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 Provides for secure execution of applications

 Must provide security policies that support the users' security requirements

 Must enforce those security policies

 Must be safe from tampering etc.

Secure Operating System
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 Security policy
• Specifies allowed and disallowed states of a system
• OS needs to ensure that no disallowed state is ever entered
• OS mechanisms prevent transitions from allowed to disallowed states

 Security policy needs to identify the assets to be secure
• For computer security, assets are typically data

 Perfect security is generally unachievable
• Need to be aware of threats
• Need to understand what risks can be tolerated

Security Policies
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 Used to enforce security policy
• Computer access control (login authentication)
• Operating system file access control system
• Controls implemented in tools

 Example:
• Policy: only accountant can access financial system
• Mechanism: on un-networked computer in locked room with only one key

 A secure system provides mechanisms that ensure that violations are
• Prevented
• Detected
• Recovered from

Security Mechanisms
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 Systems always have trusted entities
• Hardware, operating system, sysadmin

 Totally of trusted entities is the trusted computing base (TCB)
• The part of the system that can circumvent security

Trust

 A trusted system can be used to process security-critical assets
• Gone through some process (“assurance”) to establish its trustworthiness
• Should really be called trustworthy system

 Trusted computing:
• Provides mechanisms and procedures for trusted systems
• In practice usually refers to TCG mechanisms for secure boot, encryption etc
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 TCB: The totality of protection mechanisms within a computer system — 
including hardware, firmware and software — the combination of which is 
responsible for enforcing a security policy

[RFC 2828]

A TCB consists of one or more components that together enforce a unified 
security policy over a product or system

The ability of the TCB to correctly enforce a security policy depends solely 
on the mechanisms within the TCB and on the correct inputs by system 
administrative personnel or parameters related to the security policy

Trusted Computing Base
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 Information flow that is not controlled by a security mechanism 
• Security requires absence of covert channels

 Two types of covert channels
• Covert storage channel uses an attribute of a shared resource 

− Typically meta data, like existence or accessibility of an object
− Global names create covert storage channels
− In principle subject to access control
− A sound access-control system should be free of covert channels

• Covert timing channel uses temporal order of accesses to shared resource
− Outside access-control system
− Difficult to reason about
− Difficult to prevent

Covert Channels (Side Channels)
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 Created via shared resource whose behaviour can be monitored
• Network bandwidth
• CPU load
• Response time
• Locks

 Requires access to a time source
• Real-time clock
• Anything else that allows unrelated processes to synchronise
• Preventable by perfect virtualisation?

 Critical issue is bandwidth
• In practice, the damage is limited if the bandwidth is low

− e.g DRM doesn’t care about low-bandwidth channels
• Beware of amplification

− e.g leaking of passwords

Covert Timing Channels
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 Process to show TCB is trustworthy
 Two approaches

• Assurance (systematic evaluation and testing)
• Formal verification (mathematical proof)

 Certification confirms process was successfully concluded

Establishing Trustworthiness
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 Process for bolstering (substantiating or specifying) trust
• Specifications

− Unambiguous description of system behaviour
− Can be formal (mathematical model) or informal

• Design
− Justification that it meets specification
− Mathematical translation of specification or compelling argument

• Implementation
− Justification that it is consistent with the design
− Mathematical proof or code inspection and rigorous testing
− By implication must also satisfy specification

• Operation and maintenance
− Justification that system is used as per assumption in specification

 Assurance does not guarantee correctness or security!

Assurance
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US Department of Defence “Orange Book” [DoD 86]:
 Officially the Trusted Computing Systems Evaluation Criteria (TCSEC)
 Defines security classes

• D: minimal protection
• C1-2: discretionary access control (DAC)

C

• B1-B3: mandatory access control (MAC)

m

• A1: verified design

 Designed for military use
 Systems can be certified to a certain class

• Very costly, hence only available for big companies
• Most systems only certified C2 (essentially Unix-style security)

M

Assurance: Orange Book

 Superseded by Common Criteria
• Orange book no longer has any official standing
• However, still an excellent reference for security terminology and rationale
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Common Criteria for IT Security Evaluation [ISO/IEC 15408]:
 ISO standard, developed out of Orange Book and other approaches

