g certain users cannot ever access certain objects
« No user can change these

Focus on restricting information flow
Inherent requirement for MLS systems, MILS
- Role-based policies (RBAC)
Agents can take on specific pre-defined roles
— Well-defined set of roles for each agent

— e.g normal user, sysadmin, database admin
Access rights depend on role

© Gernot Heiser 2008 APTISS'08

25

Models for Security Policies

2 Represent a whole class of security policies

2 Most system-wide policies focus on confidentiality
e.g military-style multi-level security models

=~ Classical example is Bell-L.aPadula model [BL76]
Example of a labelled security model
Most others developed from this
Orange Book based on this model

2 Other models
Chinese-wall policy focuses on conflict of interest
Clark-Wilson model focuses on separation of duty

© Gernot Heiser 2008 APTISS'08 26

Bell-LaPadula Model

v oy

Each object a has a security classification L(a)

Each agent o0 has a security clearance L(0)

Classifications
e.g top secret > secret > confidential > unclassified

Rule 1 (no read up):
AcanreadoonlyifL(a) = L(0)
Standard confidentiality

Rule 2 (* Property — no write down)
A can write oonlyifL(a) = L(0)

Prevents /eakage (accidental of by conspiracy)

© Gernot Heiser 2008 APTISS'08

27

Bell-LaPadula Model

2 Mother of all military-style security models
= Inherently requires implementation as MAC
All subjects must be bound to policy
2 If implemented inside a single system, requires MLS system
2 Major limitation: cannot deal with declassification
* Needed to pass any information from high- to low-security domain
~ Logging
~— Command chain
~ Documents where sensitive portions have been censored
~ Encrypted data
2 Typically dealt with by special privileged functions
* Outside security policy
Outside systematic reasoning
Part of TCB
Likely source of security holes

© Gernot Heiser 2008 APTISS'08

28

Overview

= Operating systems security overview
> Types of secure systems

= Security policies

> Security mechanisms

= Design principles

2 OS security verification

=~ OS design for security

© Gernot Heiser 2008 APTISS'08 29

Security Mechanisms

- Used to implement security policies

—~ Based on access control
Discretionary access control (DAC)
« Mandatory access control (MAC)
Role-based access control (RBAC)

— Access rights

Simple rights

— Read, write, execute/invoke, send, receive
Meta rights (DAC only)

~ Copy

Propagate own rights to another agent
- Own
« Change rights of an object or agent

© Gernot Heiser 2008 APTISS'08 30

Access Control Matrix

Objects
Agents S1 Sz 03 O4
wait, signal,
S1 terminate send read
read,
wait, signal, execute,
82 terminate write
wait, signal,
S3 receive
S4 control execute write

Defines each agent's rights on any object
Note: agents are objects too

© Gernot Heiser 2008 APTISS'08 31

2 Rows define agents' protection domains (PDs)
2 Columns define objects' accessibility

2 Dynamic data structure:
Frequent permanent changes (e.g. object creation, chmod)
Frequent temporary changes (e.g. setuid)

2 Very sparse with many repeated entries

= Impractical to store explicitly

© Gernot Heiser 2008 APTISS'08

32

Protection-Matrix Implementation: ACLs

Represent column-wise: access control list (ALC):
2 ACL associated with object
Usually condensed via domain classes (UNIX, NT groups)
Full ACLs used by Multics, Apollo Domain, Andrew FS, NTFS
Can have negatfive rights to:

Reduce window of vulnerability

Simplify exclusion from groups
Sometimes implicit (Unix process hierarchy)

Implemented in almost all commercial systems

2 27

vV

© Gernot Heiser 2008 APTISS'08

33

Protectioh-Matrix Implementation:

Capabilities

Represent row-wise: capabilities [DV 66]:
=~ Capability List associated with agent
Each capability confers a certain right to its holder
2 Can have negative rights to:
Reduce window of vulnerability
Simplify management of groups of capabilities
=~ Caps have been popular in research for a long time
2 Few successful commercial systems until recently:
main one is IBM System/38 / AS400 / i-Series
increasingly appearing in commercial systems (usually add-on)

