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Outline

• Embedded virtualization use cases
• Enterprise vs embedded: main differences
• Trustworthy hypervisor for embedded systems
• Wishlist for Intel
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Why Virtualization in Embedded Systems?

Use case 1: Mobile phone processor consolidation
 High-end phones run high-level OS (Linux/WinCE/Symbian) on app processor

• supports complex UI software

 Baseband processing supported by real-time OS (RTOS)
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 Medium-range phone 
needs less grunt

• can share processor
• two VMs on one 

physical processor
• hardware cost 

reduction
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Use case 1a: Software architecture abstraction
 Support for product series

• range of related products of varying capabilities

 Same low-level software for high- and medium-end devices
 Benefits:

• time-to-market
• engineering cost
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Use case 1b: Dynamic processor allocation
 Allocate share of baseband processor to application OS

• Provide extra CPU power during high-load periods (media play)
• Better processor utilisation  higher performance with lower-end hardware
• HW cost reduction
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Use case 2: Certification re-use
 Phones need to be certified to comply with communication standards
 Any change that (potentially) affects comms needs re-certification
 UI part of system changes frequently
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 Encapsulation of UI
• provided by VM
• avoids need for 

costly re-
certification
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Use case 2a: Open phone with user-configured OS
 Give users control over the application environment

• perfect match for Linux

 Requires strong encapsulation of application environment

• without  
undermining 
performance!

Why Virtualization in Embedded Systems?
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Use case 2b: Phone with private and enterprise environment
 Work phone environment integrated with enterprise IT system
 Private phone environment contains sensitive personal data
 Mutual distrust between the environments  strong isolation needed
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Use case 3: Mobile internet device (MID) with enterprise app
 MID is open device, controlled by owner
 Enterprise app is closed and controlled by enterprise IT dept
 Hypervisor provides isolation
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Use case 3a: Environment with minimal trusted computing base (TCB)
 Minimise exposure of highly security-critical service to other code
 Avoid even an OS, provide minimal trusted environment

• need a minimal programming environment
• goes beyond capabilities of normal hypervisor
• requires basic OS functionality

Generalised Hypervisor

Processor

OS

Apps

Critical 
code
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Use case 3b: Point-of-sale (POS) device
 May be stand-alone or integrated with other device (eg phone)
 Financial services providers require strong isolation

• dedicated processor for PIN/key entry
• use dedicated virtual processor  HW cost reduction
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Use case 4: DRM on open device
 Device runs Linux as app OS, uses Linux-based media player
 DRM must not rely on Linux
 Need trustworthy code that

• loads media content into on-chip RAM
• decrypts and decodes content
• allows Linux-based player to disply

 Need to protect data from guest OS
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Use case 4a: IP protection in set-top box
 STB runs Linux for UI, but also contains highly valuable IP

• highly-efficient, proprietary compression algorithm

 Operates in hostile environment
• reverse engineering of algorithms

 Need highly-trustworthy code that
• loads code from Flash into on-chip RAM
• decrypts code
• runs code protected from interference
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Use case 5: Automotive control and infotainment
 Trend to processor consolidation in automotive industry

• top-end cars have > 100 CPUs!
• cost, complexity and space pressures to reduce by an order of magnitude
• AUTOSAR OS standard addressing this for control/convenience function

 Increasing importance of Infotainment
• driver information and entertainment 

function
• not addressed by AUTOSAR
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 Increasing overlap of infotainment and 
control/convenience

• eg park-distance control using 
infotainment display

• benefits from being located on same CPU

Why Virtualization in Embedded Systems?
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Enterprise vs Embedded Virtualization

Homogenous vs heterogenous guests
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• Enterprise: many similar guests
• hypervisor size irrelevant

• VMs scheduled round-robin

• Embedded: 1 HLOS + 1 RTOS
• hypervisor resource-constrained

• interrupt latencies matter
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Core Difference: Isolation vs Cooperation