• US, Canada, UK, Germany, France, Netherlands
• For general use (not just military, not just operating systems)

F

 Unlike Orange Book, doesn't prescribe specific security requirements
• Evaluates quality assurance used to ensure requirements are met

Assurance: Common Criteria

 Target of evaluation (TOE) evaluated against security target (ST)

(

• ST is statement of desired security properties
• Based on protection profiles (PPs) — generic sets of requirements

− Defined by “users” (typically governments)

D

 Seven evaluation assurance levels (EALs)

(

• Higher levels imply more thorough evaluation (and higher cost)

l

• Not necessarily better security

 Details later
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 Process of mathematical proof of security properties
 Mased on a mathematical model of the system
 Two Parts:

• Proof that model satisfies security requirements
− Generally  difficult, except for very simple models

• Proof that code implements model
− Proving  theorems showing correspondence
− Even harder, feasible only for few 1000 LOC
− Hardly ever done

 Note: model checking (static analysis) is not sufficient
• Shows presence or absence of certain properties of code

− Uninitialised  variables, array-bounds, null-pointer de-ref.
• Does not prove implementation correctness

Formal Verification
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 Computer security is complex
• Depends on many aspects of computer system

 Policy defines security, mechanisms enforce security
 Important to consider:

• What are the assumptions about threats and trustworthiness?
• Incorrect assumptions  no security

 Security is never absolute
• Given enough resources, mechanisms can be defeated
• Important to understand limitations
• Inherent tradeoffs between security and usability

 Human factors are important
• People make mistakes
• People may not understand security impact of actions
• People may be less trustworthy than thought

Summary
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 Operating systems security overview
 Types of secure systems
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 Based on Orange Book terminology
• Assumes military-style security problem
• Data of different security classifications
• System must ensure that classification is enforced

Secure Systems Classification

 Classifies systems based on the kind of data they can deal with
• Single-level secure (SLS) system
• Multiple single-level secure (MSL) system
• Multi-level secure (MLS) system

 Basis of multiple-independent levels of security (MILS) architecture
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Single-Level Secure (SLS) System

• Suitable only for processing data of one particular security level
– generally the lowest, i.e. unclassified

unclassified. unclassified.

SLS System
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Multiple Single-Level (MSL) Secure 
System

• System suitable for processing data of several security levels
– only one security level at a time, up to some limit

secret. secret.

MSL Secure System

unclassified. unclassified.

MSL Secure System

• Multiple instances used, each one as a SLS system
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Multi-Level Secure (MLS) System

• Suitable for processing data of several security levels
– concurrently, up to some limit
– needs to ensure that classifications are honoured
– does this by labelling all data

secret.

MLS System

unclassified.

SLS Terminal

unclassified.

SLS Terminal

secret.

• Requires mandatory access control in OS
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MLS + MSL System

• MLS component handles multiple levels of data
• Only a single level of data goes to each of the MSL secure systems

secret.

MSL Secure System

unclassified.

MSL Secure System

MLS Terminal

unclassified.

secret.



© Gernot Heiser 2008 APTISS'08 23

MLS System Using Virtualization

• MLS hypervisor runs several MSL secure OSes in individual virtual machines
• Result is MLS system

SLS Terminal SLS Terminal

MSL
Secure
Operating
System

MSL
Secure
Operating
System

MLS Hypervisor

MLS System
unclassified. secret.

• An example of a multiple independent levels of security (MILS) architecture
– Hypervisor here operates as a separation kernel
– Separates (isolates) different security domains
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 OS design for security

Overview



© Gernot Heiser 2008 APTISS'08 25

 Discretionary (user-controlled) policies (DAC)

(

• e.g A can read B's objects only with A's permission
• User decides about access (at their discretion)

U

• Classical example: Unix permissions

 Mandatory (system-controlled) policies (MAC)

(

• e.g certain users cannot ever access certain objects
• No user can change these
• Focus on restricting information flow
• Inherent requirement for MLS systems, MILS

 Role-based  policies (RBAC)

p

 
• Agents can take on specific pre-defined roles 

− Well-defined set of roles for each agent
− e.g normal user, sysadmin, database admin

• Access rights depend on role 

Security Policies: Categories
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 Represent a whole class of security policies
 Most system-wide policies focus on confidentiality