© Gernot Heiser 2008 APTISS'08 34

Capabilities

2 Main advantage of capabilities is the fine-grained access control:
Easy to provide specific agents access to individual objects
—~ Capability presets prima facie evidence of the right fo access
Capability = object identifier (implies naming)
« Capability = (set of) access rights
~ Any representation must contain object ID and access rights
~ Any representation must protect capability from forgery

2 How are caps implemented and protected?

lagged — protected by hardware
~ Popular in the past, rarely today (exception: IBM i-Series)

Sparse (or user-mode) — protected by sparsity
— probabilistically secure, like encryption
~ propagation outside system control — hard to enforce security policies

* Partitioned/segregated — protected by software (kernel)

~ main version of caps used in modern systems

© Gernot Heiser 2008 APTISS'08 35

Segregated Capabilities

2 System maintains capability list (Clist) with each agent (process)
* User code uses indirect references to caps (clist index)

— c.f Unix file descriptors
« System validates permissions on access -_
— syscall or page-fault time User
2 Many research systems Kemel

Hydra, Mach, EROS, and many others

= Increasingly commercial systems
KeyKOS (92), OKL4 (08)
* Add-on to Linux, Solaris

© Gernot Heiser 2008 APTISS'08 36

Confinement

=~ Problem 1: Executing untrusted code
You downloaded a game from the internet
How can you be sure it doesn't steal/corrupts your data?
=2 Problem 2: Digital rights management (DRM)
You own copyrighted material (e.g. entertainment media content)
* You want to let others use it (for a fee)
How can you prevent them from making unauthorised copies?
2 You need to confine the program (game, viewer) so it cannot leak

=~ Cannot be done with most protection schemes!

Not with Unix or most other ACL-based schemes

Not with most tagged or sparse capability schemes

Multi-level security has some inherent confinement (but can't do DRM)
2 Some protection models can confine in principle

e.g segregated caps system, can instruct system not to accept any

* EROS has formal proof of confinement of a model of the system [SWO00]
Similar seL4 (machine-checked proof)

=2 In practice difficult to achieve due to covert channels
© Gernot Heiser 2008 APTISS'08 37

Overview

= Operating systems security overview
> Types of secure systems

= Security policies

= Security mechanisms

= Design principles

2 OS security verification

=~ OS design for security

© Gernot Heiser 2008 APTISS'08 38

Design Principles for Secure OS

= Least privilege (POLA)

2 Economy of mechanisms

= Fail-safe defaults

- Complete mediation

=~ Open design

> Separation of privilege

=~ Least common mechanisms
=~ Psychological acceptability

© Gernot Heiser 2008 APTISS'08 39

Least Privilege

-~ Also called the principle of least authority (POLA)

- Agent should only be given the minimal rights needed for task
Minimal protection domain
« PD determined by function, not identity
— Unix root is evil
— Aim of role-based access control (RBAC)
« Rights added as needed, removed when no longer needed
Violated by all mainstream OSes
— Example: executing web applet
Should not have all of user's privileges, only minimal access
Hard to do with ACL-based systems
Main motivation for using caps

© Gernot Heiser 2008 APTISS'08 40

Least Privilege: Implications for OS

2 OS kernel executes in privileged mode of hardware
Kernel has unlimited privilege!

2 POLA implies keeping kernel code to an absolute minimum
This means a secure OS must be based on a microkernel!

2 Trusted computing base can bypass security

< POLA requires that TCB is minimal
Microkernel plus minimal security manager

© Gernot Heiser 2008 APTISS'08 41

Economy of Mechanisms

2 KISS principle of engineering
“keep it simple, stupid!”

2 Less code/features/stuff = less to get wrong
Makes it easier to fix if something does go wrong
Complexity is the natural enemy of security

=~ Also applies to interfaces, interactions, protocols, ...

