8,700 LoC NICTA
1 Microkernel
O Bugs’

Gernot Heiser

John Lions Professor of Operating Systems, University of New Sou

Leader, Trustworthy Embedded Systems, NICTA
CTO and Founder, Open Kernel Labs ‘

NICTA Members

s
syt Austatan Government UNSW “ i

Pt &7 Department of Communications, m—
Information Technology and the Arts . L .. L YT S T —.
- |y 8 an- wenasos & poime

Australian Research Council sy WO sastae

NICTA Partners

An exception 06 has occured at 0028:C11B3ADC in VXD DiskTSD{03) +
00001660, This was called from 0028:C11B40C8 in WxD voltrack{(04) +
00000000, It may be possible to continue normally.

* Press any key to attempt to continue,
* Press CTRL+ALTHRESET to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

1950 1960 1970 1980 1990 2000

MULTICS
mainframes -] \ - m
no compilers time distributed
software shared multiuser systems
batch multiprocessor
reanent networked tadREEE Rt
monitors
- UNIX
minicomputers -
no compilers
software . . .
time multiuser multiprocessor
resident shared n;worked fault tolerant
monitors
clustered
UNIX
desktop computers -
no compilers
software interactive multiprocessor
multiuser B worked
UNIX
handheld computers |
compilers no
software
interactive
networked

~The Problem

MiykrneIApproach — Qe

Small trustworthy foundation
Untrusted Trusted

. VY
| .
-

e Fault isolation

e Fault identification
e |P protection
e Modularity

High assurance components

in presence of other
.

Designed for verification
 small API
Designed for security

-~
£\

e novel kernel resource
management

© NICTA 2009 5

e —
Aim: Suitable for-Real-World Use
- - NICTA

Model: OKL4 microkernel

* resulting from L4-based research
at NICTA/UNSW

* spun out to independent company
Open Kernel Labs in 2006

* deployed in >300 M devices

) Open Kernel Labs

Be open. Be safe.

selL4 APl based on L4:

e |[PC
Threads
Virtual Memory

IRQs, exception redirection

Capabilities

Functional Correctness

definition
schedule :: unit s_monad where

schedule = do
Wh at threads «— allActiveTCBs;

thread < select threads;
switch_to_thread thread
od
OR switch_to_idle_thread

Specification

void

P ro of schedule(void) {
switch ((word_t)ksSchedulerAction) {

case (word_t)SchedulerAction_ResumeCurrentThread:
break;

case (word_t)SchedulerAction ChooseNewThread:
chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

HOW default: /* SwitchToThread */

switchToThread(ksSchedulerAction);
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

}

void
chooseThread(void) {
prio t prio;

© NICTA 2009

Proof

Specificati‘

Assume correct:

compiler + linker (wrt. C op-sem)
assembly code (600 loc)
hardware (ARMvG)

cache and TLB management
boot code (1,200 loc)

Assumptions

Implications

Execution always defined:
* no null pointer de-reference \9 ‘
* no buffer overflows ——i—
* no code injection o

* no memory leaks/out of kernel memory
* no div by zero, no undefined shift
e no undefined execution

* no infinite loops/recursion

Not implied:

* “secure” (define secure)

e zero bugs from expectation to physical world
e covert channel analysis

© NICTA 2009

Proof Architecture

S R e LR

Specification

Proof

11

Proof Architecture

Specification

|

|

12

Specification

|
o
|

© NICTA 2009

definition
schedule unit s_monad where
schedule = do
threads <« allActiveTCBs;

+hroad <« colart throade: i

schedule :: Kernel ()

void

schedule(void) {
switch ((word_t)ksSchedulerAction) {
case (word_t)SchedulerAction ResumeCurrentThread:
break;

case (word_t)SchedulerAction ChooseNewThread:
chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

default: /* SwitchToThread */
switchToThread(ksSchedulerAction);
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

}

void
chooseThread(void) {
prio t prio;

System Model

States:
User, Kernel, Idle

Events:
Syscall, Exception, IRQ, VM Fault

kernel exit

Bl
event

kernel mode

© NICTA 2009 14

ISYDRNNEY |

L Jwap
\‘ .-
g’

N2 SRR 2

¢ ‘ \ :‘g \ D, RS x f ,\\-,,
’%.v L~ " a7/ R 4> P " - ‘Q”’
/ e . . AR ‘f s (N ’ ‘-‘
v & 4’ “' < Ve =< ..h "','A ltdu A
!/ — - ! ."‘:P4“‘_ " ! - s N
/9 -) ‘s. =