• e.g military-style multi-level security models

Models for Security Policies

 Classical example is Bell-LaPadula model [BL76]
• Example of a labelled security model
• Most others developed from this
• Orange Book based on this model

 Other models
• Chinese-wall policy focuses on conflict of interest
• Clark-Wilson model focuses on separation of duty
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 Each object a has a security classification L(a)

L

 Each agent o has a security clearance L(o)

L

 Classifications
• e.g top secret > secret > confidential > unclassified

 Rule 1 (no read up):
• A can read o only if L(a)  L(o)≥

• Standard confidentiality

 Rule 2 ( Property — no write down)

)

• A can write o only if L(a)  L(o)≤

L

• Prevents leakage (accidental of by conspiracy)

Bell-LaPadula Model
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 Mother of all military-style security models
 Inherently requires implementation as MAC

• All subjects must be bound to policy

 If implemented inside a single system, requires MLS system

Bell-LaPadula Model

 Major limitation: cannot deal with declassification
• Needed to pass any information from high- to low-security domain

− Logging
− Command chain
− Documents where sensitive portions have been censored
− Encrypted data

 Typically dealt with by special privileged functions
• Outside security policy
• Outside systematic reasoning
• Part of TCB
• Likely source of security holes
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 Types of secure systems
 Security policies
 Security mechanisms
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 Used to implement security policies
 Based on access control

• Discretionary access control (DAC)

D

• Mandatory access control (MAC)
• Role-based access control (RBAC)

R

 Access rights
• Simple rights

− Read, write, execute/invoke, send, receive
• Meta rights (DAC only)

 

− Copy
• Propagate own rights to another agent

− Own
• Change rights of an object or agent

Security Mechanisms
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Objects

Agents

terminate read

control execute write

S
1

S
2

O
3

O
4

S
1

wait, signal, 
send

S
2

wait, signal, 
terminate

read, 
execute, 

write

S
3

wait, signal, 
receive

S
4

Defines each agent's rights on any object
Note: agents are objects too

Access Control Matrix
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 Rows define agents' protection domains (PDs)

(

 Columns define objects' accessibility
 Dynamic data structure: 

• Frequent permanent changes (e.g. object creation, chmod)
• Frequent temporary changes (e.g. setuid)

)

 Very sparse with many repeated entries
 Impractical to store explicitly

Properties of the Access Control Matrix
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Represent column-wise: access control list (ALC):
 ACL associated with object
 Usually condensed via domain classes (UNIX, NT groups)

(

 Full ACLs used by Multics, Apollo Domain, Andrew FS, NTFS
 Can have negative rights to:

• Reduce window of vulnerability
• Simplify exclusion from groups

Protection-Matrix Implementation: ACLs

 Sometimes implicit (Unix process hierarchy)

S

 Implemented in almost all commercial systems
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Represent row-wise: capabilities [DV 66]:
 Capability List associated with agent

• Each capability confers a certain right to its holder

Protection-Matrix Implementation:
Capabilities

 Can have negative rights to:
• Reduce window of vulnerability
• Simplify management of groups of capabilities

 Caps have been popular in research for a long time
 Few successful commercial systems until recently: 

• main one is IBM System/38 / AS400 / i-Series
• increasingly appearing in commercial systems (usually add-on)
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 Main advantage of capabilities is the fine-grained access control:
• Easy to provide specific agents access to individual objects

Capabilities

 Capability presets prima facie evidence of the right to access
• Capability   object identifier (implies naming)

(

• Capability  (set of) access rights

 How are caps implemented and protected?
• Tagged — protected by hardware

− Popular in the past, rarely today (exception: IBM i-Series)
• Sparse (or user-mode) — protected by sparsity

− probabilistically secure, like encryption
− propagation outside system control — hard to enforce security policies

• Partitioned/segregated — protected by software (kernel)
− main version of caps used in modern systems

− Any  representation must contain object ID and access rights
− Any representation must protect capability from forgery
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 System maintains capability list (Clist) with each agent (process)
• User code uses indirect references to caps (clist index)

U

− c.f Unix file descriptors
• System validates permissions on access

− syscall or page-fault time

Cap Ref

PCB

Cap

Cap

Cap

…

User

Kernel

Segregated Capabilities

 Many research systems
• Hydra, Mach, EROS, and many others

 Increasingly commercial systems
• KeyKOS (92), OKL4 (08)
• Add-on to Linux, Solaris
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 Problem 1: Executing untrusted code
• You downloaded a game from the internet
• How can you be sure it doesn't steal/corrupts your data?