> Specifically applies to TCB

© Gernot Heiser 2008 APTISS'08 42

Fail-Safe Defaults

=~ Default action is no-access
If action fails, system remains secure
* If security administrator forgets to add rule, system remains secure
“better safe than sorry”

© Gernot Heiser 2008 APTISS'08 43

Complete Mediation

2 Check every access
Violated in Unix file access:
~— Access rights checked at open(), then cached
~ Access remains enabled until close (), even if attributes change
* Also implies that any rights propagation must be controlled
~ Not done with tagged or sparse capability systems
= In practice conflicts with performance!
Caching of buffers, file descriptors etc
Without caching unacceptable performance
=~ Should at least limit window of opportunity
e.g guarantee caches are flushed after some fixed period
Guarantee no cached access after revoking access

© Gernot Heiser 2008 APTISS'08 44

Open Design

=~ Security must not depend on secrecy of design or implementation
TCB must be open to scrutiny
Security by obscurity is poor security
~ Not all security/certification agencies seem to understand this
2 Note that this doesn't rule out passwords or secret keys
But their creation requires careful cryptoanalysis

© Gernot Heiser 2008 APTISS'08 45

Separation of Privilege

2 Require a combination of conditions for granting access
e.g user is in group wheel and knows the root password
* Take-grant model for capability-based protection:
~ Sender needs grant right on capability
~ Receiver needs fake right to accept capability
In reality, the security benefit of a separate take right is minimal
~ Practical cap implementations only provide grant as a privilege

2 Closely related to least privilege

© Gernot Heiser 2008 APTISS'08 46

|l east Common Mechanisms

=2 Avoid sharing mechanisms
Shared mechanism = shared channel
* Potential covert channel
=2 Inherent conflict with other design imperatives
« Simplicity = shared mechanisms
Classical tradeoff...

© Gernot Heiser 2008 APTISS'08 47

Psychological Acceptability

=~ Security mechanisms should not add to difficulty of use
Hide complexity introduced by security mechanisms
* Ensure ease of installation, configurations, use
Systems are used by humans!

= Inherently problematic:
Security inherently inhibits ease of use
* ldea is to minimise impact

=~ Security-usability tradeoff is to a degree unavoidable

© Gernot Heiser 2008 APTISS'08 48

= Operating systems security overview
> Types of secure systems

= Security policies

= Security mechanisms

= Design principles

> OS security verification

=~ OS design for security

© Gernot Heiser 2008 APTISS'08 49

Common-Criteria Protection Profiles

=~ Controlled Access Protection Profile (CAPP)

+ standard OS security, derived from Orange Book C2
* certified up to level EAL3

=~ Single-level Operating System Protection Profile
* superset of CAPP
* certified up to EAL4+

~ Labeled Security Protection Profile (LSPP)

* mandatory access control for COTS OSes
* similar to Orange Book B1

< Role-based Access Control Protection Profile

2 Multi-level Operating System Protection Profile
- superset of CAPP, LSPP
* certified up to EAL4+

~ Separation Kernel Protection Profile (SKPP)
* strict partitioning
* certifications aiming for EAL6—7

© Gernot Heiser 2008 APTISS'08 50

Common Criteria Assurance Levels

2 EALA1: functionally tested
* simple to do, can be done without help from developer

2 EAL2: structurally tested
+ functional and interface spec
* black- and white-box testing
* vulnerability analysis
2 EAL3: methodically tested and checked
* improved test coverage
* procedures to avoid tampering during development
* highest assurance level achieved for Mac OS X

