Qe

NICTA

Operating System Verification
for Real Use

Gernot Heiser
NICTA and UNSW and Open Kernel Labs
Sydney, Australia

* Cepartment of State and
o p—— l- UNSW @@ s

% v*"‘"’-"iv Department of Broadband, Communications

and the Digital Eco
i e 2 e &y

Australian Research Council ~— o et m .

—

Hindows

An exception 06 has occured at 0028:C11B3ADC in WD DiskTSD{03) +
00001660, This was called from 0028:C11B40C8 in WxD voltrack{(04) +
00000000, It may be possible to continue normally.

* Press any key to attempt to continue,
* Press CTRLHALTHRESET to restart your computer., You will
lose any unsaved information in all applications.

Press any key to continue

OS Reliability is a Problem

 The consequences of OS failure are getting worse

© Gernot Heiser 2008 VERIFY'08 Keynote 3

OS Reliability is a Problem

 Any computer system can only be as reliable/trustworthy as its operating
system

o Life-critical systems should have bullet-
proof operating systems

 Formal verification should be the obvious
way to achieve this?

 How does military-grade assurance look
like?

© Gernot Heiser 2008 VERIFY'08 Keynote 4

Common Criteria and Verification

EAL

EAL 1

|
-

Requirem.

Informal

Fé:unct Spec

Informal

HLD

Informal

LLD

Informal

Implem.

Informal

EAL?2

|

Informal
|

Informal

Informal

Informal

Informal

EAL3

|
Informal
\

Informal

Informal

Informal

Informal

EALA4

|
Informal
|

Informal

Informal

Informal

Informal

EALS

|
Formal
|

$Semiformal

Semiformal

Informal

Informal

EALG

|
Formal
|

Semiformal

Semiformal

Semiformal

Informal

EAL7

|
Formal

Formal

l

Formal

Semiformal

Informal

->No certainty of implementation correctness = not good enough!

© Gernot Heiser 2008

VERIFY'08 Keynote

Operating System Verification

OS Verification — Is It Feasible?

 Benefits seem clear, but
- Can it be done?
- Can it be done for a system suitable for real use?

- Is it doable at a reasonable cost?
e Past attempts:

- UCLA Secure Unix (1980)

» Pascal kernel, 90% specifications, 20% implementation proofs
- PSOS (1973-83)

» 17 specification layers (hardware to apps)

» some refinement proofs between layers

* no implementation proofs completed
- KIT (1987)

* minimal kernel, some 100 LOC assembly

 full implementation proof

* very basic services on idealised machine

© Gernot Heiser 2008 VERIFY'08 Keynote 7

Aim of NICTA OS Verification Work

* Formally verify a complete OS kernel

e ... which is suitable for commercial use
- on real hardware
- fully functional
- good performance

© Gernot Heiser 2008 VERIFY'08 Keynote 8

Main Challenges

e Size:
- operating systems tend to be big
- Linux, Windows: millions of lines of code (LOC)

* Ugly code: low-level and unsafe
- Low-level language — C is the lingua franca of OS
e could be worse — some use C++
- Frequently has to bypass type-checking
* hardware registers are untyped
 various efficiency tricks, bit fiddling

- Side effects are unavoidable — hardware is that way
- Assembler code is unavoidable

« Efficieh@ndfiesdiyaluntashefdilelissency

© Gernot Heiser 2008 VERIFY'08 Keynote 9

Prerequisites for Success

 Need a target system that is tractable
- [110,000 LOC is about the limit (so they tell me)

» Need a world-class formal-methods team
- so | suspect, based on historic track record...

 Need a world-class OS team
- ... or they won't end up with a useful kernel
- really correct and really slow won't do!

 Need to ensure communication between teams!
- only practical safeguard against the two teams diverging

With hindsight:
 Need control over tools!

© Gernot Heiser 2008 VERIFY'08 Keynote

10

The Target

Tractable System

« 10kLOC and practically usable @ microkernel
- Very small platform that allows constructing arbitrary systems on top
- OS functionality reduced to its essence:
e fundamental mechanisms
* no policies
- Only microkernel runs in privileged mode

» everything else in user mode, incl “normal” OS functionality

Syscall

IPC, virtual memory

© Gernot Heiser 2008 VERIFY'08 Keynote 12

Tractable System: L4 Microkernel

* Right size: [110,000 LOC

- mostly C, some (100's LOC) assembler
* Very general-purpose: supports

- componentised OSes

- small embedded environments

. FamOUiNtrpmaigam OSes (Linux)

- the benchmark for microkernel performance
 Ready for commercial use

- ... 0r so we hoped at the time

- now deployed on some 150,000,000 devices
 However, not fully suitable

- several security issues:
« inefficient communication control mechanisms
* isolation of user domains broken by management of kernel resources

© Gernot ngsee(ereCSSAPI overhaul VERIFY'08 Keynote 13

The Challenge

 Formally verify a secure version of L4
- Need to develop a new kernel APl as we go
- Concurrent to verification effort
 Qutcome to be suitable for practical use
- Performance within 10% of existing high-performance L4

e Succeed!
- Unsuccessful multi-M$ project doesn't look good
- Some careers were on the line

© Gernot Heiser 2008 VERIFY'08 Keynote 14

The Ingredients

Formal-Methods Team

e Gerwin Klein — newly recruited researcher
* Project leader verification

- L4.verified project
 Developed project plan

e Built team of up to 10 people across two
cities

© Gernot Heiser 2008 VERIFY'08 Keynote

16

 Kevin Elphinstone — recent recruitment to
UNSW

* Project leader kernel API
- sel4 project
e Built (smaller) kernel team

e Lead design and implementation of new L4
API

© Gernot Heiser 2008 VERIFY'08 Keynote 17

 Don't have one? Need to bake your own!

