
8,700 LoC
1 Microkernel

0 Bugs
Gernot Heiser
John Lions Professor of Operating Systems, University of New South Wales
Leader, Trustworthy Embedded Systems, NICTA
CTO and Founder, Open Kernel Labs

*

*Conditions apply

2

The Goal

System-Software Timeline

3

3

The Problem

© NICTA 2009

Microkernel Approach

Small trustworthy foundation

• Fault isolation

• Fault identification

• IP protection

• Modularity

• High assurance components
in presence of other

5

Hardware

seL4 Microkernel

Linux
Server

Legacy App.
Legacy App.
Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

Designed for verification
• small API

Designed for security
• novel kernel resource

management

© NICTA 2009

Aim: Suitable for Real-World Use

Model: OKL4 microkernel
• resulting from L4-based research

at NICTA/UNSW

• spun out to independent company
Open Kernel Labs in 2006

• deployed in >300 M devices

6

seL4 API based on L4:
• IPC
• Threads
• Virtual Memory
• IRQs, exception redirection
• Capabilities

The Proof

© NICTA 2009 8

Functional Correctness

Specification

Code

What

How

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇤ unit s_monad
switch_to_thread t � do

state ⇥ get;
assert (get_tcb t state ⌅= None);
arch_switch_to_thread t;
modify (�s. s (| cur_thread := t |))

od

constdefs
switch_to_idle_thread :: unit s_monad
switch_to_idle_thread � do

thread ⇥ gets idle_thread;
arch_switch_to_idle_thread;
modify (�s. s (| cur_thread := thread |))

od

definition
schedule :: unit s_monad where
schedule � do
threads ⇥ allActiveTCBs;
thread ⇥ select threads;
switch_to_thread thread

od
OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A
imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A
begin

constdefs
set_thread_state :: obj_ref ⇤ thread_state ⇤ unit s_monad
set_thread_state ref ts � do

tcb ⇥ assert_opt_get $ get_tcb ref;
set_object ref (TCB (tcb (| tcb_state := ts |)))

od

defs
suspend_def:
suspend lazy thread � do

ipc_cancel thread;
set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇤ unit s_monad

restart thread � do
state ⇥ get_thread_state thread;
when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

© NICTA 2009 9

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

© NICTA 2009 10

Implications

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

Specification

C Code

© NICTA 2009 11

Proof Architecture

Specification

Proof

C Code

© NICTA 2009

Design

12

Proof Architecture

Specification

C Code

© NICTA 2009

C Code

Design

Specification

13

Proof Architecture

Haskell
Prototype

Access Control Spec Confinement

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇤ unit s_monad
switch_to_thread t � do

state ⇥ get;
assert (get_tcb t state ⌅= None);
arch_switch_to_thread t;
modify (�s. s (| cur_thread := t |))

od

constdefs
switch_to_idle_thread :: unit s_monad
switch_to_idle_thread � do

thread ⇥ gets idle_thread;
arch_switch_to_idle_thread;
modify (�s. s (| cur_thread := thread |))

od

definition
schedule :: unit s_monad where
schedule � do
threads ⇥ allActiveTCBs;
thread ⇥ select threads;
switch_to_thread thread

od
OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A
imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A
begin

constdefs
set_thread_state :: obj_ref ⇤ thread_state ⇤ unit s_monad
set_thread_state ref ts � do

tcb ⇥ assert_opt_get $ get_tcb ref;
set_object ref (TCB (tcb (| tcb_state := ts |)))

od

defs
suspend_def:
suspend lazy thread � do

ipc_cancel thread;
set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇤ unit s_monad

restart thread � do
state ⇥ get_thread_state thread;
when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

© NICTA 2009 14

System Model

idle

event

idle
event

kernel exit

States:
User, Kernel, Idle

U

I

K

Events:
Syscall, Exception, IRQ, VM Fault

kernel mode

seL4

Kernel Design for
Verification

© NICTA 2009 17

Two Teams

Formal Methods Practitioners

Kernel Developers

Exterminate All
OS Abstractions!

[Engler 95]

The Power of
Abstraction

[Liskov 09]

© NICTA 2009 18

Iterative Design and Formalisation

Whiteboard

Formal
Design

C Code

Formal
Specification

Haskell
Prototype

© NICTA 2009 19

Iterative Design and Formalisation

Whiteboard

Formal
Design

C Code

Formal
Specification

Haskell
Prototype

© NICTA 2009 20

Design for Verification

Reducing Complexity

Hardware
• drivers outside kernel

Concurrency
• event-based kernel

• limit preemption

Code
• derive from functional representation

© NICTA 2009 21

C subset

Everything from C standard

• including:
- pointers, casts, pointer arithmetic
- data types
- structs, padding
- pointers into structs
- precise finite integer arithmetic

• plus compiler assumptions on:
- data layout, encoding, endianess

•

• minus:
- goto, switch fall-through
- reference to local variable
- side-effects in expressions
- function pointers (restricted)
- unions

© NICTA 2009 22

Did you find any Bugs?

Bugs found

 during testing: 16

 during verification:
• in C: 160

• in design: ~150

• in spec: ~150

 460 bugs

Haskell design 2 py

First C impl. 2 weeks
Debugging/Testing 2 months

Kernel verification 12 py

Formal frameworks 10 py

Total 25 py

Effort

Cost
Common Criteria EAL6:
L4.verified:

$87M
 $6M

Comparison of approaches
Trad. engineering 4-6 py
Repeat verification 6 py

© NICTA 2009 23

Summary

Formal proof all the way from spec to C

Formal Code Verification up to 10 kLoC:

It works.
It’s feasible.
It’s cheaper.

(It’s fun, too...)

• 200 kLoC handwritten, machine-checked proof, 10 k theorems

• ~460 bugs (160 in C)

• Verification on code, design, and spec

• Hard in the proof Hard in the implementation

© NICTA 2009 24

Future Work

Remove limitations
• verify assembler code

• verify bootstrap code

• verify MMU operations

• multicore version

• verify x86 version

• temporal isolation

• information flow

Towards real systems
• 1 MLoC

• real-time analysis

• power management

© NICTA 2009

The Team (Past and Present)

• June Andronick

• Timothy Bourke

• Andrew Boyton

• David Cock

• Jeremy Dawson

• Philip Derrin

• Dhammika Elkaduwe

• Kevin Elphinstone
• leader, kernel design

• Kai Engelhardt

• David Greenaway

• Lukas Haenel

• Gernot Heiser

25

• Gerwin Klein
• leader, verification

• Rafal Kolanski

• Jia Meng

• Catherine Menon

• Michael Norrish

• Thomas Sewell

• David Tsai

• Harvey Tuch

• Michael von Tessin

• Adam Walker

• Simon Winwood

Thank You

