
Gernot Heiser
NICTA and UNSW and Open Kernel Labs
Sydney, Australia

Operating System Verification
for Real Use

© NICTA 2008
Future of Trust in Computing Conference, July 2008 2

The Problem

© Gernot Heiser 2008 VERIFY'08 Keynote 3

OS Reliability is a Problem

• The consequences of OS failure are getting worse

© Gernot Heiser 2008 VERIFY'08 Keynote 4

OS Reliability is a Problem

• Any computer system can only be as reliable/trustworthy as its operating
system

• Life-critical systems should have bullet-
proof operating systems

• Formal verification should be the obvious
way to achieve this?

• How does military-grade assurance look
like?

© Gernot Heiser 2008 VERIFY'08 Keynote 5

C

àNo certainty of implementation correctness ⇒ not good enough!

Common Criteria and Verification

Operating System Verification

© Gernot Heiser 2008 VERIFY'08 Keynote 7

OS Verification — Is It Feasible?

• Benefits seem clear, but
– Can it be done?
– Can it be done for a system suitable for real use?
– Is it doable at a reasonable cost?

• Past attempts:
– UCLA Secure Unix (1980)

• Pascal kernel, 90% specifications, 20% implementation proofs
– PSOS (1973–83)

• 17 specification layers (hardware to apps)
• some refinement proofs between layers
• no implementation proofs completed

– KIT (1987)
• minimal kernel, some 100 LOC assembly
• full implementation proof
• very basic services on idealised machine

© Gernot Heiser 2008 VERIFY'08 Keynote 8

Aim of NICTA OS Verification Work

• Formally verify a complete OS kernel
• ... which is suitable for commercial use

– on real hardware
– fully functional
– good performance

© Gernot Heiser 2008 VERIFY'08 Keynote 9

Main Challenges

• Size:
– operating systems tend to be big
– Linux, Windows: millions of lines of code (LOC)

• Ugly code: low-level and unsafe
– Low-level language — C is the lingua franca of OS

• could be worse — some use C++
– Frequently has to bypass type-checking

• hardware registers are untyped
• various efficiency tricks, bit fiddling

– Side effects are unavoidable — hardware is that way
– Assembler code is unavoidable

• and used voluntarily for efficiency• Efficiency: If it's slow, no-one will use it

© Gernot Heiser 2008 VERIFY'08 Keynote 10

Prerequisites for Success

• Need a target system that is tractable
– �10,000 LOC is about the limit (so they tell me)

• Need a world-class formal-methods team
– so I suspect, based on historic track record...

• Need a world-class OS team
– ... or they won't end up with a useful kernel
– really correct and really slow won't do!

• Need to ensure communication between teams!
– only practical safeguard against the two teams diverging

With hindsight:
• Need control over tools!

The Target

© Gernot Heiser 2008 VERIFY'08 Keynote 12

Tractable System

• 10kLOC and practically usable � microkernel
– Very small platform that allows constructing arbitrary systems on top
– OS functionality reduced to its essence:

• fundamental mechanisms
• no policies

– Only microkernel runs in privileged mode
• everything else in user mode, incl “normal” OS functionality

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Applicati
on

Applicati
on

Uni
x
Ser
ver

File
Ser
ver

Dev
ice
Driv
er

Syscall

IPC

Kernel
Mode

User
Mode

© Gernot Heiser 2008 VERIFY'08 Keynote 13

Tractable System: L4 Microkernel

• Right size: �10,000 LOC
– mostly C, some (100's LOC) assembler

• Very general-purpose: supports
– componentised OSes
– small embedded environments
– virtualized main-stream OSes (Linux)• Famous for performance
– the benchmark for microkernel performance

• However, not fully suitable
– several security issues:

• inefficient communication control mechanisms
• isolation of user domains broken by management of kernel resources

– needed API overhaul

• Ready for commercial use
– ... or so we hoped at the time
– now deployed on some 150,000,000 devices

© Gernot Heiser 2008 VERIFY'08 Keynote 14

The Challenge

• Formally verify a secure version of L4
– Need to develop a new kernel API as we go
– Concurrent to verification effort

• Outcome to be suitable for practical use
– Performance within 10% of existing high-performance L4

• Succeed!
– Unsuccessful multi-M$ project doesn't look good
– Some careers were on the line

The Ingredients

© Gernot Heiser 2008 VERIFY'08 Keynote 16

Formal-Methods Team

• Gerwin Klein — newly recruited researcher
• Project leader verification

– L4.verified project
• Developed project plan
• Built team of up to 10 people across two

cities

© Gernot Heiser 2008 VERIFY'08 Keynote 17

OS Team

• Kevin Elphinstone — recent recruitment to
UNSW

• Project leader kernel API
– seL4 project

• Built (smaller) kernel team
• Lead design and implementation of new L4

API

© Gernot Heiser 2008 VERIFY'08 Keynote 18

The Interface Part 1: The Human Side

• Needed at least one person I could trust to understand both sides

• Approach tested in 1-year pilot project
– Seemed to work, resulting in 3-year main

project
– Learned some lessons on approach
– Developed idea of overall effort required

• The result?

