Qe

NICTA
Formally-Verified OS Kernel

A Basis for Reliable Systems?

Gernot Heiser

John Lions Professor of Operating Systems, University of New Sou
Leader, Trustworthy Embedded Systems, NICTA ey

CTO and Founder, Open Kernel Labs ‘

U SR
S Department of Communications,
Information Technology and the Arts

Australian Research Council

Saturday, 23 Januar y 2010 1


~~~~~~
- "4 -

. 4 :

N T ‘ ¥

‘ Q | ‘n ’ [ | f ) \ -
\ . F.. T, i J " :

14 PhD-quaIifid researchers (+ 2 open positions)
e 10 graduate researchers (+ open positions)

e 7 research engineers (+ 4 open positions)
e = 10 undergraduate students

=y - ’3‘ '

. ' R

£ e : AR
el £ TP LTl

Séturday, é3 January 2010 - o - ‘ 2

-
’



An exception 06 has occured at 0028:C11B3ADC in WD DiskTSD(03) +
00001660, This was called from 0028:C11B40C8 in VXD voltrack(04) +
00000000, It may be possible to continue normally,

* Press any key to attempt to continue.
* Press CTRLHALTHRESET to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

Saturday, 23 January 2010 3



Te Problem




seL4"Microkernel

Core of a Minimal JCB

Small trustworthy foundation
Untrusted Trusted

* novel kernel resource e e e

management s "

e Fault isolation

e Fault identification
e |P protection
 Modularity

 High assurance components in
presence of other components

.

Designed for verification
 small API

Designed for security

© NICTA 2009

Saturday, 23 January 2010



Aim: Suitable for-Real-Wor

Model: OKL4 microkernel

e resulting from L4-based research
at NICTA/UNSW

* Open Kernel Labs spun out as
independent company in 2006

* deployed in >500 M devices

selL4 API based on L4:

e |PC

 Threads

* Virtual Memory

e |RQs, exception redirection
e Capabilities (NEW)

e Performance like OKL4!

© NICTA 2009

Saturday, 23 January 2010 6



Real-world deployment for many uses

e (General-purpose

e virtual machines

* lightweight environents

* not just a separation kernel
e Performance

e Performance

e Performance l

 C & assembler Verification for functional correctness

* Formal model
* Tractable complexity
e Suitable representation of implementation

© NICTA 2009 7

Saturday, 23 January 2010



Kernel Design for

Saturday, 23 January 2010 8



Jwo Teams

Formal Methods Kernel
Practitioners Developers

_ Exterminate All
Abstraction OS Abstractions!

[Liskov 09] [Engler 95]

© NICTA 2009

Saturday, 23 January 2010




Whiteboard

Haskell Formal Formal
Prototype Design Specification

© NICTA 2009 10

Saturday, 23 January 2010 10



Dei‘ﬁ 1{e] érification

void
schedule(void) {
switch ((word_t)ksSchedulerAction) {
case (word_t)SchedulerAction_ ResumeCurrentThread:

Reducing Complexity break;

case (word_t)SchedulerAction_ChooseNewThread:
chooseThread();
SchedulerAction = SchedulerAction  ResumeCurrentThread;

ak;
Hardware
B /* SwitchToThread \»Y
° I l ‘tchToThread{ksSchedulexaAction)s;
drlverS OUtSIde kernel ichedulerAction = ScheduleraActicon ResumeCurrentThread;
‘/ak;
v ,
Concurrency
md) |
e event-based kernel g
ad, *nexts
° Ilmlt preemptlon MaxPrie; Prid X7 NNFRO<XY /A
fdead =/ ksReddyleien o X iNea i
Thread; thregs Mgt
e derive from functional representation LY
i€
/4 \ i
© NICTA 2009 11

Saturday, 23 January 2010 11



C sut =

void
schedule(void) {
switch ((word_t)ksSchedulerAction) {
case (word_t)SchedulerAction_ ResumeCurrentThread:

Everything from C standard break;

case (word_t)SchedulerAction_ChooseNewThread:
chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;

brea’
e including: .. * minus:
- pointers, casts, pointer arithmetic k. - goto, switch fall-through
- data types - reference to local variable
- structs, padding . - side-effects in expressions
- pointers into structs ig - function pointers (restricted)
- precise finite integer arithmetic E - unions
e _
e plus compiler assumptions on:
- data layout, encoding, endianess -
'
© NICTA 2000 12

Saturday, 23 January 2010 12



\"//4: '/
- »
v 1 4/‘ 1

Fataoy A

'; "" v

N 5 AN '
'u‘ N

T ARY e wy -

ar
>
<
\
)

o
\
N

/‘7; o,

- ) v RIN
"!!5///2/ '--'i:;\ AN |
/Rl - A\ - N
A /)7"/// " !i'// % »
: - : X X N/ ) =

7055 Z S5 S R\
'47;;’7/;,(.‘/2; \'\ \ JEaEY I ‘ - ‘\\i\‘fir
f’/‘.: l 7 “ NS el < e
’/;f})"/“‘! 7\ QA W N S / - lt“;\‘A{

—— Ny

- S I VAV
N VSl A X/

NSZ/

-

-
N\

N

};7"‘ Dt

.27

E,\;\i\v "l,’A
";\‘/‘\"\
VAN

\

) )\\‘\" | \\ ,
\$ | |
A \,n“f\ /Ak



Saturday, 23 January 2010 14



definition
schedule :: unit s_monad where

schedule = do
Wh at threads <« allActiveTCBs;

thread «— select threads;
switch_to_thread thread
od

- . OR switch_to_idle_thread
Specification
4

void

P ro Of schedule(void) ({
switch ((word t)ksSchedulerAction) ({

case (word_t)SchedulerAction ResumeCurrentThread:
