
Low-Overhead Virtualization of
Mobile Systems

Gernot Heiser
NICTA and University of New South Wales
Sydney, Australia

CASES'11

©2011 Gernot Heiser NICTA 2

Types of Virtualization

VM

OS

Pro-
cess

Processor

Hypervisor

VM

OS

Pro-
cess

Platform VM or System VM

Operating System

Processor

Virtualiz. Layer

VM
Pro-
cess

VM
Pro-
cess

OS-level VM

Operating System

Processor

Process
Java
Program

Java VM

Process VM

Operating System

Pro-
cess

Processor

Pro-
cess

Type-2
“Hosted”

Processor

VM

OS

Pro-
cess

Hypervisor

VM

OS

Pro-
cess

Operating System

Type-1
“Native”

CASES'11

©2011 Gernot Heiser NICTA 3

Why Virtual Machines?

Traditional (enterprise) uses:
•  Server consolidation

–  Hardware & energy savings
with QoS isolation

–  Migrating, checkpointing, debugging
–  Concurrent use of multiple OSes

•  … or OS versions
•  Security

–  Partitioning to limit reach of intrusions
–  Sandboxing untrusted apps

Virtualizing mobile systems – crazy idea?

VM

OS

Pro-
cess

Processor

Hypervisor

VM

OS

Pro-
cess

CASES'11

©2011 Gernot Heiser NICTA 4

Mobile Phones

RTOS

Apps

Processor

Baseband
Software

Dumb phone

Consolidated
phone

RTOS

Baseband
Software Apps Apps Apps

Rich OS
(Linux)

Processor

Hypervisor

Smartphone

RTOS

Processor

Baseband
Software Apps Apps Apps

Rich OS
(Linux)

ProcessorCore Core

Heterogenous
Operating
Systems!

CASES'11

©2011 Gernot Heiser NICTA 5

Consolidated Phone: Motorola Evoke

•  Linux+BREW OS
•  Linux+BREW apps
•  Seamless UI integration
•  Released April 2009

RTOS+BB

Apps Apps Apps

Linux

200 MHz ARM926

OKL4 Hypervisor

BREW OS

Apps Apps Apps

CASES'11

©2011 Gernot Heiser NICTA 6

Dual-Persona Smartphone

•  Phones increasingly used to access business data
–  Companies lock down phones, no arbitrary apps
–  Employees end up carrying two phones

•  Integrate two virtual
phones into one physical
–  Locked-down business

phone
–  Open personal phone

•  Only one used at a time
–  Perfect use of virtualization

Will reach market soon

Trusted OS

Personal
Apps

Open OS

Apps Processor

Hypervisor

Business
Apps

CASES'11

©2011 Gernot Heiser NICTA 7

Secure Communication on COTS Phone

•  Secure phones are expensive (small product runs)
–  Strong push for COTS devices in defence etc

•  Use virtualization to provide
secure communication on
standard smartphone
–  Encrypt voice, data

and tunnel through
open OS

•  Hypervisor guarantees
isolation
–  With controlled

communication
•  Small trusted

computing base

Presently under evaluation by various agencies

CASES'11

Hypervisor

OS

Apps

Audio Crypto

Comms
App

Base
band

©2011 Gernot Heiser NICTA 8

Energy Management in Future Devices

•  Load-based dynamic re-mapping of activities to cores

CASES'11

OS

Apps Apps Apps

GP Core Accel. CoreGP Core Accel. Core Accel. Core

OS RTE RTE

Service Service Service

Service

Hypervisor

©2011 Gernot Heiser NICTA 9

Virtualization Mechanics: Instruction Emulation

•  “Pure” virtualization: Trap and emulate approach:
–  Guest attempts to access physical resource
–  Hardware raises exception (trap), invoking hypervisor’s handler
–  Hypervisor emulates result, based on access to virtual resources

•  Most instructions do not trap
–  Makes efficient virtualization possible
–  Requires that VM ISA is (almost) same as physical processor ISA

•  Works as long as architecture is “virtualizable”:
–  All instructions exposing or modifiying physical resources must trap
–  Not the case e.g. for ARM

CASES'11

ld r0, curr_thrd
ld r1, (r0,ASID)
mv CPU_ASID, r1
ld sp, (r1,kern_stk)

lda r1, vm_reg_ctxt
ld r2, (r1,ofs_r0)
sto r2, (r1,ofs_ASID)

Guest

Exception

Hypervisor

©2011 Gernot Heiser NICTA 10

Para-Virtualization

•  Manual modification of guest OS source
–  Port from hardware ISA to hypervisor API

•  Replace ISA instructions by trapping code (“hypercalls”)
–  Expensive in terms of engineering time (& error prone)

•  Mandatory for non-virtualizable architecture (eg. ARM)
•  Optionally for performance improvements

–  Minimise costly hypervisor entries
–  Amortize hypercall cost over many instructions