 Problem 2: Digital rights management (DRM)

D

• You own copyrighted material (e.g. entertainment media content)
• You want to let others use it (for a fee)

Y

• How can you prevent them from making unauthorised copies?

 You need to confine the program (game, viewer) so it cannot leak
 Cannot be done with most protection schemes!

• Not with Unix or most other ACL-based schemes
• Not with most tagged or sparse capability schemes
• Multi-level security has some inherent confinement (but can't do DRM)

M

 Some protection models can confine in principle
• e.g segregated caps system, can instruct system not to accept any
• EROS has formal proof of confinement of a model of the system [SW00]
• Similar seL4 (machine-checked proof)

Confinement

 In practice difficult to achieve due to covert channels 
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 Types of secure systems
 Security policies
 Security mechanisms
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 Least privilege (POLA)

L

 Economy of mechanisms

 Fail-safe defaults

 Complete mediation

 Open design

 Separation of privilege

 Least common mechanisms

 Psychological acceptability

Design Principles for Secure OS
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 Also called the principle of least authority (POLA)

(

 Agent should only be given the minimal rights needed for task
• Minimal protection domain
• PD determined by function, not identity

− Unix  root is evil
− Aim of role-based access control (RBAC)

A

• Rights added as needed, removed when no longer needed
• Violated by all mainstream OSes

 Example: executing web applet
• Should not have all of user's privileges, only minimal access
• Hard to do with ACL-based systems
• Main motivation for using caps

Least Privilege
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 OS kernel executes in privileged mode of hardware
• Kernel has unlimited privilege!

 POLA implies keeping kernel code to an absolute minimum
• This means a secure OS must be based on a microkernel!

 Trusted computing base can bypass security
 POLA requires that TCB is minimal

• Microkernel plus minimal security manager

Least Privilege: Implications for OS
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 KISS principle of engineering
• “keep it simple, stupid!”

 Less code/features/stuff  less to get wrong
• Makes it easier to fix if something does go wrong
• Complexity is the natural enemy of security

 Also applies to interfaces, interactions, protocols, ...
 Specifically applies to TCB

Economy of Mechanisms
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 Default action is no-access
• If action fails, system remains secure
• If security administrator forgets to add rule, system remains secure
• “better safe than sorry”

Fail-Safe Defaults
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 Check every access
• Violated in Unix file access:

− Access rights checked at open(), then cached
− Access remains enabled until close(), even if attributes change

• Also implies that any rights propagation must be controlled
− Not done with tagged or sparse capability systems

 In practice conflicts with performance!
• Caching of buffers, file descriptors etc
• Without caching unacceptable performance

 Should at least limit window of opportunity
• e.g guarantee caches are flushed after some fixed period
• Guarantee no cached access after revoking access

Complete Mediation
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 Security must not depend on secrecy of design or implementation
• TCB must be open to scrutiny

Open Design

• Security by obscurity is poor security
− Not all security/certification agencies seem to understand this

 Note that this doesn't rule out passwords or secret keys
• But their creation requires careful cryptoanalysis
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 Require a combination of conditions for granting access
• e.g user is in group wheel and knows the root password
• Take-grant model for capability-based protection:

− Sender needs grant right on capability
− Receiver needs take right to accept capability

• In reality, the security benefit of a separate take right is minimal
− Practical cap implementations only provide grant as a privilege

 Closely related to least privilege 

Separation of Privilege
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 Avoid sharing mechanisms
• Shared mechanism  shared channel
• Potential covert channel

 Inherent conflict with other design imperatives
• Simplicity  shared mechanisms
• Classical tradeoff...

Least Common Mechanisms
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 Security mechanisms should not add to difficulty of use
• Hide complexity introduced by security mechanisms
• Ensure ease of installation, configurations, use
• Systems are used by humans!

