
Gernot Heiser
NICTA and UNSW and Open Kernel Labs
Sydney, Australia

Secure Operating Systems

Sydney

© Gernot Heiser 2008 APTISS'08 3

 Operating systems security overview
 Types of secure systems
 Security policies
 Security mechanisms
 Design principles
 OS security verification
 OS design for security

Overview

© Gernot Heiser 2008 APTISS'08 4

 Provides for secure execution of applications

 Must provide security policies that support the users' security requirements

 Must enforce those security policies

 Must be safe from tampering etc.

Secure Operating System

© Gernot Heiser 2008 APTISS'08 5

 Security policy
• Specifies allowed and disallowed states of a system
• OS needs to ensure that no disallowed state is ever entered
• OS mechanisms prevent transitions from allowed to disallowed states

 Security policy needs to identify the assets to be secure
• For computer security, assets are typically data

 Perfect security is generally unachievable
• Need to be aware of threats
• Need to understand what risks can be tolerated

Security Policies

© Gernot Heiser 2008 APTISS'08 6

 Used to enforce security policy
• Computer access control (login authentication)
• Operating system file access control system
• Controls implemented in tools

 Example:
• Policy: only accountant can access financial system
• Mechanism: on un-networked computer in locked room with only one key

 A secure system provides mechanisms that ensure that violations are
• Prevented
• Detected
• Recovered from

Security Mechanisms

© Gernot Heiser 2008 APTISS'08 7

 Systems always have trusted entities
• Hardware, operating system, sysadmin

 Totally of trusted entities is the trusted computing base (TCB)
• The part of the system that can circumvent security

Trust

 A trusted system can be used to process security-critical assets
• Gone through some process (“assurance”) to establish its trustworthiness
• Should really be called trustworthy system

 Trusted computing:
• Provides mechanisms and procedures for trusted systems
• In practice usually refers to TCG mechanisms for secure boot, encryption etc

© Gernot Heiser 2008 APTISS'08 8

 TCB: The totality of protection mechanisms within a computer system —
including hardware, firmware and software — the combination of which is
responsible for enforcing a security policy

[RFC 2828]

A TCB consists of one or more components that together enforce a unified
security policy over a product or system

The ability of the TCB to correctly enforce a security policy depends solely
on the mechanisms within the TCB and on the correct inputs by system
administrative personnel or parameters related to the security policy

Trusted Computing Base

© Gernot Heiser 2008 APTISS'08 9

 Information flow that is not controlled by a security mechanism
• Security requires absence of covert channels

 Two types of covert channels
• Covert storage channel uses an attribute of a shared resource

− Typically meta data, like existence or accessibility of an object
− Global names create covert storage channels
− In principle subject to access control
− A sound access-control system should be free of covert channels

• Covert timing channel uses temporal order of accesses to shared resource
− Outside access-control system
− Difficult to reason about
− Difficult to prevent

Covert Channels (Side Channels)

© Gernot Heiser 2008 APTISS'08 10

 Created via shared resource whose behaviour can be monitored
• Network bandwidth
• CPU load
• Response time
• Locks

 Requires access to a time source
• Real-time clock
• Anything else that allows unrelated processes to synchronise
• Preventable by perfect virtualisation?

 Critical issue is bandwidth
• In practice, the damage is limited if the bandwidth is low

− e.g DRM doesn’t care about low-bandwidth channels
• Beware of amplification

− e.g leaking of passwords

Covert Timing Channels

© Gernot Heiser 2008 APTISS'08 11

 Process to show TCB is trustworthy
 Two approaches

• Assurance (systematic evaluation and testing)
• Formal verification (mathematical proof)

 Certification confirms process was successfully concluded

Establishing Trustworthiness

© Gernot Heiser 2008 APTISS'08 12

 Process for bolstering (substantiating or specifying) trust
• Specifications

− Unambiguous description of system behaviour
− Can be formal (mathematical model) or informal

• Design
− Justification that it meets specification
− Mathematical translation of specification or compelling argument

• Implementation
− Justification that it is consistent with the design
− Mathematical proof or code inspection and rigorous testing
− By implication must also satisfy specification

• Operation and maintenance
− Justification that system is used as per assumption in specification

 Assurance does not guarantee correctness or security!