• Don't have one? Need to bake your own!
– Take one top class systems hacker

with Maths aptitude
– Let Gerwin work on him for a year

© Gernot Heiser 2008 VERIFY'08 Keynote 19

The Interface Part 2: The Language

Where is the common ground?

Abstract Model C Code HW

© Gernot Heiser 2008 VERIFY'08 Keynote 20
20

Modelling?
• Well defined semantics
• Readily formalisable
• Exposed implementation details
• Programming language

Bridging the Gap

© Gernot Heiser 2008 VERIFY'08 Keynote 21

Haskell — The New Lingua Franca?

• Used Literate Haskell as modelling
language

– pure functional language
– embedded documentation
– close to Isabelle/HOL

• Familiar to most kernel hackers
– First-year teaching language at

UNSW
• Executable

– Supports running user-level code
– Useful for exercising the API

• gain experience with API
• port user-level software

• Used to model kernel in detail

© Gernot Heiser 2008 VERIFY'08 Keynote 22

Iterative Design and Formalisation

• Haskell kernel executes native binaries on simulator
• Exposes usability issues early
• Tight formal design integration

Proof

Design &
Specify

Haskell
Prototype

High-Performance
C Application

Formal
Model

Safety Theorem
Proof

Kernel Modelling

© Gernot Heiser 2008 VERIFY'08 Keynote 24
24

Kernel API is event-based, mostly atomic

• Kernels are big state machines with events as input
– Imperative
– Rely on side-effects all the time

• P(s), make_runnable(tcb)

• Kernels manipulate the low-level machine
– Interrupts, TLBs, caches

Kernel Modelling in Haskell

• Preemption required
– Kernels can’t always perform operations to completion

© Gernot Heiser 2008 VERIFY'08 Keynote 25
25

• State monads are units of computation which consume and produce state
– state transformers

• Kernel monad encapsulates a state transformer of the kernel and machine

• Monads can be bound together using the bind operator
– sequencing the computation
– connects the plumbing to pass the state along

>>= >>= >>=Init
Kernel Kernel Kernel Kernel

Kernel

Event EventEvent

Kernel Code in a State Monad

© Gernot Heiser 2008 VERIFY'08 Keynote 26
26

type Kernel = StateT KernelState MachineMonad
callKernel :: Event -> Kernel ()
callKernel ev =
 handleEvent ev >>= (\x -> schedule >>=
 (\y -> activateThread))

= >>= >>=callKer
nel

handle
Event

schedul
e

Activat
e

Thread

Event

Kernel Code in a Monad

© Gernot Heiser 2008 VERIFY'08 Keynote 27
27

type Kernel = StateT KernelState MachineMonad
callKernel :: Event -> Kernel ()
callKernel ev = do
 handleEvent ev
 schedule
 activateThread

= >>= >>=callKer
nel

handle
Event

schedul
e

Activat
e

Thread

Event

Imperative in “style”

Lowers barrier to entry for kernel developers

Kernel Code in a Monad

© Gernot Heiser 2008 VERIFY'08 Keynote 28
28

• Machine monad contains state to interface to simulator
• Kernel contains the state of physical memoryMachine

Monad
ReaderT IO

Kernel

StateT

Kernel Monad

© Gernot Heiser 2008 VERIFY'08 Keynote 29
29

• getMemoryTop :: MachineMonad (PPtr ())
• getDeviceRegions :: MachineMonad [(PPtr (), Int)]
• loadWord :: PPtr Word -> MachineMonad Word
• storeWord :: PPtr Word -> Word -> MachineMonad ()
• insertMapping :: PPtr Word -> VPtr -> Int -> Bool ->
• flushCaches :: MachineMonad ()
• getActiveIRQ :: MachineMonad (Maybe IRQ)
• maskInterrupt :: Bool -> IRQ -> MachineMonad ()
• ackInterrupt :: IRQ -> MachineMonad ()
• waitForInterrupt :: MachineMonad IRQ
• configureTimer :: MachineMonad IRQ
• resetTimer :: MachineMonad ()

