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Why Virtual Machines? 

Traditional (enterprise) uses: 
•  Server consolidation 

–  Hardware & energy savings  
with QoS isolation 

–  Migrating, checkpointing, debugging 
–  Concurrent use of multiple OSes 

•  … or OS versions 
•  Security 

–  Partitioning to limit reach of intrusions 
–  Sandboxing untrusted apps 

Virtualizing mobile systems – crazy idea? 
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Mobile Phones 
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Consolidated Phone: Motorola Evoke 

•  Linux+BREW OS 
•  Linux+BREW apps 
•  Seamless UI integration 
•  Released April 2009 
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Dual-Persona Smartphone 

•  Phones increasingly used to access business data 
–  Companies lock down phones, no arbitrary apps 
–  Employees end up carrying two phones 

•  Integrate two virtual 
phones into one physical 
–  Locked-down business 

phone 
–  Open personal phone 

•  Only one used at a time 
–  Perfect use of virtualization 

Will reach market soon 
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Secure Communication on COTS Phone 

•  Secure phones are expensive (small product runs) 
–  Strong push for COTS devices in defence etc 

•  Use virtualization to provide 
secure communication on 
standard smartphone 
–  Encrypt voice, data  

and tunnel through 
open OS 

•  Hypervisor guarantees 
isolation 
–  With controlled 

communication 
•  Small trusted 

computing base 

Presently under evaluation by various agencies 
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Energy Management in Future Devices 

•  Load-based dynamic re-mapping of activities to cores 
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Virtualization Mechanics: Instruction Emulation 

•  “Pure” virtualization: Trap and emulate approach: 
–  Guest attempts to access physical resource 
–  Hardware raises exception (trap), invoking hypervisor’s handler 
–  Hypervisor emulates result, based on access to virtual resources 

•  Most instructions do not trap 
–  Makes efficient virtualization possible 
–  Requires that VM ISA is (almost) same as physical processor ISA 

•  Works as long as architecture is “virtualizable”: 
–  All instructions exposing or modifiying physical resources must trap 
–  Not the case e.g. for ARM 
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ld   r0, curr_thrd 
ld   r1, (r0,ASID) 
mv   CPU_ASID, r1 
ld   sp, (r1,kern_stk) 

lda  r1, vm_reg_ctxt 
ld   r2, (r1,ofs_r0) 
sto  r2, (r1,ofs_ASID) 
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Para-Virtualization 

•  Manual modification of guest OS source 
–  Port from hardware ISA to hypervisor API 

•  Replace ISA instructions by trapping code (“hypercalls”) 
–  Expensive in terms of engineering time (& error prone) 

•  Mandatory for non-virtualizable architecture (eg. ARM) 
•  Optionally for performance improvements 

–  Minimise costly hypervisor entries 
–  Amortize hypercall cost over many instructions 
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ld   r0, curr_thrd 
ld   r1, (r0,ASID) 
mv   CPU_ASID, r1 
ld   sp, (r1,kern_stk) 

ld   r0, curr_thrd 
ld   r1, (r0,ASID) 
trap 
ld   sp, (r1,kern_stk) 

ld   r0, curr_thrd 
ld   r1, (r0,ASID) 
jmp  fixup_15 
ld   sp, (r1,kern_stk) 
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Minimising Overheads 

•  Hypervisor design and implementation is important 
–  Para-virtualization requires well-designed API 

•  Minimise hypervisor entries 
–  Tight implementation as hypervisor is on critical path 

•  Small cache footprint 
•  “Fast paths” for optimising common case 
•  Many processor-specific optimisations 

–  Keeping it small helps: 
•  10 kLOC is much easier to optimise than 100 kLOC! 
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Overheads: lmbench Microbenchmarks 
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Benchmark Native Virtualized Overhead 
null syscall 0.6 µs 0.96 µs 0.36 µs  180 cy 60 % 
read 1.14 µs 1.31 µs 0.17 µs 85 cy 15 % 
stat 4.73 µs 5.05 µs 0.32 µs 160 cy 7 % 
fstat 1.58 µs 2.24 µs 0.66 µs 330 cy 42 % 
open/close 9.12 µs 8.23 µs -0.89 µs -445 cy -10 % 
select(10) 2.62 µs 2.98 µs 0.36 µs 180 cy 14 % 
sig handler 1.77 µs 2.05 µs 0.28 µs 140 cy 16 % 
pipe latency 41.56 µs 54.45 µs 12.89 µs 6.4 kcy 31 % 
UNIX socket 52.76 µs 80.90 µs 28.14 µs 14 kcy 53 % 
fork 1,106 µs 1,190 µs 84 µs 42 kcy 8 %  
fork+execve 4,710 µs 4,933 µs 223 µs 112 kcy 5 % 
system 7,583 µs 7,796 µs 213 µs 107 kcy 3 % 

OKL4 Microvisor on Beagle Board (500 MHz Cortex A8 ARMv7) 
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Overheads: Networking 

Netperf networking benchmark on Linux 
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Type Measure Native Virtualized Overhead 

TCP Throughput [Mib/s] 651 630 3 % 

CPU load [%] 99 99 0 % 

Cost [µs/KiB] 12.5 12.9 3 % 

UDP Throughput [Mib/s] 537 516 4 % 

CPU load [%] 99 99 0 % 

Cost [µs/KiB] 15.2 15.8 4 % 

OKL4 Microvisor on Beagle Board (500 MHz Cortex A8 ARMv7) 
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VIrtualizing Devices: Two Possibilities 

VM-Owned 

•  Device regs exposed to VM 
–  unmodified native guest driver 

accesses device directly 

Shared 

•  Virtual device exposed to VM 
–  Virtual driver communicates 

with real driver in hypervisor 
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Shared Devices: Pure vs Para-Virtualized 

Pure: Unmodified guest driver 

•  Each device register access by 
guest driver traps to hypervisor 
–  real driver emulates 

•  Many traps – expensive! 