Assurance

© Gernot Heiser 2008 APTISS'08 13

US Department of Defence “Orange Book” [DoD 86]:
 Officially the Trusted Computing Systems Evaluation Criteria (TCSEC)
 Defines security classes

• D: minimal protection
• C1-2: discretionary access control (DAC)

C

• B1-B3: mandatory access control (MAC)

m

• A1: verified design

 Designed for military use
 Systems can be certified to a certain class

• Very costly, hence only available for big companies
• Most systems only certified C2 (essentially Unix-style security)

M

Assurance: Orange Book

 Superseded by Common Criteria
• Orange book no longer has any official standing
• However, still an excellent reference for security terminology and rationale

© Gernot Heiser 2008 APTISS'08 14

Common Criteria for IT Security Evaluation [ISO/IEC 15408]:
 ISO standard, developed out of Orange Book and other approaches

• US, Canada, UK, Germany, France, Netherlands
• For general use (not just military, not just operating systems)

F

 Unlike Orange Book, doesn't prescribe specific security requirements
• Evaluates quality assurance used to ensure requirements are met

Assurance: Common Criteria

 Target of evaluation (TOE) evaluated against security target (ST)

(

• ST is statement of desired security properties
• Based on protection profiles (PPs) — generic sets of requirements

− Defined by “users” (typically governments)

D

 Seven evaluation assurance levels (EALs)

(

• Higher levels imply more thorough evaluation (and higher cost)

l

• Not necessarily better security

 Details later

© Gernot Heiser 2008 APTISS'08 15

 Process of mathematical proof of security properties
 Mased on a mathematical model of the system
 Two Parts:

• Proof that model satisfies security requirements
− Generally difficult, except for very simple models

• Proof that code implements model
− Proving theorems showing correspondence
− Even harder, feasible only for few 1000 LOC
− Hardly ever done

 Note: model checking (static analysis) is not sufficient
• Shows presence or absence of certain properties of code

− Uninitialised variables, array-bounds, null-pointer de-ref.
• Does not prove implementation correctness

Formal Verification

© Gernot Heiser 2008 APTISS'08 16

 Computer security is complex
• Depends on many aspects of computer system

 Policy defines security, mechanisms enforce security
 Important to consider:

• What are the assumptions about threats and trustworthiness?
• Incorrect assumptions  no security

 Security is never absolute
• Given enough resources, mechanisms can be defeated
• Important to understand limitations
• Inherent tradeoffs between security and usability

 Human factors are important
• People make mistakes
• People may not understand security impact of actions
• People may be less trustworthy than thought

Summary

© Gernot Heiser 2008 APTISS'08 17

 Operating systems security overview
 Types of secure systems
 Security policies
 Security mechanisms
 Design principles
 OS security verification
 OS design for security

Overview

© Gernot Heiser 2008 APTISS'08 18

 Based on Orange Book terminology
• Assumes military-style security problem
• Data of different security classifications
• System must ensure that classification is enforced

Secure Systems Classification

 Classifies systems based on the kind of data they can deal with
• Single-level secure (SLS) system
• Multiple single-level secure (MSL) system
• Multi-level secure (MLS) system

 Basis of multiple-independent levels of security (MILS) architecture

© Gernot Heiser 2008 APTISS'08 19

Single-Level Secure (SLS) System

• Suitable only for processing data of one particular security level
– generally the lowest, i.e. unclassified

unclassified. unclassified.

SLS System

© Gernot Heiser 2008 APTISS'08 20

Multiple Single-Level (MSL) Secure
System

• System suitable for processing data of several security levels
– only one security level at a time, up to some limit

secret. secret.

MSL Secure System

unclassified. unclassified.

MSL Secure System

• Multiple instances used, each one as a SLS system

© Gernot Heiser 2008 APTISS'08 21

Multi-Level Secure (MLS) System

• Suitable for processing data of several security levels
– concurrently, up to some limit
– needs to ensure that classifications are honoured
– does this by labelling all data

secret.

MLS System

unclassified.

SLS Terminal

unclassified.

SLS Terminal

secret.

