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An exception 06 has occured at 0028:C11B3ADC in WD DiskTSD(03) +
00001660, This was called from 0028:C11B40C8 in VXD voltrack(04) +
00000000, It may be possible to continue normally,

* Press any key to attempt to continue.
* Press CTRLHALTHRESET to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue
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seL4"Microkernel

Core of a Minimal JCB

Small trustworthy foundation
Untrusted Trusted

* novel kernel resource e e e

management s "

e Fault isolation

e Fault identification
e |P protection
 Modularity

 High assurance components in
presence of other components

.

Designed for verification
 small API

Designed for security

© NICTA 2009
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Aim: Suitable for-Real-Wor

Model: OKL4 microkernel

e resulting from L4-based research
at NICTA/UNSW

* Open Kernel Labs spun out as
independent company in 2006

* deployed in >500 M devices

selL4 API based on L4:

e |PC

 Threads

* Virtual Memory

e |RQs, exception redirection
e Capabilities (NEW)

e Performance like OKL4!

© NICTA 2009
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Real-world deployment for many uses

e (General-purpose

e virtual machines

* lightweight environents

* not just a separation kernel
e Performance

e Performance

e Performance l

 C & assembler Verification for functional correctness

* Formal model
* Tractable complexity
e Suitable representation of implementation

© NICTA 2009 7
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Kernel Design for
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Jwo Teams

Formal Methods Kernel
Practitioners Developers

_ Exterminate All
Abstraction OS Abstractions!

[Liskov 09] [Engler 95]

© NICTA 2009
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Whiteboard

Haskell Formal Formal
Prototype Design Specification
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Dei‘ﬁ 1{e] érification

void
schedule(void) {
switch ((word_t)ksSchedulerAction) {
case (word_t)SchedulerAction_ ResumeCurrentThread:

Reducing Complexity break;

case (word_t)SchedulerAction_ChooseNewThread:
chooseThread();
SchedulerAction = SchedulerAction  ResumeCurrentThread;

ak;
Hardware
B /* SwitchToThread \»Y
° I l ‘tchToThread{ksSchedulexaAction)s;
drlverS OUtSIde kernel ichedulerAction = ScheduleraActicon ResumeCurrentThread;
‘/ak;
v ,
Concurrency
md) |
e event-based kernel g
ad, *nexts
° Ilmlt preemptlon MaxPrie; Prid X7 NNFRO<XY /A
fdead =/ ksReddyleien o X iNea i
Thread; thregs Mgt
e derive from functional representation LY
i€
/4 \ i
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C sut =

void
schedule(void) {
switch ((word_t)ksSchedulerAction) {
case (word_t)SchedulerAction_ ResumeCurrentThread:

Everything from C standard break;

case (word_t)SchedulerAction_ChooseNewThread:
chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;

brea’
e including: .. * minus:
- pointers, casts, pointer arithmetic k. - goto, switch fall-through
- data types - reference to local variable
- structs, padding . - side-effects in expressions
- pointers into structs ig - function pointers (restricted)
- precise finite integer arithmetic E - unions
e _
e plus compiler assumptions on:
- data layout, encoding, endianess -
'
© NICTA 2000 12
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definition
schedule :: unit s_monad where

schedule = do
Wh at threads <« allActiveTCBs;

thread «— select threads;
switch_to_thread thread
od

- . OR switch_to_idle_thread
Specification
4

void

P ro Of schedule(void) ({
switch ((word t)ksSchedulerAction) ({

case (word_t)SchedulerAction ResumeCurrentThread:
break;

case (word_t)SchedulerAction_ChooseNewThread:

chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

HOW default: /* SwitchToThread */

switchToThread(ksSchedulerAction);
ksSchedulerAction = SchedulerAction ResumeCurrentThread;

break;
void
chooseThread(void) {
{‘? f-i O T D » ' O

© NICTA 2009 J
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*conditions apply

O

O Assume correct:

B N -

Specificati

Proof 1 _

Saturday, 23 January 2010

compiler + linker (wrt. C op-sem)
assembly code (600 loc)
hardware (ARMvG)

cache and TLB management
boot code (1,200 loc)

