
Formal OS Kernel Verification —
Making Trusted Trustworthy

Gernot Heiser
NICTA and UNSW and Open Kernel Labs
Sydney, Australia

December, 2008

© 2008 Gernot Heiser, NICTA 2

“Trusted Computing” a la TCG

App App App

OS

Secure Boot

Processor TPM

Trusted

Millions of lines of code!

Credibility gap!

Trustworthy
(I hope!)

© 2008 Gernot Heiser, NICTA 3

Rehash of Yesterday

Operating systems are trusted, but not trustworthy
à Millions of lines of code (LOC)
à Thousands of bugs
à Hundreds of security holes
à Standard way out: minimise the trusted computing base (TCB)

• Microkernels are good
• Fewer LoC � fewer security-relevant bugs

à Not exactly a radical idea
• QNX selling a microkernel since early '90s

• Green Hills Integrity since 2000 or so

• OKL4 from Open Kernel Labs deployed in 250 million devices

© 2008 Gernot Heiser, NICTA 4

Also Mentioned:
Communication Control & MAC

OKL4 has it:
à Communication controlled by capabilities

• Use of a communication channel requires a capability to it
à Define isolation domains called Secure HyperCells
à Impose mandatory communication control based on system-wide policy

Linux

Microkernel

Processor

App App

App

Ñ
r

r

Secure
HyperCellT
M

boundary

© 2008 Gernot Heiser, NICTA 5

How About Formal Verification?

à Never done before — why?
à E.g. Common Criteria:

à One system is close: NICTA's seL4 microkenel

© 2008 Gernot Heiser, NICTA 8

The seL4 Microkernel

Goals
à Formal specification of kernel and machine
à High-performance implementation
à Formal proof of security properties
à Formal verification of implementation

Innovation over other L4 kernels:
à All accesses mediated by capabilities
à Kernel resource accounting

• complete internal separation of memory held on behalf of applications (page tables, control blocks)

• memory explicitly provided to kernel
• free from covert storage channels by construction

à No significant performance penalty for new features
• 15 cycles per syscall ok. Maybe.

© 2008 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

© 2008 Gernot Heiser, NICTA 13

Formal Methods Practitioners
vs

Kernel Developers

Two Teams

© 2008 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

© 2008 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

© 2008 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

© 2008 Gernot Heiser, NICTA 18

Access Control Model

Abstract Model

Executable Model

C Code HW

Confinement

Haskell Prototype

Formal proof:
concrete behaviour
captured at
abstract level

Monadic functional
programs

Hoare Logic
Separation Logic

Manual System Specification
(Isabelle/HOL)

High Performance Implementation
(C/asm)

Hardware model

The Proof

© 2008 Gernot Heiser, NICTA 19

The Proof

Access Control Model

Abstract Model

Executable Model

C Code HW

Confinement

Haskell Prototype

Formal proof:
concrete behaviour
captured at
abstract level

Monadic functional
programs

Hoare Logic
Separation Logic

Manual System Specification
(Isabelle/HOL)

High Performance Implementation
(C/asm)

Hardware model

© 2008 Gernot Heiser, NICTA 20

Common Criteria and seL4

© 2008 Gernot Heiser, NICTA 21

Common Criteria and L4.verified

© 2008 Gernot Heiser, NICTA 23

seL4 Summary

Statistics
à 3.5k LoC abstract, 7kLoC concrete spec (about 3k Haskell)
à Abstract → Haskell: 100kLoP (more features coming)
à Haskell → C/asm: 80kLoP (estimated)
à Access control model + isolation proofs done (1kLoP)
à 109 patches to Haskell kernel, 132 to abstract spec
à Performance in line with other L4 kernels
à average 6 people over 5 years

Kinds of properties proved
à Well typed references, aligned objects, ..
à Well formed thread states, endpoint and scheduler queues, ...
à All syscalls terminate, reclaiming memory is safe, ...
à Authority is distributed by caps only
à Access control is decidable

© 2008 Gernot Heiser, NICTA 24

Summary

seL4 verification status
à Refinement to LLD complete
à C level refinement in progress (due February)
à Working on proving more security properties
à Already most formally verified kernel ever
à Performance comparable to other L4 kernels
à Commercialization by Open Kernel Labs

Conclusion:
à Verification of OS kernels is possible
à ... but it ain't easy

• limited to small kernels
• but can leverage guarantees of verified kernel
• however, doing this is an unsolved and highly non-trivial problem

© 2008 Gernot Heiser, NICTA 25

How About Hardware?

à Hardware has the appearance of being more trustworthy
• because it's unchangeable, people think more about it

à But: if it's broken in hardware, I can't fix it in software
• hardware is too complex to be completely formally verified
• putting more complexity into hardware is the wrong way to go
• keep it simple, and let me control it by software

à What hardware should be like
• sufficient for building secure software (doesn't need much!)
• well-defined APIs (simplicity is a bonus)
• correctly implemented

à Formally-verified kernel becomes more like hardware
• it needs to be extremely well-designed
• once verified, don't change it, as this will break your proofs!

© 2008 Gernot Heiser, NICTA 26

A Final Word on Commercial Realities

Is it possible to commercialise a verified OS?
à Formal verification can be less expensive than CC assurance

• ... but delivers more
à seL4 is correct to a much higher degree than can be assured by CC EAL7

• ... but it won't even be acceptable where EAL4 is required
à Problem with common criteria:

• too expensive
• no rewards for doing better

à Unless this is changed, there is no business case for formal verification
• no business case � no commercial system will be verified
• no formal verification � no trustworthy systems

à Requires leadership by governments (NSA, BSI, ...)

© 2008 Gernot Heiser, NICTA 27

Thank You

© 2008 Gernot Heiser, NICTA 28

Small Kernels

à Small trustworthy foundation
à Hypervisor micro kernel,

nano-kernel, virtual machine, separation
 kernel, exokernel ...
à Applications:

• Fault isolation
• Fault identification
• IP Protection
• Modularity
• ...

à High assurance components
 in presence of other components

Legacy
Apps

Sensitive
Apps

Linux
Server

Trusted
Service

Supervisor OS

seL4

Hardware

TrustedUntrusted

© 2008 Gernot Heiser, NICTA 29

seL4 Physical Memory Management

Some kernel memory is
statically allocated at boot time

Remainder is divided into
untyped (UT) objects

• 2n region of physical memory
• size aligned

Supervisor gets authority
over these objects

• authority conferred by capabilities
Kernel never allocates dynamic memory

• user must provide memory for kernel objects

re-typing untyped memory to kernel object type

App 1 App 2

Supervisory OS

Microkernel

Physical memory

Kernel
Data

UT
obj 1

UT
obj 2

UT
obj 3 ..

....

UT
obj n

© 2008 Gernot Heiser, NICTA 30

Refinement

à The old story

• C refines A if all behaviours of C are contained in A
à Sufficient: forward simulation

A

Cs
’

s

t
’

t

S S

As t

t
’

S

Cs
’

S