• Requires mandatory access control in OS

© Gernot Heiser 2008 APTISS'08 22

MLS + MSL System

• MLS component handles multiple levels of data
• Only a single level of data goes to each of the MSL secure systems

secret.

MSL Secure System

unclassified.

MSL Secure System

MLS Terminal

unclassified.

secret.

© Gernot Heiser 2008 APTISS'08 23

MLS System Using Virtualization

• MLS hypervisor runs several MSL secure OSes in individual virtual machines
• Result is MLS system

SLS Terminal SLS Terminal

MSL
Secure
Operating
System

MSL
Secure
Operating
System

MLS Hypervisor

MLS System
unclassified. secret.

• An example of a multiple independent levels of security (MILS) architecture
– Hypervisor here operates as a separation kernel
– Separates (isolates) different security domains

© Gernot Heiser 2008 APTISS'08 24

 Operating systems security overview
 Types of secure systems
 Security policies
 Security mechanisms
 Design principles
 OS security verification
 OS design for security

Overview

© Gernot Heiser 2008 APTISS'08 25

 Discretionary (user-controlled) policies (DAC)

(

• e.g A can read B's objects only with A's permission
• User decides about access (at their discretion)

U

• Classical example: Unix permissions

 Mandatory (system-controlled) policies (MAC)

(

• e.g certain users cannot ever access certain objects
• No user can change these
• Focus on restricting information flow
• Inherent requirement for MLS systems, MILS

 Role-based policies (RBAC)

p

• Agents can take on specific pre-defined roles

− Well-defined set of roles for each agent
− e.g normal user, sysadmin, database admin

• Access rights depend on role

Security Policies: Categories

© Gernot Heiser 2008 APTISS'08 26

 Represent a whole class of security policies
 Most system-wide policies focus on confidentiality

• e.g military-style multi-level security models

Models for Security Policies

 Classical example is Bell-LaPadula model [BL76]
• Example of a labelled security model
• Most others developed from this
• Orange Book based on this model

 Other models
• Chinese-wall policy focuses on conflict of interest
• Clark-Wilson model focuses on separation of duty

© Gernot Heiser 2008 APTISS'08 27

 Each object a has a security classification L(a)

L

 Each agent o has a security clearance L(o)

L

 Classifications
• e.g top secret > secret > confidential > unclassified

 Rule 1 (no read up):
• A can read o only if L(a) L(o)≥

• Standard confidentiality

 Rule 2 ( Property — no write down)

)

• A can write o only if L(a) L(o)≤

L

• Prevents leakage (accidental of by conspiracy)

Bell-LaPadula Model

© Gernot Heiser 2008 APTISS'08 28

 Mother of all military-style security models
 Inherently requires implementation as MAC

• All subjects must be bound to policy

 If implemented inside a single system, requires MLS system

Bell-LaPadula Model

 Major limitation: cannot deal with declassification
• Needed to pass any information from high- to low-security domain

− Logging
− Command chain
− Documents where sensitive portions have been censored
− Encrypted data

 Typically dealt with by special privileged functions
• Outside security policy
• Outside systematic reasoning
• Part of TCB
• Likely source of security holes

© Gernot Heiser 2008 APTISS'08 29

 Operating systems security overview
 Types of secure systems
 Security policies
 Security mechanisms
 Design principles
 OS security verification
 OS design for security

Overview

© Gernot Heiser 2008 APTISS'08 30

 Used to implement security policies
 Based on access control

• Discretionary access control (DAC)

D

• Mandatory access control (MAC)
• Role-based access control (RBAC)

R

 Access rights
• Simple rights

− Read, write, execute/invoke, send, receive
• Meta rights (DAC only)

− Copy
• Propagate own rights to another agent

− Own
• Change rights of an object or agent

Security Mechanisms

© Gernot Heiser 2008 APTISS'08 31

Objects

Agents

terminate read

control execute write

S
1

S
2

O
3

O
4

S
1

wait, signal,
send

S
2

wait, signal,
terminate

read,
execute,

write

S
3

wait, signal,
receive

S
4

Defines each agent's rights on any object
Note: agents are objects too

Access Control Matrix

© Gernot Heiser 2008 APTISS'08 32

 Rows define agents' protection domains (PDs)