Enterprise

• Independent services

• Emphasis on isolation

• Inter-VM communication is 
secondary
– performance secondary

• VMs connected to Internet (and 
thus to each other)

Embedded

• Integrated system

• Cooperation with protection

• Inter-VM communication is critically 
important
– performance crucial

• VMs are subsystems accessing 
shared (but restricted) resources
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Enterprise vs Embedded Virtualization
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• Drivers in hypervisor
• need to port all drivers

• huge TCB

• Drivers in privileged guest OS
• can leverage guest's driver support

• need to trust driver OS

• still huge TCB!
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Devices in enterprise-style virtual machines

• Hypervisor owns all devices
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Enterprise vs Embedded Virtualization

• Use isolated drivers
• protected from other drivers

• protected from guest OSes
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Devices in embedded virtual machines

• Some devices owned by particular VM

• Some devices shared

• Some devices too sensitive to trust any guest

• Driver OS too resource hungry
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Isolation vs Cooperation: Scheduling

Enterprise

• Round-robin scheduling of VMs

• Guest OS schedules its apps

Embedded

• Global view of scheduling

• Schedule threads, not VMs
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• Similar for energy management:
– energy is a global resource

– optimal per-VM energy policies are not globally optimal
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Operator
Stake

Inter-VM Communication Control

Modern embedded systems are multi-user devices!

• Eg a phone has three classes of “users”:
• the network operator(s)

• assets: cellular network
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Media
Provider
Stake

Inter-VM Communication Control

Modern embedded systems are multi-user devices!

• Eg a phone has three classes of “users”:
• the network operator(s)

• assets: cellular network

• content providers

• media content

Operat
or
Stake

Buff
er

Medi
a
Play
er
UI
etc

HLO
S

Cryp
to

Cod
ec

Pri
v.
Da
ta

Buff
er

RTOS

Comms
Stack

Buffer

Media
Player

UI
etc

HLOS
Crypto

Codec

Priv.
Data

Buffer RTOS

Comms
Stack

Operator
Stake

Media
Provider
Stake Buffer

Medi
a
Play
er
UI
etc

HLO
S

Crypto
Codec

Priv.
Data

Buffer RTOS

Comms
Stack

Operator
Stake



Intel Virtualization Summit, Sep'08 © 2008 Gernot Heiser, NICTA22

Owner
Stake

Inter-VM Communication Control

Modern embedded systems are multi-user devices!

• Eg a phone has three classes of “users”:
• the network operator(s)

• assets: cellular network

• content providers

• media content

• the owner of the physical device

• assets: private data, access keys
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Inter-VM Communication Control

Modern embedded systems are multi-user devices!

• Eg a phone has three classes of “users”:
• the network operator(s)

• assets: cellular network

• content providers

• media content

• the owner of the physical device

• assets: private data, access keys
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• They are mutually distrusting
• need to protect integrity and confidentiality 

against internal exploits

• need control over information flow

• strict control over who has access to what

• strict control over communication channels
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• Different “users” are mutually distrusting

• Need strong protection / information-flow control between them
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• Isolation boundaries ≠ VM boundaries
– some are much smaller than VMs

• individual buffers, programs

– some contain VMs

– some overlap VMs

• Need to define information flow between 
isolation domains
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High Safety/Reliability Requirements

• Software complexity is mushrooming in embedded systems too
– millions of lines of code

• Some have very high safety or reliability requirements

• Need divide-and-conquer approach to software reliability
– Highly componentized systems to enable fault tolerance
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Componentization for IP Blocks

• Match HW IP blocks with SW IP blocks

• HW IP owner provides matching SW blocks
– encapsulate SW to ensure correct operation

– Stable interfaces despite changing HW/SW boundary

Hypervisor
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Componentization for Security — MILS

• MILS architecture: multiple independent levels of security

• Approach to making security verification of complex systems tractable

• Separation kernel provides strong security isolation between subsystems

• High-grade verification requires small components

Separation Kernel
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Embedded Systems Requirements

