. L. NICTA
Virtualization

in Embedded Systems

Gernot Heiser
NICTA and UNSW and Open Kernel Labs
Sydney, Australia

o A ! Australian Government

e

ot Department of Broadband, Communications
and the Digital Economy

ustralian Research Council

Embedded virtualization use cases

Enterprise vs embedded: main differences
Trustworthy hypervisor for embedded systems
* Wishlist for Intel

Intel Virtualization Summit, Sep'08 2 © 2008 Gernot Heiser, NICTA

Why Virtualization in Embedded Systems?

Use case 1: Mobile phone processor consolidation

=2 High-end phones run high-level OS (Linux/WinCE/Symbian) on app processor
supports complex Ul software

2 Baseband processing supported by real-time OS (RTOS)
2 Medium-range phone
needs less grunt
can share processor

two VMs on one
physical processor

hardware cost
reduction

Intel Virtualization Summit, Sep'08 3 © 2008 Gernot Heiser, NICTA

Why Virtualization in Embedded Systems?

Use case 1a: Software architecture abstraction
=~ Support for product series
range of related products of varying capabilities
- Same low-level software for high- and medium-end devices

< Benefits:

time-to-market
engineering cost

Intel Virtualization Summit, Sep'08

© 2008 Gernot Heiser, NICTA

Why Virtualization in Embedded Systems?

Use case 1b: Dynamic processor allocation

=~ Allocate share of baseband processor to application OS
Provide extra CPU power during high-load periods (media play)
Better processor utilisation = higher performance with lower-end hardware

HW cost reduction

© 2008 Gernot Heiser, NICTA

Intel Virtualization Summit, Sep'08

Why Virtualization in Embedded Systems?

Use case 2: Certification re-use

2 Phones need to be certified to comply with communication standards
2 Any change that (potentially) affects comms needs re-certification

2 Ul part of system changes frequently

2 Encapsulation of Ul

provided by VM

avoids need for -

costly re-

certification -

Intel Virtualization Summit, Sep'08 6 © 2008 Gernot Heiser, NICTA

Why Virtualization in Embedded Systems?

Use case 2a: Open phone with user-configured OS

=~ Give users control over the application environment
perfect match for Linux

2 Requires strong encapsulation of application environment
without

undermining
performance!

Intel Virtualization Summit, Sep'08 7 © 2008 Gernot Heiser, NICTA

Use case 2b: Phone with private and enterprise environment

2 Work phone environment integrated with enterprise IT system

=2 Private phone environment contains sensitive personal data

2 Mutual distrust between the environments = strong isolation needed

j:|

Intel Virtualization Summit, Sep'08 8 © 2008 Gernot Heiser, NICTA

Why Virtualization in Embedded Systems?

Use case 3: Mobile internet device (MID) with enterprise app
2 MID is open device, controlled by owner

=~ Enterprise app is closed and controlled by enterprise IT dept
=~ Hypervisor provides isolation

Intel Virtualization Summit, Sep'08 9 © 2008 Gernot Heiser, NICTA

Why Virtualization in Embedded Systems?

Use case 3a: Environment with minimal trusted computing base (TCB)
=2 Minimise exposure of highly security-critical service to other code
2 Avoid even an OS, provide minimal trusted environment

need a minimal programming environment

goes beyond capabilities of normal hypervisor
requires basic OS functionality

=

Intel Virtualization Summit, Sep'08 10 © 2008 Gernot Heiser, NICTA

Why Virtualization in Embedded Systems?2

Use case 3b: Point-of-sale (POS) device
2 May be stand-alone or integrated with other device (eg phone)

= Financial services providers require strong isolation
dedicated processor for PIN/key entry
use dedicated virtual processor = HW cost reduction

11

Intel Virtualization Summit, Sep'08

© 2008 Gernot Heiser, NICTA

Why Virtualization in Embedded Systems?

Use case 4: DRM on open device

=~ Device runs Linux as app OS, uses Linux-based media player

2 DRM must not rely on Linux

2 Need trustworthy code that
loads media content into on-chip RAM
decrypts and decodes content
allows Linux-based player to disply

2 Need to protect data from guest OS

Intel Virtualization Summit, Sep'08 12

© 2008 Gernot Heiser, NICTA

Why Virtualization in Embedded Systems?