(

 Columns define objects' accessibility
 Dynamic data structure:

• Frequent permanent changes (e.g. object creation, chmod)
• Frequent temporary changes (e.g. setuid)

)

 Very sparse with many repeated entries
 Impractical to store explicitly

Properties of the Access Control Matrix

© Gernot Heiser 2008 APTISS'08 33

Represent column-wise: access control list (ALC):
 ACL associated with object
 Usually condensed via domain classes (UNIX, NT groups)

(

 Full ACLs used by Multics, Apollo Domain, Andrew FS, NTFS
 Can have negative rights to:

• Reduce window of vulnerability
• Simplify exclusion from groups

Protection-Matrix Implementation: ACLs

 Sometimes implicit (Unix process hierarchy)

S

 Implemented in almost all commercial systems

© Gernot Heiser 2008 APTISS'08 34

Represent row-wise: capabilities [DV 66]:
 Capability List associated with agent

• Each capability confers a certain right to its holder

Protection-Matrix Implementation:
Capabilities

 Can have negative rights to:
• Reduce window of vulnerability
• Simplify management of groups of capabilities

 Caps have been popular in research for a long time
 Few successful commercial systems until recently:

• main one is IBM System/38 / AS400 / i-Series
• increasingly appearing in commercial systems (usually add-on)

© Gernot Heiser 2008 APTISS'08 35

 Main advantage of capabilities is the fine-grained access control:
• Easy to provide specific agents access to individual objects

Capabilities

 Capability presets prima facie evidence of the right to access
• Capability  object identifier (implies naming)

(

• Capability  (set of) access rights

 How are caps implemented and protected?
• Tagged — protected by hardware

− Popular in the past, rarely today (exception: IBM i-Series)
• Sparse (or user-mode) — protected by sparsity

− probabilistically secure, like encryption
− propagation outside system control — hard to enforce security policies

• Partitioned/segregated — protected by software (kernel)
− main version of caps used in modern systems

− Any representation must contain object ID and access rights
− Any representation must protect capability from forgery

© Gernot Heiser 2008 APTISS'08 36

 System maintains capability list (Clist) with each agent (process)
• User code uses indirect references to caps (clist index)

U

− c.f Unix file descriptors
• System validates permissions on access

− syscall or page-fault time

Cap Ref

PCB

Cap

Cap

Cap

…

User

Kernel

Segregated Capabilities

 Many research systems
• Hydra, Mach, EROS, and many others

 Increasingly commercial systems
• KeyKOS (92), OKL4 (08)
• Add-on to Linux, Solaris

© Gernot Heiser 2008 APTISS'08 37

 Problem 1: Executing untrusted code
• You downloaded a game from the internet
• How can you be sure it doesn't steal/corrupts your data?

 Problem 2: Digital rights management (DRM)

D

• You own copyrighted material (e.g. entertainment media content)
• You want to let others use it (for a fee)

Y

• How can you prevent them from making unauthorised copies?

 You need to confine the program (game, viewer) so it cannot leak
 Cannot be done with most protection schemes!

• Not with Unix or most other ACL-based schemes
• Not with most tagged or sparse capability schemes
• Multi-level security has some inherent confinement (but can't do DRM)

M

 Some protection models can confine in principle
• e.g segregated caps system, can instruct system not to accept any
• EROS has formal proof of confinement of a model of the system [SW00]
• Similar seL4 (machine-checked proof)

Confinement

 In practice difficult to achieve due to covert channels

© Gernot Heiser 2008 APTISS'08 38

 Operating systems security overview
 Types of secure systems
 Security policies
 Security mechanisms
 Design principles
 OS security verification
 OS design for security

Overview

© Gernot Heiser 2008 APTISS'08 39

 Least privilege (POLA)

L

 Economy of mechanisms

 Fail-safe defaults

 Complete mediation

 Open design

 Separation of privilege

 Least common mechanisms

 Psychological acceptability

Design Principles for Secure OS

© Gernot Heiser 2008 APTISS'08 40

 Also called the principle of least authority (POLA)

(

 Agent should only be given the minimal rights needed for task
• Minimal protection domain
• PD determined by function, not identity

− Unix root is evil
− Aim of role-based access control (RBAC)

A

• Rights added as needed, removed when no longer needed
• Violated by all mainstream OSes

 Example: executing web applet
• Should not have all of user's privileges, only minimal access
• Hard to do with ACL-based systems
• Main motivation for using caps

Least Privilege

© Gernot Heiser 2008 APTISS'08 41

 OS kernel executes in privileged mode of hardware
• Kernel has unlimited privilege!

