
Formally-Verified OS Kernel
A Basis for Reliable Systems?
Gernot Heiser
John Lions Professor of Operating Systems, University of New South Wales
Leader, Trustworthy Embedded Systems, NICTA
CTO and Founder, Open Kernel Labs

1Saturday, 23 January 2010

Trustworth Embedded Systems
ERTOS.NICTA.com.au

• 14 PhD-qualified researchers (+ 2 open positions)
• 10 graduate researchers (+ open positions)
• 7 research engineers (+ 4 open positions)
• ≈ 10 undergraduate students

2

2Saturday, 23 January 2010

2

The Goal

3Saturday, 23 January 2010

3

The Problem

4Saturday, 23 January 2010

© NICTA 2009

seL4 Microkernel
Core of a Minimal TCB

Small trustworthy foundation

• Fault isolation

• Fault identification

• IP protection

• Modularity

• High assurance components in
presence of other components

5

Hardware

seL4 Microkernel

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

Designed for verification
• small API

Designed for security
• novel kernel resource

management

5Saturday, 23 January 2010

© NICTA 2009

Aim: Suitable for Real-World Use

Model: OKL4 microkernel
• resulting from L4-based research

at NICTA/UNSW

• Open Kernel Labs spun out as
independent company in 2006

• deployed in >500 M devices

6

seL4 API based on L4:
• IPC
• Threads
• Virtual Memory
• IRQs, exception redirection
• Capabilities (NEW)
• Performance like OKL4!

6Saturday, 23 January 2010

© NICTA 2009

seL4 Requirements

7

Real-world deployment for many uses
• General-purpose

• virtual machines

• lightweight environents

• not just a separation kernel

• Performance

• Performance

• Performance

• C & assembler Verification for functional correctness
• Formal model

• Tractable complexity

• Suitable representation of implementation

7Saturday, 23 January 2010

Kernel Design for
Verification

8Saturday, 23 January 2010

© NICTA 2009 9

Two Teams

Formal Methods
Practitioners

Exterminate All
OS Abstractions!

[Engler 95]

The Power of
Abstraction

[Liskov 09]

Kernel
Developers

9Saturday, 23 January 2010

© NICTA 2009 10

Iterative Design and Formalisation

Whiteboard

Formal
Design

C Code

Formal
Specification

Haskell
Prototype

10Saturday, 23 January 2010

© NICTA 2009 11

Design for Verification

Reducing Complexity

Hardware
• drivers outside kernel

Concurrency
• event-based kernel

• limit preemption

Code
• derive from functional representation

11Saturday, 23 January 2010

© NICTA 2009 12

C subset

Everything from C standard

• including:
- pointers, casts, pointer arithmetic
- data types
- structs, padding
- pointers into structs
- precise finite integer arithmetic

• plus compiler assumptions on:
- data layout, encoding, endianess

• minus:
- goto, switch fall-through
- reference to local variable
- side-effects in expressions
- function pointers (restricted)
- unions

12Saturday, 23 January 2010

seL4
13Saturday, 23 January 2010

The Proof

14Saturday, 23 January 2010

© NICTA 2009 15

Functional Correctness*

Specification

Code

What

How

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

15Saturday, 23 January 2010

© NICTA 2009 16

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

16Saturday, 23 January 2010

© NICTA 2009 17

Implications

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

Specification

C Code

17Saturday, 23 January 2010

© NICTA 2009 18

Proof Architecture

Specification

Proof

C Code

18Saturday, 23 January 2010

© NICTA 2009

Design

19

Proof Architecture

Specification

C Code

19Saturday, 23 January 2010

© NICTA 2009

C Code

Design

Specification

20

Proof Architecture

Haskell
Prototype

Access Control Spec Confinement

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

20Saturday, 23 January 2010

Experience

21Saturday, 23 January 2010

© NICTA 2009

Common Criteria

EAL Requirem. Funct Spec TDS Implem.

EAL1 Informal

EAL2 Informal Informal

EAL3 Informal Informal

EAL4 Informal Informal Informal

EAL5 Semiformal Semiformal Informal

EAL6 Formal Semiformal Semiformal Informal

EAL7 Formal Formal Formal Informal

l4.verified Formal Formal Formal Formal

22

22Saturday, 23 January 2010

© NICTA 2009 23

Did you find any Bugs?

Bugs found

 during testing: 16

 during verification:
• in C: 160

• in design: ~150

• in spec: ~150

 460 bugs

Haskell design 2 py

First C impl. 2 weeks
Debugging/Testing 2 months

Kernel verification 12 py

Formal frameworks 10 py

Total 25 py

Effort

Cost
Common Criteria EAL6:
L4.verified:

$60M
 $6M

Comparison of approaches
Trad. engineering 4-6 py
Repeat verification 6 py

23Saturday, 23 January 2010

What’s next?

24Saturday, 23 January 2010

© NICTA 2009 25

Future Work: Trustworthy Systems

Remove limitations
• verify assembler code

• verify bootstrap code

• verify MMU operations

• multicore version

• verify x86 version

• temporal isolation

• information flow
Towards real systems
• 1 MLoC, legacy components

• real-time analysis

• power management

25Saturday, 23 January 2010

© NICTA 2009

How?

Exploit:
• seL4 isolation

• verified properties

• MILS architectures /
virtualization

Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

26

26Saturday, 23 January 2010

© NICTA 2009

Application Areas

Multilevel Secure Terminal Demonstrator

also:
• automotive

• financial

• aerospace

27

27Saturday, 23 January 2010

© NICTA 2009

Global View of Project

 Build system with minimal TCB
 Formalize and prove security properties about architecture
 Prove correctness of trusted components
 Prove correctness of setup

28

28Saturday, 23 January 2010

© NICTA 2009 29

Summary

Formal proof all the way from spec to C

Formal Code Verification up to 10 kLoC:

It works.
It’s feasible.
It’s cheaper.

(It’s fun, too...)

• 200 kLoC handwritten, machine-checked proof, 10 k theorems

• ~460 bugs (160 in C)

• Verification on code, design, and spec
• Hard in the proof Hard in the implementation

29Saturday, 23 January 2010

© NICTA 2009

The Team (Past and Present)

• June Andronick

• Timothy Bourke

• Andrew Boyton

• David Cock

• Jeremy Dawson

• Philip Derrin

• Dhammika Elkaduwe

• Kevin Elphinstone
• leader, kernel design

• Kai Engelhardt

• David Greenaway

• Lukas Haenel

• Gernot Heiser

30

• Gerwin Klein
• leader, verification

• Rafal Kolanski

• Jia Meng

• Catherine Menon

• Michael Norrish

• Thomas Sewell

• David Tsai

• Harvey Tuch

• Michael von Tessin

• Adam Walker

• Simon Winwood

30Saturday, 23 January 2010

Thank You

31Saturday, 23 January 2010

