
Gernot Heiser
NICTA and UNSW and Open Kernel Labs
Sydney, Australia

Virtualization
in Embedded Systems

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA2

Outline

• Embedded virtualization use cases
• Enterprise vs embedded: main differences
• Trustworthy hypervisor for embedded systems
• Wishlist for Intel

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA3

Why Virtualization in Embedded Systems?

Use case 1: Mobile phone processor consolidation
 High-end phones run high-level OS (Linux/WinCE/Symbian) on app processor

• supports complex UI software

 Baseband processing supported by real-time OS (RTOS)

HLOS

Processor

UI
Software

RTOS

Processor

Baseband
Software

Hypervisor

Processor

HLOS

UI
Software

RTOS

Baseband
Software

 Medium-range phone
needs less grunt

• can share processor
• two VMs on one

physical processor
• hardware cost

reduction

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA4

Use case 1a: Software architecture abstraction
 Support for product series

• range of related products of varying capabilities

 Same low-level software for high- and medium-end devices
 Benefits:

• time-to-market
• engineering cost

Hypervisor

Processor

HLOS

UI
Software

RTOS

Baseband
SoftwareHLOS

Processor

UI
Software

RTOS

Processor

Baseband
Software

Hypervisor

Why Virtualization in Embedded Systems?

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA5

Use case 1b: Dynamic processor allocation
 Allocate share of baseband processor to application OS

• Provide extra CPU power during high-load periods (media play)
• Better processor utilisation  higher performance with lower-end hardware
• HW cost reduction

HLOS

Processor

UI
Software

RTOS

Processor

Baseband
Software

Hypervisor

HLOS

Processor

UI Software

RTOS

Processor

Baseb.
SW

Hypervisor

Why Virtualization in Embedded Systems?

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA6

Use case 2: Certification re-use
 Phones need to be certified to comply with communication standards
 Any change that (potentially) affects comms needs re-certification
 UI part of system changes frequently

Hypervisor

Processor

HLOS

UI
Software

RTOS

Baseband
Software

HLOS

Processor

UI
Software

RTOS

Processor

Baseband
Software

Hypervisor

 Encapsulation of UI
• provided by VM
• avoids need for

costly re-
certification

Why Virtualization in Embedded Systems?

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA7

Hypervisor

Processor

Linux

UI
Software

RTOS

Baseband
Software

Linux

Processor

UI
Software

RTOS

Processor

Baseband
Software

Hypervisor

Use case 2a: Open phone with user-configured OS
 Give users control over the application environment

• perfect match for Linux

 Requires strong encapsulation of application environment

• without
undermining
performance!

Why Virtualization in Embedded Systems?

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA8

Use case 2b: Phone with private and enterprise environment
 Work phone environment integrated with enterprise IT system
 Private phone environment contains sensitive personal data
 Mutual distrust between the environments  strong isolation needed

Processor

Linux

Private
phone env

RTOS

Processor

Baseband
Software

Hypervisor

WinCE

Enterprise
phone env

Why Virtualization in Embedded Systems?

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA9

Use case 3: Mobile internet device (MID) with enterprise app
 MID is open device, controlled by owner
 Enterprise app is closed and controlled by enterprise IT dept
 Hypervisor provides isolation

Hypervisor

Processor

Linux

Apps

Special-
purpose
OS

Enterpr.
App

Why Virtualization in Embedded Systems?

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA10

Use case 3a: Environment with minimal trusted computing base (TCB)
 Minimise exposure of highly security-critical service to other code
 Avoid even an OS, provide minimal trusted environment

• need a minimal programming environment
• goes beyond capabilities of normal hypervisor
• requires basic OS functionality

Generalised Hypervisor

Processor

OS

Apps

Critical
code

Why Virtualization in Embedded Systems?

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA11

Use case 3b: Point-of-sale (POS) device
 May be stand-alone or integrated with other device (eg phone)
 Financial services providers require strong isolation

• dedicated processor for PIN/key entry
• use dedicated virtual processor  HW cost reduction

Processor Processor

HLOS

Apps

PIN entry Generalised Hypervisor

Processor

HLOS

Apps

PIN entry

Why Virtualization in Embedded Systems?

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA12

Use case 4: DRM on open device
 Device runs Linux as app OS, uses Linux-based media player
 DRM must not rely on Linux
 Need trustworthy code that

• loads media content into on-chip RAM
• decrypts and decodes content
• allows Linux-based player to disply

 Need to protect data from guest OS

Generalised Hypervisor

Processor

HLOS

Apps

Codec

Crypto

Why Virtualization in Embedded Systems?