 POLA implies keeping kernel code to an absolute minimum
• This means a secure OS must be based on a microkernel!

 Trusted computing base can bypass security
 POLA requires that TCB is minimal

• Microkernel plus minimal security manager

Least Privilege: Implications for OS

© Gernot Heiser 2008 APTISS'08 42

 KISS principle of engineering
• “keep it simple, stupid!”

 Less code/features/stuff  less to get wrong
• Makes it easier to fix if something does go wrong
• Complexity is the natural enemy of security

 Also applies to interfaces, interactions, protocols, ...
 Specifically applies to TCB

Economy of Mechanisms

© Gernot Heiser 2008 APTISS'08 43

 Default action is no-access
• If action fails, system remains secure
• If security administrator forgets to add rule, system remains secure
• “better safe than sorry”

Fail-Safe Defaults

© Gernot Heiser 2008 APTISS'08 44

 Check every access
• Violated in Unix file access:

− Access rights checked at open(), then cached
− Access remains enabled until close(), even if attributes change

• Also implies that any rights propagation must be controlled
− Not done with tagged or sparse capability systems

 In practice conflicts with performance!
• Caching of buffers, file descriptors etc
• Without caching unacceptable performance

 Should at least limit window of opportunity
• e.g guarantee caches are flushed after some fixed period
• Guarantee no cached access after revoking access

Complete Mediation

© Gernot Heiser 2008 APTISS'08 45

 Security must not depend on secrecy of design or implementation
• TCB must be open to scrutiny

Open Design

• Security by obscurity is poor security
− Not all security/certification agencies seem to understand this

 Note that this doesn't rule out passwords or secret keys
• But their creation requires careful cryptoanalysis

© Gernot Heiser 2008 APTISS'08 46

 Require a combination of conditions for granting access
• e.g user is in group wheel and knows the root password
• Take-grant model for capability-based protection:

− Sender needs grant right on capability
− Receiver needs take right to accept capability

• In reality, the security benefit of a separate take right is minimal
− Practical cap implementations only provide grant as a privilege

 Closely related to least privilege

Separation of Privilege

© Gernot Heiser 2008 APTISS'08 47

 Avoid sharing mechanisms
• Shared mechanism  shared channel
• Potential covert channel

 Inherent conflict with other design imperatives
• Simplicity  shared mechanisms
• Classical tradeoff...

Least Common Mechanisms

© Gernot Heiser 2008 APTISS'08 48

 Security mechanisms should not add to difficulty of use
• Hide complexity introduced by security mechanisms
• Ensure ease of installation, configurations, use
• Systems are used by humans!

 Inherently problematic:
• Security inherently inhibits ease of use
• Idea is to minimise impact

 Security-usability tradeoff is to a degree unavoidable

Psychological Acceptability

© Gernot Heiser 2008 APTISS'08 49

 Operating systems security overview
 Types of secure systems
 Security policies
 Security mechanisms
 Design principles
 OS security verification
 OS design for security

Overview

© Gernot Heiser 2008 APTISS'08 50

 Controlled Access Protection Profile (CAPP)

C

• standard OS security, derived from Orange Book C2
• certified up to level EAL3

 Single-level Operating System Protection Profile
• superset of CAPP
• certified up to EAL4+

 Labeled Security Protection Profile (LSPP)

L

• mandatory access control for COTS OSes
• similar to Orange Book B1

 Role-based Access Control Protection Profile

 Multi-level Operating System Protection Profile
• superset of CAPP, LSPP
• certified up to EAL4+

 Separation Kernel Protection Profile (SKPP)

S

• strict partitioning
• certifications aiming for EAL6–7

Common-Criteria Protection Profiles

© Gernot Heiser 2008 APTISS'08 51

 EAL1: functionally tested
• simple to do, can be done without help from developer

 EAL2: structurally tested
• functional and interface spec
• black- and white-box testing
• vulnerability analysis

 EAL3: methodically tested and checked
• improved test coverage
• procedures to avoid tampering during development
• highest assurance level achieved for Mac OS X

Common Criteria Assurance Levels

© Gernot Heiser 2008 APTISS'08 52

 EAL4: methodically designed, tested and reviewed
• Design docs used for testing, avoid tampering during delivery
• Independent vulnerability analysis
• Highest level feasible on existing product (not developed for CC certific.)