- Take one top class systems hacker
with Maths aptitude

- Let Gerwin work on him for a year
 The result?

 Approach tested in 1-year pilot project

- Seemed to work, resulting in 3-year main
project

- Learned some lessons on approach

- Developed idea of overall effort required
© Gernot Heiser 2008 VERIFY'08 Keynote 18

The Interface Part 2: The Language

=<

[Abstract Model }

Where is the common ground?

© Gernot Heiser 2008 VERIFY'08 Keynote 19

Bridging the Gap

Modelling? T
 Well defined semantics

* Readily formalisable

 Exposed implementation details

 Programming language

© Gernot Heiser 2008 VERIFY'08 Keynote 20

Haskell — The New Lingua Franca?

Used Literate Haskell as modelling
language Ihs

- pure functional language

- embedded documentation abelle
HOL LaTeX GHC
- close to Isabelle/HOL
 Familiar to most kernel hackers ¢
- First-year teaching language at Formal Kemel
UNSW Model Prototype
 Executable i
- Supports running user-level code
- Useful for exercising the API -C User-level
* gain experience with API ¢ Simulator
 port user-level software GCC » Iiser
pp
e Used to model kernel in detail

© Gernot Heiser 2008 VERIFY'08 Keynote 21

Iterative Design and Formalisation

o«

 Haskell kernel executes native binaries on simulator
 Exposes usability issues early
« Tight formal design integration

© Gernot Heiser 2008 VERIFY'08 Keynote 22

Kernel Modelling

Kernel Modelling in Haskell

Kernel APl is event-based, mostly atomic

» Kernels are big state machines with events as input
- Imperative

- Rely on side-effects all the time
* P(s), make_runnable(tcb)

* Kernels manipulate the low-level machine
- Interrupts, TLBs, caches

* Preemption required
- Kernels can’t always perform operations to completion

© Gernot Heiser 2008 VERIFY'08 Keynote 24

Kernel Code in a State Monad

- state transformers

- » State monads are units of computation which consume and prodt
Kernel « Kernel monad encapsulates a state transformer of the kernel and

< ->

« Monads can be bound together using the bind operator
- sequencing the computation
- connects the plumbing to pass the state along

Event Event Event
~~ ~~ ~~
— AT s Dy r Dy r Dy
[K | J_)>>= Kernel >>>= Kernel >>>= Kernel s

© Gernot Heiser 2008 VERIFY'08 Keynote 25

Kernel Code in a Monad

type Kernel = StateT KernelState MachineMonad
callKernel :: Event -> Kernel ()

callKernel ev =
handleEvent ev >>= (\x -> schedule >>=
(\y -> activateThread))

Event
<&
O)))
> > > — T ATIVaT
callKer — handle >>S—= schedul >>S—=
nel Event e
—head
> > >

- -

© Gernot Heiser 2008 VERIFY'08 Keynote

26

Kernel Code in a Monad

type Kernel = StateT KernelState MachineMonad

callKernel :: Event -> Kernel ()
callKernel ev = do
handleEvent ev Imperative in “style”
schedule _
activateThread Lowers barrier to entry for kernel developers
Event
) A A
> > > ~TATIvVar >
callKer = handle | >>= | schedul | >>= o
nel Event e
——Fhread—
> > > >

© Gernot Heiser 2008 VERIFY'08 Keynote 27

Kernel Monad

/ Kernel \ e Machine monad contains state to interface to
Machine « Kernel contains the state of physical memory
Monad
ReaderT IO

\\¥ StateT //

© Gernot Heiser 2008 VERIFY'08 Keynote 28

getMemoryTop :: MachineMonad (PPtr ())
getDeviceRegions :: MachineMonad [(PPtr (), Int)]
loadWord :: PPtr Word -> MachineMonad Word
storeWord :: PPtr Word -> Word -> MachineMonad ()
insertMapping :: PPtr Word -> VPtr -> Int -> Bool ->
flushCaches :: MachineMonad ()

getActiveIRQ :: MachineMonad (Maybe IRQ)
maskInterrupt :: Bool -> IRQ -> MachineMonad ()
ackInterrupt :: IRQ -> MachineMonad ()
waitForInterrupt :: MachineMonad IRQ
configureTimer :: MachineMonad IRQ

resetTimer :: MachineMonad ()

Foreign Function Interface (FFI)
Approximate machine-level C functions

Close to “real” as possible
— Forces us to manage “hardware”