Use case 4a: IP protection in set-top box
=2 STB runs Linux for Ul, but also contains highly valuable IP
highly-efficient, proprietary compression algorithm
2 Operates in hostile environment
reverse engineering of algorithms
2 Need highly-trustworthy code that
loads code from Flash into on-chip RAM
decrypts code
runs code protected from interference

Intel Virtualization Summit, Sep'08 13 © 2008 Gernot Heiser, NICTA

Why Virtualization in Embedded Systems?.

Use case 5: Automotive control and infotainment

2 Trend to processor consolidation in automotive industry

top-end cars have > 100 CPUs!

* cost, complexity and space pressures to reduce by an order of magnitude
* AUTOSAR OS standard addressing this for control/convenience function

= Increasing importance of /nfotainment

driver information and entertainment
function

not addressed by AUTOSAR

= Increasing overlap of infotainment and
control/convenience

eg park-distance control using
infotainment display

* benefits from being located on same CPU

Intel Virtualization Summit, Sep'08 14

© 2008 Gernot Heiser, NICTA

Enterprise vs Embedded Virtualization

Homogenous vs heterogenous guests

* Enterprise: many similar guests * Embedded: 1 HLOS + 1 RTOS
* hypervisor size irrelevant * hypervisor resource-constrained
* VMs scheduled round-robin * interrupt latencies matter

Intel Virtualization Summit, Sep'08 15 © 2008 Gernot Heiser, NICTA

-— .

Enterprise
* Independent services
* Emphasis on isolation

* |nter-VM communication is
secondary

- performance secondary

* VMs connected to Internet (and
thus to each other)

Intel Virtualization Summit, Sep'08

16

Embedded

Integrated system
Cooperation with protection

Inter-VM communication is critically
important

- performance crucial

VMs are subsystems accessing
shared (but restricted) resources

© 2008 Gernot Heiser, NICTA

Enterprise vs Embedded Virtualization

Devices in enterprise-style virtual machines
* Hypervisor owns all devices

* Drivers in hypervisor * Drivers in privileged guest OS
* need to port all drivers * can leverage guest's driver support
* huge TCB * need to trust driver OS

* still huge TCB!

Virt
I Driver

Virt Virt
Driver = Drive

Driver = Driver

D= B e Trusted

Intel Virtualization Summit, Sep'08 17 © 2008 Gernot Heiser, NICTA

Devices in embedded virtual machines

Some devices owned by particular VM

Some devices shared

Some devices too sensitive to trust any guest
Driver OS too resource hungry

Use isolated drivers

* protected from other drivers
* protected from guest OSes -

Guest
Driver

Intel Virtualization Summit, Sep'08 18

Native
Driver

Virt Virt
Driver Driver

© 2008 Gernot Heiser, NICTA

|solation vs Cooperation: Scheduling

Enterprise Embedded
* Round-robin scheduling of VMs * Global view of scheduling
* (Guest OS schedules its apps e Schedule threads, not VMs

e Similar for energy management:
- energy is a global resource
- optimal per-VM energy policies are not globally optimal

Intel Virtualization Summit, Sep'08 19 © 2008 Gernot Heiser, NICTA

Inter-VM Communication Control

Modern embedded systems are multi-user devices!

 Eg a phone has three classes of “users”:

* the network operator(s)
¢ assets: cellular network

- Operator
/ Stake

Intel Virtualization Summit, Sep'08 20 © 2008 Gernot Heiser, NICTA

Inter-VM Communication Control

Modern embedded systems are multi-user devices!

 Eg a phone has three classes of “users”:
* the network operator(s)
* assets: cellular network
* content providers
* media content

Operator
Stake

Operator

Media
Provider
Stake

Intel Virtualization Summit, Sep'08 21 © 2008 Gernot Heiser, NICTA

Inter-VM Communication Control

Modern embedded systems are multi-user devices!

 Eg a phone has three classes of “users”:
* the network operator(s)
* assets: cellular network
* content providers
* media content
* the owner of the physical device
* assets: private data, access keys

Operator
Stake

Owner
Stake

Operator
Stake

Provider
Stake

Intel Virtualization Summit, Sep'08 22 © 2008 Gernot Heiser, NICTA

Inter-VM Communication Control

Modern embedded systems are multi-user devices!