CASES'11

ld r0, curr_thrd
ld r1, (r0,ASID)
mv CPU_ASID, r1
ld sp, (r1,kern_stk)

ld r0, curr_thrd
ld r1, (r0,ASID)
trap
ld sp, (r1,kern_stk)

ld r0, curr_thrd
ld r1, (r0,ASID)
jmp fixup_15
ld sp, (r1,kern_stk)

©2011 Gernot Heiser NICTA 11

Minimising Overheads

•  Hypervisor design and implementation is important
–  Para-virtualization requires well-designed API

•  Minimise hypervisor entries
–  Tight implementation as hypervisor is on critical path

•  Small cache footprint
•  “Fast paths” for optimising common case
•  Many processor-specific optimisations

–  Keeping it small helps:
•  10 kLOC is much easier to optimise than 100 kLOC!

CASES'11

©2011 Gernot Heiser NICTA 12

Overheads: lmbench Microbenchmarks

CASES'11

Benchmark Native Virtualized Overhead
null syscall 0.6 µs 0.96 µs 0.36 µs 180 cy 60 %
read 1.14 µs 1.31 µs 0.17 µs 85 cy 15 %
stat 4.73 µs 5.05 µs 0.32 µs 160 cy 7 %
fstat 1.58 µs 2.24 µs 0.66 µs 330 cy 42 %
open/close 9.12 µs 8.23 µs -0.89 µs -445 cy -10 %
select(10) 2.62 µs 2.98 µs 0.36 µs 180 cy 14 %
sig handler 1.77 µs 2.05 µs 0.28 µs 140 cy 16 %
pipe latency 41.56 µs 54.45 µs 12.89 µs 6.4 kcy 31 %
UNIX socket 52.76 µs 80.90 µs 28.14 µs 14 kcy 53 %
fork 1,106 µs 1,190 µs 84 µs 42 kcy 8 %
fork+execve 4,710 µs 4,933 µs 223 µs 112 kcy 5 %
system 7,583 µs 7,796 µs 213 µs 107 kcy 3 %

OKL4 Microvisor on Beagle Board (500 MHz Cortex A8 ARMv7)

©2011 Gernot Heiser NICTA 13

Overheads: Networking

Netperf networking benchmark on Linux

CASES'11

Type Measure Native Virtualized Overhead

TCP Throughput [Mib/s] 651 630 3 %

CPU load [%] 99 99 0 %

Cost [µs/KiB] 12.5 12.9 3 %

UDP Throughput [Mib/s] 537 516 4 %

CPU load [%] 99 99 0 %

Cost [µs/KiB] 15.2 15.8 4 %

OKL4 Microvisor on Beagle Board (500 MHz Cortex A8 ARMv7)

©2011 Gernot Heiser NICTA 14

VIrtualizing Devices: Two Possibilities

VM-Owned

•  Device regs exposed to VM
–  unmodified native guest driver

accesses device directly

Shared

•  Virtual device exposed to VM
–  Virtual driver communicates

with real driver in hypervisor

CASES'11

ProcessorProcessorCore Dev

Hypervisor

Core Dev

Apps Apps Apps

OS
Driver

Apps Apps Apps

OS
Driver

ProcessorProcessorCore Dev

Hypervisor

Core

Apps Apps Apps

OS Virtual
Driver

Apps Apps Apps

OS Virtual
Driver

Driver

©2011 Gernot Heiser NICTA 15

Shared Devices: Pure vs Para-Virtualized

Pure: Unmodified guest driver

•  Each device register access by
guest driver traps to hypervisor
–  real driver emulates

•  Many traps – expensive!

Para: Modified device API

•  Virtual device is simplified
–  possibly explicit driver

communication API
–  virtual driver is very simple

•  Can dramatically reduce traps
•  But: need new driver

–  real driver ported to hypervisor
•  Real driver can be

–  inside hypervisor
–  separate driver VM

•  one for all drivers
•  separate for each driver

CASES'11

ProcessorProcessorCore Dev

Hypervisor

Core

Apps Apps Apps

OS Virtual
Driver

Apps Apps Apps

OS Virtual
Driver

Driver

©2011 Gernot Heiser NICTA 16

Coming Up: Hardware Support

•  ARMv7 virtualization extensions announced Q3/2010
•  Anticipate Si samples in 2011, products in 2012
•  Presently only simulator (not cycle accurate!)