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA13

Use case 4a: IP protection in set-top box
 STB runs Linux for UI, but also contains highly valuable IP

• highly-efficient, proprietary compression algorithm

 Operates in hostile environment
• reverse engineering of algorithms

 Need highly-trustworthy code that
• loads code from Flash into on-chip RAM
• decrypts code
• runs code protected from interference

Generalised Hypervisor

Processor

HLOS

Apps
Decom-
pression

Crypto,
Secure
loader

Why Virtualization in Embedded Systems?

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA14

Use case 5: Automotive control and infotainment
 Trend to processor consolidation in automotive industry

• top-end cars have > 100 CPUs!
• cost, complexity and space pressures to reduce by an order of magnitude
• AUTOSAR OS standard addressing this for control/convenience function

 Increasing importance of Infotainment
• driver information and entertainment

function
• not addressed by AUTOSAR

Hypervisor

Processor

HLOS

UI
Software

AUTOSAR

Automotive
control
apps

 Increasing overlap of infotainment and
control/convenience

• eg park-distance control using
infotainment display

• benefits from being located on same CPU

Why Virtualization in Embedded Systems?

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA15

Enterprise vs Embedded Virtualization

Homogenous vs heterogenous guests

Linux
guest

Hypervisor

Processor

Apps

Linux
guest

Apps

Windows
guest

Apps

• Enterprise: many similar guests
• hypervisor size irrelevant

• VMs scheduled round-robin

• Embedded: 1 HLOS + 1 RTOS
• hypervisor resource-constrained

• interrupt latencies matter

Hypervisor

Processor

Linux

UI
Software

RTOS

Baseband
Software

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA16

Core Difference: Isolation vs Cooperation

Enterprise

• Independent services

• Emphasis on isolation

• Inter-VM communication is
secondary
– performance secondary

• VMs connected to Internet (and
thus to each other)

Embedded

• Integrated system

• Cooperation with protection

• Inter-VM communication is critically
important
– performance crucial

• VMs are subsystems accessing
shared (but restricted) resources

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA17

Enterprise vs Embedded Virtualization

Hypervisor
Driver Driver

Processor

App

Guest

Virt
Driver

Virt
Driver

Trusted

App

• Drivers in hypervisor
• need to port all drivers

• huge TCB

• Drivers in privileged guest OS
• can leverage guest's driver support

• need to trust driver OS

• still huge TCB!

Hypervisor

Processor

Guest

Virt
Driver

App

Dom0

DriverDriver

App

Devices in enterprise-style virtual machines

• Hypervisor owns all devices

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA18

Enterprise vs Embedded Virtualization

• Use isolated drivers
• protected from other drivers

• protected from guest OSes

Hypervisor

Processor

Guest

Virt
Driver

Virt
Driver

App

Guest

Guest
Driver

App

Native
Driver

Devices in embedded virtual machines

• Some devices owned by particular VM

• Some devices shared

• Some devices too sensitive to trust any guest

• Driver OS too resource hungry

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA19

Isolation vs Cooperation: Scheduling

Enterprise

• Round-robin scheduling of VMs

• Guest OS schedules its apps

Embedded

• Global view of scheduling

• Schedule threads, not VMs

Task

Task

Task

VM

Task

...
Task

Task

Task

VM

Task

Task

Task

Task

VM

Task

...

VM

Task

Task

VM

Task

Task

Prio1

Prio2

Prio3

Prio4

VM

Task

Task

Task

• Similar for energy management:
– energy is a global resource

– optimal per-VM energy policies are not globally optimal

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA20

Operator
Stake

Inter-VM Communication Control

Modern embedded systems are multi-user devices!

• Eg a phone has three classes of “users”:
• the network operator(s)

• assets: cellular network

Buffer

Media
Player

UI
etc

HLOS
Crypto

Codec

Priv.
Data

Buffer RTOS

Comms
Stack

Operat
or
Stake

Buff
er

Medi
a
Play
er
UI
etc

HLO
S

Cryp
to

Cod
ec

Pri
v.
Da
ta

Buff
er

RTOS

Comms
Stack

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA21

Media
Provider
Stake

Inter-VM Communication Control

Modern embedded systems are multi-user devices!

• Eg a phone has three classes of “users”:
• the network operator(s)

• assets: cellular network

• content providers

• media content

Operat
or
Stake

Buff
er

Medi
a
Play
er
UI
etc

HLO
S

Cryp
to

Cod
ec

Pri
v.
Da
ta

Buff
er

RTOS

Comms
Stack

Buffer

Media
Player

UI
etc

HLOS
Crypto

Codec

Priv.
Data

Buffer RTOS

Comms
Stack

Operator
Stake

Media
Provider
Stake Buffer

Medi
a
Play
er
UI
etc

HLO
S

Crypto
Codec

Priv.
Data

Buffer RTOS

Comms
Stack

Operator
Stake

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA22

Owner
Stake

Inter-VM Communication Control

Modern embedded systems are multi-user devices!