© Gernot Heiser 2008 APTISS'08

51

Common Criteria Assurance Levels

2 EAL4: methodically designed, tested and reviewed
Design docs used for testing, avoid tampering during delivery
* Independent vulnerability analysis
Highest level feasible on existing product (not developed for CC certific.)
* Achieved by a number of main-stream OSes
~— Windows 2000: EAL4 in 2003
~— SuSe Enterprise Linux: EAL4 in 2005
— Solaris-10: EAL4+ in 2006
* Controlled access protection profile (CAPP) — Nofe: EALS3 profile!
Role-based access control PP — example of non-NSA PP?
~ RedHat Linux EAL4+ in 2007
They still get broken!
— Certification is based on assumptions about environment, etc...
~ Most use is outside those assumptions
* Certification means nothing in such a case
Presumably there were no compromises were assumptions held

© Gernot Heiser 2008 APTISS'08 52

Common Criteria Assurance Levels

2 EALS5: semi-formally designed and tested
Formal model of TEO security policy
« Semi-formal model of functional spec & high-level design
Semi-formal arguments about correspondence
* Covert-channel analysis
IBM z-Series hypervisor EAL5 in 2003 (partitioning)
* Attempted by Mandrake for Linux with French Government support
2 EALG: semiformally verified design and tested
Semiformal low-level design
Structured representation of implementation
Modular and layered TOE design
Systematic covert-channel identification
Green Hills Integrity microkernel presently undergoing EALG+ certification
~ Separation kernel protection profile

© Gernot Heiser 2008 APTISS'08

53

2 EALTY: formally verified design and tested
* Formal functional spec and high-level design
* Formal and semiformal demonstration of correspondence
~ Between specification and low-level design
« Simple TOE
Complete independent confirmation of developer tests
* LynuxWorks claims LynxSecure separation kernel EAL7 “certifiable”
— But not certified
* Green Hills also aiming for EAL7

Note:

2 Even EAL7 relies on testing!

2 EALY requires proof of correspondence between formal descriptions
2 However, no requirement of formalising LLD, implementation

=~ Hence no requirement for formal proof of implementation correctness

© Gernot Heiser 2008 APTISS'08 54

Common Criteria Limitations

= Little (if any) use in commercial space outside national security

This was one of the intentions, by all indications, CC failed here
2 Very expensive

Industry rule-of-thumb: EAL6+ costs $10k per LOC

* Dominated by documentation requirements
No “credit” for doing things better
~ Eg formal methods instead of excessive documentation

- Lower EALSs of limited practical use

Windows is EAL4+ certified!

Marketing seems to be main driver behind EAL3—4 certification
2 Over-evaluation abuses system

Eg.CAPP (EALS profile) certification to EAL4

In reality a pointless exercise

© Gernot Heiser 2008 APTISS'08 55

Formal Verification

~ Based on mathematical model of the system

2 Complete verification requires two parts:
* Proof that model satisfies requirements of security policies
— Typically prove generic properties that actual policies map to
~ Required by CC EALS-7
Proof that implementation has same properties as model
~ Proof of correspondence between model and implementation
~ Not required by CC even at EAL7
~— Done by some kernels with very limited functionality
~ Never done for any general-purpose OS!
2 Model-checking (static analysis) is incomplete formal verification
Shows presence or absence of certain properties
~ e.g uninitialised variables, array-bounds overflows
Nevertheless useful for assurance

© Gernot Heiser 2008 APTISS'08 56

EAL |Requirem. Funct Spec HLD LLD Implem.
EAL 1 Informal |Informal Informal |Informal Informal
EAL 2 'llnformal Informal Informal Informal Informal
EAL3 'llnformal Informal Informal Informal Informal
EAL4 'llnformal Informal Informal Informal Informal
EALS 'lFormaI Semiformal Semiformal |Informal Informal
EALG 'lFormaI Semiformal | Semiformal |[Semiformal Informal
EAL7 'lFormaI Formal Formal Semiformal [Informal
|

© Gernot Heiser 2008

APTISS'08

57

Trusted Computing vs Secure OS

2 TPM-based trusted-computing approach is based on
Hardware root of trust
Mechanisms to provide a chain of trust
=~ Objective is to guarantee that system boots into a well-defined configuration
Guarantees that a particular OS binary is running
What does this mean about security/trustworthiness?