CASES'11

•  New privilege level: hyp
–  Strictly higher than kernel
–  Virtualizes or traps all

sensitive instructions
–  Only available in ARM

TrustZone “non-secure”
mode

•  Note: different from x86
–  VT-x “root” mode is

orthogonal to x86
protection rings

“Secure” world “Non-Secure”
world

Monitor mode

Kernel modes

Hyp mode

User mode

Kernel modes

User mode

©2011 Gernot Heiser NICTA 17

ARM Virtualization Extensions (1)

Configurable Traps

Kernel mode

User mode

Native syscall

Kernel mode

Hyp mode

User mode

Virtual syscall

Kernel mode

Hyp mode

User mode

Virtual syscall
Trap to guest

Can configure traps to
go directly to guest OS

CASES'11

©2011 Gernot Heiser NICTA 18

ARM Virtualization Extensions (2)

Emulation
1)  Load faulting instruction

•  Compulsory L1-D miss!
2)  Decode instruction

•  Complex logic
3)  Emulate instruction

•  Usually straightforward
mv CPU_ASID,r1 IR

ld r1,(r0,ASID)
mv CPU_ASID,r1
ld sp,(r1,kern_stk)

L1 I-
Cache

 ld r1,(r0,ASID)
 mv CPU_ASID,r1
 ld sp,(r1,kern_stk)

L2
Cache

...

...

...

L1 D-
Cache

... R2

...
mv CPU_ASID,r1
...

mv CPU_ASID,r1

CASES'11

©2011 Gernot Heiser NICTA 19

ARM Virtualization Extensions (2)

Emulation Support
–  HW decodes instruction

•  No L1 miss
•  No software decode

–  SW emulates instruction
•  Usually straightforward

mv CPU_ASID,r1 IR

ld r1,(r0,ASID)
mv CPU_ASID,r1
ld sp,(r1,kern_stk)

L1 I-
Cache

 ld r1,(r0,ASID)
 mv CPU_ASID,r1
 ld sp,(r1,kern_stk)

L2
Cache

...

...

...

L1 D-
Cache

r1 R3

mv R2

CASES'11

©2011 Gernot Heiser NICTA 20

ARM Virtualization Extensions (3)

2-stage translation

–  Hardware PT walker traverses
both PTs

–  Loads combined (guest-virtual to
physical) mapping into TLB

1st PT ptr
(Hardware)

data

ld r0, adr

Guest
virtual
address

Guest
physical
address

Physical
address

2nd PT ptr
(Hardware)

User
(Virtual)
guest page
table

Hypervisor's
guest
memory map Guest OS

Hypervisor

Memory

CASES'11

©2011 Gernot Heiser NICTA 21

ARM Virtualization Extensions (4)

Virtual Interrupts

•  ARM has 2-part IRQ controller
–  Global “distributor”
–  Per-CPU “interface”

•  New H/W “virt. CPU interface”
–  Mapped to guest
–  Used by HV to forward IRQ
–  Used by guest to acknowledge

•  Reduces hypervisor entries for
interrupt virtualization

Distributor

CPU Interface

Hypervisor

Guest

Virt. CPU Interf

CASES'11

©2011 Gernot Heiser NICTA 22

Experience: Hypervisor Size

•  Resonably complete prototype hypervisor utilising extensions
–  Runs Linux
–  Simulator only (no hardware)

•  Much smaller than x86 pure-virtualization hypervisor
–  Mostly due to greatly reduced need for instruction emulation

•  Size (& complexity) reduced about 40% wrt to para-virtualization

CASES'11

Hypervisor ISA Type Kernel User
OKL4 ARMv7 para-virtualization 9.8 kLOC 0
Prototype ARMv7 pure virtualization 6 kLOC 0
Nova x86 pure virtualization 9 kLOC 27 kLOC

©2011 Gernot Heiser NICTA 23

Overheads (Estimated)

Operation
Pure virtualization Para-virtualiz.

Instruct Cycles (est) Cycles (approx)
Guest system call 0 0 300
Hypervisor entry + exit 120 650 150
IRQ entry + exit 270 900 300–400?
Page fault 356 1500 700
Device emul. 249 1040 N/A
Device emul. (accel.) 176 740 N/A
World switch 2824 7555 200

CASES'11

•  Note: Rough estimates due to lack of cycle-accurate simulation
•  Interesting tradeoffs:

–  Fast syscalls (no emulation)
–  slower hypervisor invocation, world switch

•  Pure virtualization almost certainly unsuitable for device drivers

©2011 Gernot Heiser NICTA 24

Future of Hypervisors: seL4 Microkernel

•  Q: Can you trust separation by the hypervisor?
•  A: Yes: we have proof!

CASES'11

Integrity requirements
1,000 lines

Abstract kernel spec
4,800 lines

Kernel implementation
8,700 lines C

Refinement proof
⇒
implementation
correct

Refinement proof
⇒
spec enforces integrity

By implication
⇒
implementation
enforces integrity

©2011 Gernot Heiser NICTA 25

seL4 WCET Analysis

Clearly early days, aiming for 10 µs WCET

CASES'11

µs

µs

©2011 Gernot Heiser NICTA 26

Conclusions

•  Virtualization is coming to mobile devices!
–  Hardware utilization
–  Security
–  Energy management

•  Manufacturers are providing extensions to accelerate
•  The art of para-virtualization is far from dying
•  Isolation can have the strength of mathematical proof

CASES'11