© Gernot Heiser 2008 VERIFY'08 Keynote 29

KernelState Monad

/ Kernel

Machine

Monad
ReaderT IO

K StateT

~

/

© Gernot Heiser 2008

o Statically allocated global kernel data
- Current thread
- Scheduler queues

* Physical Memory

VERIFY'08 Keynote

30

The Proof

.. —
tcb_t * scheduler t::find next thread(pric_gqueue t * prio_gqueue)

ASSERT(DEBUG, prio_dqueue); o.
if (prio_queue->index_bitmap) {
word_t top_word = msb(prio_queue->index_bitmap); NICTA

word_t offset = BITS_WORD * top_word;

for (long i = top_word; i >= 0; i--)

I
word_t bitmap = prio_gqueue->prio_bitmap[i]; hread
©ooseThread
if (bitmap == 0)
goto update; .

do {
word_t bit = msb(bitmap);
word_t prio = bit + offset;
tch t *#tch = prio_queue->get(prio);

AbstractModel e ememony "
Isabelle/HOL
Formal proof: (Isabelle)

concrete behaviour
captured at
abstract level

- R]

Hoare Logic
Separation Logic

High Performance Implementation
(C/asm)
Hardware model

© Gernot Heiser 2008 VERIFY'08 Keynote 32

Monadic functional
programs

Common Criteria and L4.verified

EAL ‘Requirem. Funct Spec HLD LLD Implem.
EAL 1 | Informal Informal Informal Informal Informal
EAL 2 'llnformal Informal Informal Informal Informal
EAL3 llInformal Informal Informal Informal Informal
EALA4 'llnformal Informal Informal Informal Informal
EALDS Formal |Semiformal |Semiformal |Informal |Informal |
EALG 'lFormal Semiformal | Semiformal |Semiformal |Informal
EAL7 IlFormal Formal Formal Semiformal |Informal

L4 .verified ‘lFormaI Formal Formal Formal Formal

© Gernot Heiser 2008 VERIFY'08 Keynote 33

Lessons Learned

The Tools

» Isabelle/HOL generally worked well
- Gerwin's experience clearly helped

 But we were frequently pushing the boundaries
- of techniques

. C_rucczllfa}filoilrsnportant to have control over tools

- Need to be able to fix a limitation you run into
- Source-code access is essential

¢ Goo %%%-SSH'}?&%O%& s'ﬂ%%llier helps massively

- The TUM folks were great!

© Gernot Heiser 2008 VERIFY'08 Keynote 35

It's Not Quite Over Yet!

 Refinement to low-level design (Haskell) complete
- most formally analysed general-purpose kernel

e source-code level refinement in progress
- due December '08
- no-one doubts that it will succeed

 Work on proving security properties on-going

© Gernot Heiser 2008 VERIFY'08 Keynote 36

Verification Summary

Statistics
« 3.5kLOC abstract, 7 kLOC concrete spec (about 3k Haskell)
« Abstract to Haskell: 100 KLOP (more features coming)
» Access control model + initial security proofs: 1 KLOP
o Haskell to C/asm: expect 80kLOP

* 109 patches to Haskell kernel, 132 to abstract spec
 Performance in line with other L4 kernels

Kinds of properties proved
 Well typed references, aligned objects, ..
 Well formed thread states, endpoint and scheduler queues, ...

o All syscalls terminate, reclaiming memory is safe, ...
» Authority is distributed by caps only

» Access control is decidable

© Gernot Heiser 2008 VERIFY'08 Keynote 37

Proof Maintenance

» Challenge: adapting proofs to changes in implementation

- Will minor changes result in massive reworking of proofs?
e Inevitably tested as a result of project structure:

- concurrent work on proofs and kernel design

- frequently verification work progressed on frozen kernel

- merging of source trees required update of proofs
 Experience: depends on how changes affect invariants

- Some changes took weeks to port
* new syscall,
« additional parameters to syscall decoded deep down
- Others, breaking existing invariants, took months
« fundamentally changing operation of IPC, eg. reply caps

 required discovering new invariants o
» Experience increases confidence in practicability of OS verification

© Gernot Heiser 2008 VERIFY'08 Keynote 38

» Estimated cost of complete project: AS4—-5V]
- sel4 and L4.verified combined, until December '08

» Estimated cost of re-doing on latest kernel: A$2V

- on commercial OKL4 kernel
e Cost of traditional assurance: US$10k/LOC

- industry estimate for Common Criteria EALG6 certification

- means US$7100M for L4-like kernel!
* Challenge: Convince authorities that verification is superior!

© Gernot Heiser 2008 VERIFY'08 Keynote

39

Complete verification of a fully-functional OS kernel seems doable
Cost seems small compared to traditional assurance schemes
However, probably can't succeed without:
- top-notch verifiers
- top-notch kernel experts
- excellent communication between the two sides
* need some people who understand both

* good languages and tools hel
A microl?ernel {égon y the startl! P

- Need to work on actual OS services
- Multiple independent levels of security (MILS)

© Gernot Heiser 2008 VERIFY'08 Keynote 40

© Gernot Heiser 2008 VERIFY'08 Keynote 41