© Gernot Heiser 2008 APTISS'08 58

Trusted Computing vs Secure OS

Trusted

Millions of lines of
code!

Credibility gap!

Trustworthy
(I hope!)

2 TPM-based trusted-computing approach is of limited use
As long as the OS isn't trustworthy

© Gernot Heiser 2008 APTISS'08 59

Overview

= Operating systems security overview
> Types of secure systems

= Security policies

= Security mechanisms

= Design principles

= OS security verification

2> OS design for security

© Gernot Heiser 2008 APTISS'08 60

OS Design for Security

2 Minimize kernel code
Kernel = code that executes in privileged mode
* Kernel can bypass any security
Kernel is inherently part of TCB
* Kernel can only be verified as a whole (not in components)
~ It’'s hard enough to verify a minimal kernel
2 How?
Generic mechanisms (economy of mechanisms)
No policies, only mechanisms
Mechanisms as simple as possible
Only code that must be privileged in order to support secure systems
Free of covert channels:
~ No global names, absolute time

2 Formally specify API

© Gernot Heiser 2008 APTISS'08 61

OS Design for Security

2 Minimize mandatory TCB
Unless formally verified, TCB must be assumed imperfect
* The smaller, the fewer defects
POLA requires, economy of mechanisms leads to minimal TCB
2 Ensure TCB is well defined and understood
Make security policy explicit
* Make granting of authority explicit
= Flexibility to support various uses
Make authority delegatable
Ensure mechanisms allow high-performance implementation
=2 Design for verifiability
* Minimize implementation complexity

© Gernot Heiser 2008 APTISS'08 62

Example: NICTA's selL4

=2 High-security version of L4 microkernel API
All authority granted by capabilities
* Only four system calls: read, write, create, derive
Kernel memory explicitly managed by user-level resource manager
* 7,000-10,000 lines of kernel code

2 Semi-formal API spec in Haskell
« Easily formalised in theorem prover
Machine-checked proofs of security properties
Designed for formal verification, to be finished mid-2008

© Gernot Heiser 2008 APTISS'08 63

Kernel Prototyping in Haskell

- Model the kernel in detall

—~ Literate Haskell to model
Pure functional programming
language
Embedded documentation
Close to Isabelle/HOL
Formalized Haskell becomes
intermediate representation for
refinement proof

- Executable
Supports running user-level
code

© Gernot Heiser 2008

[sabelle
HOL

Formal
Model

APTISS'08

.Ihs

LaTeX

GHC

Kemel
P rototype

!

GcC —>» User

User-level
Simulator

App

64

Iterative Design and Formalisation

e Haskell kernel executes native binaries on simulator
* Exposes usability issues early
* Tight formal design integration

© Gernot Heiser 2008 APTISS'08 65

selL4 Correctness Proof

Safety Proof
in Isabelle/HOL

Access Control Model <> Requirements

Refinement Proof
in Isabelle/HOL

Refinement Proof
in Isabelle/HOL

BcuableNodel < Haskel Prootpe

Refinement Proof
in Isabelle/HOL

High Performance Implementation
(C/asm), Hardware model (from RTL)

© Gernot Heiser 2008 APTISS'08 66

Manual System Specification
in Isabelle/HOL

selL4 Formal Verification

Aim: Complete proof chain from security requirements to implementation
2 Running since January 2004
2 Achieved to date:

Formal, machine-checked proofs of safety properties (isolation)
Formal, machine-checked proof of concrete spec satisfying the abstract spec
~ In CC language: formally-verified high-level design
Formal, machine-checked proof that executable model refines spec
~ In CC language: formally-verified low-level design
* Already most formally-analysed general-purpose OS ever
=2 In progress:
Formal, machine-checked proof that implementation refines spec
~ In CC language: formally-verified implementation
To be completed by December 2008
2 You want trusted virtualization — you've got it!

© Gernot Heiser 2008 APTISS'08 67

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	What does Trusted Computing Do?
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