break;

case (word_t)SchedulerAction_ChooseNewThread:

chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

HOW default: /* SwitchToThread */

switchToThread(ksSchedulerAction);
ksSchedulerAction = SchedulerAction ResumeCurrentThread;

break;
void
chooseThread(void) {
{‘? f-i O T D » ' O

© NICTA 2009 J

Saturday, 23 January 2010 15




*conditions apply

O

O Assume correct:

B N -

Specificati

Proof 1 _

Saturday, 23 January 2010

compiler + linker (wrt. C op-sem)
assembly code (600 loc)
hardware (ARMvG)

cache and TLB management
boot code (1,200 loc)

Assumptions

16



Implications

m n ey A B Specification
Execution always defined: P -
P
* no null pointer de-reference . l
* no buffer overflows
* no code injection -

* no memory leaks/out of kernel memory
* no div by zero, no undefined shift
* no undefined execution

* no infinite loops/recursion

Not implied:

e “secure” (define secure)
e zero bugs from expectation to physical world
e covert channel analysis

© NICTA 2009

Saturday, 23 January 2010 17



Proof Architecture

S ST E TR LR e

Specification

Proof

© NICTA 2009 18

Saturday, 23 January 2010 18



Proof Architecture

Specification

|

|

19

Saturday, 23 Januar y 2010 19



Proof Architecture

Confinement

definition
schedule :: unit s_monad where
schedule = do

threads <« allActiveTCBs;
SpeCIfICatlon +hread «— celart threade:

schedule :: Kernel ()

- ."'

void
schedule(void) {
switch ((word_t)ksSchedulerAction) {
case (word_t)SchedulerAction ResumeCurrentThread:
break;

case (word_t)SchedulerAction_ChooseNewThread:

chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

default: /* SwitchToThread */
switchToThread(ksSchedulerAction);
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

}

void
C COde chooseThread(void) ({
prio t prio;

© NICTA 2009

Saturday, 23 January 2010 20



Saturday, 23 January 2010 21



Common Criteria

EAL1 Informal

EAL2 Informal Informal

EAL3 Informal Informal

EAL4 Informal Informal Informal
EALS Semiformal  Semiformal Informal
EALG Formal Semiformal  Semiformal Informal
EAL7 Formal Formal Formal Informal

|4.verified Formal Formal Formal Formal

© NICTA 2009

Saturday, 23 January 2010

22

22



Did you find any Bugs?

schedule(void) {
Bugs found switch ((word t)ksSchedulerAction) { . _
Effort
Haskell design 2 py L.
First C impl. 2 weeks
during tQSting: 16 Debugging/Testing 2 months
Kernel verification 12 py gead;
} ' Formal frameworks 10 py
Total 25 py
during verification:
e inC: 160 c«v Comparison of approaches
« in design: ~150 Trad. engin.e.erir!g 4-6 py
Repeat verification 6 py
* inspec: ~150
460 bugs Cost o
Common Criteria EAL6: $60M
L4.verified: $6M

© NICTA 2009

Saturday, 23 January 2010 23



?

What’s next

24

Saturday, 23 January 2010



Remove limitations

verify assembler code
verify bootstrap code
verify MMU operations
multicore version
verify x86 version
temporal isolation
information flow

© NICTA 2009

Saturday, 23 January 2010

Towards real systems

1 MLoC, legacy components
real-time analysis

power management

25

25



Untrusted Trusted

=) | =
= |-

Exploit:

e sel4 isolation

e verified properties

e MILS architectures /
virtualization

© NICTA 2009 26

Saturday, 23 January 2010 26



Application Areas -

Multilevel Secure Terminal Demonstrator

also:
e automotive
 financial

¢ adaerospace

Saturday, 23 January 2010 27



. e - L
=

Global View of Project

components, connections architecture
|
|
|
|
glue cosie, . : |_ whole system
separw)n boundaries | assurance
< configure i‘ ® separation setup '
: |
seL4 kernel :

* Build system with minimal TCB

* Formalize and prove security properties about architecture
= Prove correctness of trusted components

* Prove correctness of setup

© NICTA 2009 28

Saturday, 23 January 2010 28



Formal proof all the way from specto C

e 200 kLoC handwritten, machine-checked proof, 10 k theorems
e ~460 bugs (160 in C)

e \Verification on code, design, and spec

e Hard in the proof = Hard in the implementation

Formal Code Verification up to 10 kLoC:

It works.
It’s feasible. (It’s fun, too...)
It’s cheaper.

© NICTA 2009

Saturday, 23 January 2010

29



© NICTA 2009

June Andronick

Timothy Bourke
Andrew Boyton
David Cock

Jeremy Dawson
Philip Derrin
Dhammika Elkaduwe
Kevin Elphinstone

* |eader, kernel design
Kai Engelhardt

David Greenaway
Lukas Haenel
Gernot Heiser

Saturday, 23 January 2010

Gerwin Klein

» |eader, verification
Rafal Kolanski
Jia Meng
Catherine Menon
Michael Norrish
Thomas Sewell
David Tsai
Harvey Tuch
Michael von Tessin
Adam Walker
Simon Winwood

30

30



Saturday, 23 January 2010

Thank You

|4 verified

I'm Feeling Lucky

31