—— - ’

%
04
4

Mg 0,;(4
‘. '{’ L a

N\
1\
“a\

A
57
' ’v“ ‘\\‘

» - - |
Y e W\

X
W

N

\\"@\ *, ¢
N

N\

N~

a
PSS\

Two Teams

© NICTA 2009

% A X

A T SRR
h ki > L TR O |
& S i N
LT o) \

Formal Methods Practitioners

Kernel Developers

The Power of Exterminate All

Abstraction OS Abstractions!
[Liskov 09] [Engler 95]

17

" Whiteboard

P | Whiteboard [Famm Ny
d L I
Haskell Formal Formal
Prototype Design Specification

—6-: =~
————

19

De"h for érification

void
schedule(void) {
switch ((word_t)ksSchedulerAction) {

. . case (word_t)SchedulerAction ResumeCurrentThread:
Reducing Complexity break;

case (word_t)SchedulerAction ChooseNewThread:
chooseThread();

SchedulerAction = SchedulerAction, ResumeCurrentThread;
ak;
Hardware
2 /* SwitchToThread Y
° 1 I ‘tchToThread{ksSchedulexraction)s;
drlverS OUtSIde kernel ichedulerAction = SchedulerAction ResumeCurrentThread;
sak;
}
Concurrency
ld) {
e event-based kernel '
fad, *nexty
° Ilmlt preemptlon maxPrios prig = \\WAHZRO< Y /A
Zead =/ ksRe 849l elie@ s tabe K bAea s
Tthread; thregdfl< ek iR
COde | 7/ (i ead 7
n 4 DI ety
. . . 7N uateheldl)
* derive from functional representation
le
© NICTA 2009

20

C subset

void
schedule(void) {
switch ((word_t)ksSchedulerAction) {
case (word_t)SchedulerAction_ResumeCurrentThread:

Everything from C standard break;

case (word_t)SchedulerAction ChooseNewThread:
chooseThread();
ksSchedulerAction = SchedulerAction_ResumeCurrentThread;

breg’
* including: .. * minus:
- pointers, casts, pointer arithmetic :z - goto, switch fall-through
- data types - reference to local variable
- structs, padding b - side-effects in expressions
- pointers into structs 5 - function pointers (restricted)
- precise finite integer arithmetic E - unions
-2
* plus compiler assumptions on:
- data layout, encoding, endianess :
° f

© NICTA 2009 21

void
schedule(void) {

Bugs found g im0 e I ——
Effort
| Haskell design py ...
y First C impl. 2 weeks
during testing: 16 \9@ Debugging/Testing 2 months
A Kernel verification 12 py gead;
: } Formal frameworks 10 py
Total 25 py
during verification:
e inC: 160 «cv_ Comparison of approaches
Trad. engineerin 4-6
° in deSign: ~150 Repeat \?erificatign 6 Ez

* inspec: ~150

460 bugs Cost o
Common Criteria EALG: $87M

L4 .verified: $6M

© NICTA 2009

Formal proof all the way from spec to C

e 200 kLoC handwritten, machine-checked proof, 10 k theorems
e ~460 bugs (160 in C)

* \Verification on code, design, and spec

* Hard in the proof ==» Hard in the implementation

Formal Code Verification up to 10 kLoC:
It works.

It’s feasible. (It's fun, too...)
It’s cheaper.

© NICTA 2009

Remove limitations

Oe

verify assembler code
verify bootstrap code
verify MMU operations
multicore version
verify x86 version
temporal isolation

information flow

© NICTA 2009

NICTA

Towards real systems
e 1 MLoC

* real-time analysis

* power management

© NICTA 2009

June Andronick
Timothy Bourke
Andrew Boyton
David Cock

Jeremy Dawson
Philip Derrin
Dhammika Elkaduwe
Kevin Elphinstone

* |eader, kernel design
Kai Engelhardt

David Greenaway
Lukas Haenel
Gernot Heiser

Gerwin Klein

e |eader, verification
Rafal Kolanski
Jia Meng
Catherine Menon
Michael Norrish
Thomas Sewell
David Tsai
Harvey Tuch
Michael von Tessin
Adam Walker
Simon Winwood

25

Thank You

Google‘ 14.verified C [U'm Feeling_[k‘ucky]

==

- -“/ -