H

• Achieved by a number of main-stream OSes
− Windows 2000: EAL4 in 2003
− SuSe Enterprise Linux: EAL4 in 2005
− Solaris-10: EAL4+ in 2006

• Controlled access protection profile (CAPP) — Note: EAL3 profile!

N

• Role-based access control PP — example of non-NSA PP?
− RedHat Linux EAL4+ in 2007

• They still get broken!
− Certification is based on assumptions about environment, etc...
− Most use is outside those assumptions

• Certification means nothing in such a case
• Presumably there were no compromises were assumptions held

Common Criteria Assurance Levels

© Gernot Heiser 2008 APTISS'08 53

 EAL5: semi-formally designed and tested
• Formal model of TEO security policy
• Semi-formal model of functional spec & high-level design
• Semi-formal arguments about correspondence
• Covert-channel analysis
• IBM z-Series hypervisor EAL5 in 2003 (partitioning)

I

• Attempted by Mandrake for Linux with French Government support

 EAL6: semiformally verified design and tested
• Semiformal low-level design
• Structured representation of implementation
• Modular and layered TOE design
• Systematic covert-channel identification
• Green Hills Integrity microkernel presently undergoing EAL6+ certification

− Separation kernel protection profile

Common Criteria Assurance Levels

© Gernot Heiser 2008 APTISS'08 54

 EAL7: formally verified design and tested
• Formal functional spec and high-level design
• Formal and semiformal demonstration of correspondence

− Between specification and low-level design
• Simple TOE
• Complete independent confirmation of developer tests
• LynuxWorks claims LynxSecure separation kernel EAL7 “certifiable”

− But not certified
• Green Hills also aiming for EAL7

Note:
 Even EAL7 relies on testing!
 EAL7 requires proof of correspondence between formal descriptions
 However, no requirement of formalising LLD, implementation
 Hence no requirement for formal proof of implementation correctness

Common Criteria Assurance Levels

© Gernot Heiser 2008 APTISS'08 55

 Little (if any) use in commercial space outside national security
• This was one of the intentions, by all indications, CC failed here

Common Criteria Limitations

 Very expensive
• Industry rule-of-thumb: EAL6+ costs $10k per LOC
• Dominated by documentation requirements
• No “credit” for doing things better

− Eg formal methods instead of excessive documentation

 Lower EALs of limited practical use
• Windows is EAL4+ certified!
• Marketing seems to be main driver behind EAL3–4 certification

 Over-evaluation abuses system
• Eg.CAPP (EAL3 profile) certification to EAL4
• In reality a pointless exercise

© Gernot Heiser 2008 APTISS'08 56

 Based on mathematical model of the system
 Complete verification requires two parts:

• Proof that model satisfies requirements of security policies
− Typically prove generic properties that actual policies map to
− Required by CC EAL5–7

• Proof that implementation has same properties as model
− Proof of correspondence between model and implementation
− Not required by CC even at EAL7
− Done by some kernels with very limited functionality
− Never done for any general-purpose OS!

 Model-checking (static analysis) is incomplete formal verification
• Shows presence or absence of certain properties

− e.g uninitialised variables, array-bounds overflows
• Nevertheless useful for assurance

Formal Verification

© Gernot Heiser 2008 APTISS'08 57

C

Common Criteria and Formal Verification

© Gernot Heiser 2008 APTISS'08 58

Trusted Computing vs Secure OS

 TPM-based trusted-computing approach is based on
• Hardware root of trust
• Mechanisms to provide a chain of trust

 Objective is to guarantee that system boots into a well-defined configuration
• Guarantees that a particular OS binary is running
• What does this mean about security/trustworthiness?