Para: Modified device API 

•  Virtual device is simplified 
–  possibly explicit driver 

communication API 
–  virtual driver is very simple 

•  Can dramatically reduce traps 
•  But: need new driver 

–  real driver ported to hypervisor 
•  Real driver can be 

–  inside hypervisor 
–  separate driver VM 

•  one for all drivers 
•  separate for each driver 
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Coming Up: Hardware Support 

•  ARMv7 virtualization extensions announced Q3/2010 
•  Anticipate Si samples in 2011, products in 2012 
•  Presently only simulator (not cycle accurate!) 
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•  New privilege level: hyp 
–  Strictly higher than kernel 
–  Virtualizes or traps all 

sensitive instructions 
–  Only available in ARM 
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ARM Virtualization Extensions (1) 
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ARM Virtualization Extensions (2) 

Emulation 
1)  Load faulting instruction 

•  Compulsory L1-D miss! 
2)  Decode instruction 

•  Complex logic 
3)  Emulate instruction 

•  Usually straightforward 
mv CPU_ASID,r1 IR 

ld r1,(r0,ASID) 
mv CPU_ASID,r1 
ld sp,(r1,kern_stk) 

L1 I- 
Cache 

 ld r1,(r0,ASID) 
 mv CPU_ASID,r1 
 ld sp,(r1,kern_stk) 

L2 
Cache 

... 

... 

... 

L1 D- 
Cache 

... R2 

... 
mv CPU_ASID,r1 
... 

mv CPU_ASID,r1 
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ARM Virtualization Extensions (2) 

Emulation Support 
–  HW decodes instruction 

•  No L1 miss 
•  No software decode 

–  SW emulates instruction 
•  Usually straightforward 

mv CPU_ASID,r1 IR 

ld r1,(r0,ASID) 
mv CPU_ASID,r1 
ld sp,(r1,kern_stk) 

L1 I- 
Cache 

 ld r1,(r0,ASID) 
 mv CPU_ASID,r1 
 ld sp,(r1,kern_stk) 

L2 
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... 

... 

... 

L1 D- 
Cache 

r1 R3 

mv R2 
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ARM Virtualization Extensions (3) 

2-stage translation 

–  Hardware PT walker traverses 
both PTs 

–  Loads combined (guest-virtual to 
physical) mapping into TLB 
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ld r0, adr 
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ARM Virtualization Extensions (4) 

Virtual Interrupts 

•  ARM has 2-part IRQ controller 
–  Global “distributor” 
–  Per-CPU “interface” 

•  New H/W “virt. CPU interface” 
–  Mapped to guest 
–  Used by HV to forward IRQ 
–  Used by guest to acknowledge 

•  Reduces hypervisor entries for 
interrupt virtualization 
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Experience: Hypervisor Size 

•  Resonably complete prototype hypervisor utilising extensions 
–  Runs Linux 
–  Simulator only (no hardware) 

•  Much smaller than x86 pure-virtualization hypervisor 
–  Mostly due to greatly reduced need for instruction emulation 

•  Size (& complexity) reduced about 40% wrt to para-virtualization 
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Hypervisor ISA Type Kernel User 
OKL4 ARMv7 para-virtualization 9.8 kLOC 0 
Prototype ARMv7 pure virtualization 6 kLOC 0 
Nova x86 pure virtualization 9 kLOC 27 kLOC 
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Overheads (Estimated) 

Operation 
Pure virtualization Para-virtualiz. 

Instruct Cycles (est) Cycles (approx) 
Guest system call 0 0 300 
Hypervisor entry + exit 120 650 150 
IRQ entry + exit 270 900 300–400? 
Page fault 356 1500 700 
Device emul. 249 1040 N/A 
Device emul. (accel.) 176 740 N/A 
World switch 2824 7555 200 

CASES'11 

•  Note: Rough estimates due to lack of cycle-accurate simulation 
•  Interesting tradeoffs: 

–  Fast syscalls (no emulation) 
–  slower hypervisor invocation, world switch 

•  Pure virtualization almost certainly unsuitable for device drivers 
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Future of Hypervisors: seL4 Microkernel 

•  Q: Can you trust separation by the hypervisor? 
•  A: Yes: we have proof! 
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Integrity requirements 
1,000 lines 
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seL4 WCET Analysis 

Clearly early days, aiming for 10 µs WCET 
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Conclusions 

•  Virtualization is coming to mobile devices! 
–  Hardware utilization 
–  Security 
–  Energy management 

•  Manufacturers are providing extensions to accelerate 
•  The art of para-virtualization is far from dying 
•  Isolation can have the strength of mathematical proof 
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