• Sliding scale of isolation from individual program to VM running full-blown OS
– isolation domains, information-flow control

• Global scheduling and power management
– no strict VM-hypervisor hierarchy

– increased hypervisor-guest interaction

• High degree of sharing is essential and performance-critical
– high bandwidth, low latency communication, subject to security policies

• Real-time response
– fast and predictable switches to device driver / RT stack

• High safety/security requirements
– need to maintain minimal TCB

– need to support componentized software architecture / MILS

Virtualization in embedded systems is good, but different from enterprise
– requires range of isolation granularities

– requires efficient context switching
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The seL4 Microkernel

Goals
• Platform for building arbitrary 

embedded-systems software
– general OS
– hypervisor
– separation kernel

• High-performance implementation
– no more than 15 cycles slower on 

IPC than L4
• Formal specification
• Formal proof of security properties
• Formal verification of implementation

Innovation over other L4 kernels:
• Access control based on capabilities
• Kernel resource accounting
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Apps
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seL4 Capability-Based Protection

All authority conferred via capabilities
• Capabilities are like keys

• Possess the key, and you can invoke the operation

• All system calls are invoked via capabilities
• No ambient authority

Established body of knowledge on capabilities
• Can reason about them
• Models for confining authority
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seL4 Physical Memory Management

Some kernel memory is 
statically allocated at boot time

Remainder is divided into 
untyped (UT) objects

• 2n region of physical memory
• Size aligned

Supervisor gets authority 
over these objects

• Authority conferred by capabilities

Kernel never allocates dynamic memory
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Iterative Design and Formalisation

• Prototype kernel executes native binaries on simulator
• Exposes usability issues early
• Tight formal design integration
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Access Control Model

Abstract Model

Executable Model

C Code HW
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Formal proof:
concrete behaviour 
captured at 
abstract level

Monadic functional 
programs
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Manual System Specification
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High Performance Implementation
(C/asm)
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Hardware model

The Proofs
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Common Criteria Assurance and L4.verified
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seL4 Summary

Implementation Status
• seL4 operational on ARM11

– runs Linux etc...

• Performance in line with other L4 kernels

• Port to x86 in progress

• Security evaluation by Australian DoD

• To be integrated with commercial OKL4

– OKL4 presently deployed in 150N devices

Proof Status
• Refinement proof to low-level model complete
• Already most deeply formally-verified general-

purpose kernel ever
• C/asm implementation proof due December
• Working on proving more security properties

o
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My Wishlist for Intel

• Need fine-grained isolation
– Please give us IO-MMUs on embedded processors!

• Need fast context switches
– Please do something about context-switching costs

– ... such as  tagged TLBs!

• Need clear definition of hardware for formal verification
– Please give us an RTL-level description of the ISA!



From imagination to impact
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seL4 Project Overview

• Size of the project
– Average 4–5 people (full time equivalent)

A

– 5 years
– Ends December 2008

• Interesting Problems
– Designing and formalising an OS kernel
– Refinement on monadic functional programs
– Refinement on C programs
– Formalizing machine details
– Access control

© 2008 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 
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seL4 Verification Summary

Statistics
• 3.5k LOC abstract, 7kLOC concrete spec (about 3k Haskell)

a

• Abstract / Haskell done: 100kLOP (more features coming)

/

• Access control model + security proofs done (1kLOP)
• 109 patches to Haskell kernel, 132 to abstract spec
• Performance in line with other L4 kernels

Kinds of properties proved
• Well typed references, aligned objects, ..
• Well formed thread states, endpoint and scheduler queues, ...
• All syscalls terminate, reclaiming memory is safe, ...
• Authority is distributed by caps only
• Access control is decidable
• Subsystems can be isolated / confined

© 2008 Open Kernel Labs. All rights reserved. Do not distribute without prior authorization. 
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