© Gernot Heiser 2008 APTISS'08 59

App App App

OS

Secure Boot

Processor TPM

Trusted

Millions of lines of
code!

Credibility gap!

Trustworthy
(I hope!)

 TPM-based trusted-computing approach is of limited use
• As long as the OS isn't trustworthy

Trusted Computing vs Secure OS

© Gernot Heiser 2008 APTISS'08 60

 Operating systems security overview
 Types of secure systems
 Security policies
 Security mechanisms
 Design principles
 OS security verification
 OS design for security

Overview

© Gernot Heiser 2008 APTISS'08 61

 Minimize kernel code
• Kernel = code that executes in privileged mode
• Kernel can bypass any security
• Kernel is inherently part of TCB
• Kernel can only be verified as a whole (not in components)

K

− It’s hard enough to verify a minimal kernel

 How?
• Generic mechanisms (economy of mechanisms)

G

• No policies, only mechanisms
• Mechanisms as simple as possible
• Only code that must be privileged in order to support secure systems
• Free of covert channels:

− No global names, absolute time

 Formally specify API

OS Design for Security

© Gernot Heiser 2008 APTISS'08 62

 Minimize mandatory TCB
• Unless formally verified, TCB must be assumed imperfect
• The smaller, the fewer defects
• POLA requires, economy of mechanisms leads to minimal TCB

 Ensure TCB is well defined and understood
• Make security policy explicit
• Make granting of authority explicit

 Flexibility to support various uses
• Make authority delegatable
• Ensure mechanisms allow high-performance implementation

 Design for verifiability
• Minimize implementation complexity

OS Design for Security

© Gernot Heiser 2008 APTISS'08 63

 High-security version of L4 microkernel API
• All authority granted by capabilities
• Only four system calls: read, write, create, derive
• Kernel memory explicitly managed by user-level resource manager
• 7,000–10,000 lines of kernel code

 Semi-formal API spec in Haskell
• Easily formalised in theorem prover
• Machine-checked proofs of security properties
• Designed for formal verification, to be finished mid-2008

Example: NICTA's seL4

© Gernot Heiser 2008 APTISS'08 64

 Model the kernel in detail
 Literate Haskell to model

• Pure functional programming
language

• Embedded documentation
• Close to Isabelle/HOL
• Formalized Haskell becomes

intermediate representation for
refinement proof

 Executable
• Supports running user-level

code User-level
Simulator

Kernel
Prototype

.c

GCC

.lhs

GHC

User
App

Kernel
Reference

Manual

LaTeX

Formal
Model

Isabelle/
HOL

Kernel Prototyping in Haskell

© Gernot Heiser 2008 APTISS'08 65

Iterative Design and Formalisation

• Haskell kernel executes native binaries on simulator
• Exposes usability issues early
• Tight formal design integration

Proof

Design &
Specify

Haskell
Prototype

High-Performance
C Application

Formal
Model

Safety Theorem
Proof

© Gernot Heiser 2008 APTISS'08 66

Access Control Model

Abstract Model

Executable Model

C Code HW

Requirements

Haskell Prototype

Refinement Proof
in Isabelle/HOL

Refinement Proof
in Isabelle/HOL

Manual System Specification
in Isabelle/HOL

High Performance Implementation
(C/asm), Hardware model (from RTL)

seL4 Correctness Proof

Safety Proof
in Isabelle/HOL

Refinement Proof
in Isabelle/HOL

© Gernot Heiser 2008 APTISS'08 67

seL4 Formal Verification

Aim: Complete proof chain from security requirements to implementation
 Running since January 2004
 Achieved to date:

• Formal, machine-checked proofs of safety properties (isolation)
• Formal, machine-checked proof of concrete spec satisfying the abstract spec

− In CC language: formally-verified high-level design
• Formal, machine-checked proof that executable model refines spec

− In CC language: formally-verified low-level design
• Already most formally-analysed general-purpose OS ever

 In progress:
• Formal, machine-checked proof that implementation refines spec

− In CC language: formally-verified implementation
• To be completed by December 2008

 You want trusted virtualization — you've got it!

From imagination to impact

© Gernot Heiser 2008 APTISS'08 68

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	What does Trusted Computing Do?
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