• Eg a phone has three classes of “users”:
• the network operator(s)

• assets: cellular network

• content providers

• media content

• the owner of the physical device

• assets: private data, access keys

Operat
or
Stake

Buff
er

Medi
a
Play
er
UI
etc

HLO
S

Cryp
to

Cod
ec

Pri
v.
Da
ta

Buff
er

RTOS

Comms
Stack

Media
Provider
Stake Buffer

Medi
a
Play
er
UI
etc

HLO
S

Crypto
Codec

Priv.
Data

Buffer RTOS

Comms
Stack

Operator
Stake

Buffer

Media
Player

UI
etc

HLOS
Crypto

Codec

Priv.
Data

Buffer RTOS

Comms
Stack

Media
Provider
Stake

Operator
Stake

Owner
Stake

Buffer

Medi
a
Play
er
UI
etc

HLO
S

Crypto
Codec

Priv.
Data

Buff
er

RTOS

Comms
Stack

Media
Provider
Stake

Operator
Stake

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA23

Inter-VM Communication Control

Modern embedded systems are multi-user devices!

• Eg a phone has three classes of “users”:
• the network operator(s)

• assets: cellular network

• content providers

• media content

• the owner of the physical device

• assets: private data, access keys

Operat
or
Stake

Buff
er

Medi
a
Play
er
UI
etc

HLO
S

Cryp
to

Cod
ec

Pri
v.
Da
ta

Buff
er

RTOS

Comms
Stack

Media
Provider
Stake Buffer

Medi
a
Play
er
UI
etc

HLO
S

Crypto
Codec

Priv.
Data

Buffer RTOS

Comms
Stack

Operator
Stake

Owner
Stake

Buffer

Medi
a
Play
er
UI
etc

HLO
S

Crypto
Codec

Priv.
Data

Buff
er

RTOS

Comms
Stack

Media
Provider
Stake

Operator
Stake

• They are mutually distrusting
• need to protect integrity and confidentiality

against internal exploits

• need control over information flow

• strict control over who has access to what

• strict control over communication channels

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA24

• Different “users” are mutually distrusting

• Need strong protection / information-flow control between them

Inter-VM Communication Control

Linux

Microkernel

Processor

App App

App

  

Isolation
boundary

Owner
Stake

Buffer

Medi
a
Play
er
UI
etc

HLO
S

Crypto
Codec

Priv.
Data

Buff
er

RTOS

Comms
Stack

Media
Provider
Stake

Operator
Stake

• Isolation boundaries ≠ VM boundaries
– some are much smaller than VMs

• individual buffers, programs

– some contain VMs

– some overlap VMs

• Need to define information flow between
isolation domains

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA25

High Safety/Reliability Requirements

• Software complexity is mushrooming in embedded systems too
– millions of lines of code

• Some have very high safety or reliability requirements

• Need divide-and-conquer approach to software reliability
– Highly componentized systems to enable fault tolerance

Comp

OKL4

OK Linux

App

App

App

Real
Time
App

Comp Comp Comp

CompComms
Library

Object
Mgr

Comp
Loader

TCP/IP User
Interface

File
System

Network Display Flash

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA26

Componentization for IP Blocks

• Match HW IP blocks with SW IP blocks

• HW IP owner provides matching SW blocks
– encapsulate SW to ensure correct operation

– Stable interfaces despite changing HW/SW boundary

Hypervisor

Processor IP
Block

IP
Block

IP
Block

SW
Block

SW
Block

SW
Block

Other
SW

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA27

Componentization for Security — MILS

• MILS architecture: multiple independent levels of security

• Approach to making security verification of complex systems tractable

• Separation kernel provides strong security isolation between subsystems

• High-grade verification requires small components

Separation Kernel

Processor

Domain

Isolation
boundary

Domain Domain

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA28

Embedded Systems Requirements

• Sliding scale of isolation from individual program to VM running full-blown OS
– isolation domains, information-flow control

• Global scheduling and power management
– no strict VM-hypervisor hierarchy

– increased hypervisor-guest interaction

• High degree of sharing is essential and performance-critical
– high bandwidth, low latency communication, subject to security policies