 Inherently problematic:
• Security inherently inhibits ease of use
• Idea is to minimise impact

 Security-usability tradeoff is to a degree unavoidable

Psychological Acceptability
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 Types of secure systems
 Security policies
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 OS security verification
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Overview
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 Controlled Access Protection Profile (CAPP)

C

• standard OS security, derived from Orange Book C2
• certified up to level EAL3

 Single-level Operating System Protection Profile
• superset of CAPP
• certified up to EAL4+

 Labeled Security Protection Profile (LSPP)

L

• mandatory access control for COTS OSes
• similar to Orange Book B1

 Role-based Access Control Protection Profile

 Multi-level Operating System Protection Profile
• superset of CAPP, LSPP
• certified up to EAL4+

 Separation Kernel Protection Profile (SKPP)

S

• strict partitioning
• certifications aiming for EAL6–7

Common-Criteria Protection Profiles
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 EAL1: functionally tested
• simple to do, can be done without help from developer

 EAL2: structurally tested
• functional and interface spec
• black- and white-box testing
• vulnerability analysis

 EAL3: methodically tested and checked
• improved test coverage
• procedures to avoid tampering during development
• highest assurance level achieved for Mac OS X

Common Criteria Assurance Levels
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 EAL4: methodically designed, tested and reviewed
• Design docs used for testing, avoid tampering during delivery
• Independent vulnerability analysis
• Highest level feasible on existing product (not developed for CC certific.)

H

• Achieved by a  number of main-stream OSes
− Windows 2000: EAL4 in 2003
− SuSe Enterprise Linux: EAL4 in 2005
− Solaris-10: EAL4+ in 2006

• Controlled access protection profile (CAPP) — Note: EAL3 profile!

N

• Role-based access control PP — example of non-NSA PP?
− RedHat Linux EAL4+ in 2007

• They still get broken!
− Certification is based on assumptions about environment, etc...
− Most use is outside those assumptions

• Certification means nothing in such a case
• Presumably there were no compromises were assumptions held

Common Criteria Assurance Levels
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 EAL5: semi-formally designed and tested
• Formal model of TEO security policy
• Semi-formal model of functional spec & high-level design
• Semi-formal arguments about correspondence
• Covert-channel analysis
• IBM z-Series hypervisor EAL5 in 2003 (partitioning)

I

• Attempted by Mandrake for Linux with French Government support

 EAL6: semiformally verified design and tested
• Semiformal low-level design
• Structured representation of implementation
• Modular and layered TOE design
• Systematic covert-channel identification
• Green Hills Integrity microkernel presently undergoing EAL6+ certification

− Separation kernel protection profile

Common Criteria Assurance Levels
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 EAL7: formally verified design and tested
• Formal functional spec and high-level design
• Formal and semiformal demonstration of correspondence 

− Between specification and low-level design
• Simple TOE
• Complete independent confirmation of developer tests
• LynuxWorks claims LynxSecure separation kernel EAL7 “certifiable”

− But not certified
• Green Hills also aiming for EAL7 

Note:
 Even EAL7 relies on testing!
 EAL7  requires proof of correspondence between formal descriptions
 However, no requirement of formalising LLD, implementation
 Hence  no requirement for formal proof of implementation correctness

Common Criteria Assurance Levels
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 Little (if any) use in commercial space outside national security
• This was one of the intentions, by all indications, CC failed here

Common Criteria Limitations

 Very expensive
• Industry rule-of-thumb: EAL6+ costs $10k per LOC
• Dominated by documentation requirements
• No “credit” for doing things better

− Eg formal methods instead of excessive documentation

 Lower EALs of limited practical use
• Windows is EAL4+ certified!
• Marketing seems to be main driver behind EAL3–4 certification

 Over-evaluation abuses system
• Eg.CAPP (EAL3 profile) certification to EAL4
• In reality a pointless exercise
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 Based on mathematical model of the system
 Complete verification requires two parts:

• Proof that model satisfies requirements of security policies
− Typically prove generic properties that actual policies map to
− Required by CC EAL5–7

• Proof that implementation has same properties as model
− Proof of correspondence between model and implementation
− Not required by CC even at EAL7
− Done by some kernels with very limited functionality
− Never done for any general-purpose OS!