 Eg a phone has three classes of “users”:
* the network operator(s)
* assets: cellular network
* content providers
* media content
* the owner of the physical device
* assets: private data, access keys

* They are mutually distrusting

* need to protect integrity and confidentiality
against internal exploits

e need control over information flow
e strict control over who has access to what
¢ gstrict control over communication channels

Intel Virtualization Summit, Sep'08 23 © 2008 Gernot Heiser, NICTA

Inter-VM Communication Control

e Different “users” are mutually distrusting
* Need strong protection / information-flow control between them

* |solation boundaries # VM boundaries
- some are much smaller than VMs
* individual buffers, programs
- some contain VMs .
- some overlap VMs

* Need to define information flow between
isolation domains

Isolation

- - /boundary

Intel Virtualization Summit, Sep'08 24 © 2008 Gernot Heiser, NICTA

High Safety/Reliability Requirements

» Software complexity is mushrooming in embedded systems too
- millions of lines of code

 Some have very high safety or reliability requirements

* Need divide-and-conquer approach to software reliability
- Highly componentized systems to enable fault tolerance

Intel Virtualization Summit, Sep'08 25 © 2008 Gernot Heiser, NICTA

Componentization for IP Blocks

e Match HW IP blocks with SW IP blocks

* HW IP owner provides matching SW blocks
- encapsulate SW to ensure correct operation
- Stable interfaces despite changing HW/SW boundary

Intel Virtualization Summit, Sep'08 26 © 2008 Gernot Heiser, NICTA

Componentization for Security — MILS

 MILS architecture: multiple independent levels of security

* Approach to making security verification of complex systems tractable

» Separation kernel provides strong security isolation between subsystems
* High-grade verification requires small components

Isolation
boundary

Intel Virtualization Summit, Sep'08 27 © 2008 Gernot Heiser, NICTA

Oe

Embedded Systems Requirements
- NICTA

* Sliding scale of isolation from individual program to VM running full-blown OS
- isolation domains, information-flow control
* Global scheduling and power management
- no strict VM-hypervisor hierarchy
- increased hypervisor-guest interaction
* High degree of sharing is essential and performance-critical
- high bandwidth, low latency communication, subject to security policies
* Real-time response
- fast and predictable switches to device driver / RT stack
* High safety/security requirements

- need to maintain minimal TCB
- need to support componentized software architecture / MILS

Virtualization in embedded systems is good, but different from enterprise
- requires range of isolation granularities
- requires efficient context switching

Intel Virtualization Summit, Sep'08 28 © 2008 Gernot Heiser, NICTA

The selL4 Microkernel

Goals

* Platform for building arbitrary
embedded-systems software

- general OS
- hypervisor
- separation kernel
* High-performance implementation

- no more than 15 cycles slower on
IPC than L4

* Formal specification
* Formal proof of security properties

* Formal verification of implementation

Innovation over other L4 kernels: _

Untrusted Trusted

=
~

* Access control based on capabilities
* Kernel resource accounting

Intel Virtualization Summit, Sep'08 29 © 2008 Gernot Heiser, NICTA

selL4 Capability-Based Protection

All authority conferred via capabilities

* Capabilities are like keys
Possess the key, and you can invoke the operation

* All system calls are invoked via capabilities
No ambient authority

Established body of knowledge on capabilities

 Can reason about them
* Models for confining authority

Intel Virtualization Summit, Sep'08 30

Y Y

© 2008 Gernot Heiser, NICTA

selL4 Physical Memory Management

Some kernel memory is
statically allocated at boot time

Remainder is divided into
untyped (UT) objects
2" region of physical memory
Size aligned

Supervisor gets authority

over these objects
Authority conferred by capabilities

Kernel never allocates dynamic memory

Intel Virtualization Summit, Sep'08 31 © 2008 Gernot Heiser, NICTA

lterative Design and Formalisation

* Prototype kernel executes native binaries on simulator
* Exposes usability issues early
* Tight formal design integration