• Real-time response
– fast and predictable switches to device driver / RT stack

• High safety/security requirements
– need to maintain minimal TCB

– need to support componentized software architecture / MILS

Virtualization in embedded systems is good, but different from enterprise
– requires range of isolation granularities

– requires efficient context switching

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA29

The seL4 Microkernel

Goals
• Platform for building arbitrary

embedded-systems software
– general OS
– hypervisor
– separation kernel

• High-performance implementation
– no more than 15 cycles slower on

IPC than L4
• Formal specification
• Formal proof of security properties
• Formal verification of implementation

Innovation over other L4 kernels:
• Access control based on capabilities
• Kernel resource accounting

Legacy
Apps

Sensitive
Apps

Linux
Server

Trusted
Service

Supervisor OS

seL4

Hardware

TrustedUntrusted

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA30

seL4 Capability-Based Protection

All authority conferred via capabilities
• Capabilities are like keys

• Possess the key, and you can invoke the operation

• All system calls are invoked via capabilities
• No ambient authority

Established body of knowledge on capabilities
• Can reason about them
• Models for confining authority

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA31

seL4 Physical Memory Management

Some kernel memory is
statically allocated at boot time

Remainder is divided into
untyped (UT) objects

• 2n region of physical memory
• Size aligned

Supervisor gets authority
over these objects

• Authority conferred by capabilities

Kernel never allocates dynamic memory

App 1 App 2

Supervisory
OS

Microkernel

Physical memory

Kernel
Data

UT
obj 1

UT
obj 2

UT
obj 3 ..

....

UT
obj n

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA32

Iterative Design and Formalisation

• Prototype kernel executes native binaries on simulator
• Exposes usability issues early
• Tight formal design integration

Proof

Design &
Specify

Haskell
Prototype

High-Performance
C Application

Formal
Model

Safety Theorem
Proof

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA33

Access Control Model

Abstract Model

Executable Model

C Code HW

Confinement

Haskell Prototype

Formal proof:
concrete behaviour
captured at
abstract level

Monadic functional
programs

Hoare Logic
Separation Logic

Manual System Specification

(Isabelle/HOL)

(

High Performance Implementation
(C/asm)

(

Hardware model

The Proofs

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA34

Access Control Model

Abstract Model

Executable Model

C Code HW

Confinement

Haskell Prototype

Formal proof:
concrete behaviour
captured at
abstract level

Monadic functional
programs

Hoare Logic
Separation Logic

Manual System Specification

(Isabelle/HOL)

(

High Performance Implementation
(C/asm)

(

Hardware model

The Proofs

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA35

Common Criteria Assurance and L4.verified

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA36

seL4 Summary

Implementation Status
• seL4 operational on ARM11

– runs Linux etc...

• Performance in line with other L4 kernels

• Port to x86 in progress

• Security evaluation by Australian DoD

• To be integrated with commercial OKL4

– OKL4 presently deployed in 150N devices

Proof Status
• Refinement proof to low-level model complete
• Already most deeply formally-verified general-

purpose kernel ever
• C/asm implementation proof due December
• Working on proving more security properties

o

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA37

My Wishlist for Intel

• Need fine-grained isolation
– Please give us IO-MMUs on embedded processors!

• Need fast context switches
– Please do something about context-switching costs

– ... such as tagged TLBs!

• Need clear definition of hardware for formal verification
– Please give us an RTL-level description of the ISA!

From imagination to impact

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA39
39

seL4 Project Overview

• Size of the project
– Average 4–5 people (full time equivalent)

A

– 5 years
– Ends December 2008

• Interesting Problems
– Designing and formalising an OS kernel
– Refinement on monadic functional programs
– Refinement on C programs
– Formalizing machine details
– Access control

© 2008 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA40
40

seL4 Verification Summary

Statistics
• 3.5k LOC abstract, 7kLOC concrete spec (about 3k Haskell)

a

• Abstract / Haskell done: 100kLOP (more features coming)

/

• Access control model + security proofs done (1kLOP)
• 109 patches to Haskell kernel, 132 to abstract spec
• Performance in line with other L4 kernels

Kinds of properties proved
• Well typed references, aligned objects, ..
• Well formed thread states, endpoint and scheduler queues, ...
• All syscalls terminate, reclaiming memory is safe, ...
• Authority is distributed by caps only
• Access control is decidable
• Subsystems can be isolated / confined

© 2008 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	The seL4 Microkernel
	seL4 Capability-based Protection
	Slide 31
	Iterative Design and Formalisation
	Slide 33
	Slide 34
	Common Criteria and L4.verified
	seL4 Summary
	Slide 37
	Slide 38
	seL4 Project Overview
	Slide 40