 Model-checking (static analysis) is incomplete formal verification
• Shows presence or absence of certain properties

− e.g uninitialised variables, array-bounds overflows
• Nevertheless useful for assurance 

Formal Verification
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C

Common Criteria and Formal Verification
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Trusted Computing vs Secure OS

 TPM-based trusted-computing approach is based on
• Hardware root of trust
• Mechanisms to provide a chain of trust

 Objective is to guarantee that system boots into a well-defined configuration
• Guarantees that a particular OS binary is running
• What does this mean about security/trustworthiness?



© Gernot Heiser 2008 APTISS'08 59

App App App

OS

Secure Boot

Processor TPM

Trusted

Millions of lines of 
code!

Credibility gap!

Trustworthy
(I hope!)

 TPM-based trusted-computing approach is of limited use
• As long as the OS isn't trustworthy

Trusted Computing vs Secure OS
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 Operating systems security overview
 Types of secure systems
 Security policies
 Security mechanisms
 Design principles
 OS security verification
 OS design for security

Overview
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 Minimize kernel code
• Kernel = code that executes in privileged mode
• Kernel can bypass any security
• Kernel is inherently part of TCB
• Kernel can only be verified as a whole (not in components)

K

− It’s hard enough to verify a minimal kernel

 How?
• Generic mechanisms (economy of mechanisms)

G

• No policies, only mechanisms
• Mechanisms as simple as possible
• Only code that must be privileged in order to support secure systems
• Free of covert channels:

− No global names, absolute time

 Formally specify API

OS Design for Security
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 Minimize mandatory TCB
• Unless formally verified, TCB must be assumed imperfect
• The smaller, the fewer defects
• POLA requires, economy of mechanisms leads to minimal TCB

 Ensure TCB is well defined and understood
• Make security policy explicit
• Make granting of authority explicit

 Flexibility to support various uses
• Make authority delegatable
• Ensure mechanisms allow high-performance implementation

 Design for verifiability
• Minimize implementation complexity

OS Design for Security
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 High-security version of L4 microkernel API
• All authority granted by capabilities
• Only four system calls: read, write, create, derive
• Kernel memory explicitly managed by user-level resource manager
• 7,000–10,000 lines of kernel code

 Semi-formal API spec in Haskell
• Easily formalised in theorem prover
• Machine-checked proofs of security properties
• Designed for formal verification, to be finished mid-2008

Example: NICTA's seL4
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 Model the kernel in detail
 Literate Haskell to model

• Pure functional programming 
language

• Embedded documentation
• Close to Isabelle/HOL
• Formalized Haskell becomes 

intermediate representation for 
refinement proof

 Executable
• Supports running user-level 

code User-level
Simulator

Kernel
Prototype

.c

GCC

.lhs

GHC

User
App

Kernel
Reference

Manual

LaTeX

Formal
Model

Isabelle/
HOL

Kernel Prototyping in Haskell
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Iterative Design and Formalisation

• Haskell kernel executes native binaries on simulator
• Exposes usability issues early
• Tight formal design integration

Proof

Design & 
Specify

Haskell
Prototype

High-Performance
C Application

Formal 
Model

Safety Theorem
Proof
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Access Control Model

Abstract Model

Executable Model

C Code HW

Requirements

Haskell Prototype

Refinement Proof
in Isabelle/HOL

Refinement Proof
in Isabelle/HOL

Manual System Specification
in Isabelle/HOL

High Performance Implementation
(C/asm), Hardware model (from RTL)

seL4 Correctness Proof

Safety Proof
in Isabelle/HOL

Refinement Proof
in Isabelle/HOL
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seL4 Formal Verification

Aim: Complete proof chain from security requirements to implementation
 Running since January 2004
 Achieved to date:

• Formal, machine-checked proofs of safety properties (isolation)
• Formal, machine-checked proof of concrete spec satisfying the abstract spec

− In CC language: formally-verified high-level design
• Formal, machine-checked proof that executable model refines spec

− In CC language: formally-verified low-level design
• Already most formally-analysed general-purpose OS ever

 In progress:
• Formal, machine-checked proof that implementation refines spec

− In CC language: formally-verified implementation
• To be completed by December 2008

 You want trusted virtualization — you've got it!
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