Intel Virtualization Summit, Sep'08 32 © 2008 Gernot Heiser, NICTA

The Proofs

Access Control Model () Confinement

(Isabelle/HOL)
Formal proof:

concrete behaviour
captured at
abstract level

- 1

Hoare Logic
Separation Logic

High Performance Implementation
(C/lasm)
Hardware model

Intel Virtualization Summit, Sep'08 33 © 2008 Gernot Heiser, NICTA

Monadic functional
programs

rights = Read
| Write
| =rant
| Create
lemma isolation:
record cap = "[sane =;
entity entity id s' € execute omds s5;
ric’ A isEntitvOf = eg;
. constdefs Entity0f s e;
recae schedule "unit s monad" Lity ¢ = &
b nsohedule = do 1> subfvsCaps 5 e
© schedule Eernel () Caps s' el
schedule = do

tob t
{

ABSERT(DEBUZ, prio_gusus);

if (pric queue-rindex bitmap) |

Intel Virtualization Summit, Sep'08

action <- getScheduleraction

ification
L)

- - ' — &

* gcheduler t::find next threadipric gueus t * pric _gueus)

word L otop word =
word ©ooffset =

msk (prico _queuse->index bitmap);
BITS WORD * top word,;
for (long i = == 0;

top_word; i i--1

word tobitmap = prioc_gueue->prico bitmapl[i];

if (bitmap == 0}
goto update; .

e Implementation

do { /asm)

word ©obit = mskhbibitmap);

word t opric = bit + offset;

teh t o *#teh = prioc_queue->get (priod;

34

© 2008 Gernot Heiser, NICTA

EAL |Requirem. Funct Spec HLD LLD Implem.
EALA1 | Informal Informal Informal Informal Informal
EAL 2 | Informal Informal Informal Informal Informal
EAL 3 | Informal Informal Informal Informal Informal
EAL4 | Informal Informal Informal Informal Informal
EALS Formal |Semiformal Semiformal Informal |Informal |
EALG | Formal Semiformal Semiformal |Semiformal |Informal
EAL7Y | Formal Formal Formal Semiformal |Informal
L4.verified Formal Formal Formal Formal Formal
Intel Virtualization Summit, Sep'08 35

© 2008 Gernot Heiser, NICTA

selL4 Summary

Implementation Status

sel4 operational on ARM11
- runs Linux etc...
Performance in line with other L4 kernels
Port to x86 in progress
Security evaluation by Australian DoD
To be integrated with commercial OKL4

- OKL4 presently deployed in 150N devices

Proof Status

Refinement proof to low-level model complete

Already most deeply formally-verified general-
purpose kernel ever

C/asm implementation proof due December
Working on proving more security properties

Intel Virtualization Summit, Sep'08 36

© 2008 Gernot Heiser, NICTA

My Wishlist for Intel

* Need fine-grained isolation
- Please give us I0O-MMUs on embedded processors!
* Need fast context switches
- Please do something about context-switching costs
- ... Such as tagged TLBs!

e Need clear definition of hardware for formal verification
- Please give us an RTL-level description of the ISA!

Intel Virtualization Summit, Sep'08 37 © 2008 Gernot Heiser, NICTA

selL 4 Project Overview

» Size of the project
- Average 4-5 people (full time equivalent)
- bSyears
- Ends December 2008

* Interesting Problems F
- Designing and formalising an OS kernel

- Refinement on monadic functional programs
- Refinement on C programs r -
- Formalizing machine details
-

- Access control

Ir(?t%?({?iOpen Kernel Laps. All ri?{jt rg%qagd. Do not distribute without prior alétgorization.

rtualization Summ © 2008 Gernot Heiser.SRlICTA

sel4 Verification Summary. .

Statistics
» 3.5k LOC abstract, 7kLOC concrete spec (about 3k Hackall
» Abstract / Haskell done: 100kLOP (more features
* Access control model + security proofs done (1kL
* 109 patches to Haskell kernel, 132 to abstract spe
* Performance in line with other L4 kernels

Kinds of properties proved

* Well typed references, aligned objects, ..
* Well formed thread states, endpoint and scheduler queues, ...
* All syscalls terminate, reclaiming memory is safe, ...

* Authority is distributed by caps only

* Access control is decidable

* Subsystems can be isolated / confined

©2 .Open Kernel Lahs. All rights reserved. Do not distribute without prior aythorization.
Inte?({?lrtuallzatlon umm?P. ep'08 %

© 2008 Gernot Heiser. NICTA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	The seL4 Microkernel
	seL4 Capability-based Protection
	Slide 31
	Iterative Design and Formalisation
	Slide 33
	Slide 34
	Common Criteria and L4.verified
	seL4 Summary
	Slide 37
	Slide 38
	seL4 Project Overview
	Slide 40