Assumptions

16



Implications

m n ey A B Specification
Execution always defined: P -
P
* no null pointer de-reference . l
* no buffer overflows
* no code injection -

* no memory leaks/out of kernel memory
* no div by zero, no undefined shift
* no undefined execution

* no infinite loops/recursion

Not implied:

e “secure” (define secure)
e zero bugs from expectation to physical world
e covert channel analysis

© NICTA 2009
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Proof Architecture

S ST E TR LR e

Specification

Proof

© NICTA 2009 18
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Proof Architecture

Specification

|

|

19

Saturday, 23 Januar y 2010 19



Proof Architecture

Confinement

definition
schedule :: unit s_monad where
schedule = do

threads <« allActiveTCBs;
SpeCIfICatlon +hread «— celart threade:

schedule :: Kernel ()

- ."'

void
schedule(void) {
switch ((word_t)ksSchedulerAction) {
case (word_t)SchedulerAction ResumeCurrentThread:
break;

case (word_t)SchedulerAction_ChooseNewThread:

chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

default: /* SwitchToThread */
switchToThread(ksSchedulerAction);
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

}

void
C COde chooseThread(void) ({
prio t prio;

© NICTA 2009
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Common Criteria

EAL1 Informal

EAL2 Informal Informal

EAL3 Informal Informal

EAL4 Informal Informal Informal
EALS Semiformal  Semiformal Informal
EALG Formal Semiformal  Semiformal Informal
EAL7 Formal Formal Formal Informal

|4.verified Formal Formal Formal Formal

© NICTA 2009
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Did you find any Bugs?

schedule(void) {
Bugs found switch ((word t)ksSchedulerAction) { . _
Effort
Haskell design 2 py L.
First C impl. 2 weeks
during tQSting: 16 Debugging/Testing 2 months
Kernel verification 12 py gead;
} ' Formal frameworks 10 py
Total 25 py
during verification:
e inC: 160 c«v Comparison of approaches
« in design: ~150 Trad. engin.e.erir!g 4-6 py
Repeat verification 6 py
* inspec: ~150
460 bugs Cost o
Common Criteria EAL6: $60M
L4.verified: $6M

© NICTA 2009
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What’s next

24
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Remove limitations

verify assembler code
verify bootstrap code
verify MMU operations
multicore version
verify x86 version
temporal isolation
information flow

© NICTA 2009
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Towards real systems

1 MLoC, legacy components
real-time analysis

power management

25
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Untrusted Trusted

=) | =
= |-

Exploit:

e sel4 isolation

e verified properties

e MILS architectures /
virtualization

© NICTA 2009 26
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Application Areas -

Multilevel Secure Terminal Demonstrator

also:
e automotive
 financial

¢ adaerospace
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Global View of Project

components, connections architecture
|
|
|
|
glue cosie, . : |_ whole system
separw)n boundaries | assurance
< configure i‘ ® separation setup '
: |
seL4 kernel :

* Build system with minimal TCB

* Formalize and prove security properties about architecture
= Prove correctness of trusted components

* Prove correctness of setup

© NICTA 2009 28
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Formal proof all the way from specto C

e 200 kLoC handwritten, machine-checked proof, 10 k theorems
e ~460 bugs (160 in C)

e \Verification on code, design, and spec

e Hard in the proof = Hard in the implementation

Formal Code Verification up to 10 kLoC:

It works.
It’s feasible. (It’s fun, too...)
It’s cheaper.

© NICTA 2009
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June Andronick

Timothy Bourke
Andrew Boyton
David Cock

Jeremy Dawson
Philip Derrin
Dhammika Elkaduwe
Kevin Elphinstone

* |eader, kernel design
Kai Engelhardt

David Greenaway
Lukas Haenel
Gernot Heiser
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Gerwin Klein

» |eader, verification
Rafal Kolanski
Jia Meng
Catherine Menon
Michael Norrish
Thomas Sewell
David Tsai
Harvey Tuch
Michael von Tessin
Adam Walker
Simon Winwood
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Thank You

|4 verified

I'm Feeling Lucky
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