• Foreign Function Interface (FFI)
• Approximate machine-level C functions
• Close to “real” as possible

– Forces us to manage “hardware”

Machine Monad — Lowest Level of Model

© Gernot Heiser 2008 VERIFY'08 Keynote 30
30

• Statically allocated global kernel data
– Current thread
– Scheduler queues

• Physical Memory
Machine
Monad

ReaderT IO

Kernel

StateT

KernelState Monad

The Proof

© Gernot Heiser 2008 VERIFY'08 Keynote 32

Access Control Model

Abstract Model

Executable Model

C Code HW

Confinement

Haskell Prototype

Formal proof:
concrete behaviour
captured at
abstract level

Monadic functional
programs

Hoare Logic
Separation Logic

Manual System Specification
(Isabelle/HOL)

High Performance Implementation
(C/asm)

Hardware model

Overview

© Gernot Heiser 2008 VERIFY'08 Keynote 33

Common Criteria and L4.verified

Lessons Learned

© Gernot Heiser 2008 VERIFY'08 Keynote 35

The Tools

• Isabelle/HOL generally worked well
– Gerwin's experience clearly helped

• But we were frequently pushing the boundaries
– of techniques
– of tools

• Crucially important to have control over tools
– Need to be able to fix a limitation you run into
– Source-code access is essential
– Open-source tool is ideal

• Good support from tool supplier helps massively
– The TUM folks were great!

© Gernot Heiser 2008 VERIFY'08 Keynote 36

It's Not Quite Over Yet!

• Refinement to low-level design (Haskell) complete
– most formally analysed general-purpose kernel

• source-code level refinement in progress
– due December '08
– no-one doubts that it will succeed

• Work on proving security properties on-going

© Gernot Heiser 2008 VERIFY'08 Keynote 37

Statistics
• 3.5 kLOC abstract, 7 kLOC concrete spec (about 3k Haskell)
• Abstract to Haskell: 100 kLOP (more features coming)
• Access control model + initial security proofs: 1 kLOP
• Haskell to C/asm: expect 80kLOP
• 109 patches to Haskell kernel, 132 to abstract spec
• Performance in line with other L4 kernels

Kinds of properties proved
• Well typed references, aligned objects, ..
• Well formed thread states, endpoint and scheduler queues, ...
• All syscalls terminate, reclaiming memory is safe, ...
• Authority is distributed by caps only
• Access control is decidable

Verification Summary

© Gernot Heiser 2008 VERIFY'08 Keynote 38

• Challenge: adapting proofs to changes in implementation
– Will minor changes result in massive reworking of proofs?

Proof Maintenance

• Inevitably tested as a result of project structure:
– concurrent work on proofs and kernel design
– frequently verification work progressed on frozen kernel
– merging of source trees required update of proofs

• Experience: depends on how changes affect invariants
– Some changes took weeks to port

• new syscall,
• additional parameters to syscall decoded deep down

– Others, breaking existing invariants, took months
• fundamentally changing operation of IPC, eg. reply caps
• required discovering new invariants

• Experience increases confidence in practicability of OS verification

© Gernot Heiser 2008 VERIFY'08 Keynote 39

Cost: Is OS Verification Affordable?

• Estimated cost of complete project: A$4–5M
– seL4 and L4.verified combined, until December '08

• Estimated cost of re-doing on latest kernel: A$2M
– on commercial OKL4 kernel

• Cost of traditional assurance: US$10k/LOC
– industry estimate for Common Criteria EAL6 certification
– means US$100M for L4-like kernel!

• Challenge: Convince authorities that verification is superior!

© Gernot Heiser 2008 VERIFY'08 Keynote 40

• Complete verification of a fully-functional OS kernel seems doable
• Cost seems small compared to traditional assurance schemes

Conclusion

• However, probably can't succeed without:
– top-notch verifiers
– top-notch kernel experts
– excellent communication between the two sides

• need some people who understand both
• good languages and tools help

• A microkernel is only the start!
– Need to work on actual OS services
– Multiple independent levels of security (MILS)

© Gernot Heiser 2008 VERIFY'08 Keynote 41

The Team

• Kevin Elphinstone• Gerwin Klein
• June Andronick
• David Cock
• Philip Derrin
• Kai Engelhardt
• Jia Meng
• Michael Norrish
• David Tsai
• Simon Winwood

• Andrew Boyton
• Jeremy Dawson
• Dhammika Elkaduwe
• Rafal Kolanski
• Catherine Menon
• Thomas Sewell
• Harvey Tuch

From imagination to impact

