
Gernot Heiser
John Lions Professor of Operating Systems, University of New South Wales

Leader, Trustworthy Embedded Systems, NICTA

CTO and Founder, Open Kernel Labs

Microkernels — A Bit of History

•  Originally proposed by Brinch Hansen [CACM ’70]

•  Popularized in 1980’s (Mach, Chorus, etc)

•  Idea: simplify kernel, increase robustness, flexibility…

Compare Linux

Microkernel Promises

•  Combat kernel complexity, increase robustness, maintainability

•  dramatic reduction in amount of privileged code
•  modularity with hardware-enforced interfaces
•  normal resource management applicable to OS services

•  Flexibility, adaptability, extensibility

•  policies defined at user level, subject to change
•  additional services provided by adding servers

•  Hardware abstraction

•  hardware-dependent part of system is small, easy to optimise

•  Security, safety

•  internal protection boundaries

Enter L4

•  Dramatically improved
performance
[Liedtke, SOSP ‘93, ’95]

•  Size:

•  L4 15kLOC assembler
Mach: 90kLOC C

•  L4 small cache footprint ⇒ CPU limited
Mach large cache footprint ⇒ memory limited

•  API: minimal mechanisms

•  Threads, address spaces, IPC: minimal wrappers around hardware

•  Lots of implementation tricks

Micro-
kernel

CPU@MHz IPC Cost
[cycles]

Mach i486@50 5750
Amoeba 68020@15 6000
Spin 21064@133 6783
L4 i486@50 250

Virtualization

L4Linux [Härtig et al., SOSP’97]

•  5–10% overhead on macro-BMs

•  6–7% overhead on kernel compile

MkLinux (Linux on Mach):

•  27% overhead on kernel compile

•  17% overhead with Linux in kernel

Linux
apps

Linux server Native
apps

L4 microkernel

NICTA Research: Focus on Embedded

•  L4 implementations on
embedded processors

•  ARM, MIPS

•  Wombat: portable
virtualized Linux for
embedded systems

•  Outperforms native Linux on
ARMv4/v5 thanks to fast
context-switching tricks

•  Basis for real-world
deployments

Large-Scale Commercial Deployment

Toshiba W47T
2006

HTC TyTN II
2007

HTC Dream (G1)
2008 Motorola Evoke

2009

More than 700 million OKL4-based devices shipped to date!

System Architecture

Processor

OKL4

AMSS

BREW

BREW
apps

Processor

OKL4

AMSS

Processor

Windows
or
Linux

Apps

OKL4

AMSS

BREW

BREW
apps

Processor

Linux

Linux
apps

What Have We Learned?

Liedtke’s microkernel design principles [CACM ‘96]

•  Minimality

•  Well-written

•  Appropriate abstractions

•  Unportable

•  Synchronous (blocking) IPC

•  Rich IPC message structure

•  Fast thread access

•  Thread IDs as unique identifiers
•  Virtual TCB array
•  Per-thread kernel stack (process-oriented kernel)

What Have We Learned?

•  Process-orientation wastes RAM

•  Replaced by single-stack (event-driven) approach

•  Virtual TCB array wastes VAS, TLB entries

•  …without performance benefits on modern hardware

•  Capabilities are better than thread UIDs

•  Provide uniform resource control model & avoid covert channels

•  Also: IPC timeouts are useless

•  Replaced by block/poll bit

•  Virtualization is essential

•  Re-think kernel abstractions

A Fork in the Road

Research (NICTA)

•  seL4 kernel

•  Aim: extreme trustworthiness

•  Formal verification

•  API experiments

Commercialisation (OK Labs)

•  OKL4 Microvisor

•  Aim: virtualization platform
for mobile systems

•  Ease of deployment

•  Match to commercial realities

Concurrent development — how do results compare?

The OKL4 Microvisor

API optimised for low-overhead virtualization

•  Eliminated:

•  recursive address spaces
•  Synchronous IPC
•  Kernel-scheduled threads

•  API closely models hardware:

•  vCPU, vMMU, vIRQ + “channels” (FIFOs)

•  Capabilities for resource control

OKL4 Capabilities

Control over communication channels

Privileged

De-privileged

OKL4 Microvisor

OKL4 Virtualization Performance

Benchmark Native [µs] Virtualized [µs] Overhead
Null syscall 0.6 0.96 60 %
Read 1.14 1.31 15 %
Stat 4.73 5.05 7 %
Open/close 9.12 8.23 -10 %
Select(10) 2.62 2.98 14 %
Signal install 1.77 2.05 16 %
Signal handler 6.81 5.83 -14 %
Fork 1106 1190 8 %
Fork+execve 4710 4933 5 %
System 7583 7796 3 %

•  On Beagle board (ARM Cortex A8 @ 500 MHz)

•  Macro-benchmark overhead: < 1%

The seL4 Microkernel: Goals

•  General-purpose

•  Formal verification

•  Functional correctness
•  Security/safety properties

•  High performance

•  < 15 cy slower IPC than other L4

seL4 Novelty: Kernel Resource Management

•  No kernel heap: all memory left after boot is handed to userland

•  Resource manager can delegate to subsystems

•  Operations requiring memory explicitly provide memory to kernel

•  Result: strong isolation of subsystems

•  Operate within
delegated
resources

•  No interference

Formal Verification of seL4 Microkernel

55,000 lines of proof

Executable Model

Abstract Model

C Code HW

110,000 lines of proof Formal proof:
low-level design
correct

Manual System Specification
(Isabelle/HOL)

High Performance Implementation
(C/asm)

Haskell
Prototype

Formal proof:
C implementation
correct

8,700

13,000 5,700

4,900

3,000 lines of proof

Security Model Security/Safety
Requirements

300 10

In Progress: Whole-System Guarantees

Liedtke’s Design Rules 15 Years Later

Liedtke seL4 OKL4 Microvisor
Minimality Yes Yes
Well written Yes Yes
Appropriate abstractions Yes, but abstractions are quite different
•  thread •  thread •  virtual CPU
•  address space •  address space •  virtual MMU
•  synchonous IPC •  sync IPC + async notify •  virtual IRQ (async)
Unportable (asm) No, almost no asm No, almost no asm
Rich msg structure No No
Unique thread IDs No, has capabilities No, has capabilities
Virtual TCB array No No
Per-thread kernel stack No, event kernel No, event kernel

Conclusions

•  L4 microkernels are now “mainstream”
•  One of the most widely-deployed protected OS kernels ever

•  Most technically-advanced microkernels

•  Commercial experience has had significant impact
•  Simplified API (timeouts, message structure)

•  Need for asynchronous communication primitives

•  Capabilities are suitable for the “real world”

•  Best API is still an open question

•  Microkernels are finally delivering on old promises
•  Small TCBs for safety, security, reliability

•  Performance is no longer an issue (for L4 kernels at least)

